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Bigraded invariants for real curves

PEDRO F DOS SANTOS
PAuLO LIMA-FILHO

For a proper smooth real algebraic curve X~ we compute the ring structure of both its
ordinary bigraded Gal(C/R)-equivariant cohomology [6] and its integral Deligne
cohomology for real varieties [12]. These rings reflect both the equivariant topology
and the real algebraic structure of X and they are recipients of natural transformations
from motivic cohomology. We conjecture that they completely detect the motivic
torsion classes.

S55N91; 14P25

1 Introduction

Curves are basic objects in algebraic geometry, yet their study provides a first insight
into the subtleties of algebraic varieties. Over nonalgebraically closed fields & this
complexity is further augmented by the existence of distinct varieties that become
isomorphic to the same variety X after extending scalars to the algebraic closure k
of k, the various k—forms of X .

Over the real numbers k£ = R the set of complex points of a proper smooth algebraic
curve X becomes a compact Riemann surface X'(C) when endowed with the analytic
topology. It comes equipped with an antiholomorphic involution o: X(C) — X (C)
induced by the action of G = Gal(C/R) whose fixed points are the real points X'(R).
The existence of connections between the topological invariants of the G—space X' (C)
and the algebraic invariants of X' is well known, reflects the differences between the
various R—forms of X¢, and has been explored in important references such as Gross
and Harris [5] and Pedrini and Weibel [8], among others.

In this paper we study two sets of bigraded cohomological invariants that detect both
the topological G—space structure of X'(C) and the algebraic structure of X' as a real
variety.

The most basic topological invariant is the fype of the curve: X is said to be of
separating type if X(C)\ X (R) is disconnected. Otherwise X is of nonseparating
type. If X' has genus g and the number of connected components of X' (R) is r, we
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&

say that X' has topological type g .,

is nonseparating.

where ¢ =1 if X' is separating and ¢ =0 if ¥

It turns out (see Silhol [14, Section 1]) that the equivariant homeomorphism type
of X (C) is completely determined by the invariants (g, 7, €), which are subject to the
following restrictions:

o Ife=1thenl<r<g+1land g=r+1mod?2.
e Ife=0then0=<r=<g.

In G—equivariant algebraic topology, the counterpart of singular cohomology is ordi-
nary RO(&)—graded equivariant cohomology (see Lewis, May and McClure [6]) which
is a bigraded ring H]’;r"(E (C); Z). This is the first of the bigraded invariants of X
that we study by computing its ring structure in Section 4. It is worth mentioning that
there are still very few examples of complete calculations of these bigraded equivariant
cohomology rings (see Lewis [7], the authors [11] and Dugger [3]). To illustrate our

calculations, let us consider the case ¥ = ¥ ; g+1° depicted in Figure 1.

1

Figure 1: Curve of separating type ¥ g.g+1

As a module over B, the cohomology ring of a point, we have
HY*(2(C):Z) = B-1® Bla) ® Bb) ®B-1,

where B(a) and B(b) are free B modules generated by the collections of variables a =
(ai,...,ag) and b = (by,...,bg), where a; and b; have bidegrees (1, 1) and (1, 0)
respectively, and 7 has bidegree (2,1). The ring structure is determined by these
relations (see (I)):

(I1) a;-aj = dijea;
(I2) bi-bj =0
(I3) a;-bj =6ijn

Algebraic & Geometric Topology, Volume 14 (2014)
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Here, the element ¢ € B!>! is a 2—torsion element in the cohomology of a point that is
the image of the symbol {—1} € K {” (R) under the map K {” (R) — BY!, as shown
by the authors in [12].

The relation (1) expresses the geometric fact that the generators a; are equivariant
Poincaré duals to the ovals «; (see figure) which cannot be equivariantly moved away
from itself, but 2¢; can.

The second bigraded ring invariant of a real curve X' that we study is the theory of
integral Deligne cohomology for real varieties introduced in [12]. These are invariants
of the algebraic structure of the curve that bear the same relation to equivariant ordinary
cohomology as the Deligne cohomology for complex varieties has to singular coho-
mology. In particular, their calculation depends heavily on the previous calculations of
equivariant cohomology.

In order to discuss the example of the Deligne cohomology of X' = Z‘glyg 11, WE
consider again two sets of variables a = (ay,...,ag) and b = (by,...,bg) having

bidegrees (1, 1) and (1, 0) respectively, and a variable n with bidegree (2, 1). Let D be
the Deligne cohomology ring of Spec R and denote by D the kernel of the augmentation
D —Z. Set D(b) =D Q®Z(b), the free D-module generated by the variables b;, and
define 25((1) =D Z(a).

As a module over D, we obtain
r(Z:Z(9)) =D-1®D(a) & (D(h)/I5) & D1,
where $ x» C D(b) is the free abelian group generated by the Jacobian relations, which

have the form
b )2 = { Z X,‘jbi

1<i<g

lfjig},

and consist of elements of bidegree (2, 1), since X = (Xij) is a g x g matrix with
entries X;j € D1 determined by a suitable period matrix for X'. The ring structure is
determined by these relations:

I) (A®a;)- (M ®aj)=6;;(A'e)Qa;, forall A, A €D
(12) bi-bj =0

I3) (A®a;)-bj =6ijAn

(14) x-n=0forall x € D(a)® (D()/I5)

Here we use the same notation & € D!>! for the image of the element {—1} € K {V[ R)
under the map K fw (R) — D! described in [12].

Algebraic & Geometric Topology, Volume 14 (2014)
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In the general case, the multiplicative structure is complicated by the presence of
generators that are not related to ovals, as seen in Theorem 5.12. The resulting ring
structure distinguishes curves with isomorphic cohomology modules, such as the

curves Eél , and Eg 3 see Theorems 4.1 and 5.12.

However, the additive structure of the torsion part of HE/R(Z’; Z.(e)) is easier to
describe and we display it in Table 1 below, where we denote by £ = E(X') the number
of components of X' without real points. It is interesting to compare this result with the
calculations in Pedrini and Weibel [9] where the higher K—theory of X' is computed and
partial results for the motivic cohomology H}' (2 Z(p)) are obtained. We conjecture
that the regulator maps Ky (X)wors — [ | >0 H ;’ "(X:7Z(p))ors are injective and the
realization maps Hy, (X Z(p))tors = H%/R (X Z(p))tors are isomorphisms for p > 0.
These questions will be addressed in a forthcoming paper.

n
6 Q/Z (Q/Z)¢ @ (Z*)+E z>yr @z>r @z &) @y
5 < Q/2)f @z 'TE Q/Ze @) (Z¥) () (ZF)
4 Q/Z (Q/Z)* & (Z*)+E z>" @z @z
3 < Q/2)f @ (Z*)'"E Q/Ze ) (2
2 Q/Z (Q/Z)* & (Z*)+E zxy
1 7% (Q/Z)g@(zx)r—l+E
0 (Z%)E
0 1 2 3 4 5 6 7 p

Table 1: Torsion in H? R(Z‘ Z(p))

This paper is organized as follows. In Section 2 we review the necessary topological
background, focusing on the equivariant structure of the singular homology groups of
real curves. We also give a brief overview of both ordinary equivariant cohomology and
integral Deligne cohomology for real varieties [12]. In Section 3 we study the curves
of genus 0 and 1. In Section 4 we use the previous cases together with two geometric
constructions to obtain the general case of the bigraded equivariant cohomology ring
structure for any smooth proper real curve; see Theorem 4.1. In the last section we
present in Theorem 5.12 the integral Deligne cohomology ring of these real curves.

Algebraic & Geometric Topology, Volume 14 (2014)
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2 Preliminaries

2.1 The topological types of real curves

Using the terminology in [14], we will often write X' . to denote a proper smooth
real curve of topological type X¢ .. We will also write ¥’ = X¢ . to indicate the type
of ¥.

Definition 2.1 Let /; be the identity matrix of rank d, and denote

0 --- 1
Jag=1: .-
1 --- 0

Acurve X¢ ., with g > 1, admits a symplectic basis B :={ay,...,0g;B1,..., Bg}

for H{"¢(X(C); Z) (that is, a basis such that o; -aj = B; - B = 0 and «; - fj = 8;5 )
s0 that we have o: H}"(5(C); Z) — H{"(5(C); Z) is represented by a matrix of

the form
&
I
0 —1I )
where
Jor1—r O Ioy1—, 0
1 ._ [Jeg+1-r 0o ._ [(1g+1—r
(1) Mg’r._( 0 0) and Mg,r._( 0 0) for r > 0,
Jo ifgi _
) M2, =18 ?g%seven for r = 0, where 4 := g1 0 )
& A if gisodd 0 0

We call a basis satisfying these conditions a real basis for the first homology group.

2.1.1 Separating case If ¥ =X g},r is a separating curve, then X'(C) can be visual-
ized as in Figure 2, where the action of & is given by reflection with respect to the

horizontal plane.

Denoting by A;, Bj, Cx, Dy € H"(2(C),Z),i=1,....,r, j=1,....,r =1,k =
1,....q, 2qg = g + 1 —r, the classes in singular homology of the circles indicated in
the figure, one can write

3) H™(X(C),Z)=17{4,B,C,6C,D, oD},

where A denotes the ordered set of homology classes (Aq,...,4,—1). Thesets B, C
and D are defined similarly. Also 0C :=(0Cy,...,0Cy) and similarly for o D . Note
that c4 = A4 and o B =—B.

Algebraic & Geometric Topology, Volume 14 (2014)
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Figure 2: Curve of separating type Z‘;’,

It is easily seen that the elements o, ..., ag; B, ..., Bg introduced in Table 2 form a
real basis for H fmg(E (C), Z) according to Definition 2.1.

061=C1+GC1 ﬂlle
dg+1= Dg+0Dq Bar1=0C
a2q=D1+O'D1 ﬂzq:aCl

Argt+1 = Aj B2g+1 = Bi
Uag4r—1 = Ar-1 Bag+r—1 = Br—1

Table 2: Real basis for Hlsmg(ZJél,r (C),7z)

Algebraic & Geometric Topology, Volume 14 (2014)
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2.1.2 Nonseparating case without real points Let us first consider the case 23,0’
where the curve has no real points, which can be visualized in Figure 3. In this
case, the action of & can be seen as reflection across the origin o, and a real basis
{ag,...,ag:B1,..., Bg} asin Definition 2.1 is displayed in Table 3.

. . . . 0
Figure 3: Curves with no real points X 2.0

g§=2q g=2q+1
a; =Cy+0C B1 = D a; =Cr+0C B1 = D
ag=Cq+0Cy Bq = Dy ag=Cq+0Cy Ba = Dq
Og+1 = Dq +O'Dq ﬁq+1 =O'Cq Qg+1 = Dq +O’Dq ﬂq+1 =O'Cq
a2q=D1+OD1 ﬂquO'CI a2q2D1+O'D1 ﬂzq:O’CI
a2g+1 = —Dgt+1 | Pag+1 = Cg+1

Table 3: Real basis for H)"*(5? (C).Z)

Algebraic & Geometric Topology, Volume 14 (2014)
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2.1.3 Nonseparating case with real points The case of nonseparating curves with
real points X' = 259, ,» with ¥ > 0 is harder to visualize, and we postpone its description
to Section 4.2, limiting the presentation here to the case g = 1. Choosing a real point 0
in X allows one to present 2{)’1 (C) as an elliptic curve C/A, whose fundamental
domain is shown in Figure 4. It is clear that {&¢; = «, 81 = B} is a real basis for

H™(¥(C),Z), as in Definition 2.1.

‘ B
o

Fo g
_é‘ O'ﬁ

Figure 4: Real elliptic curves X/, and X},

2.2 Holomorphic differentials

Given a subring A C R, p € Z and a G-space X, let Hsfing(X; A(p)) be the sin-
gular cohomology groups of X with coefficients in the Z[S]-submodule A(p) :=
(2w +/—1)? A C C. The simultaneous action of & on X and A(p) then induces an
involution

oot HY (X A(p)) — HJ (X A(p)).

sing sing
The cup product and the evident pairings A(p) ® A(q) = A(p + q) give
@ H} (X:A(0):= P Hi (X, A(p)),
r>0,peZ

the structure of a bigraded ring, where the elements in Hs’ing (X, A(p)) have degree
(r, p). The invariants Hg,,(X; A(e))® form a bigraded subring of Hgo (X A())
and, for simplicity, we denote

) b (X) 1= (HJ, (X:C))°.

sing

Algebraic & Geometric Topology, Volume 14 (2014)
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Notation 2.2 Let

¥ H"(2(C):2) = HJ (2(C):2)

sing

denote the Poincaré duality isomorphism, satisfying o = ¥4 N [X(C)], where [X(C)]
is the fundamental class determined by the choice of +/—1, and let 1, := g €
H? (X(C);Z) be the orientation class.

sing

Given X' = X¢ ., consider a real basis B for H fing (¥(C),Z) as in Definition 2.1 and

denote M = Mg ,. Let {wy, ..., wg} be a basis of holomorphic differentials adapted
to B, whose period matrix with respect to B has the form (/g | Z).

Definition 2.3 Define
6) ej :=wj—w; and f;:=—(wj+w;), j=1,...,g8,

and write @ = (w1,...,wg), € =(e1,...,e¢) and f = (f;,....fg), seenas 1 x g
matrices of cohomology classes.

The involution o reverses orientation, ie 0x[X (C)] = —[X(C)], implying that
(7) U*ﬁu - _ﬁo'*a.

This simple fact has many relevant consequences, such as the next result (whose proof is
left to the reader). Here we consider Hs{ng(Z’(C); 7)) as a subgroup of Hs{ng(E(C); C)
since the former is free, and identify the latter with deRham cohomology. Under this
identification one has 6o = 0 on H’ (X(C);Z).

sing

Proposition 2.4 Let X' and BB be as above and denote
Vo = Days---,0a,) and ¥g=(p,....08,).

Then:

(i) @ =1vy-Z —1g, where Z is the period matrix with respect to B.

(ii) The period matrix has the form Z = %M +iT, where T is a symmetric positive
definite real matrix.

(iii) The adapted holomorphic differentials are “real”, ie invariant under the involu-
tion 0 ; equivalently, 0*w = @ .

(iv) f=9g +0cog and e =2i¥4T.

Algebraic & Geometric Topology, Volume 14 (2014)
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It follows that the collections {wy,...,wg,€;,...,eg} and {wy,..., wg:f1,... . fj}
are bases for f)ﬁg(ZJ((C)) that are related by
I, 21
=, b 5 7 f).
®) ©.0) = @.0 (O ,g)

2.3 Ordinary RO(&)-graded equivariant cohomology

In [1] Bredon defines an equivariant cohomology theory Hg (X; M) for G—spaces,
where G is a finite group and M is a contravariant coefficient system. When M is a
Mackey functor, P May et al [6] showed that this theory can be uniquely extended to
an RO(G)—graded theory {HG(X; M), a € RO(G)}, called RO(G)—graded ordinary
equivariant cohomology theory, where RO(G) denotes the orthogonal representation
ring of G. When G = &, one has RO(G) =Z-16 Z - &, where 1 is the trivial
representation and £ is the sign representation. In this paper we use the motivic
notation

) HEP (X, M) = HEP P (xs ),

and call ng’p (X, M) bigraded Bredon cohomology.

Remark 2.5 Bredon cohomology comes with a natural cup product U that makes

ng" (X; Z) into a graded-commutative bigraded ring, in the sense that
aUb=(=1)"""bUa, if dega=(r,p) and degh=(,p).

We simply denote ab := a U b, keeping in mind the graded commutativity as above.

Notation 2.6 (Equivariant spheres) Given n > p we will denote by S™# the sphere

of the representation V"7 :=1""7 4+ ¢P (thatis, S™? = V"P U {oo}), and by S”

the unit sphere of the representation §”, which is the sphere S” under the antipodal
map.

As with other cohomology theories, there is a reduced version of bigraded Bredon
cohomology, which for a based G—space (X, xo) can be given by

Hy* (X Z) = ker(Hy,* (X3 Z) — Hy*(x0: 2)).
The map in cohomology induced by the inclusion xy — X gives a splitting

HY(X:Z) = HEN(X:2) ® HY® (xo; Z).

Algebraic & Geometric Topology, Volume 14 (2014)
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For any equivariant cohomology theory $*'® one can define its Borel version 53;(’): as
ﬁ:O:(U ):=$9H**(U x ES). In particular, one has an associated Borel cohomology the-
ory H"?(X,Z) := ng’p(X x EG; Z), which is (0, 2) periodic; see the authors [10].

bor

2.3.1 The forgetful functor There are natural forgetful homomorphisms
(10) ¢: Hy? (X1 2) — Hj (X3 Z(p)°,

giving a homomorphism ¢: HB ‘(X:2) — Hs’fng(X 7.(#))® of bigraded rings.

Remark 2.7 Choosing i = «/—1 one can identify Z(e) with the ring of Laurent
polynomials Z[£, £71], where deg £ = (0, 1), as a Z[S]—algebra under o: & — —£. In
particular, Slng(pt Z(®)) = Z[£, £71] as a G-algebra whose invariants are Z[£2, £72].

Given a G—space X, the natural projection X x & Z, X induces a commutative
diagram of bigraded cohomology rings:

Hy*(X;2) e HE (X Z(9)) % HE, (X Z(9))
(11) n*l n::ngt -
H (Xx&; L)=Hy! (XS L) = HY (Xx&; Z())®
Writing HZ,, (X x &:Z(s)) = HZ, (X1 Z(s)) x HZ,y (X1 Z(e)), the isomorphism y

smg

is given by sending a € blng(X Z(p)) to y(a):= (a ( 1)?0*a). The equality in the
left lower corner follows from the fact the canonical projection X xGx EG — X x &
is an equivariant homotopy equivalence.

2.4 Poincaré duality

There is a bigraded Bredon homology theory, denoted Hf’r, (—; Z), for which Poincaré
duality holds.

Proposition 2.8 [10, Proposition 1.13] Let X be a connected, proper real smooth

variety of dimension n. Then, there is a class [X] € Hf; (X5 Z), called the funda-

mental homology class, such that the cap product with [X | gives the & —equivariant
version of the Poincaré duality isomorphism:

PD: Hy'(X:2) — HE ., (X :Z)
foreach k,l € Z.

Algebraic & Geometric Topology, Volume 14 (2014)
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2.5 Integral Deligne cohomology for real varieties

In [12] an integral version of Deligne cohomology for real varieties was developed.
To a real smooth proper real variety X it assigns a bigraded ring H;;/R (X;Z(e))
satisfying the following properties

(1) One has a long exact sequence

(12) = HENX(©).0)° 25 HY L (X3 Z(p)

sing

2 HI"P(X(C):Z) & {FPH] (X(C):C)}® — H/

. (C]
sing sing(X(C)’(C) —> e,
where X (C) denotes the set of complex points of X with the analytic topology
and {FP H/(X(C);C)}® denotes the invariants of the p level of the Hodge

filtration on singular cohomology under the action of 0.

(2) If Xc is a smooth proper complex variety and X¢ g denotes Xc¢ consid-
ered as a real variety, there are natural isomorphisms Hé/R (Xc/r: Z(p)) =
H} /c(Xc;Z(p)), where the latter denotes the usual Deligne cohomology
of Xc.

(3) If Xc is the complex variety obtained from X by base extension, the corre-
sponding map of real varieties Xc /g — X induces natural homomorphisms
Hé/R (X:Z(p)) - H}, 1o (Xei Z( p))®, where the latter denotes the invariants
of the Deligne cohomology of Xc.

(4) The map Wp: Hg/R (X;Z(e)) — H{')‘/C (Xc:Z(e))® above and the map
Wp: Hl’;/R (X;Z(e)) —> H];"(X;@ of (12) are ring homomorphisms.

T
(5) With negative weights p < 0, H{S/R(X ;Z(p)) is defined to coincide with
ordinary equivariant cohomology.

(6) For p =1, one has Hé/R(X;Z(l)) ~ H/71(X;0%).

Just as Bredon cohomology has its Borel counterpart, so does integral Deligne cohomol-
ogy for real varieties. This is explained in [12, Appendix A]. This counterpart coincides
with the cohomology theory proposed by Esnault and Viehweg in [4] and for this reason
we call it Esnault—Viehweg—Deligne cohomology and denote it H;/R gy (X3 Z(e)).
2.6 The cohomology rings of a point and related algebras

In what follows, we consider R/Z, R and R* as bigraded groups concentrated in
degree (0,0). We start with a list of variables that appear in the presentation of
various cohomology rings of a point. The context will determine which rings are under
consideration.

Algebraic & Geometric Topology, Volume 14 (2014)
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2.6.1 The Bredon cohomology ring of a point Consider the ring
(13) By = Zle, 1] = Zle, t]/(2e)

and note that Z|e, 7] is not a polynomial ring over Z, since ¢ is a torsion element.
We can also write By as By = Z[t] & ¢lF,[e, t], where the second summand is the
ideal generated by ¢ in By. Now, let Z[t™!]-a and Fy[e™!, z7!]- 6 be free modules
over the indicated polynomial rings, whose generators have their degrees displayed in
Table 4, and denote

(14) B_=2Z[t -a®F,[e !, t71]-6.

The Bredon cohomology of a point B := H];k;'(pt; Z) can be written as a direct sum of
abelian groups

B=By®B_=Z[t]®eFle. 1] Z[t']-a dF,[e !, t1]-6.

The product structure on B is determined by the fact that By is a subring and by the
relations

(15) o-T=2, a-0=a-e=0-1=0-¢=0.

Note that B is not finitely generated as a ring, and that B has no homogeneous elements
in degrees (p,q) when p-q <0.

variable 3 g1 T s o 0 X Y
degree | (1,1) (-1,-1) (0,2) (0,-2) (0,-2) (0,-3) (1,1) (1,0)
type | torsion  torsion torsion
26=0 2e71=0 20=0

Table 4: Variables and their degrees for the cohomology of a point

Remark 2.9 (1) Under the isomorphism Hs’fng(pt; Z(e)) = Z[£, £7'] explained in
Remark 2.7, the forgetful functor ¢: B — Z[£, £~!] is determined by ¢(7) = £2
and ¢(a) = 2£72. Its image is the subring

ZIE+ QETHZE? C ZIE £ C ZIg £
(2) The torsion ideal in B is precisely By = eFs[e, 1] @ Fo[e~!, t71]- 6.

2.6.2 The associated Borel cohomology ring of a point The associated Borel co-
homology ring A := H>*(pt, Z) of a point has a simpler description than B, due to its

bor
(0, 2) periodicity, and it can also be seen as the localization of 3 at t. More precisely,

(16) Ax=7le, t, ‘E_l].

Algebraic & Geometric Topology, Volume 14 (2014)
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The map B — A induces the natural inclusion of By = Z]t, €] into A, sends the
element « to 2t~! and sends 6 to 0.

The forgetful functor ¢: A — Z[£, £71] is determined by ¢(7) = £2.
2.6.3 The integral Deligne cohomology ring of SpecR Let (&) C By denote the

ideal generated by ¢ € B1'1. It is easy to see that (g) = &[F;[e, ] and hence we can
consider Z @ ¢€lF;[e, 7] as a subring of By.

Define
17) M =R[t]-E® (tZ[z]- Y) ®R/Z,
where E and Y are generators of degree (1, 1) and (1, 0), respectively, and give
(18) Dy :=7Z & eFrle, 1] M
T
a ring structure so that Z @ ¢lF,[e, t] is a subring, and Dy - M = {0}.
The full cohomology ring D = Hl’;/R (Spec R; Z (o)) has the form
D=Dy®B_.

where B_ was introduced in (14), Dy is a subring and D - B_ = {0}. We denote by
D C D the ideal D4+ @& B- sothat D = Z&D.

Remark 2.10 The following observations are important for subsequent calculations
and to relate this presentation of D with the one in [12].

(a) The ideal M of D satisfies M? = 0.

(b) Define J = eF;[e, 1] @ Fa[e™!, 77 1]-6 C D. Then J is an ideal in D and the
forgetful functor ¢: D — B sends J isomorphically onto B, . It is easy to see
that, for each k > 1 one has J* = &k, [e, 1] ® Fo[e~!, 7 1]- 0.

(c) Asexplained in Remark 2.7, the choice of i = +/—1 allows for the identifications
£ =2mi and £2 =t = (27i)? and, in particular, Z(p) = Z - £P . We can go
further and identify D1-2”+1 = R under the isomorphism

e, DV T =F, {et" )R- {t"E} — R*,
6-et” -, AT"B) > exp (A +87i),

where § € {0, 1}. In a similar fashion, we identify D'-2” =R /Z(2r) by sending
[t]® 1" -Y — [t(27i )?"]. In both cases, one obtains an identification D!/ =
(C/Z(j))® = (Dc)®.
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2.6.4 Thering Dgy The Esnault—Viehweg—Deligne cohomology of Spec R
(19) Dyy = ;;/R(E6§Z(°)),

explained in Section 2.5, has the following description. Start with Z[t~']@eF,[e, 7,77 !]
seen as a subring of A = Z[e, 7, 7~ ']. Then, it is easy to see that

Diy = Z[t '@ eFyfe, 7, 17 @ M,

DEV+

with M as in (17) and that the ring structure has Z[t '] @ F5[e, r, 7~ '] as a subring
and satisfies

('Z[t 1@ Dgy, ) -M = {0},

Dev

where 5]«:\/ denotes the kernel of the augmentation Dgy — Z.

Remark 2.11 Just as in Remark 2.10(b), we introduce the ideal

']EV = 8F2[8, T, T_l] C DE\/.

2.6.5 The B-algebra Z[&, &~ 1] and the operation of smashing with S, The
diagram (11) in the case of X = pt yields an isomorphism of B—modules ng"(G; 7)==
Z[£,£71]. Under this isomorphism, the 3—module structure of Z[£, £~!] is given by
the forgetful functor ¢: B — Z[£, £7!] and therefore it is determined by the fact that
7 € B%2 and o € B%~2 act as multiplication by £2 and 2£~2, respectively.

More generally, we see from diagram (11) that for any G—space X there is an isomor-
phism of B-modules

y~log Hy*(X x 6:2) — Hjjp o (X:Z(e) = Hy (X1 Z)  Z[E. £,

where the elements in H;i‘nlg(X ; 7)) are given degree (r,0). The B-algebra structure is
determined by the Z[£, £~ ]-algebra structure of Z[£, £ ® H;‘i‘ng (X;7Z)) and by the
B-module structure on Z[£, £~!] defined above.

One has a version of diagram (11) for based spaces, with X x & replaced by X A &4,
which yields the following result.
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Lemma 2.12 Let X be a based space on which G acts trivially. Then one has an
isomorphism of bigraded (nonunital) 3—algebras

HE M (X AG4,2) = HY (X Z) @ Z[EE71,

where the elements in H’, (X;Z) are given degree (r,0). The structure of the B—

bIH

algebra is determined by the Z[E,E™ ]—a]gebra structure of H mg(X 7Z)Q Z[E, E71]
and by the B—module structure on Z[£, £~ '] defined above.

Notation 2.13 Given an m—tuple of variables u = (u1,...,u») we will denote
by Z[E, £ (u) := Z[E, E (uy, ..., um) the free bigraded Z[£, £~!]-module with
generators u;,i = 1,...,m in degrees degu; = (1,0). Since Z[£,£7!] has a B—
module structure given by the isomorphism Z[£, £71] = H;;r"(G; Z) then Z[£, £~ 1(u)
inherits a —module structure, which will always be implicit henceforth.

3 Bredon cohomology of curves of genus 0 and 1

3.1 Genus 0

There are two real curves of genus zero, the projective line ]P’ng and the Brauer—Severi
curve B, whose algebraic structures are completely determined by their respective
topological types 23’1 and 28’0. As G—spaces one can identify IP’HIQ(C) with the
representation sphere S2:! and identify B(C) with the sphere S?2 (see Notation 2.6).
Their Bredon cohomology rings are as follows.

Proposition 3.1 [10, Section 1] One has an isomorphism of B—algebras
(20) Hy.* (Pg: Z) = Bl/ (1),

where n = ¢;(0O(1)) € H];’I(IP’1 ;Z) is the first Chern class of the hyperplane bun-
dle O(1). Similarly, one has an isomorphism of A-algebras (see (16))

21 Hy*(B; 2) = Alnl/ (&, en.n?),
where 1 € Hér’l (B;Z) is the first Chern class of O(2).

Remark 3.2 As bigraded 5-modules, one has
HY (Pa:Z)=B-1® 8-,
Hy*(B:Z) = A/(€¥) @ A/(e) -n= A/ () @ Ll v '] 1.
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3.2 Genus 1

There are three possible types: X 11 s & ? , and X i) 0

If ¥(R) # @ we choose a base point py € X' (R), giving X' the structure of a real
elliptic curve with a G—equivariant isomorphism X' (C) = C/A¢, where A¢ is the
lattice Z -1 + Z - ¢ with ¢ a point in the upper half-plane satisfying R (¢) € {0, %},
and the real structure o: C/A¢s — C/A¢ is induced by complex conjugation; see
Silhol [13]. The case 211’2 corresponds to { =iy, and the case 2?,1 tol = % +iy.

3.2.1 Real elliptic curves of separating type X 11,2 In this case, we have that the
torus 211’2(((3) = C/A¢ is equivariantly homeomorphic to S L1 x 8§19 “according to
the topological classification in Section 3.2. Hence EII’Z(R) =~ {0, 00} x 10 with
base point pg = (00, 00). A simple computation gives Hp:*(S1:1) =~ B[x]/(x? —eX),
where deg X = (1, 1), and Hg;*(Sl’O;Z) =~ B[Y]/(Y?), where degY = (1,0). It is
easy to see that the Kiinneth formula holds in this case yielding the following result.

Proposition 3.3 As a module over BB one has an isomorphism
Hy (21 ,(C):2) = B-1&B(a.b)® B-n.
The ring structure is given by
Hy* (2] ,(C); Z2) = Bla, b, )/ (a* —ea,b* n—ab),

where a has degree (1, 1) and is Poincaré dual to [{oo} x S!-°], while b has degree
(1,0) and is dual to [S">! x {oo}] and n has degree (2, 1). Denoting by {a;, B} the
singular homology basis {[{oo} x S1-0],[S1:! x {oo}]}, the images of a and b under
the forgetful functor ¢ are expressed in terms of {1, , Vg, } in Table 6.

3.2.2 Real elliptic curves of nonseparating type X {’,1 Once again we represent
T(C)=3P(C)=C/Ay with =1+iy.

For simplicity, we write ¥ = X(C) in what follows. Let D be a small open disc
around % in C, contained in the interior of the convex hull of {0, 1, ¢, {}. See Figure 4.
If r: ¥ — ¥/(X — D) = S%! is the quotient map, we obtain two maps

Ty

(22) Hy" (25 2) Hy*(S> 1),

n*

where 7y is the B—module map obtained as an umker map. In other words, given
o€ Hg;'(Z;Z) one has my(ar) N [S21] = ms (@ N[X]). It is easy to see myon* =1d,
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and hence Hg;'(S 2.1. 7)) becomes a subring of Hg;'(E ; Z), split as a B—submodule.
The long exact cohomology sequence for the pair (X, X — D) splits, giving

HY(2:2) = HE (S, 2)® HYN (Y — D 2).

On the other hand, the canonical radial deformation away from the center of D gives an
*5

equivariant homotopy equivalence ¥ —D ~ S1-° A&, and hence fIBr'(ZJ —-D;Z)=
7€, E7|(u), where degu = (1,0). This gives an isomorphism of B—modules

(23) Hy"(5:2) = B- 1@ ZIE & ') & B,
where 7 has degree (2, 1) and is the Poincaré dual of [pg].

In the presentation (23) the classes £"u are unique up to a sign. We will fix this
choice by defining u as the Poincaré dual of a geometric generator for the homology
group H Ffl (X; Z), which we present next. We will also present the generators for
H Efz(Z; Z) and H {33 (2'; Z) needed to complete the presentation of the ring structure
in H;;'(ZJ; Z). These homology classes will be obtained from three equivariant maps

28 5y g st 5% and ,o:S;—>2,
described as follows. First, let
(24) j: S0 »

denote the inclusion of the fixed point set. This is represented by the intersection of
the real line with the convex hull of {0, 1, , ¢}, the chosen fundamental domain for
the action of A¢ on C. Similarly, let

(25) 1 SYAG, > X

denote the inclusion of the curve represented by the intersection of the upper half-plane
with the boundary of the fundamental domain.

It is easy to construct an equivariant projection 7: S1! — S1:0 A& which is bijective
on the complement of the fixed point set of the G—action, and such that 74[S!:!] is a
generator of H Frl (S1"° A&,;Z). Then define 7 as the composition:

Sl,l

Sl’o/\6+ X

1

Finally, we also have an equivariant inclusion p: S é < X represented by the intersec-
tion of the fundamental domain with the horizontal lines passing through {/2 and /2,
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respectively. Using the same radial deformation as above one obtains an equivariantly
homotopy-commutative diagram:

Sa

P
@7 g l \

Sl’o/\6+ )

1

Lemma 3.4 Let [S'°], [S"!] and [S}] denote the fundamental homology classes, of
degrees (1,0), (1,1) and (1,2), respectively (see Costenoble and Waner [2]
and [11, page 1264]). Then the Poincaré dual of m4[S '] is a generator u € Hér’o(ﬂ; 7).
Furthermore, the Poincaré duals of j.[S'°] and p«[S}] are £u € H];r’l(E;Z) and
£y e Hér’_l (X Z), respectively.

Proof This follows easily from an application of corresponding forgetful functors and
the B—module structure of H;;;'(Z ; Z) given in (23). a

Remark 3.5 From the definition of 7, 1 and p one sees that the real basis {a1, 81}
of H,"*(X;Z) in Figure 4 has the following relation to the Bredon homology of X
under the forgetful functor:

eUlS") =1 and (s ([S"']) = 27i (B1 — 0 1)

Proposition 3.6 As a module over B one has a direct sum decomposition
Hy (3] ,(C1:2) = B-1@ ZIE£ ) @ B-1,

where u is a generator of degree (1,0). The product structure is determined by the
relation

in BOS~1,

(s+1)/2
Eku -Elu = (—l)ka+l, where Ty = {T ar s odd

0 s even

The image of u and £u under the forgetful functor is expressed in terms of the sym-
plectic basis {0y, , Vg, } in Table 6.

Proof The B-module structure was described in (23), using an inclusion of B-1 &
B-n= Hy*(S*!;Z) into Hy'*(X;Z) as a B—subalgebra. In particular, n*> = 0.

Next we establish the identities

(28) u-Ewy=am, w-EHu=0, € w-Eu)=0.
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We know that u - (§7'u) = kan, for some integer k. On the other hand, it follows
from the construction of 7: S*! — X', Lemma 3.4 and an application of the forgetful
functor that u - (£u) = 2n. Using the B—module structure of Z[£,£~!] one gets
2n=u-(Eu) =t(u-(E'u)) = t(kan) = 2kn and, since HE%;I (X'; Z) is a free abelian
group generated by 1, one concludes that k = 1.

Using Lemma 3.4 and the projection formula, one obtains that {u - (§2u)} N[X] =
E2) N wN[X]) = (E2u) Nwe[ST] = mu(*(E2u) N[ST1]). Observe that
a*(E72u)N[S 1] lies in the torsion group H(]ig (St Z) = H];r’_z (S"1;Z). However,
since 7: S1'! — ¥ factors through S 1.0 A & as described in (26), and the Bredon
homology of S1: A & is free, one concludes that 4 (7*(E72u) N[ST1]) = 0.

A similar argument, using (27), Lemma 3.4 and the fact that Hg’g (s} Z)=Hyg; 1.1 (S} z2)
is torsion [10, page 4711] shows that (€~ 1u)(§~'u) = 0.

Now it is easy to check that
- =0 w7 = oy - =0

for all k,/ € Z. Indeed, the second identity follows immediately from an applica-
tion of the forgetful functor, which gives an isomorphism H;r’z(kH)_l(E L) —
H2 (Z:ZQ(k+1)—1)°=7Z.

sing
We prove the first identity. Since 7 - (§2ku) . (gﬂu) = (§2k+2u) . ($21u) = (SZku)~
(& 2 +2u), it suffices to show that u-& 2Ly — 0 if I < —1. From the additive structure of
Hy*(2(C); Z) it follows that u-£%u is multiple of 7/ *10-n. But t=/=1- (u-£%/u) =
(u-£72u) =0, and t/=1¢/*10. = 0 -1 hence u-£*u =0.

The last identity follows in a similar fashion. This concludes the proof. a

3.2.3 Genus 1 curves without real points X 1,0 A choice of pg € x0 L o(C) gives
an isomorphism of real curves X9 0((C) ~ (C/A; where Ay =Z + 7 - § and ¢ is a
point in the upper half-plane Wthh satisfies R = 0, and the real structure on C/A¢
is induced by o): z +— z + A, for some A € %Ag; see [5; 13]. We can assume that
A=1.

Consider the basis {C, D} for H Smg(E 0 0(C):Z), where C is determined by the line
through perpendicular to the real axis, orlented as in Figure 5 and D is the circle in

1,()((C) determlned by the real axis in C.

Proposition 3.7 There is an equivariant homeomorphism X9 0((C) ~ Sl x S, - !
Under this isomorphism {oo}x S} and S xS? are identified W1th D and CU(34C)
as in Figure 5. There is a ring isomorphism

Hy"(200(C): Z) = Als, T, 0]/ (s> — 5. 62, T, 12, 7 — ST),
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where s has degree (1, 1) and is Poincaré dual to —t N [oo x S]], while T has degree
(1,0) and is dual to [S? x S11] and n has degree (2,1). As A-module this gives

HE* (20,(C):2) = A/(e®) @ A/(?) - s @ Z[r.t |- T Z[r. 7 '] .

The image of S and T under the forgetful functor is expressed in terms of the symplectic
basis {¥s, . Vg, } in Table 6, where a1 = —D and B = C.

NS
a

SIEY

Figure 5: Genus 1 curve without real points X ? o> the action is given by
o(z)=z+ %

Proof The first two statements are clear from Figure 5. Since the cohomology of S1-!
is free as a module over B, the Kiinneth formula together with the computation

Hy*(Sg:2) = AlT)/ (e eT.1%),  degT = (1,0)
in [10, page 4711] yields the ring isomorphism in the statement.

The assertions concerning the Poincaré duals of s and T follow from the .A-module
structure of H];kr"(E ? 0(C): Z) and nonequivariant Poincaré duality (note [{oo} x S
has degree (1,2); see [11, page 1264]). o

4 The bigraded Bredon cohomology ring of arbitrary real
curves

The goal of this section is to establish the following result.

Theorem 4.1 Let X' be areal curve, and consider sets of variables a:={ay,...,d,—1},
b=1{by,....b,_1}, u={uy,...,ur}, where dega; = degéu; = (1,1), degh; =
deguj = (1,0), while r and k are indicated in each case below, and a variable n with
degn=(2,1).
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() If ¥ =X, then g+1=r+2q with g € NU{0} and the B—module structure
of Hy'*(X;Z) is determined by
Hy*(2(C):2) = B-1@ Bla.b) ® ZIE. &' |(w) @ B,
withu = {uy,...,uy4}. The ring structure is determined by the relations

() aj-aj =dijea;,

(2) bi-bj =0,

(3) ai-bj =éijn,

4) x-y=0forall xeB(a,b), y € Z[E,é_l](u),
(%) EFu; 'gl“j = (_1)k5i+j,2q+lrkz+l’

where FEH € Hér’kH(E(C);Z) is given in Table 5.

B e
s odd s even
Eé,r T(S+1)/20”7 T(s+2)/29,7
0, 6ty 0
qu,o t6=D/2)  =2)/2,2
quﬂ,o t6=D/2y (=2)/24g

Table 5: Values of '

a ¥ = 2;,)’, with r > 1, then the B-module structure of H];"(E;Z) is given
by

Hg"(2(C);2) = B-1® B(a.b) ® ZIE &' 1) ® B-n,
withu ={uy,...,ugy1—,}. The relations (1)~(4) together with
(o) ERup-Eluy = (ks TE
determine the ring structure.

I Ifx = 23’0 with g = 2q, then the B—module structure of Hy'*(X;Z) is given
by
HE:*(2(C): 2) = Aln)/ (e, en.n*) @ Z[E £ |(w)

with u = {uy,...,usq4}. The ring structure is determined by the condition that
Alnl/ (€3, en, n?) is a subring together with the relation (&).
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av) Ifx¥ = 2;0 with g = 2g + 1, then the B—module structure of Hg;'(E;Z) is
given by

Hy*(2(C);Z) = Als, T, n)(s* —es, &2, T, T, n— ST) ® Z[£, £ (u)

withu = {uy,...,us4}, degs = (1,1) and deg T = (1,0). The ring structure
is determined by the condition that the first summand is a subring, together with
the relations S-u; = T-u; = 0 and ().

Furthermore, the images of the generators of a, b, u,&u,s and T under the forgettul
functor ¢ are expressed in terms of the symplectic basis {1}y, g} in Table 6 below.

curves | Hy' 5 HL (S(C).Z(1)  HY® 5 HL((C).Z(0)
Eé,r ap +— (2]ri)0a2q+k by 1952514-/(
k=1,....r—=1)
EMJ = (277,'1')1905] uj = ﬁaj _219ﬂ2q+1_j
(j=1,...,2q)
Eg’, ai = (2T[i)ﬁag+l—r+k by = ﬁﬂg-ﬁ—l—r-l-k
k=1,....r—=1)
Euj — (2mi)Dy uj > Vo — 20,
(.]:177g+1_r)
qu’o Euj > (2mi)dy, uj > Vo —=20p,, .,
(j=1,...,2q)
qu+1,0 S = (Q2ri)da,,y, T > 20, .,
EM] = (271'1.)1905] uj = 19011' _219;32,14_1_]'
(j=1,...,2q)

Table 6: Image of the generators of Hy:* (¥ ¢.»>Z) under the forgetful functor

4.1 Equivariant connected sums

4.1.1 Equivariant connected sum 1 Let xg € X(R) and y € Y(R) be real points
in two smooth complete real curves X and Y and choose sufficiently small closed
disks D := Dy, and D' := Dy, centered at xo and yg, respectively, together with
equivariant diffeomorphisms D = D?>! = D’. One can define an equivariant connected
sum X (C)#p2.1 Y (C) by gluing X — D and Y — D’ along dD and dD’, using the
given equivariant diffeomorphism.
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Notation 4.2 It is easy to see thatif X and X’ are real curves of type Zg,, and 2;; -
with r, 7’ > 0, then ¥ #p21 X7 has type X€€ To abbreviate this statement

gt+g' . r+r’'—1-
we will write
Y4 _ ye g
Lgrgrar—1 = Zgr Fout Xy

Given a nonunital B-algebra R, one can construct a corresponding unital augmented
B-algebra R:=B-1¢ R having R as the kernel of the augmentation R — B-1. In what
follows we will often encounter nonunital B—algebras of the form R=Ng®B- R,
where 1 has degree (2, 1) and Ny is a B—module generated by elements of degree
(1, %) with = € Z. Whenever R and S are B-algebras of this form, define their
connected sum R® S as

(29) R®S :=(RxS)/(nr—ns),

where R x S is seen as the bigraded B-module R® S and given the product ring
structure, and (ng —ng) is the ideal generated by (ng,0) — (0, ns). We denote the
associated unital B—algebra by R ® S and observe that it also has the form

(30) R®S=B-1®6(Ng@®Ns)®n-B,
where n=[(ng,0)]=1[(0, ns)], and [(@, b)] represents the class of (a, b) in the quotient.
Lemma 4.3 Given (X, x¢) and (Y, yg) as above, let ny € Hér’l (X(C);Z) and
Ny € Hér’l (Y(C);Z) denote the Poincaré duals of [xo] € Hy o(X(C);Z) and
[vol € Ho,o(Y(C); Z), respectively.

(a) The Bredon cohomology of X(C) can be written as a direct sum of B-modules

H (X(C);2)=B-1& N(X(C)) @ B-ny.
(b) Asaring, Hy*(X(C)fip2.1Y(C); Z) is isomorphic to the “pushout”
Hy"(X(C); Z) ® Hy" (Y(C); 2)
as defined in (30).

Proof The first assertion follows immediately from splitting off the cohomology of
a point using the fixed point xy and Poincaré duality. The second assertion uses the

same arguments that one would use to prove the same result for singular cohomology
(Mayer—Vietoris sequences, excision, homotopy invariance etc). a
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Example 4.4 (Bredon cohomology of curves of type Z‘r 1 r) Let r > 2. Applying
the operation #p2.1 to glue r — 1 curves of type X! 1, We obtain

21

r—1,r

1 1
= 21’2 #DZ,I #DZ,I 21’2 .

(r —1) times

Hence, for a curve X' of type Erl_l o
there is an isomorphism of B—modules

it follows inductively from Lemma 4.3(a) that

Hy*(2(C);Z)~B-1®B(a,b)® B-1,

where (a,b) = {ai,...,dr—1,b1,...,b,—1}, dega; = (1,1) and degb; = (1,0).
Lemma 4.3(b) implies that the ring structure is determined by the relations (1), (2) and
(3) in Theorem 4.1.

It is clear from the geometry of this construction that starting from the symplectic
basis {«1, 81} C H, Sing(Zill,z((C); Z) of Proposition 3.3 one obtains a symplectic basis
{a, B} for H Smg(Z‘, 1,r(C); Z) as depicted in Figure 1. The images of the equivariant
cohomology classes a, b under the forgetful functor are expressed in terms of the dual
basis {, g} in Table 6.

4.1.2 Equivariant connected sum 2 Let S be a real curve and pick a small open
disc D C §(C) —S(R) around x; € S((C) Denote S 1= S — {DUao(D)}. Given
a complex curve C4 of genus ¢, let C be the complement of a small open disk
D around Yo € Cq. Consider the product Cq x & as the disjoint union

o )
Cq L Cy,
o o o
where C; denotes C; with the opposite orientation, so that the usual action on Cy x &

becomes an antiholomorphic involution.

Define X' as a connected sum X' := Cq #3p S #5(o+ D) Cq Which is homeomorphic to
the quotient

31) 2= U x6)/ ~,

where ~ is the equivalence relation generated as follows. Fix a diffeomorphism
@: 3D — 3D and identify x € dD to (¢(x), 1)) and x € do (D) to (¢(x),c). The in-
duced G-action on X' is an orientation-reversing diffeomorphism o, and hence (¥, o)
has the equivariant topological type of a real curve — also denoted X — satisfying
Y(R) = S(R). See Figure 6.
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Figure 6: Connected sum 2

There is an equivariarg projection w: X — S obtained by collapsing the complement
of a collar of E())D in C4 x {1} to x¢ and the complem%nt of the %orresponding collar
of 0(dD) in Cy x {0} to 0 * xo. Note that m: (¥,S) — (S,S) is a map of pairs
inducing a map of long exact sequences:

x—1,0,8 5 *,0 S b *,0 r x,0. 3
- —Hy, (S;Z)—Hy; (S, S L) Hy; (S; L) —Hg/ (S;2)— -

N e

*—1,0, 8. 8 *,0 8. *,0 *,0
- —Hy (S Z)—Hp] (E,S,Z)—>H (X J—>H (S;2)—~ -+

Remark 4 5 In a similar fashion, one has equivariant projections S — S/ S and
Y -3/ S fitting a commutative diagram of pairs

(2,8) — (Z/8, po) = (Cg A S+, po)

RL e

(S,8) — (S/8, po) = (ST A S, po).
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The map p* in the exact sequence can be identified with the map in reduced cohomology

(33) p* Hy*(S? A6 4:2) = HY (SHZ) @ ZE.£7')

Q®1 Tk, @ ~ _
— Hy*(CgnG1:2) = H,(Cqi Z) ® ZIEE7'],

o
where 0: Cg — S 2 collapses C4 to a point; see Lemma 2.12. Hence, p* is injective
and gives an isomorphism in cohomological dimension 2:

378,80 = Ay (2.8 1).
Lemma 4.6 In the exact sequence above, the following hold:

(a) The homomorphism p* is a natural split monomorphism.
(b) The homomorphism 7* is a monomorphism.
(c) The square

HY®(S.8:2) — Hy"(S:2)

o* l a*

Hy*(2,8:2) — Hy*(Z:L)
is cocartesian.
(d) This diagram induces a natural isomorphism of B—modules,

HE*(2:2) = Hy*(S: 2) © ZIE. £ '] ® Hpo(Cyi 7).

sing

Proof The first assertion follows from the corresponding fact in singular cohomology
and Lemma 2.12, as explained in Remark 4.5. Simple diagram chases then show
both (b) and (¢).

It follows from assertion (c) that one has an isomorphism
(H3"(S:2) & Hy' (3,85 1)/ Hy* (S, 8: ) = Hy" (35 1)

induced by sending (u, v)eH];‘r" (S; Z)EBH];"(E, SO; Z) to w*(u)—b (v)EH];"(E; Z).
Denote by [u, v] the equivalence class of (u, v) in the quotient above, and use the
corresponding isomorphism to identify [u, v] = 7*(u) — b(v).

Now, denote by (v) the class of v in the quotient Hp * (X, S:; Z)/Hg* (S, S:7Z) and let
sp: H*(2.8:2) - HE*(S.8:2)

Algebraic & Geometric Topology, Volume 14 (2014)



2836 Pedro F dos Santos and Paulo Lima-Filho

be the natural splitting described in (a). It follows easily from the definitions that
| (H3,(S: D@ Hy,"(5,5:2)
;;(S S Z)

> HY*(S: D)@(HE(2.8:2)/HE (S, S 1)),

[, v] > (u = b(sp(v)), (v)),

is well defined and an isomorphism of B-modules. Finally, we use the natural isomor-
phism

Hy*(2,.8:2)/Hy)" (S, $:2)=7[, £ ® Hjo(Cqi Z)
from Lemma 2.12 to complete the proof. a
The identification
Hy*(2:2) = HY (S 2) ® Z[E &' ® HY,o(Cqi Z)

is useful to determine the product structure of Hy'*(X;Z). Since n*: Hy*(S;Z) —
Hy°(X; Z) is an injective ring homomorphism, we can see Hy'*(S;Z) as a subring
of the cohomology of X' and one needs only to understand products of the form y - v
and v-w, where y € HB *(S:Z) and v, w € Hglmg(Cq;Z) ®ZIE, £71].

In what follows let 1, denote the generator of H bmg (Cq; Z) andlet 7), be the generator of
Smg(S 2:7) such that 0*(1o) = n,. Hence the 1som0rphlsm p* defined in (33) sends
o ®E" € Hy (S/8:2) o no @ € A (2/8: ).

Lemma 4.7 Using the notation above, consider classes v =&" Q v,w = £ ® w in
ZEET® Smg(cq, Z),and y € Hy'?(S;Z), with n > 1. Then the following hold
in Hy*(Z;Z):

(@ y-v=0.

(b) Write vUw =n(v,w)no € H- (C4;7Z), with n(v,w) € Z; then

smg
vow = n(v, Wb E ),

where b is indicated in the sequence (32).

Proof We start with a simple description of the elements in Z[£, 7! ® H. Smg (Cq: 7).
It is usual to describe the first singular homology group of C, via a symplectic basis
{C1,....Cq; Dy, ..., Dy}, where C; and D; are represented by smooth embedded
circles that intersect transversely at a pomt as in Figure 6. We may assume that
these circles lie in Cy — D where D is the open disk in the construction of X'.
Hence, one obtains embeddings f;: S'vS! — Cq4 that induce equivariant embeddings
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Fi: (STvS! )xG — X In particular, if ¢ € H1 \_,((S1Vv S!)x&; Z) one obtains a
class ¥f,, (¢) € HBr (X¥;Z), Poincaré dual to F; ,*(§ ). Using the fact that the summand
ZIE E 1] ® Hslmg(Cq, Z) is torsion free in HBr *(X;Z) together with the forgetful
functor from equivariant to singular cohomology, one verifies that any element in this
summand is a sum of elements of the form ¥ F,, (¢).

Now, given y € Hy?(S:Z) the element F/(y) € Hy((S' v §1) x &;2) is
completely determined by the forgetful functor, according to Lemma 2.12. Hence
F}(y) =0, whenever n > 2, as one can clearly see in singular cohomology. It follows
that (y - 0F,, ) N[X] =y N Fix() = Fix(F(y) N ) = 0. This shows the first
identity.

Consider v=§"Qv,w = Qwe Hé;'(E,g';@ o~ Hé;'(ﬂ/g’, po: 7).
Using the observation preceding the lemma and the notation in (32) we see that
b(v)-b(w) =b(v-w) =n(v,w)b(E"T5ne). It follows from Remark 4.5 that p* is an

isomorphism in cohomological dimension 2. Therefore, £" ™51y = p*(£"T57,), and
hence

b(v)-b(w) = n(v, w)b(p* ¢ 7)) = n(v, w)r* (B(E 7o)
This concludes the proof. a
It follows from this lemma that the key ingredient to determine the product structure

on the cohomology of X' is the homomorphism b appearing in (32). The following
cases are of particular interest.

Lemmad4.8 Let S C S beas above, and consider the sequence

Hy*(S; Z)—>H2 *8.8:2)= Z[E,s—ll-ﬁo—g>HB (S:2)— 12 & D).

Then for S = B, IP’1 orS§=2% ? o+ the homomorphism b is completely determined by

the following data, in the notation of Lemma 4.7.

S | b1 +25y) | bE2+2hy)

B .[—1+s77 2+sg2
Pg san 501
2?0 .L,—l+s)7 T 2t5¢g

Table 7: Values of b
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Proof Since b is a morphism of B-modules and t acts in Z[£, £~!] as multiplication
by £2, it suffices to consider the case of s < 0.

If S = B, one has
H2N(S:2) = Z[r, v ' ]-n@ Fyfr, v 1] &2

and S is equivariantly homotopy-equivalent to S [} and hence Hér"(g' ; Z) =0; see [10,
page 4711]. It follows that for e = —1+ 2. the exact sequence in the statement becomes

/\

_ 7
HE stz e 1+zs770)—>Z (t= 1+ ) ——0.

and for e = —2 + 2

_ 8 7
HE 22 (51, 2) L7 (6 22550) Ly (2 e?) ),

Since the groups involved are either free or trivial, the result now follows from an
application of the forgetful functor to singular cohomology, to determine the correct
sign.

o
When § = IP’]IIR one has an equivariant homotopy equivalence S ~ S!-°. Hence, when
e = —1 + 25, the exact sequence in the lemma becomes

~ /\

8
0— 2 (50—~ Z - (¢ Om)—>0

and the result follows. For e = —2 + 25 one has

$
Z-(tPaY)—=Z- (£~ 2+2°"170)—>IF2 (rs9n)—>0

g); 24255

(see Section 3.2.1). Hence, b must send 1o to the generator t567.

Finally, when S = X? 1,0 the subspace S is equivariantly homotopy equivalent to the
pushout of two equivariant inclusions /: & — S! and g: & — S0 x&. In particular,
Hy 2, '(8 Z)=0. Hence, when e = —1 -+ 2s, the exact sequence in the lemma becomes

/\

Hy G D)2 ) (S,

which together with an application of ¢ gives the result. For ¢ = —2 + 25 one has

) b 2
HY 2258 7) 2 o7 (5724 2550)— =T, - (125 es)— 0.

Br

24255

Hence, b must send £~ flo to the generator 727 5¢s. a
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4.2 Curves without real points

Here we prove statements (III) and (IV) in Theorem 4.1. Using the gluing construction
of Section 4.1.2 with S = B and S = X? 1,00 We obtain all possible types of curves
without real points: ¥ 0 . We will now compute their Bredon cohomology rings using
Lemmas 4.7 and 4.8 and the computations of the basic cases described in Section 3.

The same construction with & = IP’I yields curves of type X! | which will also be

2q,1°
needed hence we will also con51der this case below.

0

Proposition 4.9 Applying the construction of Section 4.1.2 with S = B, P} , and 21 0’

1 .
we obtain a real curve ¥ of type EZq 0’ qu , and 22q+1 o» respectively.

The B-module structure of HBr’ (X; Z) is given by
(34) Hy*(2(C):2) = Hy*(S:2) ® Z[5. £ '(w),
where u = (uy,...,uzq) and degu; = (1,0). The ring structure of H;;"(E((C)' Z) is
determined by the fact that Hy > °(S Z) is a subring and the following set of relations:
(i) x-y=0forxe H];O"(S;Z) and y € Z[£, £ (u).
(i) &*u; .gluj = (—1)k8,-+j,zq+1f‘,§+l, where FSE is displayed in Table 5 above.

Furthermore, in Table 6 the images of the generators uy, ..., u», under the functor ¢
are expressed in terms {g, Vg }.

Proof By Lemma 4.6, we have H;;'(E;@ ~ H]; *S:2)®Z[E ET® smg(Cq, 7).
Let {C, D} be a homology basis as displayed in Figure 6. Starting with the cohomology
basis {¥¢, ¥ p} and tracing through the 1somorphlsms of Lemmas 4.6 and 2.12 we arrive
at a set of generators £Xu;, £5u itq € H (2 7) corresponding respectively to £¥ vc;
and S Up,,1_; such that (34) holds. Furthermore computing the image under ¢
of £%u;, in terms of the symplectic basis {¥¢, vg} (with {a, B} as in Table 3), we
obtain the expressions given in Table 6. a

This proves Theorem 4.1(II1), (IV).
4.3 Curves with real points
Here we prove statements (I) and (II) in Theorem 4.1.

4.3.1 Separating curves Using the equivariant connected sum which was described
in Section 4.1.1 one constructs every curve of separating type X ;,r from curves of
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type X1 by observing that

1,2°

1
quandZ‘Ol,

1 _ 1
(35) zl, =%

1 _ yl 1
rtr 2t gy = Xy D2 2y 1

From Proposition 4.9 one obtains a description
Hy" (54,1(C):2) = B-1@ ZE§ ) @ B-1,

as a B-module, where u := (u1,...,us4) and degu; = (1,0), so that the ring structure
is determined by the relation (&) of Theorem 4.1. Finally, Lemma 4.3 applied to the
equivariant connected sum construction in (35) together with Example 4.4 concludes
the proof of Theorem 4.1(I).

4.3.2 Nonseparating curves The curves of nonseparating type can be constructed as

36) X, =3

1 _ 0 0 1
g+1—r1 #p2.1 Er—l,r = (21’1 #po.1 - Hpa 21’1)#[)2,1 X,

1,r°

g+1-r
Now, using Lemma 4.3 inductively, together with Example 4.4 and Proposition 3.6 one
concludes the proof of Theorem 4.1(II).

5 The Deligne cohomology of real curves

In this section we compute the Deligne cohomology ring of a real curve X', organizing
the calculation into the same four cases of Theorem 4.1. We start with some preliminar-
ies including general technical results and the cases of the curves B = 20 0.0 and El 0’
as these will be used in the statement of the general result.

5.1 Preliminaries

5.1.1 Brauer-Severi curve Using the long exact sequence (12) and the description
of the Bredon bigraded cohomology of the Brauer—Severi curve in Proposition 3.1 we
obtain the following result.

Proposition 5.1 Let B be the Brauer—Severi curve. One has an isomorphism of
Dgy—modules

Hyyg (B:Z(#)) = (Dev/ J3y) ® (Dev/ Jev) - 11

where Jgy is the ideal introduced in Remark 2.11. There is a ring isomorphism

~ D[]
Hom (B 2() = o

where 1 has degree (2, 1).
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5.1.2 Genus 1 curves without real points ¥ 10’0 In a similar fashion, using long
exact sequences, the Bredon cohomology ring structure and dimensional considerations
the next result follows in a straightforward manner.

Proposition 5.2 For ¥ =% ? o one has an isomorphism of Dgy—modules
Hyp (29 1 2(9)) = Dyy/ 3y - 1@ Dy /TR AS} ® XB, (T) ® Dev/ Jey - 11
where S, T, n have degrees (1,1), (1,0) and (2, 1), respectively and
ng (T) = DevAT}/(Jev + $ ),

where $ 5 = Z{7E-T}, where t = Im fﬂ] w1 and w; is a holomorphic form adapted
to the symplectic basis {a1, 81} described in Section 2.1.3. The ring structure is
completely determined by:

(1) (A-S)(A'-S) = (ANe)-S for A, A" € Dy.

(2) (A-S)T=A-n for A € Dyy.

3) (A-S)p=0,T>=0 and T = 0.
Remark 5.3 The proposition above can be rephrased in the following way. One has a
ring isomorphism

Dey[T. 0] + $Dey 5. T. 1]
BR(ET 0 Z(8)) & — e

where I = I + I, + I3 + Zyx, is the sum of the following ideals:

() Iy = (Jey +(T) + (77))2-
2) Ly=((-s)n.(L-S)T—A-n|L € Dyy).
(3) I3 = ((AS)(A'S) —AA'eS | A, A" € Dgy).

4) $s =(FE-T), where t = im / g, @1 and w; is a holomorphic form adapted to
the symplectic basis {&1, 81} described in Section 2.1.3.

5.1.3 Technical results The first result has a well-known counterpart for complex
varieties and follows basically for the same reason, namely the fact that the Hodge
filtration FPE )"} vanishes whenever dim X < p.

Lemma 54 Let X be a smooth complete real variety of dimension d. Then for
p > d, there are natural isomorphisms

br: Hy P(X.C/Z)—Hp g (X:Z(p)).  be: Hi (X:C/Z(p)— Hip o (X: Z(p)).

sing
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which are compatible with forgetful functors, ie the following diagram commutes:
—1, .
HYMP(X.C/2) H} o (X2 Z(p))

| | v

bc
{H! WX C/Z(p)}°® — {Hp o (X: Z(p))}®

sing

Furthermore, the composition
-1, br Uy , .
Hy "7 (X(C): Z) = Hpyp(X: Z(p)) —> Hy,” (X(C): Z2)
coincides with the connecting homomorphism induced by the exact sequence

0-Z—->C—->C/Z—0.

Remark 5.5 Applying the previous result to the case of a point one can identify
D"P = HyP (pt, C/Z) for all p > 0. In particular, we will abuse notation and will
not distinguish between A and bg (%) when A € H;;;Zl (pt,C/Z).

The next result comes from natural pairings in the level of coefficients and its proof is
left to the reader.

Lemma 5.6 Let X be a ©—space. Then the pairing of ©-modules C /Z. Q7 — C/Z,
given by [z] ® n — [nz] induces pairings

mg: HEP(X.C/Z) @ HEP (X 2) — HET™ PP (x,C/2),

(X:Z(p)) — H (X;C/Z(p + p')),

sing

me: Hly(X:C/Z(p)) ® Hllng

which are compatible with forgettul functors and connecting homomorphisms, ie the
following diagram commutes:

+1'+1,p+p v
Hy ™ PTP(X L)

+1’ . /’ / .
Hgp " P (X;Z)® Hy, P (X;Z)
51 )

H:P(X,C/7) ® HiP' (X 2) =P (x C/z)

@ ¢

CH2 (X C/Z(p)}® ® (HI (X Z(p)}® ——= (HIE (X:C/Z(p + p'))3}®

sing sing sing
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Remark 5.7 It follows from the two propositions above that the cohomology of
Spec C admits an operation

37) R Y
which is 0 when p = 1 and an isomorphism when p # 1. For p > 2 this is obtained

by identifying £~1 = 27i)~' € H? (pt;Z(—1)) and using the multiplication

sing
me: Hpo(pt: C/Z(p)) ® HY, o (pt; Z(—1)) —> Hyp (pt: C/Z(p — 1)),

described in Lemma 5.6, together with the isomorphism b¢ from Lemma 5.4. For
p <0 one has £ ! H;/C (pt; Z(p)) — Hs"i‘ng(pt; Z(p)), in which case we use the
isomorphism

Z(p) S z(p—1)

given by multiplication by (277i)~! directly on the level of coefficients.

Definition 5.8 For a real curve X, let
Wp: Hpyp (5 Z(p)) = Hpy o (25 Z(p))°,
Wg: Hpyp (T3 Z(p) — HyP (25 2)
be the forgetful functors and denote their product by W := Wp x Wg.
Lemma 5.9 Let X be a real curve such that ¥(R) # @. Then for all p > 1 and
nel, V. Hyp (S 7(p)) > Hpy o (D Z(p)® x Hy” (T L) is injective.
Proof For simplicity, we will use H{%’Q, H];';P, H((’% and H£(p) to abbreviate

respectively. Consider the map of long exact sequences which correspond to the

forgetful functor Hg}% — Hg}fé:

_ i - v
H]’31r 1,p {H(g—l }b HbP HvP

Hn—l Hn—l ¢ H”sl’ z H"
Z(p) C D/C Z(p)

If ce Hg}fé e ker W then Wp(c) = 0 and there exists & € 37! (c). We have ¢ j () =
Wp(c) =0, hence j(x) € imic.
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Now, under the hypothesis X' (R) # & the map
_1’ — — =
W Hy P — {Hy ) }© C{HE'S

is onto (see Theorem 4.1). Hence o € imi and ¢ = 0. a

Let X' denote a complete smooth complex curve, and let Z = (zx;) denote the period
matrix relative to a symplectic basis {&;, B | j =1,..., g} for H{(X,Z). Define

g
(38) &j = (il ® Yoy —[1]1 ® Pp,) € DE' ® HY o (2. 2),
k=1
where [z], denotes the class of z € C in the quotient C/Z(p), for all p € Z.

Proposition 5.10 Let X be a complete smooth complex curve. Let 1, € H2. (X:7)

sing

denote the fundamental class of X~ determined by a choice of i = +/—1 and let
Apc(nc) be the (bigraded) exterior algebra on an indeterminate nc of bidegree (2, 1)
over the ring D¢ . Then there is a ring isomorphism

HEy e (2 L(9) = Ape (10)® Hyho (23 2) [ (6 (Mne ®1 = A®n, | A€De)+J 5,

where Jx; is the “Jacobian ideal”

Jy=(wj|j=1,....8).

with ®; as in (38) and §_1 as in (37). Moreover, the action of G on HS/E: is induced
by its joint action on D¢ and H:i‘ng(Z‘; 7) and by letting & act freely on Ap .

5.1.4 The D-module Xp(b,u) Letb=(by,...,bs) and u = (uy,...,uy) be sets
of variables with deg b; = degu; = (1,0), and let X = (x;;) be a g x g matrix, with
g=k+s. Writt D=Z®Z[t '] -« ®J & M and recall that both M and J are
ideals in D with M =R[z]-E® (tZ[t] - Y) Q R/Z.

Let $x C D® Z{b} & M ® Z{u} denote the free abelian subgroup generated by
the entries of the 1 x g matrix (E Qu EQ® b) X. In other words, $x = Z{v} where
v = (vy,...,vg) with

k K
(39) vj:injE®ui+Zxk+l,jE®bl-

i=1 =1

Since D-E = 0 one concludes $x is in fact a D—submodule of DRZbyOM QZ{u}.
We now introduce a D-module structure on

40)  Xp(u,b)=(D(b)® M QZ(u))/Ix ® M ® Z(Eu) & Z[E " |(u).
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It follows from the previous paragraph that it suffices to describe how D multiplies
elements in Z[£~!](u). This goes as follows: for each j = I,...,s one has the
following relations mod $x:

@) hu;=r@uj, heM.

(i) A-(E'"luj)=0forall heJ @M and [ > 0.

(iii) eu; = Jv; (see (39)).

(v) etk u; = (rkY®[%]) Q&u;, k>1.

v) J?*-u; ={0}.

vi) R (57 uy) = 2672k 2y; k1 >0,
Denote by Xp(u), Xp(b) C Xp(u,b) the submodules

@) Xpw)=MLw)/(Px "M L) &M ®Z(Eu) ® Z[E~' ().
42) Xp(b) = Image{D(h) — Xp(u, b)}.

Remark 5.11 Similarly, define Xgﬁv (u, T) by

(43) Xp,, (u,T) = (Dv(T) & M @ Z(u))/(Jev ® $x) & M ® Z(Eu) & Z[E™ ' |(u);

see Remark 2.11. Also, define Xp_, (#) in the same way Xp(u) is defined in (41).

5.2 Cohomology ring

Given a real curve X' of genus g, we define a g X g matrix X% = AT™!, where T
is the imaginary part of the period matrix, as in Proposition 2.4, and A is defined in
Table 8.

1 0 0 0
x Eg,r Egar Z‘2q,0 22q+1,0

J2q 0 Iz 0 Jag 0
A ( 0 —21,,1) (0 —21 Jag 0 —1

Table 8

The goal of this section is to establish the following result.

Theorem 5.12 Let X' be a real curve, and consider sets of variables
a:={ay,...,dr—1}, b={by1,....bp—1} and wu={uy,...,ux},

where dega; =degéuj = (1,1), degb; =degu; = (1,0), while r and k are indicated

in each case below, and a variable n with degn = (2, 1).
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If ¥ =X , then g-+1=r+2q, and the D-module structure of HY (25 Z(e))
is determined by

H}yp(2:7(0) 2 D- 16D Z(a) ® X5 (u,b) & D,
withu = {uy,...,uz4}. The ring structure is determined by the relations:

() A®a;)- N ®aj)=26j(ANe)®a; forall A\, € M .

2) 1®bi)-(1®bj)=0.

3) A®ai)-(1®bj)=20ijAn. B

@4 x-y=x-n=y-n=0 forall x € D(a)+ Xp(b), y € Xp(u).
5) A®&u;)- (M ®Eu;)=0 foralli,j,and A, € M.

(&) with T given in Table 5 above,

{(S_kui) (Euj) = (—DKSi4jaq T, k=0,
ERui) A ®@Euj) = (—DK8iqj2g1ATE . k=01 € M.

If Y = 2&9,, with 1 <r < g, then the D—module structure of Hg/R(E; Z.(e))

is determined by
SR(Z:Z(0) =D- 16D Z(a) X5 (u. b) &D-1,

where we have a ={ay,...,a,—1},b=1{by,....bp_1}, u={uy, ..., ugyi_,},
degu;=degh;=(1,0), Eu={&u;, ..., Eugy1—,} and dega;=degéu; =(1,1).
The ring structure is determined by the relations (1)—(5) as in (I) and by
E*u) - uy) = (=DksTE _, k=1,120,

E*up) - ®Euj) = (—Dk§;ATE, k=01 e M.

If Yy = 2&9,0 with g = 2q, then the D-module structure of H;/R(Z; Z(e)) is
given by

(i) {

Sr(Z:Z(e)) = Hyyp (B: Z(e) X3, (w).

where B is the Brauer-Severi curve, degn = (2, 1), u = {uy,..., uzq} and
degu; = (1,0). The ring structure is determined by: H;/R(B; Z.(e)) is a subring,
the relation

(1) x-n=0 forall x € Xg(u),

and by relations (5) and (&).
IfY = Eﬁ,o with g =24 + 1, then the D-module structure of Hy,p (X:Z(e))
is given by

5 R(Z:2(9)) = Dey/J2, - 1@ Dy /I3, - S ©XP, (u.T) ® Dey/Jey -1,
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where u = {uy,...,us4}, degu; = (1,0). The ring structure is determined by
the relations (1), (2) and (3) in Proposition 5.2, together with (5), (&) and

1) x-T=x-n=0 forallxeXgEv(u).

Proof CaseI Define R as the bigraded D—module
(44) R:=D-16DQZ{a} ®XZ(u.b)®D-n

equipped with the D-algebra structure determined by relations (1)—(5) and (&) in the
statement. Denote

=R RT=DR. Hpp =D Hpk
p=0 p>1 p=<0

and observe that R=? and R>! are subrings of R, while H. R is asubring of H D/]R‘

D/

Next we introduce a ring homomorphism F: R*® — Hg/R(E ; Z.(e)), defining it
separately on R=? and R=!

The case R=" First note that R= is isomorphic to H;’(X(C);Z) which, by
definition, coincides with H5/R Hence, we can define F on R=? as the isomorphism
of Theorem 4.1.

The case R=1 By deﬁnition, the elements a; do not belong to R but can be identified
with elements in HBr , using the presentation in Theorem 4.1. We can use the map bg of
Lemma 5.4 and the pairing mg of Lemma 5.6 to define F on D{a}NR=! =D, ®Z{a}
by

(45) F(Z)hi ®ai) =) brmr (A ®a;);

see Remark 5.5.

Let Ly € Picg(X) = R(Z‘ Z(1)) be the line bundle associated to the divisor
defined by the chosen base point py € X(R). We define F on D-nNR=! =Dy -n
by sending n to Lg.

Now, it remains to define F on
X3, b)NR=" = (D4 @ Z{b} & M @ Z{u})/Jx= & M ® Z{ku}.

Once again, the elements £u; do not belong to R but can be seen as elements in HBlr’1
and we use the arguments in (45) to define F on M ® Z{{u} as

(46) F(Z)\i ®$Mi) =) brmp (ki ®Eu;).
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Finally, since both # and b can be identified with elements in H];r’o = 11)}%{ we use

the multiplication in Deligne cohomology to define
47) FA®b;j)=A-b; and F(AQu;)=A-u;,
respectively.

In what follows, we show that F is an isomorphism and, along the way, we also show
that F is a well-defined ring homomorphism.

First we analyze the kernel of F. Since F is an isomorphism on R=°, it suffices to
study separately the kernels of FI'!1, F2! and F>!. On RI'! =DVl 1 = RX the

map F!1 is clearly an isomorphism onto Héﬁ[& = H(X;R>).

Now, an element w € ker F>°! can be represented by w = s @ u’ + A ® b’ + kn
with A € (DV1) 1, s € (M11)&="+1 (seen as row matrices) and k € Z. From
WiF(w)=0wegetk=0and A € (ML) —1,

From (6) and Table 6, we have f= —#- M +28 g = (pupb) A C im(H%(o) — HL)®.
Hence, (47) gives

48) WpF(w) = (Ups Wpd) (pu ¢b)" = [V (EATYY],

where V = (vq,...,vg) € RE represents (Vps Wpd) € ng/C(SpecC;Z(l))g =
(C/7Z(1))%, and [c] denote the class of an element ¢ € H(é in the Jacobian of X¢.

The assumption WpF(w) = 0 is equivalent to V (FA™1) ¢ <{HZ1(1)}6 + spang {w},
and Proposition 2.4 gives f = 2i #4T + 2w.

Therefore,

VEA™ Y =n-Quidy) +z- @' =n-(afT ! —2n0T ) + 2. '
=n-aT ' +(z—27nT ) '

and hence V = n(xAT~!)’. We use the fact that {27i ¥4} and {f, @} are bases for

the invariants of HZI(I) and Hé, respectively. It follows that w € $_A7-1.

Note that the arguments above show that $_,r—1 is sent to zero by F, and hence
in order to complete the proof that F is a well-defined map of D-modules, we are
reduced to showing that F(eu;) = %F(vj), where v; is the j™ elementin (w H)AT 1.
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However, the arguments used in (48) show that

UpF(cueh) = [—mi (pupb)]
= [~7i (—%a - M +2095)A7"]
= [(wi9e) - MAT' ]+ [(—27i 9p)AT']
=[1Qridy)  MA™]
=[(meT ) - MA™]
=@ fT™h - MA™
= [3(@@)p(®))(xAT ") - MA™']
=[(Avi,.. ., Lv24,0,...0)],

. _ I, 0
MA1=("21 "}).
since ( 0 0)

To show that F>! is one-to-one it suffices by Lemma 5.9 to show that WF is one-to-one.
A relevant observation at this point is the fact that $x has only nonzero elements in
degree (2, 1), implying that an element x € ker WgF~! can be uniquely written as
X = Zi)‘l' & a; +Zj wji @ bj +kak R uy —}—Zln[ ® (Euy), with my,n; € M .
Since M = ker{¥p: D — B}, we conclude from Propositions 5.4 and 5.6 that

0= WpF(x) = \DBF(Z hi®ai+ Y [ ®b,—)
i J
= ‘I’B(Z brmr (i ®ai) + Y 'bj)
i J
=Y W) -ai+ Y Up(u;)-bj.
i j

Theorem 4.1 implies that W(A;) = Wp(u;j) =0,ie A;, uj € M forall i, j, and this
fact together with Proposition 5.10 and WpF(x) = 0 implies that x = 0.

Next we show that F: R™1 — Hj 1 is onto. We start by noting that from the definition
of F and Theorem 4.1 it is clear that WgF is onto HE L

Leta € HY R (with p > 1), set b = ¥i(a) and choose x € R such that ¥gF(x) =
Since \IJB(F (x) —a) =0 it follows from (12) that there exists y € { H¢~ 1S such that
O0r(y) = F(x)—a. Then Ypdr(y) € {Hg/fé }6 (the component of zero) and it follows

from the presentation of HD/(C in Proposition 5.10 and the definition of F that there is

Algebraic & Geometric Topology, Volume 14 (2014)



2850 Pedro F dos Santos and Paulo Lima-Filho

z € ker WpF such that WpF(z) = Wpor(y). We have
UpF(x—z) =Yp(Or(y) +a—0r(y) = ¥pla),
UpF(x —z) = WpF(x) = ¥p(a),

hence F(x —z) = a. We conclude from Lemma 5.9 that F: R™! — H;/IR is onto.

It remains to show that F2:! is onto. From Theorem 4.1 and the definition of F it
suffices to show that F2-1 maps onto ker \1112;’1 . From (12) we have

kerWp' = {HLYS [ oHY' + {(FYHLS.

The result now follows from the equality {H(é }S = spang {pu, pb} + {F! Hé}e, and
the definition of F: for A € R it is easy to check that AE - u; = dg(A¢(u;)) and
AE-b; = Ar(A@(b;)), where g is the connecting homomorphism in (12).

Putting together the results on the image and kernel of F we conclude that it induces
the isomorphism of D—modules

R [ $gac(AT ' u,b) — Hg;;R

in the statement of the theorem. It is easy to check that WgF and WpF are ring
homomorphisms (Theorem 4.1 and Proposition 5.10) and hence so is F.

Case II The proof of (I) applies because Lemma 5.9 still holds.
Case III Similar to (IV) below.

Case IV The definition of the D—module R is analogous to that in Case I with the
obvious adaptations:

(49) R :=Diy/J2 1O Dyy/J2, @ L{S} ® X5 (u,T) ® Dev/Jey - 1.

where u = (uy,...,ug_1). The definition of the map F: R — Hg/’iR follows along
the same lines as in (I) with the following changes, due to the fact that Lemma 5.9
does not hold.

(i) The injectivity of F on R>! follows by checking directly on the elements that
map onto ker W. Using (12) we then show that ker W™ is generated by elements
of the form SR(%(/)ETV -E) € Hé/’]IR”Lzr and 5R(%Yr’ -n) € Hg}]lRJrzr, and it is

, %Yr’ -1 bijectively onto these elements.

(ii) The surjectivity of F: R>! — HZL. follows from the fact that F maps onto

D/R
ker Wi as noted in (i).

1 r
clear F maps SEt" -E

This concludes the proof. a
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