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Infection by string links and new structure
in the knot concordance group

JOHN R BURKE

This paper highlights the importance of string link concordance in the understanding
of knot concordance in general. The results of this paper show that there are infinitely
many nontrivial knots in the groups Gn of n–solvable knots modulo n:5–solvable
knots, for n greater than or equal to 2 , which are not concordant to any knot that is
obtained by two or more iterated infections of an Arf invariant zero knot by knots.
This latter class accounts for nearly all previously known examples of knots in Gn , n

greater than or equal to 2 .

In this paper we will generalize the concept of when a rational Laurent polynomial
is strongly coprime to another, first introduced by Cochran, Harvey and Leidy, to
include multivariable polynomials. We also prove the existence of multivariable
polynomials which are strongly coprime to all single variable Laurent polynomials.
From this definition of coprimality we define the derived series localized at M for
a given sequence of multivariable polynomials M . From such series we obtain
refinements of the n–solvable filtration. The operation of infection by a string link is
then used to demonstrate that for particular M , certain quotients of successive terms
of these refined filtrations have infinite rank.

57M25; 20J05

1 Introduction

A (classical) knot is a smooth embedding, KW S1! S3 of an oriented circle into S3 .
We say that two knots, K0 and K1 , are equivalent if they are ambient isotopic. A
(classical) link is defined to be a smooth embedding of n disjoint oriented circles in S3

with equivalence defined via ambient isotopy as above. We will refer to the set of knots
up to ambient isotopy as K . Under the connected sum operation, K forms a monoid
with the unknot as the identity element. Unfortunately, there are no inverses under
connected sum.

Two knots, K0W S
1 ,! S3 Š S3 � 0 and K1W S

1 ,! S3 Š S3 � 1, are said to be
concordant if there exists a proper smooth embedding of an annulus into S3 � I that
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Figure 1: A schematic representation of a concordance cylinder

restricts to the knots on S3 � f0; 1g. A schematic representation of an embedded
annulus in S3 � I is shown in Figure 1.

Concordance is in fact an equivalence relation. We denote the set of concordance
classes as C . Concordance is a weaker relation than knot equivalence. Therefore, there
is a well-defined surjection from K to C . It can be shown that the connected sum
operation is well defined on the concordance classes. It is known that the connected
sum of any knot, K , with the reverse of its mirror image, r xK , is concordant to the
unknot. (Here r xK is obtained from K by reversing the orientation of the knot along
with changing all over-crossings to under-crossings.) Therefore, the class of r xK is the
inverse of the class represented by K . Hence, the set of concordance classes of knots
forms an abelian group under the connected sum operation. We will also refer to this
group as C .

A slice knot in S3 D @B4 is the boundary of a proper smooth embedding of a 2–disk
in B4 . A knot is a slice knot if and only if it is concordant to the unknot. Therefore,
the set of slice knots is the trivial class in C . We can thus reinterpret concordance in the
following way: Two knots, K1 and K2 , are concordant if the connected sum of K1

with r xK2 is a slice knot.

The equivalence relation of concordance was first developed by Fox, Kervaire and Mil-
nor in the 1960s while studying isolated singularities of 2–spheres in 4–manifolds [14;
17]. Certain concordance problems are known to be equivalent to whether higher-
dimensional surgery techniques are applicable to topological 4–manifolds. Therefore,
being able to determine whether a knot is slice or not is a central problem in efforts
toward the classification of 4–manifolds.

In the late 1960s Levine [22] defined an epimorphism from C onto Z1˚Z1
2
˚Z1

4
.

In the early 1970s, Casson and Gordon [1; 2] showed that the kernel of this map
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is nontrivial. Using the higher-order signature invariants developed by Casson and
Gordon, Gilmer constructed examples of knots in the kernel of Levine’s epimorphism
resulting from satellite operations on slice knots (see [2, Appendix]). This work was
later expanded on by B Jiang [16] to show that the kernel, in fact, has infinite rank.

In 1997, Cochran, Orr and Teichner [11] defined the n–solvable filtration of C :

� � � � Fn:5 � Fn � � � � � F1 � F0:5 � F0 � C

This filtration is important due to its strong connection to the work of Casson and
Freedman on the topological classification problem for 4–manifolds. Also, the filtration
encapsulates the classical concordance invariants in the lowest terms with the previously
mentioned kernel being composed with all knots in F0:5 . Thus, the complexity of the
n–solvable filtration is related to the complexity of the kernel of Levine’s epimorphism.
We are able to study the complexity of C by examining the structure of the graded
abelian groups Fn=Fn:5 for n 2N . (Almost nothing is known about the other “half”
of the filtration, Fn:5=FnC1 .)

The filtration has been shown to be nontrivial. In [12], Cochran, Orr and Teichner
demonstrated that F2=F2:5 has infinite rank. It was then shown by Cochran and
Teichner [13] that each of the groups Fn=Fn:5 has rank at least 1. This work culminated
with the work of Cochran, Harvey and Leidy [9], wherein it was shown that, for all
n 2N , the group Fn=Fn:5 has infinite rank.

In the 1960s and 1970s, Milnor, Levine and Stoltzfus found a classification of F0=F0:5

modulo its torsion subgroup (Levine [24], Hillman [15], Cha [3], Stoltzfus [27]). They
showed that

Z1 Š
M
p.t/

Zrp Š F0=F0:5

ı
torsion;

where the sum is over all irreducible p.t/2ZŒt; t�1� with p.1/D˙1, p.t�1/
:
Dp.t/,

and where rp is the number of distinct pairs .z; z/ of unit-norm complex roots of p.t/.
In this decomposition, a given knot has a nonzero p.t/–component only if p.t/ is a
factor of its Alexander polynomial. It is important to note that the Alexander polynomial
of a knot is not itself a concordance invariant, but there are concordance invariants
given by signatures that are associated to its roots.

More recently, the work of Se-Goo Kim [18] and joint work of Se-Goo Kim and Taehee
Kim [19] proved that

Z1 Š
M
p.t/

Z� F1=F1:5:

Recent work of Cochran, Harvey and Leidy [10] aimed to generalize these results,
and give evidence for an analogous but much more intricate decomposition for each
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Fn=Fn:5 . For each sequence of polynomials PD .p1.t/; : : : ;pn.t//, they were able to
define a new filtration of C , denoted fFP

n g, such that Fn �FP
n for all n 2 1

2
Z. In this

analysis, p1.t/ could be thought of as a prime factor of the Alexander polynomial of
the knot and the other pi.t/ as being related to the higher-order Alexander polynomials.

All the examples they constructed have a P D .p1.t/; : : : ;pn.t// associated to them
and these examples are nontrivial in Fn=FP

n:5
, but if there is a knot associated to

Q D .q1.t/; : : : ; qn.t//, where qi.t/ is strongly coprime to pi.t/ (see Section 4.1)
for some i , then it can be shown that this knot is trivial in Fn=FP

n:5
. Therefore the

quotient groups Fn=FP
n:5

act like sieves. This also justifies thinking of Fn=FP
n:5

as
localizing Fn=Fn:5 at P . The main result of [10] was that for n� 1,

(1)
M
Pn

Z1 � Fn=Fn:5;

where Pn is an infinite set of pairwise strongly coprime n–tuples PD.p1.t/; : : : ;pn.t//

of single-variable polynomials where pi.1/D˙1. The knots constructed in [10] to
prove these results will be referred to as CHL knots.

Most of the mentioned results, including all results of Cochran, Harvey and Leidy,
involve the construction of knots via iterated satellite operations. The primary goal of
the present work, stated in most generality, is to investigate if more can be uncovered
about the n–solvable filtration by studying more general constructions of knots. The
satellite operations used in [9; 10] are referred to as infections by knots. In this paper
we will be concerned with more general operations known as infections by string links.

Definition 1.1 Let fx1;x2; : : : ;xmg be m fixed points in the interior of D2 . An m

component string link is a smooth proper embedding LW
`m

iD1 Ii !D2 � I such that
L.0i/D .xi ; 0/ and L.1i/D .xi ; 1/.

As with knots and links we often consider the string link to be the image of the
embedding. Two string links are equivalent if there is an ambient isotopy from one to the
other that fixes @.D2�I/. That is, if there is a smooth map hW .D2�I/�J! .D2�I/,
J Š Œ0; 1�, such that for each t 2 J , h.x; t/W .D2�I/! .D2�I/ is a diffeomorphism
that fixes the boundary, h.x; 0/D x , for all x 2 .D2�I/, and h.I0

i .s/; 1/D I1
i .s/ for

all s 2 I . The trivial string link of m components is given by gW
`m

iD1 Ii!D2 � I

such that g.Ii.t// D .xi ; t/. Since cutting open a knot creates a string link of one
component that does not depend on the choice of cutpoint, K is equivalent to the
monoid of 1–component string links under the operation of stacking.

We define the complement of a string link to be D2 � I where a tubular neighborhood
of each embedded arc is removed. In Figure 2 an example of such a string link is
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shown with its complement to the right. The meridian of a component of a string
link is the simple closed curve, up to ambient isotopy, on the boundary of the tubular
neighborhood of the component that has linking number C1 with that component. We
call the set of such meridians the meridians of the string link. Note the set of meridians
of a string link lie in the boundary of the complement of that string link. The longitude
of a component of a string link is the simple closed curve, up to ambient isotopy, on
the boundary of the complement of the string link that has C1 intersection number
with the meridian of that component and has zero linking number with the core of
the component. We call the set of such longitudes the longitudes of the string link.
In Figure 2 the meridians, �i , and longitudes, `i , are shown on the boundary of the
complement.

`1

`2

�1

�2

Figure 2: A string link and its complement

We now define infection by a string link. See Cochran, Friedl and Teichner [6, Sec-
tion 2.2] for a thorough reference. By an r –multidisk D , we mean the oriented disk D2

together with r ordered embedded open disks D1; : : : ;Dr (see Figure 3). Given a
link L � S3 we say that a map 'W D! S3 of an r –multidisk into S3 is proper if
it is an embedding such that the image of the multidisk, denoted by D , intersects the
link components transversely and only in the images of the disks D1; : : : ;Dr as in
Figure 3. We will refer to the image of the boundary curves of '.D1/; : : : ; '.Dr / by
�1; : : : ; �r .

If R� S3 is a knot, link or string link, D � S3 is the image of a properly embedded
r –multidisk and L is an r component string link, then RD.L/ is the knot, link or string
link (respectively) obtained by tying the r collections of strands of R that intersect
the disks '.D1/; : : : ; '.Dr / into the pattern of the string link L, where the strands
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D

D1

D2
Dr

D

�1 �r

Figure 3: An r –multidisk and a properly embedded multidisk

linked by �i are identified with the i th component of L, such that the i th collection of
strands are parallel copies of the i th component of L. In Figure 4, the result of this
operation is shown for a particular R, D and L.

R

D

L RD.L/

Figure 4: Infection by a string link

It is important to note that while L is infecting R at D , the result is written as RD.L/.
We can and will view this as RD acting on L.
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Definition 1.2 Two r component string links L0 and L1 are concordant if there exists
a smooth embedding H W

�`
r I
�
�I! .D2�I/�I that is transverse to the boundary

such that H j`
r I�0 D L0 , H j`

r I�1 D L1 and for all t 2 I , H.0i ; t/D ..xi ; 0/; t/

and H.1i ; t/D ..xi ; 1/; t/.

String link concordance defines an equivalence relation on the set of r component
string links. There is a binary operation defined on the set of string links called
stacking. Given two string links L0 � .D

2�I/L0
and L1 � .D

2�I/L1
, each with r

components, the result of stacking L1 over L0 is obtained by identifying .D2�f1g/L0

with .D2 � f0g/L1
. Note this operation is not in general commutative. The identity

element is the trivial string link of r components. The stacked product is well-defined
on the string link concordance classes. String links concordant to the trivial string link
of r components are called slice string links with r components. The inverse of the
class of a string link L, ŒL�, is Œr xL�, where r xL is the mirror image of L about D2�f

1
2
g

with reversed orientation. Therefore for each r � 1, the collection of concordance
classes of string links with r components with stacking form the r component string
link concordance group, C.r/. Note C.1/Š C since any concordance may be assumed
to be straight on an arc.

If R is a string link and L is concordant to L0 , then RD.L/ is concordant to RD.L
0/.

This is because RD.L/ and RD.L
0/ are obtained by cutting R along disks with

boundary the �i of D and gluing in copies of L and L0 respectively such that the
copies of the i th component are parallel. So one can obtain the needed concordance
disks by cutting open the concordance disks created by crossing R with the unit
interval, I , and gluing in copies of the concordance disks from L to L0 . Since the
copies of the i th components are parallel the concordance disks will not intersect.
Therefore if R has m components and D is properly embedded r –multidisk, then RD
may be viewed as a operator, but not a homomorphism, from C.r/ to C.m/. In
particular, if R is a knot then RD may be viewed as an operator from C.r/ to C .

There are a special class of these operators that will be of particular interest.

Definition 1.3 For any slice string link R of m components and any properly embed-
ded r –multidisk, RDW C.r/! C.m/ is a doubling operator if the linking number of
each �i with each component of R is zero. (The linking number condition is equivalent
to saying that the �i lie in �1.MR/

.1/ .)

We will call a doubling operator nontrivial as long as R has a nontrivial Alexander
polynomial.

Doubling operators will be the cornerstone in building examples of knots in Fn=Fn:5 .
In Section 3.1 we will highlight their important features. In [10], doubling operators
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where R is a knot were considered. We shall refer to these as knot doubling operators.
We consider iterations of these operations Rn

Dn
ı � � � ıR1

D1
. The importance of these

doubling operators is explained by the following propositions.

Proposition 1.4 [6, Proposition 1.7] Up to concordance, every knot in F0:5 is of the
form RD.L/, where RD is a doubling operator and L is a string link with linking
numbers zero.

This proposition demonstrates that knots obtained by doubling operations are general
enough to study the entire structure of the n–solvable filtration.

Corollary 3.8 If Ri
Di

, 1� i � n, are doubling operators, Rn is a knot and K0 2 F0 ,
then

Rn
Dn
ı � � � ıR1

D1
.K0/ 2 Fn:

For each knot obtained by iterated doubling operators, we can obtain a sequence of
polynomials MD .p1.t1; : : : ; tr /; : : : ;pn.t1; : : : ; tr //, where pi is the Alexander poly-
nomial of yRn�iC1 , the closure of Rn�iC1 . (The multivariable Alexander polynomial
of a link of r components is a polynomial in r variables.)

The construction of knots using knot doubling operators applied to knots in F0 accounts
for nearly all previously mentioned results. In particular, the knots in the result (1)
of Cochran, Harvey and Leidy are indexed over the set Pn , which is a collection
of sequences of single-variable polynomials that arise from iterated knot doubling
operators.

In this paper we will generalize the notion of being strongly coprime in order to find
multivariable polynomials that are strongly coprime to all single-variable polynomials.
Furthermore, we find links that realize these polynomials as Alexander polynomials.

The main result of this paper is the following.

Theorem 6.4 For n � 2, there exists a knot, Kn , of infinite order in Fn=Fn:5 such
that no multiple of Kn is concordant to any knots created by two or more applications
of nontrivial knot doubling operators to knots in F0 . In particular,

mKn 62

M
Pn

Z1 � Fn=Fn:5

for all m 2 ZC . Thus, mKn is distinct from all CHL knots for all n and m 2 ZC .

Algebraic & Geometric Topology, Volume 14 (2014)
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1.1 Paper outline

In Section 2 we discuss further infection by a string link. We then define the string link
concordance group C.r/ of string links of r components.

In Section 3 we review the concept of commutator series developed in [10] and discuss
how certain commutator series define filtrations of C.r/. We finish the section by
discussing the relationship between iterated infections and these filtrations. In particular
we discuss their relationship with the n–solvable filtration, fFng, resulting in the
statement of Corollary 3.8.

In Section 4 we generalize the notion of a polynomial being strongly coprime to another
polynomial to include multivariable polynomials. We prove the existence of links
whose Alexander polynomials are strongly coprime to all single-variable polynomi-
als. Additionally, by using Ore localizations, we extend the construction of Cochran,
Harvey and Leidy to define the derived series localized at M, G.n/

M , associated to a
given sequence of multivariable polynomials MD .p1.t1; : : : ; tr /; : : : ;pn.t1; : : : ; tr //.
The derived series localized at M defines filtrations, fFn.r/

Mg, of C.r/ such that
Fn.r/� Fn.r/

M for all n.

In Section 5, we prove an important triviality result. We show that if

QD .qn.t1; : : : ; tr /; : : : ; q1.t1; : : : ; tr //

is a sequence of polynomials associated to a knot, K , obtained by doubling operators,
and MD .pn.t1; : : : ; tr /; : : : ;p1.t1; : : : ; tr // is a sequence of polynomials such that pi

is strongly coprime to qi , for some i , then K is trivial in Fn=FM
n:5

.

Section 6 contains the most important result of the paper. It is a nontriviality result that
proves that there is a knot obtained by string link doubling operators that has infinite
order in Fn=FM

n:5
, where M is a specific sequence of multivariable polynomials that

includes a polynomial that is strongly coprime to all single variable polynomials. By
applying the previously stated triviality result, this knot will not be concordant to any
knots resulting from a composition of nontrivial knot doubling operators applied to a
knot in F0 . We conclude this section by affirming the statement of the main result,
Theorem 6.4.

2 String links

2.1 Infection by string links

The closure, yL, of a string link, L, is obtained from L � .D2 � I/L and a trivial
string link T 2 .D2 � I/T with the same number of components by identifying
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.D2 � f0g/L with .D2 � f1g/T , .D2 � f1g/L with .D2 � f0g/T and .@D2 � ftg/L
with .@D2 � f1� tg/T for all 0< t < 1. The result is a link in S3 . The closure of the
string link from Figure 2 is shown in Figure 5.

Figure 5: The closure of a string link

Suppose L is a string link of r components. Let L D .D2 � I/ � L denote its
complement. Then the zero surgery of yL, M yL , can be obtained from L by gluing a
genus r handlebody, H , to L so that the boundary of the meridional disks are identified
with the longitudes `i , 1� i � r , of L.

Consider RD.L/ for some string link R, properly embedded multidisk D and string
link L. We describe a cobordism E whose boundary is the disjoint union of M yR ,
M yL and M dRD.L/ , the zero-framed surgeries on yR, yL and 2RD.L/ respectively. The
cobordism E is obtained from the union of M yR� Œ0; 1� and M yL� Œ0; 1� by identifying
..D�

F
i '.Ei//� Œ0; 1�/�0�M yR�0 with H�0�M yL�0 such that the meridians

of L are identified with the �i of D . This cobordism has significant properties, which
we will present in the following lemma.

Lemma 2.1 Let K denote RD.L/. With regard to E above:

(1) The meridians of L, �i 2M yL , are isotopic in E to both the �i 2M yR , and to
the longitudinal push-off of the �i , `�i

2M yK .

(2) The inclusion map induces an epimorphism �1.M yK /! �1.E/ whose kernel is
the normal closure of the longitudes, `i , of L viewed in M yK .

(3) The inclusion maps induce isomorphisms H1.M yK /!H1.E/ and H1.M yR/!

H1.E/.

(4) The inclusion maps induce isomorphisms H2.E/ Š H2.M yK /˚H2.M yL/ Š

H2.M yR/˚H2.M yL/.
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M yR

M yL

M yK

Figure 6: The cobordism E

Proof Property (1) is obvious from the definition of infection and of E .

Note that E deformation retracts to EDM yK[H . Hence E can be obtained from M yK

by adding r 2–cells along the longitudes of L, `i , and capping off with a 3–cell.
Property (2) thus follows.

The first part of property (3) follows from the fact that `i 2 �1.L/.1/ � �1.M yK /
.1/ .

By the description of E in the previous paragraph, since HDM yL�L we can observe
that E DM yK [L M yL . Therefore we have the Mayer–Vietoris sequence

H2.L/!H2.M yK /˚H2.M yL/!H2.E/!H1.L/!H1.M yK /˚H1.M yL/:

Since H�.L/ŠH�
�W

r S1
�
, H2.L/D 0. Thus, the first map of the sequence is the

zero map. Also, since H1.L/ is generated by the meridians of L and these meridians
survive in H1.M yL/, the last map is injective. Therefore, the third map is the zero map.
Thus, the second map is an isomorphism, affirming the first part of property (4).

Consider the Mayer–Vietoris sequence

H2.H/!H2.M yR � I/˚H2.M yL � I/!H2.E/!H1.H/
!H1.M yR � I/˚H1.M yL � I/!H1.E/! 0:

Since H2.H/ is zero, the first map is the zero map. As in the above paragraph, since
H1.H/ is generated by the meridians of L that survive in H1.M yL � I/, the fourth
map is injective and thus the third map is the zero map. This affirms the second part of
property (4).

Note that under the fourth map, the generators of H1.H/ (the meridians of L) map
onto the generators of H1.M yL � I/. This implies that there is an isomorphism from
H1.M yR/ to H1.E/. This affirms the second part of property (3).
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If R is a knot or link (rather than a string link) then there also exists a cobordism E

whose boundary is the disjoint union of MR , M yL and MRD.L/ , with properties
analogous to those in Lemma 2.1.

The following lemma will be important in the technical proof of Section 6.

Lemma 2.2 The ordinary signature of E , �.E/, vanishes.

Proof By Lemma 2.1(4) we know that H2.EIZ/ Š H2.M yRIZ/ ˚ H2.M yLIZ/.
Since the second homology of E with Z coefficients comes from its boundary, �.E/
vanishes.

Lemma 2.3 If L is a knot, then �2
�
.E/ D 0 with respect to any coefficient system

�W �1.E/! � .

The proof of this lemma is verbatim the proof of Lemma 2.4 in [9] except that we
allow R to be a link of more than 1–component.

3 Commutator series and filtrations

We begin with a review of work by Cochran, Harvey and Leidy [10] that introduced
refinements of the n–solvable filtration derived from certain classes of group series
that generalize the derived series.

Definition 3.1 [10, Definition 2.1] A commutator series is a function, �, that assigns
to each group G a nested sequence of normal subgroups

� � �E G
.nC1/
� E G

.n/
� E � � �E G

.0/
� �G

such that G
.n/
� =G

.nC1/
� is a torsion-free abelian group. (The torsion-free condition is

used in order to avoid zero divisors in ZŒG=G
.n/
� �.)

The primary example that one should keep in mind is that of the rational derived series,
fG

.n/
r g, where G

.0/
r �G and

G.nC1/
r � fx 2G.n/

r j 9k > 0;xk
2 ŒG.n/

r ;G.n/
r �g:

The rational derived series was used extensively in [9]. The following proposition is
proved in [10].
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Proposition 3.2 [10, Proposition 2.2] For any commutator series fG.n/
� g

(1) fx 2G
.n/
� j 9k>0;xk 2 ŒG

.n/
� ;G

.n/
� �g�G

.nC1/
� (and in particular ŒG.n/

� ;G
.n/
� ��

G
.nC1/
� , hence the name commutator series),

(2) G
.n/
r � G

.n/
� (that is, every commutator series contains the rational derived

series),

(3) G=G
.n/
� is a poly-(torsion-free abelian) group (abbreviated PTFA),

(4) ZŒG=G
.n/
� � and QŒG=G

.n/
� � are right (and left) Ore domains.

We will show that any commutator series that satisfies a weak form of functorality
induces a filtration, F.m/�n , on C.m/.

Definition 3.3 For a given commutator series �, a string link of m components, L,
is an element of F.m/�n if the zero-framed surgery of the closure of L, M yL , bounds a
compact, connected, oriented, smooth 4–manifold W such that:

(1) H1.M yLIZ/!H1.W IZ/ is an isomorphism.

(2) H2.W IZ/ has a basis consisting of connected, compact, oriented surfaces,
fJi ;Di j 1� i � lg, embedded in W with trivial normal bundles, such that the
surfaces are pairwise disjoint except that, for each i , Ji intersects Di transversely
once with positive sign.

(3) For each i , �1.Ji/� �1.W /
.n/
� and �1.Di/� �1.W /

.n/
� .

Additionally L 2 F.m/�
n:5

if the following holds:

(4) For each i , �1.Ji/� �1.W /
.nC1/
� .

A 4–manifold, W , satisfying these conditions is called an .n;�/–solution (respectively
an .n:5;�/–solution) for L and we say that L is .n;�/–solvable (respectively .n:5;�/–
solvable) via W . When using this language there is a possibility for ambiguity as
to the value of m. This will always be understood from context. In particular, when
mD 1 we drop the .m/ from the above notation. In the case where the commutator
series is the derived series this is the .n/–solvable filtration defined by Cochran, Orr
and Teichner in [11], denoted fFng. Note that for any n 2 1

2
Z, Fn � F�n .

A functorial commutator series is a commutator series such that for any group homo-
morphism f W G! � , f .G.n/

� /� �
.n/
� for each n. For our purposes, we will need to

discuss commutator series that satisfy a weaker form of functorality.
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Definition 3.4 [10, Definition 2.4] A commutator series fG.n/
� g is weakly functorial

if for any homomorphism f W G! � that induces an isomorphism G=G.1/
r Š �=�.1/r

(ie, induces an isomorphism on H1.� IQ/), we have f .G.n/
� /� �.n/� for each n.

Proposition 3.5 Suppose � is a weakly functorial commutator series defined on the
class of groups with ˇ1 Dm. Then fF.m/�ngn�0 is a filtration of subgroups of C.m/:

� � � � F.m/�nC1 � F.m/�n:5 � F.m/�n � � � � � F.m/�0:5 � F.m/�0 � C.m/

Proof We sketch the proof. Let L0 and L1 be string links with m components.
If L0 and L1 are concordant, then their closures, yL0 and yL1 , are concordant. It is
well known that their zero-framed surgeries, M yL0

and M yL1
, are homology cobordant

via a 4–manifold C (obtained by performing zero framed surgery on the annuli).
Suppose L0 2 F.m/�n via W0 . Let W1 DW0 [C so that @W1 DM yL1

. Note that
the inclusion W0 ,!W1 induces isomorphisms on homology. By weak functorality,
�1.W0/

.k/
� � �1.W1/

.k/
� for every k . Then it is easy to see that L1 2 F.m/�n via W1

using the surfaces from W0 . Therefore F.m/�n is closed under concordance.

We claim that F.m/�n is a subgroup. If L is a slice string link of m components
then M yL D @.B

4 �
F

i�i/, where .B4 �
F

i�i/ is the complement of slice disks,
�i , of yL. Note that H2.B

4 �
F

i�i/D 0. Thus L 2 F.m/�n via .B4 �
F

i�i/ for
any n and any �. Since �M yL ŠM�yL , F.r/�n is closed under taking inverses in C .
Since LJ (the result of stacking L on J ) can be obtained by infecting L with J (L
and J both having m components), there is a cobordism E whose boundary consists
of M yL , M yJ , and M cLJ (see Lemma 2.1). If L is .n;�/–solvable via WL and J

is .n;�/–solvable via WJ , then let W D E [WL [WJ so that @W DM cLJ . The
inclusions of M yL ,! W and M yJ ,! W induce isomorphisms on H1 . Also, the
inclusion M cLJ ,!W induces an isomorphism on H1 . (See Lemma 2.1.) Using weak
functorality, one can then show that LJ is .n;�/–solvable via W using the union of
the surfaces from WL and WJ . (See the proof of Proposition 3.6 below.) Thus F.m/�n
is closed under stacking of string links. Therefore F.m/�n is a filtration by subgroups
of C.m/.

3.1 Doubling operators

Proposition 3.6 For any weakly functorial commutator series �, if RD is a doubling
operator where R is a string link of m components, D is a properly embedded r –
multidisk with �i 2 �1.M yR/

.k/
� , for 1� i � r and L 2 F.r/n�k , then

RD.L/ 2 F.m/�n;

where RD.L/ is the result of infecting R along D with L.
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Proof Consider a slice string link R, a properly embedded r –multidisk, D , with
�i 2 �1.M yR/

.k/
� , and a string link L of r components. Suppose L 2 F.r/n�k via V

and S D B4 �
F
�i , where �i are slice disks for yR (@S D M yR ). Consider the

cobordism E , described in Section 2.1, from M yR tM yL to M yK , where K DRD.L/.
Call the result of gluing E with V and S along common boundaries W (Figure 7).
Note the boundary of W is M yK . We claim that K 2 F.m/�n via W .

S V

E

M yR M yL

M yK

Figure 7: The result of gluing E with V and S along common boundaries W

Consider the Mayer–Vietoris sequence

H1.M yL/!H1.E/˚H1.V /!H1

�
E [MyL

V
�
! 0:

Since V is an n–solution for yL, H1.V / is isomorphic to H1.M yL/ and is generated
by the meridians, �i , of yL. Therefore H1.E [MyL

V /ŠH1.E/.

Now consider the Mayer–Vietoris sequence

H1.M yR/!H1.E [MyL
V /˚H1.S/!H1.W /! 0:

Since H1.S/ is isomorphic to H1.M yR/ and is generated by the meridians of R,
H1.W / Š H1.E [MyL

V / Š H1.E/. By property (3) of Lemma 2.1, H1.W / Š

H1.M yK /ŠH1.M yR/.

We will now show that the inclusion map M yL! V induces an isomorphism on H1

and the zero map on H2 . Consider the commutative diagram

H3.V;M yL/ //

Š
��

H2.M yL/ //

Š
��

H2.V /

Š
��

H 1.V / //

Š

��

H 1.M yL/ //

Š

��

H 2.V;M yL/

Š

��
Hom.H1.V /;Z/ // Hom.H1.M yL/;Z/ // A;

where A is Hom.H2.V;M yL/;Z/˚Ext.H1.V;M yL/;Z/.
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The top row is a part of the long exact sequence of a pair. The set of isomorphisms from
the top row to the middle row come from Poincaré duality and the set of isomorphisms
from the middle row to the bottom row come from the universal coefficient theorem
and the fact that Ext.H0.V /;Z/ and Ext.H0.M yL/;Z/ are both zero. Since there is
an isomorphism from H1.M yL/! H1.V /, the left lower horizontal map is also an
isomorphism. This implies that the right lower horizontal map is the zero map and
thus all the right maps on each row are the zero map. In particular, the inclusion map
from M yL to V induces the zero map on H2 .

Now consider the Mayer–Vietoris sequence

H2.M yL/
�
�!H2.E/˚H2.V /!H2.E [MyL

V /!H1.M yL/!H1.E/˚H1.V /:

Observe that the last map is injective since H1.M yL/! H1.V / is an isomorphism.
Thus, the second to last map is the zero map. Therefore, the second map is surjective. We
have shown that H2.M yL/!H2.V / is the zero map and since H2.E/ŠH2.M yR/˚

H2.M yL/ by property (4) of Lemma 2.1, (H2.E/˚H2.V //= im.�/ Š H2.M yR/˚

H2.V /. Therefore H2.E [MyL
V /ŠH2.M yR/˚H2.V /.

Consider the Mayer–Vietoris sequence

H2.M yR/
 
�!H2.E [MyL

V /˚H2.S/!H2.W /

!H1.M yR/!H1.E [MyL
V /˚H1.S/:

Since the map H1.M yR/!H1.S/ is an isomorphism the last map is injective. Thus
the third map is the zero map and therefore the second map is surjective. Recall that
H2.S/D 0. Since H2.E [MyL

V /ŠH2.M yR/˚H2.V / by the previous discussion,
H2.E [MyL

V /= im. /ŠH2.V /. Therefore H2.W /ŠH2.V /.

Since V is an .n� k/–solution, H2.V / has a basis consisting of connected compact
oriented surfaces Js , Ds , such that �1.Js/� �1.V /

.n�k/ and �1.Ds/� �1.V /
.n�k/ .

We claim that

(2) �1.V /� �1.W /
.k/
� :

Assuming this, we would then have that

�1.Js/� �1.V /
.n�k/

� .�1.W /
.k/
� /.n�k/

� �1.W /
.n/
� :

(The last inclusion is from iterated applications of part (1) of Proposition 3.2.) The
same argument works for �1.Ds/.

To establish (2), consider the inclusion j W �1.M yL/!�1.V /. Recall that the meridians
of yL, �i , normally generate �1.M yL/. Thus by the following lemma proved by
Cochran, Harvey and Leidy in [8] we know that the meridians of yL normally generate
�1.V /=�1.V /

.k/ .
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Lemma 3.7 [8, Lemma 6.5] Suppose �W A! B is a group homomorphism that
is surjective on abelianizations. Then, for any positive integer k , �.A/ normally
generates B=B.k/ .

Since �1.V /
.k/ � �1.W /.k/ � �1.W /

.k/
� , we only need to show that �i 2 �1.W /

.k/
� .

We know by property (1) of Lemma 2.1 that the �i are isotopic in E and hence in W

to �i . By hypothesis, �i 2 �1.M yR/
.k/
� and combined with the weak functorality of �

we can conclude that
�i 2 �1.M yR/

.k/
� � �1.W /

.k/
� :

Thus �1.Js/� �1.W /
.n/
� and �1.Ds/� �1.W /

.n/
� .

We can consider particular iterations of doubling operators.

Corollary 3.8 If Ri
Di

, 1� i � n, are doubling operators, Rn is a knot and K 2 F0 ,
then

Rn
Dn
ı � � � ıR1

D1
.K/� Fn:

Proof Apply Proposition 3.6 repeatedly.

We will have cause in this paper to consider infection of R by more than one string
link. The above proof can be easily modified to obtain the following result.

Proposition 3.9 For any weakly functorial commutator series �, if RD1t���tDs
is a

doubling operator where R has m components, �i;1; : : : ; �i;m 2 �1.M yR/
.k/
� for all

i D 1 to s and L1; : : : ;Ls 2 F.r/n�k , then

RD1t���tDs
.L1; : : : ;Ls/ 2 F.m/�n;

where RD1t���tDs
.L1; : : : ;Ls/ is the result of infecting R along Di with Li for all i .

4 Strongly coprime polynomials and localization at M

In [10], Cochran, Harvey and Leidy defined the derived series localized at P where
P D .p1.t/; : : : ;pn.t/; : : : / is any sequence of nonzero elements of QŒt; t�1�. In this
section we will generalize the results of these authors in order to define the derived series
localized at M, where M is a sequence of nonzero multivariable Laurent polynomials.

Suppose that p.t1; : : : ; tm/ is a nonzero element of the Laurent polynomial ring
QŒt˙1

1
; : : : ; t˙1

m � and a1; : : : ; am 2A, where A is a torsion-free abelian group. Then
the group homomorphism Zm!A given by ti 7! ai induces a ring homomorphism
QŒt˙1

1
; : : : ; t˙1

m �!QA. Thus p.a1; : : : ; am/ 2QA can be viewed as the image of p

under this map. Note that if p.1; 1; : : : ; 1/ 6D 0 then p.a1; : : : ; am/ is nonzero.
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4.1 Strongly coprime

Definition 4.1 Suppose p; q 2QŒt1
˙1; : : : ; tm

˙1�. We say p is strongly coprime to q ,
denoted e.p;q/ D 1, if for any finitely generated free abelian group, F , and any ai and
bi in F , 1 � i �m, such that the set fa1; : : : ; amg is Z–linearly independent in F ,
p.a1; : : : ; am/ is relatively prime to q.b1; : : : ; bm/ in QF . (Note that QF is a unique
factorization domain.)

Note that this definition is asymmetric since fb1; : : : ; bmg need not be linearly inde-
pendent.

In the case where p and q are single-variable polynomials, the linear independence
condition is superfluous and therefore reduces to the definition of strongly coprime
polynomials used in [10].

Definition 4.2 [10, Definition 4.4] Suppose p.t/, q.t/ 2 QŒt; t�1� are said to be
strongly coprime, denoted e.p;q/ D 1, if for any finitely generated free abelian group F

and any nontrivial a,b 2 F , p.a/ is relatively prime to q.b/ in QF .

Strongly coprime is a strictly stronger condition than coprime. For example consider
p.t/D t � 2 and q.t/D t � 4. These polynomials are coprime in QŒt; t�1�, but they
are not strongly coprime since p.a/ and q.a2/ have a common factor of .a� 2/ in
QŒa; a�1�.

Example 4.3 Consider the ribbon knot in Figure 8 where the �k inside the box
symbolizes k � 1 full negative twists between the bands.

�k

Figure 8: The ribbon knot Rk

The Alexander polynomial of Rk is

pk
:
D .kt � .kC 1//..kC 1/t � k/:
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It was shown in [10, Example 4.10] that if k 6D ` then pk is strongly coprime to p` .
This example was instrumentally important toward the results of [10]. We will now
define an important family of ribbon links that will be crucial to establishing our new
result.

Example 4.4 Consider the ribbon link in Figure 9 where the �k inside the box
symbolizes k � 1 full negative twists between the bands.

�k

˛ ˇ

Figure 9: The ribbon link yLk

There is a covering space of the complement of yLk associated with the infinite cyclic sub-
group of �1.yL

k/ generated by the meridian of the unknotted component. This covering
space contains infinitely many lifts of the knotted component. The following Seifert
matrix, A, can be obtained by calculating the `k.ei ; e

C
j / matrix, where ˛ and ˇ are a

choosing set of generates (see Figure 9) for a particular lift of the Seifert surface of the
knotted component. Let t1 represent a generator for the group of deck transformations
of said covering space. Then:

˛ ˇ

˛ 0 k � t�1
1

ˇ .kC 1/� t1 0

A presentation matrix for the homology of the universal abelian cover of the complement
of yLk is obtained by calculating A� t2A� , where A� is the transpose of A with the
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natural involution on QŒt1; t
�1
1
�. (This need for the involution comes from the fact that

the previously stated Seifert form of the homology of the infinite lifts of the Seifert
surface, viewed as a QŒt1; t

�1
1
� module, is a Hermitian form.) The presentation matrix

can be calculated as follows:�
0 k � t�1

1
� .k1� 1/t2C t�1

1
t2

.kC 1/� t1� kt2C t1t2 0

�
Up to multiplication by units of QŒt˙1

1
; t˙1

2
�, the Alexander polynomial of yLk is

mk
:
D ..kC 1/� t1� kt2C t1t2/..kC 1/� t�1

1 � kt�1
2 C t�1

1 t�1
2 /:

This calculation can be verified by using the techniques of Example 7 of [26, page 194].

Lemma 4.5 For each k � 1, mk is strongly coprime to all (nonconstant) single-
variable polynomials.

We point out the importance of the linear independence condition in the definition
of strongly coprime. If p.t1; : : : ; tm/ 2 QŒt1

˙1; : : : ; tm
˙1�, q.t1/ D p.t1; : : : ; t1/ 2

QŒt1; t1
�1� and a is nonzero in F , some finitely generated free abelian group, then

p.a; : : : ; a/D q.a/ 2QF . This situation is avoided by including the linear indepen-
dence condition.

Proof The following fact will be useful throughout the proof.

Fact 4.6 Suppose a1; : : : ; am are elements of a finitely generated free abelian group F

that are Z–linearly independent. Then there is a monomorphism �W F!F 0 , where F 0

is another finitely generated free abelian group with a basis fx1; : : : ;xm; : : : ;xng, such
that �.ai/D x

k1

i for i D 1; : : : ;m.

Let q.t/ be an arbitrary single-variable polynomial and F an arbitrary finitely generated
free abelian group. Let a, b and c be elements of F such that fa; bg is a Z–linearly
independent set in F .

We want to show that mk.a; b/ and q.c/ have no common factor in QF . We will
proceed with a proof by contradiction. Suppose that mk.a; b/ and q.c/ have a common
factor. Then q.c/ has a common factor with either m1

k
.a; b/ or m2

k
.a; b/, where

m1
k
.t1; t2/D .kC1/� t1�kt2C t1t2 and m2

k
.t1; t2/D .kC1/� t�1

1
�kt�1

2
C t�1

1
t�1
2

.
Note if c is trivial, q.c/ is a unit and thus q.c/ will have no common factors with
mk.a; b/. Therefore suppose that c is nontrivial in F .

Suppose that q.c/ has a common factor with m1
k
.a; b/ in F .
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Case I Suppose that fa; cg is a Z–linearly independent set in F By the fact
above, there exists a monomorphism �W F ! F 0 , F 0 a finitely generated free abelian
group with a basis including x , y and z such that �.c/ D xn , �.a/ D ym and
�.b/ D x`1y`2z`3 , where n and m are nonzero integers and each `i is an integer.
Then �.q.c//D q.xn/ and

�.m1
k.a; b//Dm1

k.y
m;x`1y`2z`3/D .kC 1/�ym

� kx`1y`2z`3 Cymx`1y`2z`3 :

Since, by assumption, q.c/ has a common factor with m1
k
.a; b/ in QF , it follows that

�.q.c// has a common factor with �.m1
k
.a; b// in QF 0 . If fa; b; cg were Z–linearly

independent, � can be chosen so that �.b/D z`3 . But then �.q.c// would have no
common factors with �.m1

k
.a; b// in F 0 . Therefore b 2 spanfa; cg so `3 D 0. Thus

�.q.c//D q.xn/ and �.m1
k
.a; b//Dm1

k
.ym;x`1y`2/D .kC 1/� ym � kx`1y`2 C

ymx`1y`2 .

Since �.q.c// and �.m1
k
.a; b// have a common factor in QŒx˙1;y˙1�, they will

have a common factor in CŒx˙1;y˙1�. Note �.q.c// D q.xn/ 2 CŒx˙1� factors
over CŒx˙1� into linear factors of the form .x � ˛/ for some nonzero ˛ 2 C . Thus
�.mk.b; c// must have a factor in CŒx˙1;y˙1� of the form .x�˛/.

Therefore

0Dm1
k.y

m; ˛`1y`2/D .kC 1/�ym
� k˛`1y`2 C˛`1ymC`2 :

Case Ia Suppose `2 D 0 Then

0Dm1
k.y

m; ˛`1y`2/D .kC1/�ym
�k˛`1C˛`1ym

D .kC1�k˛`1/C.˛`1�1/ym:

Therefore ˛`1 D 1 and the constant term of m1
k
.ym; ˛`1y`2/ is kC 1� k D 1. This

is a contradiction.

Case Ib Suppose `2 6D 0 and m C `2 6D 0 Then ˛`1 D 0 and the constant term of
m1

k
.ym; ˛`1y`2/ is .kC 1/. This is a contradiction.

Case Ic Suppose m C `2 D 0 Thus

0Dm1
k.y

m; ˛`1y`2/D .kC 1/�ym
� k˛`1y�m

C˛`1 :

Since �m 6D 0, k˛`1 D 0. Thus ˛`1 D 0 and m1
k
.ym; ˛`1y`2/ has a constant term of

.kC 1/. This is a contradiction.

Case II Suppose that fa; cg is a Z–linearly dependent set in F Then fb; cg is a
Z–linearly independent set in F .

By Fact 4.6 above there exists a monomorphism �0W F ! F 00 , F 00 a finitely gen-
erated free abelian group with a basis including x , and y such that �0.c/ D xn

Algebraic & Geometric Topology, Volume 14 (2014)



1598 John R Burke

and �0.b/ D ym , where n and m are nonzero integers. Since a and c are Z–
linearly dependent, �0.a/ D x` for some integer `. Then �0.q.c// D q.xn/ and
�0.m1

k
.a; b//Dm1

k
.x`;ym/D .kC 1/�x` � kymCx`ym .

Since, by assumption, q.c/ has a common factor with m1
k
.a; b/ in QF , it follows that

�0.q.c// has a common factor with �0.m1
k
.a; b// in QF 00 .

As in Case I, �0.q.c// and �0.m1
k
.a; b// must have a common factor in CŒx˙1;y˙1�.

Since �0.q.a//D q.xn/ factors over CŒx˙1� into linear factors of the form .x � ˛/

for some nonzero ˛ 2C , �0.m1
k
.a; b// must have a factor in CŒx˙1;y˙1� of the form

.x�˛/.

Therefore, 0Dm1
k
.˛`;ym/D .kC 1/�˛` � kymC˛`ym . Thus,

.kC 1/�˛` D 0 and ˛` � k D 0:

This is a contradiction. Therefore q.c/ does not have a common factor with m1
k
.a; b/

in F .

Suppose that q.c/ has a common factor with m2
k
.a; b/ in F . We have that for some

monomorphism  W F ! F 0 ,  .q.c// has a common factor with  .m2
k
.a; b// of the

form x�ˇ in CŒx˙1;y˙1� for some nonzero ˇ 2C .

Note that m2
k
.a; b/Dm1

k
.a�1; b�1/. Thus  .q.c// must have a common factor with

 .m1
k
.a; b// of the form x� .1=ˇ/ in CŒx˙1;y˙1�. It has already been shown that

this is a contradiction.

Therefore q.c/ has no common factor with either m1
k
.a; b/ or m2

k
.a; b/.

We will now define a right divisor set that will be used to define the derived series
localized at M.

Definition 4.7 Suppose A C � where A is a torsion-free abelian group and Q� is a
right Ore domain. If p 2QŒt1

˙1; : : : ; tm
˙1� is nonzero, then set

S�;Ap D
˚
q1.a11

; : : : ;am1
/ : : : qr .a1r

; : : : ;amr
/
ˇ̌ A.p;qi/D1; qi.1; : : : ;1/ 6D0; aij 2A

	
:

Note that S
�;A
p �QA�Q� . When � and A are clear, we will suppress them from

the notation.

Note that S
�;A
p is closed under the natural involution on Q� , where

nX
iD0

cigi 7!

nX
iD0

cig
�1
i :
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Proposition 4.8 We have S
�;A
p is a right divisor set of Q� . In addition, S

�;A
p is

functorial in the sense that for any homomorphism  W .�;A/! .� 0;A0/, we have
 .S�;Ap /� S�

0;A0

p . If additionally  W A!A0 is surjective, then  .S�;Ap /D S�
0;A0

p .

Proof We have defined S
�;A
p so that it is a multiplicatively closed subset of QA that

contains 1 (the empty product). Certainly qi.a1i
; : : : ; ami

/ 6D 0 since qi.1; : : : ; 1/ 6D 0.
Since A is torsion-free abelian, QA is a commutative domain. Therefore 0 2 S�;Ap .
Thus S�;Ap is a right divisor set of QA. For any g 2 � and a1; : : : ; am 2A,

g�1q.a1; : : : ; am/g D q.g�1a1g; : : : ;g�1amg/D q.a01; : : : ; a
0
m/;

for some a0
1
; : : : ; a0m 2A, since A C � . Thus S

�;A
p is � –invariant and by [10, Propo-

sition 4.1], S
�;A
p is a right divisor set of Q� .

Given a homomorphism  W .�;A/! .� 0;A0/ with A C � and A0 C � 0 ,  induces
a ring homomorphism  W QA ! QA0 with respect to which  .q.a1; : : : ; am// D

q. .a1/; : : : ;  .am//. Therefore  .S�;Ap /� S�
0;A0

p . If additionally  W A!A0 is a
surjection then for a given q.a0

1
; : : : ; a0m/, where a0j 2A0 , there are aj 2A such that

 .aj /D a0j . Therefore  .q.a1; : : : ; am//D q. .a1/; : : : ;  .am//D q.a0
1
; : : : ; a0m/.

Hence
S�
0;A0

p D  .S�;Ap /:

We say that Q�S�1
p is Q� localized at p . If M is a right Q� –module then we say

that MS�1
p DM ˝Q� Q�S�1

p is M localized at p .

Over a commutative domain, localizing a module M at a prime ideal hpi kills all
torsion in M except hpi–torsion. A statement similar to this is also true in our context.
The following theorem clarifies this point and is vital to the proof of our main theorem.
This proof also establishes the purpose behind the definition of strongly coprime.

Theorem 4.9 Suppose A C � where A is a torsion-free abelian group and Q� is a
right Ore domain. Let p0 be a factor of a nonzero polynomial p 2QŒt1

˙1; : : : ; tm
˙1�.

Then for any linearly independent sets fa1j
; : : : ; amj

g 2A,

Q�

p0.a11
; : : : ; am1

/ : : :p0.a1k
; : : : ; amk

/Q�
is Sp –torsion-free,

that is,

Q�

p0.a11
; : : : ; am1

/ : : :p0.a1k
; : : : ; amk

/Q�

!
Q�

p0.a11
; : : : ; am1

/ : : :p0.a1k
; : : : ; amk

/Q�
S�1

p
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is a monomorphism; whereas for any q 2QŒt1
˙1; : : : ; tm

˙1�, where e.p;q/ D 1 and
q.1; : : : ; 1/ 6D 0,

Q�

q.a1; : : : ; am/Q�
is Sp –torsion, that is,

Q�

q.a1; : : : ; am/Q�
S�1

p D 0:

Proof We will start by addressing the first claim. Suppose that x 2Q� represents an
element

Œx� 2
Q�

p0.a11
; : : : ; am1

/ � � �p0.a1k
; : : : ; amk

/Q�

that is Sp –torsion. We will show that Œx�D 0 proving that

Q�=p0.a11
; : : : ; am1

/ � � �p0.a1k
; : : : ; amk

/Q�

is Sp –torsion-free. We know that

xs D p0.a11
; : : : ; am1

/ � � �p0.a1k
; : : : ; amk

/y

for some s 2 Sp and y 2Q� .

Since A� � , Q� , viewed as a left QA–module, is free on the right cosets of A in �
(Passman [25, Chapter 1, Lemma 1.3]). Thus, after fixing a set of coset representatives,
any x 2Q� has a unique decomposition

x D
X


x;

where the sum is over the coset representatives f 2�g and x 2QA. Thus, we obtain�X


x
�
s D p0.a11

; : : : ; am1
/ � � �p0.a1k

; : : : ; amk
/
X


y

and henceX


.x s
�1

/ D
X


.p0.a11
; : : : ; am1

/ � � �p0.a1k
; : : : ; amk

/y /;

where s
�1

D  s�1 2 Sp . (Recall that Sp is closed under the action of � .) Thus,
for each coset representative  we obtain the equation

x s
�1

D p0.a11
; : : : ; am1

/ � � �p0.a1k
; : : : ; amk

/y ;

which can be viewed as an equation in QA. Since s
�1

2 Sp , for each  , we have
s
�1

D q1.b11
; : : : ; bm1

/ � � � qr .b1r
; : : : ; bmr

/ for bij 2A and qi 2QŒt1
˙1; : : : ; tm

˙1�

(all depending on  ), where A.p;qi/D 1 and qi.1; : : : ; 1/ 6D 0. Thus we have

xq1.b11
; : : : ; bm1

/ � � � qr .b1r
; : : : ; bmr

/D p0.a11
; : : : ; am1

/ � � �p0.a1k
; : : : ; amk

/y :
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This may be viewed as an equation in QF for some free abelian group F �A of
finite rank. Since A.p;qi/D 1 and p0 is a factor of p , the greatest common divisor, in
QF , of p0.a1j

; : : : ; amj
/ and qi.b1i

; : : : ; bmi
/ is a unit. Thus, for each  and each j ,

p0.a1j
; : : : ; amj

/ divides x in QF . Thus p0.a1j
; : : : ; amj

/ divides each x in QA,
so

x D p0.a11
; : : : ; am1

/ � � �p0.a1k
; : : : ; amk

/
X


x0;

which is in p0.a11
; : : : ; am1

/ � � �p0.a1k
; : : : ; amk

/Q� . This implies that Œx�D 0. This
finishes the proof of the first claim.

We will now address the second claim of the theorem. By hypothesis, we have
q.a1; : : : ; am/ 2 Sp . Recall that the kernel of the map

M �
Q�

q.a1; : : : ; am/Q�
!

Q�

q.a1; : : : ; am/Q�
S�1

p �MS�1
p

is the Sp –torsion submodule of M . Note that M is a cyclic right Q� –module
generated by Œ1�2M , where 12Q� . Certainly Œ1�q.a1; : : : ; am/D Œq.a1; : : : ; am/�D

0 in M . Thus the generator of M is Sp –torsion and therefore M is Sp –torsion.

4.2 The derived series localized at M

We will now define a specific family of commutator series that will be used exten-
sively throughout the rest of the paper. The constructions rely on the techniques
of [10, Section 3] and Definition 4.7.

Let MD .p1.t1; : : : ; tm/; : : : ;pn.t1; : : : ; tm/; : : : / be a sequence of nonzero elements
of QŒt˙1

1
; : : : ; t˙1

m �. For each such M we will recursively define a functorial partial
commutator series that we call the derived series localized at M.

Given any group G , set G.0/
M �G and suppose inductively G.n/

M has been defined so
that G.k/

M =G.kC1/
M is torsion-free abelian for each k < n. Then G=G.n/

M is a PTFA
group, so QŒG=G.n/

M � is a right Ore domain. Now consider

� DG=G.n/
M and ADG.n�1/

M =G.n/
M C �:

Note that A is torsion-free abelian. Thus, by Proposition 4.8, we have that Spn
is a

right divisor set of QŒG=G.n/
M �. We now define G.nC1/

M .

Definition 4.10 The derived series localized at M is given by G.0/
M � G and, for

n> 0,

G.nC1/
M � ker

�
G.n/
M !

G.n/
M

ŒG.n/
M ;G.n/

M �
!

G.n/
M

ŒG.n/
M ;G.n/

M �
˝ZŒG=G.n/M �QŒG=G.n/

M �S�1
pn

�
:

If nD 0 we understand that Spn
D f1g.
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Note that G.n/
M =ŒG.n/

M ;G.n/
M � is not only an abelian group but also a right ZŒG=G.n/

M �–
module where the action is induced by conjugation (x�gD g�1xg for any g 2G and
x 2G.n/

M ). We are also using the fact that QŒG=G.n/
M �S�1

pn
is a left ZŒG=G.n/

M �–module.
It is easily observed that ŒG.n/

M ;G.n/
M ��G.nC1/

M . The second map in this composition
should really be viewed as first tensoring with Q, which kills the Z–torsion, and
then inverting Spn

. It follows that G.n/
M =G.nC1/

M is a torsion-free abelian group (since
QŒG=G.n/

M �S�1
pn

is a rational vector space). Hence this procedure recursively defines a
commutator series (or rather a partial commutator series up to G.nC1/

M ) which depends
on M. (As is true for all commutator series, G.1/

M DG.1/
r , the first term of the rational

derived series.)

Theorem 4.11 If M D .p1.t1; : : : ; tm/; : : : ;pn.t1; : : : ; tm/; : : : /, then fG.i/
M g is a

functorial commutator series.

Proof Suppose G and B are groups and  W G! B is a homomorphism. We will
show, by induction on n, that  .G.n/

M /�B.n/
M . This holds for nD0. Suppose this holds

for n. We want to show  .G.nC1/
M /� B.nC1/

M . By [10, Proposition 3.2], it suffices to
verify that, for each 0� i � n,  .SG

pi
/� SB

pi
. Since i � n, the induction hypothesis

guarantees that  induces a homomorphism of pairs

 W .G=G.i/
M ;G.i�1/

M =G.i/
M /! .B=B.i/

M ;B.i�1/
M =B.i/

M /:

From the second part of Proposition 4.8,  .SG
pi
/� SB

pi
for 0� i � n.

The following basic result is analogous to Proposition 4.17 in [10].

Proposition 4.12 If �W A! B is surjective and ker� � A.m/
M , then � induces iso-

morphisms A=A.n/
M Š B=B.n/

M for all n�m. In particular, .A=A.n/
M /.n/M D 0.

5 Distinguishing concordance classes: Triviality

Let MD .p1.t1; : : : tm/; : : : ;pn.t1; : : : ; tm/; : : : / be a sequence of nonzero elements
of QŒt˙1

1
; : : : t˙1

m �. By Theorem 4.11 we know that the derived series localized at M,
denoted fG.n/

M g, is a functorial commutator series. Thus by Proposition 3.5 there is a
corresponding filtration, fFM

n g, of the knot concordance group.

Definition 5.1 Given

MD .p1.t1; : : : tm/; : : : ;pn.t1; : : : ; tm// and QD .q1.t1; : : : ; tr /; : : : ; qn.t1; : : : ; tr //;

we say that M is strongly coprime to Q if, for some k � 1, B.pk ;qk/ D 1; otherwise
we say that M is isogenous to Q.
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We will concern ourselves with knots of the form K DRn
Dn
ı � � � ıR1

D1
.K0/, where

K0 2F0 , Ri
Di

are doubling operators and Rn is a knot. By Corollary 3.8 we know that
K 2Fn and thus K 2FM

n for any M. Let QD .qn.t1; : : : ; tm/; : : : ; q1.t1; : : : ; tm//,
where qi is the product of the �j

i of Di in A.Ri/. The following result shows
that for certain doubling operators, if M is strongly coprime to Q then K 2 FM

nC1

and therefore K is trivial in Fn=FM
n:5

, where Fn=FM
n:5

is defined as the quotient of
Fn=.Fn\FM

n:5
/. This justifies thinking of Fn=FM

n:5
as localizing Fn=Fn:5 at M.

Theorem 5.2 Suppose that K D Rn
Dn
ı � � � ı R1

D1
.K0/ with K0 2 F0 , Rn is a

knot and the �j
i of Di lie in the torsion submodule of A.Ri/ (this is always sat-

isfied if Ri is a knot). Let Q D .qn.t1; : : : ; tr /; : : : ; q1.t1; : : : ; tr // be the order of
the �j

i of .Dn; : : : ;D1/ in .A.Rn/; : : : ;A.R1// (note the descending index). If
M D .p1.t1; : : : ; tr /; : : : ;pn.t1; : : : ; tr // is strongly coprime to Q then K 2 FM

nC1
.

Thus K is trivial in Fn=FM
n:5

.

The following proof is analogous to [10, Theorem 6.2] except the use of string link
doubling operators and the derived series localized at M will be considered.

MK

En

MRn

Sn

MLn�1

En�1

MRn�1 MLn�2

Sn�1

MK1

MR1 ML0

S1 V

Figure 10: The 4–manifold Z

Proof We will recursively define Li D Ri
Di
.Li�1/ for i D 1; : : : ; n. Note that

K D Ln . Since Li DRi
Di
.Li�1/ there is a cobordism Ei (see Section 2.1) whose

boundary is MLi
tMLi�1

tMRi . Consider X DEn[En�1[� � �[E1 , obtained by
gluing Ei to Ei�1 along their common boundary component MKi�1

. The boundary
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of X is the disjoint union of MK0
, MRn ; : : : ;MR1 and MK . For 1� i � n, let Si

denote the exterior of slice disks in B4 for the slice link Ri . Since K0 2 F0 there
is a zero solution V for K0 . In fact, it is known that we can choose V such that
�1.V /ŠZ so that the meridian �0 of K0 generates �1.V / [12, Section 5]. Gluing V

and all the Si to X , we obtain a 4–manifold, Z as shown schematically in Figure 10.
Note that @Z DMK .

We claim that

(3) K 2 Fn via Z;

and, if M is strongly coprime to Q, then

(4) K 2 FM
nC1 via Z:

First, as in the proof of Proposition 3.6, a series of Mayer–Vietoris arguments implies
that H2.Z/ŠH2.V /. Since K02F0 via V , H2.V / has a basis of connected compact
oriented surfaces, fJs;Dsg, embedded in V with trivial normal bundles such that the
surfaces are pairwise disjoint except that, for each s , Js intersects Ds transversely in
a single point with positive sign (see Definition 3.3). We claim that

(5) �0 2 �1.Z/
.n/;

where �0 is the meridian of K0 , and if M is strongly coprime to Q then

(6) �0 2 �1.Z/
.nC1/
M :

Then, since �0 generates �1.V /,

�1.Js/� �1.V /� �1.Z/
.n/;

and if M is strongly coprime to Q,

�1.Js/� �1.V /� �1.Z/
.nC1/
M ;

and similarly for �1.Ds/. This would complete the verification of claims (3) and (4)
since fJs;Dsg would then satisfy the needed criteria of Definition 3.3. We will now
turn our attention toward confirming claims (5) and (6). Let G D �1.Z/. Let �j

i

denote both the meridians of Li in MLi
�Z and its homotopy class in G . By abuse

of notation, let �j
i also denote its push-off in MLi

� Z (the abuse is slight since
these are isotopic in Ei by Lemma 2.1). To prove claims (5) and (6) we will need the
following lemma.

Lemma 5.3 For 0� i � n and all j ,

�
j
i 2G.n�i/ and �

j
i 2G.n�iC1/;

and if, for some `, �j
`
2G.n�`C2/

M for all j then for each i , 0� i � `,

�
j
i 2G

.n�iC1/
M and �

j
i 2G

.n�iC2/
M :
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Proof We will establish the first clause of the lemma by reverse induction on i . For
i D n, clearly �n 2 G.0/ � G and since, by definition of a doubling operator, �n

lies in �1.MRn/.1/ , �n 2 G.1/ . This is the base of the induction. Now assume that
�j

i 2 G.n�i/ and �j
i 2 G.n�iC1/ . By property (1) of Lemma 2.1, �j

i�1
is isotopic

in Ei to a push-off of �j
i �MLi

. It follows that

�
j
i�1
2G.n�iC1/:

Since f�i�1g normally generates �1.MLi�1
/, it follows that �1.MLi�1

/�G.n�iC1/ .
Thus,

�
j
i�1
2 Œ�1.MLi�1

/; �1.MLi�1
/��G.n�iC2/:

This completes the inductive step and establishes the first claim of the lemma.

Now suppose that �j
`
2G.n�`C2/

M for some ` and all j . By property (1) of Lemma 2.1,
we have �j

`�1
is isotopic to a push-off of �j

`
. Thus

�
j

`�1
2G.n�`C2/

M :

Then, as above, it follows that �1.ML`�1
/�G.n�`C2/

M , and so

�
j

`�1
2 Œ�1.ML`�1

/; �1.ML`�1
/�� ŒG.n�`C2/

M ;G.n�`C2/
M ��G.n�`C3/

M

for all j , where for the last inclusion we use property (1) of Proposition 3.2. This
establishes the second clause of the lemma in the case that i D `� 1. Note that �j

`�2

is isotopic to a push-off of �j
`�1

and the argument iterates. This establishes the second
clause.

Claims (5) and (3) follow immediately. We must now verify claim (6). Recall that
by hypothesis M D .p1; : : : ;pn/ is strongly coprime to Q D .qn; : : : ; q1/. Hence
there is some `, 1� `� n, such that pn�`C1 is strongly coprime to q` . Note that �j

`

is q` torsion in A.R`/. Thus the push-off of �j
`

is q` torsion in A.K`/. This can be
interpreted in terms of the fundamental group of ML`

as follows [26, p. 174]. Suppose

q`.�
1
` ; : : : ; �

m
` /D

X
m1;:::;mr

cm1;:::;mr
.�1
`/

m1.�2
`/

m2 ; : : : ; .�r
`/

mr :

Then the fact that �j
`

is q` torsion translates to the fact thatY
m1;:::;mr

.�1
`/

m1 ; : : : ; .�r
`/

mr .�i
`/

cm1;:::;mr .�1
`/
�m1 ; : : : ; .�r

`/
�mr

2 Œ�1.MK`
/.1/; �1.MK`

/.1/�:

Thus the right-hand expression is in

ŒG.n�`C1/;G.n�`C1/�� ŒG.n�`C1/
M ;G.n�`C1/

M �

Algebraic & Geometric Topology, Volume 14 (2014)



1606 John R Burke

since we have shown in the proof of Lemma 5.3 that �j
`
2G.n�`C1/ �G.n�`C1/

M . By
Lemma 5.3, �j

`
2 G.n�`/

M , so q`.�
1
`
; : : : ; �m

`
/ 2 ZŒG.n�`/=G.n�`C1/

M �. Therefore �j
`

represents an element in the ZŒG=G.n�`C1/
M �–module G.n�`C1/

M =ŒG.n�`C1/
M ;G.n�`C1/

M �,
which is annihilated by q`.�

1
`
; : : : ; �m

`
/.

Since pn�`C1 is strongly coprime to q`.�
1
`
; : : : ; �m

`
/ by Definition 4.7, q` 2S

�;A
pn�`C1

,
where

� DG=G.n�`C1/
M and ADG.n�`/

M =G.n�`C1/
M :

Therefore, by Definition 4.10, �j
`
2 G.n�`C2/

M . Therefore, by the second clause of
Lemma 5.3 (applied with i D 0), �0 2G.nC1/

M . This finishes the verification of claim
(6), and hence the proof of the theorem.

Since mk (from Example 4.4) is strongly coprime to all single-variable polynomials
there are specific examples of M that are strongly coprime to all Q composed of
single-variable polynomials. Thus all knots obtained by iterated applications of knot
doubling operators to a knot in F0 are trivial in Fn=FM

n:5
.

6 Distinguishing concordance classes: Nontriviality

We will now show that there are knots resulting from an n–fold composition of string
link doubling operators that are nontrivial in Fn=FM

n:5
. Furthermore, by applying

Theorem 5.2 it can be shown that these knots are distinct from any knots arising from
certain compositions of knot doubling operators acting on a knot in F0 . First, though,
we will have to define the doubling operators that will be used.

Define Rk
D to be the doubling operator arising from the ribbon knot and properly

embedded 1–multidisk shown in Figure 11. It is easy to show that � is a generator
of A.Rk/. The Alexander polynomial of Rk is pk .

� D

�k

Figure 11: The doubling operator Rk
D
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Define .Rk # R`/D to be the doubling operator arising from the ribbon knot and
properly embedded 2–multidisk in Figure 12.

�1

�k

D

�`

�2

Figure 12: The doubling operator .Rk #R`/D

The �i form a basis for A.Rk #R`/ since the Alexander module decomposes over
connected sums. Since the Alexander polynomial is multiplicative under connected
sum, the Alexander polynomial of the above knots is pkp` .

Define Lk
D to be a doubling operator arising from a slice string link shown in Figure 13

with properly embedded 1–multidisks DDD1 tD2 .

�1

D1

�k

D2

�2

Figure 13: The doubling operator Lk
D
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The �i form a basis for TA.yLk/, the torsion submodule of A.yLk/. As was shown
before, the Alexander polynomial of yLk is mk with factors m1

k
and m2

k
. Thus yLk has

an Alexander polynomial that is strongly coprime to all single-variable polynomials by
Lemma 4.5.

6.1 Main theorems

First we will describe a generalization of .n;�/–solutions called .n;�/–bordisms,
which will be useful in the proof of the main result.

Definition 6.1 [10, Definition 7.11] For a given commutator series �, a compact
spin smooth 4–manifold W is an .n;�/–bordism for @W if:

(1) H2.W IZ/=H2.@W IZ/ has a basis consisting of connected, compact, oriented
surfaces, fJi ;Di j 1 � i � rg, embedded in W with trivial normal bundles,
wherein the surfaces are pairwise disjoint except that, for each i , Ji intersects Di

transversely once with positive sign.

(2) For each i , �1.Ji/� �1.W /
.n/
� and �1.Di/� �1.W /

.n/
� .

Additionally, W is an .n:5;�/–bordism if:

(3) For each i , �1.Ji/� �1.W /
.nC1/
� .

An .n;�/–solution is an .n;�/–bordism, but .n;�/–bordisms need not have connected
boundary and the inclusion map from the boundary does not necessarily induce an
isomorphism on H1 .

Theorem 6.2 Fix some n� 2. Let

K0 2 F0 and Kn�2 DRn�2
Dn�2

ı � � � ıR1
D1
.K0/;

where Ri
Di

, for 1� i � n� 2, is Rki

T for some ki � 1. Let

Ln�1 DRn�1
Dn�1

.Kn�2;Kn�2/;

where Rn�1
Dn�1

is Lkn�1
D for some kn�1 � 1. Let

K DKn DRn
Dn
.Ln�1/;

where Rn
Dn

is .R1 #R1/D . Let MD .p1p2;mkn�1
; pkn�2

; : : : ; pk1
/. If K0 is chosen

so that
j�0.MK0

/j> CRn CC yRn�1 C 2.CRn�2 � � � CCR1/C 3;

where CRj is the Cheeger–Gromov constant for MRj , then K is of infinite order
in Fn=FM

n:5
.
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Note that there do exist knots K0 satisfying the needed �0 condition. Since �0 is
additive under connected sum and the trefoil has nontrivial �0 , one can create an Arf
invariant zero knot with arbitrarily large �0 by taking a connected sum of trefoils. One
would need a connected sum of an even number of trefoils in order to obtain a knot
with Arf invariant zero.

The following proof is a modified version of the proof given in [10, Section 7, The-
orem 7.5], but here we will incorporate doubling operators arising from slice string
links and the newly defined derived series localized at M.

Proof First, note that by Corollary 3.8 and Proposition 3.9, K 2 Fn � FM
n and thus

mK 2 FM
n for m � 1 where mK is the m–fold connected sum of K with itself.

Therefore it remains to show that mK 62 FM
n:5

. We proceed by contradiction. Suppose
that mK 2 FM

n:5
. Then there is an .n:5;M/–solution V for mK .

Since mK can be viewed as arising by infecting K with K along (m�1) 1–multidisks,
there is a cobordism C (see Section 3.1) with boundary MmK tM 1

n t� � �tM m
n (where

we will abbreviate the zero-framed surgery of Ki by Mi ). The cobordism E from
Section 2.1 can be modified to incorporate infections at multiple multidisks. Note that
any of the copies of K can be viewed as the infected knot. In this proof we will refer
to properties of E that are true for this more general case, which includes C . The
integral homology of C was analyzed in [12, pages 113–114]. Consider C [MmK

V

(see Figure 14). We will prove some facts about the homology of C [V . We start by
showing that H1.C[V /ŠH1.C /ŠH1.M

i
n/. Consider the following Mayer–Vietoris

sequence:
H1.MmK /!H1.C /˚H1.V /!H1.C [V /! 0

Since V is an .n;M/–solution for mK , H1.V / is isomorphic to H1.MmK / and
is generated by the meridian of mK . Therefore, H1.C [V /ŠH1.C /ŠH1.M

i
n/,

where the last inequality is by property (3) of Lemma 2.1.

We will now analyze H2.C [V /. We start by showing that H3.C [V;V /D 0. Note
that by excision H3.C [ V;V / Š H3.C;MmK / Š H1.C;M

1
n t � � � tM m

n /, where
the last isomorphism is from Poincaré duality. Consider the long exact sequence of the
pair

H1.M
1
n /˚ � � �˚H1.M

m
n /!H1.C /!H1.C;M

1
n t � � � tM m

n /! 0:

By property (3) of Lemma 2.1 we can infer that the leftmost map is a surjection, which
implies that the middle is the zero map. Therefore

H3.C [V;V /ŠH1.C;M
1
n t � � � tM m

n /D 0:
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From this observation we obtain the long exact sequence of the pair

(7) 0!H2.V /!H2.C [V /!H2.C [V;V /!H1.V /!H1.C [V /:

By property (3) of Lemma 2.1, we know that the map induced by inclusion,

H1.MmK /!H1.C /;

is an isomorphism, and by examining the Mayer–Vietoris sequence associated to
the union of V and C , we can show that the map induced by inclusion, H1.V /!

H1.C [V /, is an isomorphism. Therefore the last map of (7) is an isomorphism and
thus the map that precedes it is the zero map. We can then infer that the third map is a
surjection. Putting this together we see that we have the split short exact sequence

(8) 0!H2.V /!H2.C [V /!H2.C [V;V /! 0:

Therefore
H2.C [V /ŠH2.V /˚H2.C [V;V /:

By excision H2.C [V;V /ŠH2.C;MmK /. Consider the exact sequence of a pair

H2.MmK /!H2.C /!H2.C;MmK /!H1.MmK /!H1.C /:

Again by property (3) of Lemma 2.1, we know that last map of the sequence is an
isomorphism and thus the second to last map is the zero map. By property (4) of
Lemma 2.1, we know that H2.C /ŠH2.MK m/˚H2.M

2
n t � � �tM m

n /. We can infer
that

H2.C;MmK /ŠH2.M
2
n t � � � tM m

n /:

Therefore
H2.C [V /ŠH2.V /˚H2.M

2
n t � � � tM m

n /:

Let j 0�W H2.@V /!H2.C [V / be the map induced by the inclusion map j 0W @V !

C [V . Likewise, let j 00� W H2.@.C [V //!H2.C [V / be the map induced by the
inclusion map j 00W @.C[V /!C[V . Note that @V DMmK and @.C[V /DMmKt

M 1
n t� � �tM m

n . By the proof of property (3) of Lemma 2.1 we know that H2.MmK / is
isomorphic to H2.MK / via inclusion into C and thus inclusion into C [V . From this
we can infer that j 00� .H2.@C [V //Š j 0�.H2.@V //˚ j 00� .H2.M

2
n /˚� � �˚H2.M

m
n //.

Therefore,

H2.C [V /

j 00� .H2.@.C [V ///
Š

H2.V /˚H2.M
2
n /˚ � � �˚H2.M

m
n /

j 0�.H2.@V //˚ j 00� .H2.M 2
n /˚ � � �˚H2.M m

n //

Š
H2.V /

j 0�.H2.@V //
:
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Let C [V be called W0 (see Figure 14). By the naturality of the intersection form
with twisted coefficients, it then follows that the same surfaces used to show that V is a
.n;M/–bordism can be used to show that W0 is a .n;M/–bordism since if J is such
a surface in V and �1.J /� �1.V /

.n/
M . Then �1.J /� �1.W0/

.n/
M by the functorality

of the derived series localized at M.

V

MmK

C

M 1
n M 2

n M m
n

Figure 14: The .n;M/–bordism W0

Stage 0 Define j j
0
W M j

n !W0 , for j D 1; : : : ;m, to be the inclusion map. From
above we know that j j

0�
W H1.M

j
n IQ/!H1.W0IQ/ is an isomorphism. Therefore,

j j
0�
.�1.M

j
n //Š Z� �1.W0/=�1.W0/

.1/
M .

We now want to show �j ;1
n ; �j ;2

n of Dj
n are nontrivial in �1.W0/

.1/=�1.W0/
.2/
M and,

furthermore, that �j ;1
n and �j ;2

n are linearly independent in �1.W0/
.1/=�1.W0/

.2/
M .

Note that we have �j ;1
n ; �j ;2

n 2 �1.M
j
n /
.1/ � �1.W0/

.1/ .

Let ƒ0 D �1.W0/=�1.W0/
.1/
M Š Z and let  0W �1.W0/ ! ƒ0 be the canonical

surjection. Define R0 D .Qƒ0/S
�1
p1
Š .QŒt; t�1�/S�1

p1
. Note that

H1.W0IR0/Š .�1.W0/
.1/=Œ�1.W0/

.1/; �1.W0/
.1/�/˝Zƒ0

R0:

Consider the following commutative diagram:

�1.M
j
n /
.1/ //

�
j
0

��

�1.W0/
.1/

�0 // �1.W0/
.1/

�1.W0/
.2/
M

��

A.Kj /
id˝1

i
j
0�

0

// H1.M
j
n IR0/

j
j
0� // H1.W0IR0/

Š // �1.W0/
.1/

Œ�1.W0/.1/;�1.W0/.1/�
˝Zƒ0

R0

Since the right-hand vertical map is injective by the definition of the group localized
at M , if �j ;i

n is in the kernel of the top row, �j ;i
n 2 A.Kj / must be in the kernel
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of the bottom row. If this were true then �j ;i
n ˝ 1 would be in the kernel of j j

0�
.

By [10, Theorem 7.15], ker j j
0�
D P j

0
is an isotropic submodule (P j

0
� P j

0
? ) with

respect to the Blanchfield linking form on H1.M
j
n IR0/.

The Alexander module and Blanchfield linking form of Kj and R1 # R1 are iso-
morphic since Kj is obtained by infection on R1 #R1 (Cochran [5, Theorem 8.1],
Leidy [21, Theorem 4.1]). Furthermore, the Blanchfield linking form decomposes over
the connected sum. Therefore,

B`K j

R0
.�j ;i

n ˝ 1; �j ;i
n ˝ 1/D B`R1

R0
.�j ;i

n ˝ 1; �j ;i
n ˝ 1/:

From Leidy [20, Proposition 3.6; 21, Theorem 4.7], we have

B`R1

R0
.�j ;i

n ˝ 1; �j ;i
n ˝ 1/D �.B`R1

0 .�j ;i
n ; �j ;i

n //;

where B`R1

0
is the classical Blanchfield linking form and � is the map

�W
Q.t/

QŒt; t�1�
!

Q.t/

QŒt; t�1�S�1
p1

:

One can calculate B`R1

0
.�j ;i

n ; �j ;i
n / and obtain

B`R1

0 .�j ;i
n ; �j ;i

n /D
3t2� 6t C 3

2t2� 5t C 2
D

3

2
C

3
2
t

2t2� 5t C 2
:

We can then calculate �.B`R1

0
.�j ;i

n ; �j ;i
n //. Note 2t2 � 5t C 2 is p1 . Thus by the

definition of S�1
p1

, we see that

B`R1

R0
.�j ;i

n ˝1; �j ;i
n ˝1/D�.B`R1

0 .�j ;i
n ; �j ;i

n //D�
�3t2� 6t C 3

2t2� 5t C 2

�
D

3
2
t

2t2� 5t C 2
6D0:

Therefore, �j ;i
n 62 P j

0
and �j ;i

n is nontrivial in �1.W0/
.1/=�1.W0/

.2/
M .

Using the same machinery, we can show, in fact, that �j ;1
n and �j ;2

n are linearly
independent in �1.W0/

.1/=�1.W0/
.2/
M . Let m1�

j ;1
n C m2�

j ;2
n be an arbitrary Z–

linear combination where m1 6D 0 and m2 6D 0. (Since �1.W0/
.1/=�1.W0/

.2/
M is

torsion-free abelian we are discussing Z–linear combinations.) We need to show that
.�j ;1

n /m1.�j ;2
n /m2 2 �1.M

j
n /
.1/ � �1.W0/

.1/ is not in �1.W0/
.2/
M .

We will show that .�j ;1
n /m1.�j ;2

n /m2 62 �1.W0/
.2/
M by showing that

�
j
0

�
.�j ;1

n /m1.�j ;2
n /m2

�
Dm1�

j ;1
n Cm2�

j ;2
n 2A0.K

j /
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is not in the kernel of the bottom row. If m1�
j ;1
n Cm2�

j ;2
n were in the kernel of the

bottom row, then m1�
j ;1
n ˝ 1Cm2�

j ;2
n ˝ 1 2 P j

0
, which implies

B`K j

R0
.m1�

j ;1
n ˝ 1Cm2�

j ;2
n ˝ 1;m1�

j ;1
n ˝ 1Cm2�

j ;2
n ˝ 1/D 0:

Since B`K j

R0
decomposes over the connected sum,

B`K j

R0
.m1�

j ;1
n ˝ 1Cm2�

j ;2
n ˝ 1;m1�

j ;1
n ˝ 1Cm2�

j ;2
n ˝ 1/

Dm2
1B`

R1

R0
.�j ;1

n ˝ 1; �j ;1
n ˝ 1/Cm2

2B`
R1

R0
.�j ;2

n ˝ 1; �j ;2
n ˝ 1/:

From the work above we can infer that

B`K j

R0
.m1�

j ;1
n ˝ 1Cm2�

j ;2
n ˝ 1;m1�

j ;1
n ˝ 1Cm2�

j ;2
n ˝ 1/ 6D 0:

Thus �j ;1
n and �j ;2

n are linearly independent in �1.W0/
.1/=�1.W0/

.2/
M .

Stage 1 Recall that there is a cobordism Ej
n with boundary M

j
n tM

j
Rn tM

j
n�1

. Let

W1 D

�G
j

Ej
n

�
[W0;

where the union is along their common boundaries M
j
n . We wish to demonstrate that

under the inclusion map j j
1
W M j

n�1
!W1 ,

(9) j
j
1�
.�1.Mn�1//Š Z˚Z� �1.W1/

.1/=�1.W1/
.2/
M :

By part (2) of Lemma 2.1, �j ;1
n and �

j ;2
n are isotopic in Ej

n to the meridians of
Lj

n�1
. We therefore will also refer to the meridians of Lj

n�1
as �j ;1

n and �j ;2
n . Recall

that �1.M
j
n�1

/ is normally generated by f�j ;1
n ; �j ;2

n g, and �j ;1
n and �j ;2

n are linearly
independent in �1.W0/

.1/=�1.W0/
.2/
M . Therefore (9) can be demonstrated by showing

that

(10) �1.W0/
.1/=�1.W0/

.2/
M Š �1.W1/

.1/=�1.W1/
.2/
M :

By multiple applications of part (2) of Lemma 2.1, the map

�1.W0/! �1

�
W0[F

j M
j
n

Ej
n

�
D �1.W1/;

induced by the inclusion map, is a surjection whose kernel is the normal closure of the
longitudes, `j ;i

n�1 , of Lj
n�1

. We assume that �j ;i
n is the meridian of the component of

Lj
n�1

with `j ;i
n�1 as its longitude. Thus, since �j ;i

n 2 �1.W0/
.1/ , `j ;i

n�1 2 �1.W0/
.2/ �

�1.W0/
.2/
M . Therefore by Proposition 4.12, (10) is affirmed.
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We now demonstrate W1 is an .n;M/–bordism. We know W0 is a .n;M/–bordism.
Since W1 is created from W0 by adding

F
j Ej

n where H2.E
j
n /=H2.@E

j
n / D 0, as

when analyzing H2.C [V /, a series of long exact sequences arguments shows that

H2.W0/=H2.@W0/ŠH2.W1/=H2.@W1/:

It then follows that the same surfaces used to show that W0 is an .n;M/–bordism
can be used to show that W1 is an .n;M/–bordism since if J is such a surface and
�1.J /� �1.W0/

.n/
M , then �1.J /� �1.W1/

.n/
M by the functorality of the derived series

localized at M.

Let �j ;1
n�1
2 D1

n�1
and �j ;2

n�1
2 D2

n�1
as in Figure 13. We want to show that �j ;1

n�1
or

�j ;2
n�1
2�1.Mn�1/ (or both) is nontrivial in �1.W1/

.2/=�1.W1/
.3/
M for each j . Note that

�j ;i
n�1
2 �1.Mn�1/

.1/ . Since j j
1�
.�1.Mn�1/

.1//� �1.W1/
.2/ , �j ;i

n�1
2 �1.W1/

.2/ .

Let ƒ1 D �1.W1/=�1.W1/
.2/
M and let  1W �1.W1/!ƒ1 be the canonical surjection.

Define R1 D .Qƒ1/S
�1
mk�1

. Note

H1.W1IR1/Š �1.W1/
.2/
M =Œ�1.W1/

.2/
M ; �1.W1/

.2/
M �˝Zƒ1

R1:

Consider the following commutative diagram:

�1.M
j
n�1

/.1/ //

�
j

1

��

�1.W1/
.2/ � // �1.W1/

.2/
M

�1.W1/
.3/
M

��
A. yLj

n�1
/

id˝1

i
j

1�

0

// H1.M
j
n�1
IR1/

j
j

1� // H1.W1IR1/

If �j ;i
n�1

is in the kernel of the top row, then �j ;i
n�1
2A. yLj

n�1
/ is in the kernel of the

bottom row. If this were true, then �j ;i
n�1
˝ 1 would be in the kernel of j j

1�
. We will

show that at least one of �j ;1
n�1
˝ 1 and �j ;2

n�1
˝ 1 is not in ker.j j

1�
/D P j

1
.

It can be shown that

A. yLj
n�1

/ŠA. yRn�1
j /ŠQŒt˙1

1 ; t˙2
2 �˚

QŒt˙1
1
; t˙2

2
�

hm1
kn�1

.t1; t2/i
˚

QŒt˙1
1
; t˙2

2
�

hm2
kn�1

.t1; t2/i
:

The torsion submodule is nontrivial since mi
kn�1

.t1; t2/, for i D 1; 2, is not a unit in
QŒt˙1

1
; t˙2

2
�. Thus,

A. yLj
n�1

/˝QŒt˙1
1
;t˙2

2
�
Qƒ1ŠQƒ1˚

Qƒ1

m1
kn�1

.�
j ;1
n ; �

j ;2
n /Qƒ1

˚
Qƒ1

m2
kn�1

.�
j ;1
n ; �

j ;2
n /Qƒ1
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is a nontrivial module whose torsion summands are generated by �j ;1
n�1 and �j ;2

n�1

respectively, and where �j ;1
n�1 and �j ;2

n�1 are the classes in ƒ1 represented by the
meridians of yLj

n�1
in M j

n�1 . From Step 1 we know that �j ;1
n�1

and �j ;2
n�1

are elements of
infinite order and f�j ;1

n ; �j ;2
n g is linearly independent in �1.W1/

.1/=�1.W1/
.2/
M . From

this we can infer that

H1.M
j
n�1
IR1/

ŠA. yLj
n�1

/˝QŒt˙1
1
;t˙2

2
�
R1

ŠQƒ1S�1
mkn�1

˚
Qƒ

m1
kn�1

.�
j ;1
n ; �

j ;2
n /Qƒ

S�1
mkn�1

˚
Qƒ1

m2
kn�1

.�
j ;1
n ; �

j ;2
n /Qƒ1

S�1
mkn�1

ŠR1˚
R1

m1
kn�1

.�
j ;1
n ; �

j ;2
n /R1

˚
R1

m2
kn�1

.�
j ;1
n ; �

j ;2
n /R1

;

an R1 –module whose torsion summands are generated by �j ;1
n�1
˝ 1 and �j ;2

n�1
˝ 1

respectively.

Lemma 6.3 We have rankZƒ1
H1.M

j
n�1
IZƒ1/D ˇ1.M

j
n�1

/� 1.

Proof First, note that yLj
n�1

is a boundary link and thus H2.M
j
n�1
IQ/ is generated

by two disjoint capped off Seifert surfaces. These Seifert surfaces are displayed in
Figure 15. Any loop on the Seifert surfaces lies in �1.M

j
n�1

/.1/ � �1.W1/
.2/ �

�1.W1/
.2/
M . Let  j

1
W �1.M

j
n�1

/! �1.W1/! �1.W1/=�1.W1/
.2/
M .

�k

Kn�2
Kn�2

Figure 15: Seifert surfaces of yLn�1

Algebraic & Geometric Topology, Volume 14 (2014)



1616 John R Burke

Consider the composition of maps

F
k
�! �1.Mn�1/

 
j

1
��!ƒ1;

where F is a free group of rank 2 and k is the map that sends the two generators
of F to the two meridians of yLj

n�1 . One can observe that k induces an isomorphism
H1.F IQ/

Š
�!H1.M

j
n�1
IQ/. Since H2.M

j
n�1

;Q/ is spanned by surfaces whose fun-
damental groups are in the kernel of  j

1
, by Cochran and Harvey [7, Proposition 2.11]

we know that rankZƒ1
H1.F;Zƒ1/Š rankZƒ1

H1.Mn�1;Zƒ1/ and by [11, 2.12] we
know that rankZƒ1

H1.F;Zƒ1/D 1.

Thus
 

j
1
W �1.M

j
n�1

/!ƒ1

is a nontrivial coefficient system with rankZƒH1.M
j
n�1

;Zƒ1/D ˇ.M
j
n�1

/� 1, and

 
j
1
W �1.MRn

j
/!ƒ1

is a nontrivial coefficient system with rankZƒH1.MRn
j
;Zƒ/ D ˇ.MRn

j
/ � 1 (the

latter rank condition is automatically satisfied since Rn
j is a knot). By [10, Theo-

rem 7.15], P j
1
\ TA.M j

n�1
/ is an isotropic submodule with respect to B`R1

M
j

n�1 ,
where P j

1
D ker.j j

1�
/. Since �j ;1

n�1 and �j ;2
n�1 generate TA.M j

n�1/, if both

�j ;1
n�1; �

j ;2
n�1 2 P j

1 \TA.M j
n�1/;

it would follow that B`R1

yL
j

n�1 is identically zero. We define B`R
yL

j

n�1 by the following
commutative diagram, where PD is the map induced by Poincaré duality, � is the
Kronecker evaluation map and B is the map that arises from the Bockstein sequence of
right R1 –modules. See [20] for a definition of B`M

R for a general closed, connected,
oriented 3–manifold M .

H2.M
j
n�1
IKƒ1=R1/

PD
��

B

&&

H 1.M
j
n�1
IKƒ1=R1/

�
��

HomR1
.H1.M

j
n�1
IR1/;Kƒ1=R1/

i#
��

TH1.M
j
n�1
IR1/

B`
yL

j
n�1

R1
tt

HomR1
.TH1.M

j
n�1
IR1/;Kƒ1=R1/
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If B`R1

yL
j

n�1 is identically zero, then the composition of vertical maps would be the
trivial map. We will show that in fact this composition of maps is nontrivial and
thus �j ;1

n�1
or �j ;2

n�1
must not lie in P j

1
(which �j ;i

n�1
depends on j ). It was shown

in [11, Theorem 2.13] that the first map is an isomorphism. We will now show that the
second map, the Kronecker evaluation map, is an isomorphism.

In [23], Levine defines a universal coefficient spectral sequence for the homology of
the complement of a link with local coefficients. By analyzing this spectral sequence
one can show that there is the short exact sequence

0! Ext1R1
.H0.Mn�1IR1/;Kƒ1=R1/!H 1.Mn�1IKƒ1=R1/

�
! .HomR1

.H1.Mn�1IR1/;Kƒ1=R1/! Ext2R1
.H0.Mn�1IR1/;Kƒ1=R1//! 0;

where � is the Kronecker evaluation map. Therefore, we can show that

H 1.M
j
n�1
IKƒ1=R1/Š HomR1

.H1.M
j
n�1
IR1/;Kƒ1=R1/

if Ext1R1
.H0.M

j
n�1
IR1/;Kƒ1=R1/ and Ext2R1

.H0.M
j
n�1
IR1/;Kƒ1=R1/ are both

the zero module.

Note that H0.M
j
n�1
IQŒt˙1

1
; t˙1

2
�/ŠQŒt˙1

1
; t˙1

2
�=h.t1� 1/.t2� 1/i [26, Exercise I2].

Thus

H0.M
j
n�1
IQŒt˙1

1 ; t˙1
2 �/˝QŒt˙1

1
;t˙1

2
�
R1ŠH0.M

j
n�1
IR1/ŠR1=h.�

j ;1
n �1/; .�j ;2

n �1/i:

There is the following projective resolution,

0!R1

'
�!R1˚R1

 
�!R1

�
�!

R1

h.�
j ;1
n � 1/.�

j ;2
n � 1/i

! 0;

where � is the canonical quotient map. Let ı; ˛; ˇ and  all represent a generator
for R1 ; then  can be defined as the map where ˛ 7! .�j ;1

n �1/ and ˇ 7! .�j ;2
n �1/

and ' can be defined as the map where ı 7! .˛�ˇ/. By applying the Hom functor,
we obtain the following exact sequence:

0 Hom
�

R1;
Kƒ1

R1

�
'�

 � Hom
�

R1;
Kƒ1

R1

�
˚Hom

�
R1;

Kƒ1

R1

�
 �

 � Hom
�

R1;
Kƒ1

R1

�
Let x 2Kƒ1=R1 be nontrivial. Note that  � is defined by  7! x , ˛� is defined by
˛ 7!x and ˇ 7!0, ˇ� is defined by ˇ 7!x and ˛ 7!0, and ı� is defined by ı 7!x . We
define  � as the map where  � 7!˛�.�j ;1

n �1/˚ˇ�.�j ;2
n �1/ and '� is defined as the

map where ˛� 7! ı� and ˇ� 7! ı.�1/D�ı , where ˛�.�j ;1
n �1/˚ˇ�.�j ;2

n �1/ is the

Algebraic & Geometric Topology, Volume 14 (2014)



1618 John R Burke

homomorphism defined by ˛ 7! .�j ;1
n �1/x and ˇ 7! .�j ;2

n �1/x and �ı is defined by
ı 7!�x . Note Ext1R1

.H0.M
j
n�1
IR1/;Kƒ1=R1/DHom.R1;Kƒ1=R1/= im.'�/�0.

Also,

Ext2R1
.H0.M

j
n�1
IR1/Kƒ1=R1/D

ker.'�/
im. �/

D
h˛�˚ˇ�i

h˛�.�
j ;1
n � 1/˚ˇ�.�

j ;2
n � 1/i

D
h˛�˚ˇ�i

h..�
j ;1
n � 1/˚ .�

j ;2
n � 1//˛�˚ˇ�i

;

and since .�j ;1
n � 1/˚ .�

j ;2
n � 1/ 2R1˚R1 ,

Ext2R1
.H0.M

j
n�1
IR1/Kƒ1=R1/Š

h˛�˚ˇ�i

h˛�˚ˇ�i
� 0:

Therefore the Kronecker evaluation map is an isomorphism.

Now if we are able to show that HomR1
.TH1.Mn�1IR1/;Kƒ1=R1/ is nontrivial,

then i# will be shown to be a nontrivial map and we will have shown that B`R1

Lj
n�1

is not identically zero. First, we will have to demonstrate that TH1.M
j
n�1
IR1/ is

nontrivial. Suppose that TH1.M
j
n�1
IR1/ is the zero module. By Theorem 4.9 we

know that the map

Qƒ1

mi
kn�1

.�
j ;1
n ; �

j ;2
n /Qƒ1

,!
Qƒ1

mi
kn�1

.�
j ;1
n ; �

j ;2
n /Qƒ1

S�1
mkn�1

Š
R1

mi
kn�1

.�
j ;1
n ; �

j ;2
n /R1

is a monomorphism. If TH1.M
j
n�1
IR1/ were the zero module, it would follow that

Qƒ1

mi
kn�1

.�
j ;1
n ; �

j ;2
n /Qƒ1

� 0:

This would imply that mi
kn�1

.�j ;1
n ; �j ;2

n / is a unit in Qƒ1 .

Suppose that there is an x 2Qƒ1 such that mi
kn�1

.�j ;1
n ; �j ;2

n /x D 1. Since Qƒ1 is a
free

QŒt˙1
1 ; t˙2

2 �DQŒ�n
j ;1˙1

; �n
j ;2˙1

�–module

we could decompose over the cosets of QŒ�n
j ;1˙1

; �n
j ;2˙1

� to get

mi
kn�1

.�j ;1
n ; �j ;2

n /xe D 1

for some xe 2 QŒ�n
j ;1˙1

; �n
j ;2˙1

�. (Here we are using the fact that the �j ;1
n and

�j ;2
n are of infinite order and linearly independent in Qƒ1 .) This is not possible since

mi
kn�1
2QŒt˙1

1
; t˙1

2
� is not a unit. Therefore

TH1.M
j
n�1
IR1/ 6D 0:
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Recall that

TH1.M
j
n�1
IR1/Š

R1

m1
kn�1

.�
j ;1
n ; �

j ;2
n /R1

˚
R1

m2
kn�1

.�
j ;1
n ; �

j ;2
n /R1

:

Let y1 and y2 be the generators of the cyclic summands respectively. Consider the
homomorphism � W TH1.M

j
n�1IR1/! Kƒ1=R1 where y1 7! 1=m1

kn�1
.�j ;1

n ; �j ;2
n /

and y2 7! 0. This a nontrivial element of HomR1
.TH1.M

j
n�1
IR1/Kƒ1=R1/ and

therefore B`R1

Lj
n�1 is not identically zero. Thus, �j ;1

n�1 or �j ;2
n�1 must not lie in

P j
1
\TA.M j

n�1
/. In conclusion, �j ;1

n�1
or �j ;2

n�1
2 �1.M

j
n�1

/ (or both) is nontrivial
in �1.W1/

.2/=�1.W1/
.3/
M for each j .

Stage 2 There is a cobordism Ej
n�1

with boundary M j
n�1
tMRn�1

j
tM j ;1

n�2
tM j ;2

n�2 .
Let W2D

F
j Ej

n�1
[W1 where the union is along their common boundary

F
j M j

n�1
.

We wish to demonstrate that under the inclusion map j j
2
W M j ;i

n�2
!W2 ,

(11)
j

j
2�
.�1.M

j ;i
n�2

//Š Z� �1.W2/
.2/=�1.W2/

.3/
M or

j
j
2�
.�1.M

j ;i
n�2

//� 0� �1.W2/
.2/=�1.W2/

.3/
M ;

where, for each j , the first equation holds for i D 1 or i D 2 or both. Recall that
�1.M

j ;i
n�2

/ is normally generated by �j ;i
n�1

and, for each j , �j ;i
n�1

is nontrivial in
�1.W1/

.2/=�1.W1/
.3/
M for i D 1 or 2 or both. Therefore (11) can be demonstrated by

showing

�1.W1/
.2/=�1.W1/

.3/
M D �1.W2/

.2/=�1.W2/
.3/
M :

By Proposition 4.12 we need only show that

(12) ker.�1.W1/! �1.W2//� �1.W1/
.3/
M :

The map

�1.W1/! �1

�
W1[F

j M
j

n�1

E
j
n�1

�
D �1.W2/

is a surjection whose kernel is the normal closer of the longitudes, `j ;i
n�2

, of M j
n�2

.
Recall that �j ;i

n�1
is the meridian of the component with `j ;i

n�2
as its longitude. Thus,

since �j ;i
n�1
2 �1.W1/

.2/ , `j ;i
n�2
2 �1.W1/

.3/ � �1.W1/
.3/
M . Therefore, (12) is affirmed

and (11) is asserted.

We will now demonstrate that W2 is a .n;M/–bordism. We know that W1 is a
.n;M/–bordism. Since W2 is created from W1 by adding

F
j Ej

n�1
, where

H2.E
j
n�1

/=H2.@E
j
n�1

/D 0;
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a series of long exact sequences arguments shows that

H2.W1/=H2.@W1/DH2.W2/=H2.@W2/:

It then follows that the same surfaces used to show that W1 is a .n;M/–bordism
can be used to show that W2 is a .n;M/–bordism since if J is such a surface and
�1.J /� �1.W1/

.n/
M then �1.J /� �1.W2/

.n/
M by the functorality of the derived series

localized at M.

We now proceed by reverse induction. Assume that for 2� r � n� 1 that under the
inclusion map j j

r W M
j ;i
n�r !Wr ,

(13)
j

j
r�.�1.M

j ;i
n�r //Š Z� �1.Wr /

.r/=�1.Wr /
.rC1/
M or

j
j
r�.�1.M

j ;i
n�r //� 0� �1.Wr /

.r/=�1.Wr /
.rC1/
M ;

where, for a particular pair of j and r , the first equation holds for iD1 or iD2 or both,
and where Wr is defined inductively by gluing copies of En�r , the cobordism with
boundary equal to Mn�rtMRn�r�1tMn�r�1 , along the copies of Mn�r . In addition,
assume that Wr is a .n;M/–bordism. Figure 16 demonstrates the construction of Wn .

W0

M 1
K

E1
n

M 1
Rn

M
1;2

Kn�2

M 1
Ln�1

E1
n�1

M
K

1;1
n�2

M 1

Rn�1 E
1;1

n�2
E

1;2

n�2

M
1;1

R1 M
1;1

K0

M
1;2

R1 M
1;2

K0

Em
n

M m
Rn

M m
K

M m
Ln�1

M
m;2

Kn�2

Em
n�1

M
K

m;1
n�2

M m

Rn�1 E
m;1

n�2
E

m;2

n�2

M
m;1

R1 M
m;1

K0

M
m;2

R1 M
m;2

K0

Figure 16: The construction of Wn

Given a particular j and r , suppose the first equation of (13) holds for some i . We will
show that �j ;i

n�r 2 �1.M
j ;i
n�r / is nontrivial in �1.Wr /

.rC1/=�1.Wr /
.rC2/
M . Note that

�j ;i
n�r 2�1.M

j ;i
n�r /

.1/ . Since j j
r�.�1.M

j ;i
n�r /

.1//��1.Wr /
.rC1/ , �j ;i

n�r 2�1.Wr /
.rC1/ .

Let ƒr D�1.Wr /=�1.Wr /
.rC2/
M and let  r W �1.Wr /!ƒr be the canonical surjection.

Define Rr D .Qƒr /S
�1
pn�r

. Note

H1.Wr IRr /Š �1.Wr /
.rC1/
M =Œ�1.Wr /

.rC1/
M ; �1.Wr /

.rC1/
M �˝Zƒr

Rr :
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Consider the following commutative diagram:

�1.M
j ;i
n�r /

.1/ //

�
j
r

��

�1.Wr /
.rC1/ � // �1.Wr /M

.rC1/

�1.Wr /M
.rC2/

��
A0.K

j ;i
n�r /

id˝1

i
j
r�

0

// H1.M
j ;i
n�r IRr /

j
j
r� // H1.Wr IRr /

If �j ;i
n�r is in the kernel of the top row, then �j ;i

n�r 2A0.K
j ;i
n�r / must be in the kernel

of the bottom row. If this were true then �j ;i
n�r ˝ 1 would be in the kernel of j j

r� .
Since by assumption  r restricted to �1.M

j ;i
n�r / is nontrivial and factors through the

abelianization, by [10, Theorem 7.15]

ker j j
r� D P j

r � P j
r
?

is an isotropic submodule with respect to the Blanchfield form on H1.M
j ;i
n�r IRr /.

Therefore, �j ;i
n�r is in the kernel of the bottom row if �j ;i

n�r ˝ 1 is in P j
r . If �j ;i

n�r ˝ 1

were in P j
r , then B`Rr

K j ;i
n�r would be identically zero. But by [10, Lemma 7.16] we

know that B`R1

K j ;i
n�r is nonsingular. This is only possible if H1.M

j ;i
n�r IRr / is the zero

module. Theorem 4.9 informs us that
Qƒr

pkn�r

�
�

j ;i
n�rC1

�
Qƒr

,!
Qƒr

pkn�r

�
�

j ;i
n�rC1

�
Qƒr

S�1
pkn�r

Š
Rr

pkn�r

�
�

j ;i
n�rC1

�
Rr

is a monomorphism. Therefore, if H1.M
j ;i
n�r IRr / were the zero module, it would

follow that
Qƒr

pkn�r

�
�

j ;i
n�rC1

�
Qƒr

� 0:

This would imply that pkn�r
.�j ;i

n�rC1/ is a unit in Qƒr . Suppose that there is
an x 2 Qƒr such that pkn�r

.�j ;i
n�rC1/x D 1. Since Qƒr is a free QŒt; t�1� D

QŒ�j ;i
n�rC1; �

j ;i�1

n�rC1�–module, we could decompose over the cosets of

QŒ�j ;i
n�rC1; �

j ;i�1

n�rC1�

to get pkn�r
.�j ;i

n�rC1/xe D 1 for some xe 2QŒ�j ;i
n�rC1; �

j ;i�1

n�rC1�. (Here we are using
the fact that the �j ;i

n�r is of infinite order and linearly independent in Qƒr .) This is
not possible since pkn�r

2QŒt; t�1� is not a unit. Therefore

H1.M
j ;i
n�r IRr / 6D 0:

In conclusion, �j ;i
n�r ˝ 1 is not in P j

r and thus �j ;i
n�r 2 �1.M

j ;i
n�r / is nontrivial in

�1.Wr /
.rC1/=�1.Wr /

.rC2/
M .
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Given a particular j and r , suppose, alternatively, the second equation of (13) holds
for some i . Since j j

r�.�1.M
j ;i
n�r //� �1.Wr /

.rC1/
M and �j ;i

n�r 2 �1.M
j ;i
n�r /

.1/ , �j ;i
n�r 2

�1.Wr /
.rC2/
M . Thus �j ;i

n�r 2 �1.M
j ;i
n�r / is trivial in �1.Wr /

.rC1/=�1.Wr /
.rC2/
M .

Thus, for each pair of j and r , �j ;i
n�r�1

2 �1.M
j ;i
n�r�1

/ is nontrivial in

�1.Wr /
.rC1/=�1.Wr /

.rC2/
M

for i D 1 or i D 2 or both.

Stage rC1 Next we demonstrate that under the inclusion map j
j;i
rC1
WM

j;i
n�r�1

!WrC1,

(14)
j

j ;i
rC1�

.�1.M
j ;i
n�r�1

//Š Z� �1.WrC1/
.rC1/=�1.WrC1/

.rC2/
M or

j
j ;i
rC1�

.�1.M
j ;i
n�r�1

//� 0� �1.WrC1/
.rC1/=�1.WrC1/

.rC2/
M

;

where, for a particular pair of j and r , the first equation holds for i D 1 or i D 2 or
both. Note (14) can be demonstrated by showing

�1.Wr /
.rC1/=�1.Wr /

.rC2/
M D �1.WrC1/

.rC1/=�1.WrC1/
.rC2/
M :

Proposition 4.12 implies that we only need to show that

(15) ker.�1.Wr /! �1.WrC1//� �1.Wr /
.rC2/
M :

The map �1.Wr / ! �1

�
Wr [M

j ;i
n�r

F
i E

j ;i
n�r

�
D �1.WrC1/ is a surjection whose

kernel is the normal closer of the longitudes, `j ;i
n�r�1

, of M j ;i
n�r�1

. Recall that �j ;i
n�r is

the meridian of M j ;i
n�r�1

. Thus, since �j ;i
n�r 2�1.Wr /

.rC1/ , `j ;i
n�r�1

2�1.Wr /
.rC2/�

�1.Wr /
.rC1/
M . Thus, (15) is affirmed and (14) is asserted.

In particular, it has been shown that for j
j ;i
n� W M

j ;i
0
!Wn ,

(16)
j

j ;i
n� .�1.M

j ;i
0
//Š Z� �1.Wn/

.n/=�1.Wn/
.nC1/
M or

j
j ;i
n� .�1.M

j ;i
0
//� 0� �1.Wn/

.n/=�1.Wn/
.nC1/
M ;

where, for each j , the first equation holds for i D 1 or i D 2 or both.

We will now demonstrate that WrC1 is a .n;M/–bordism. We know that Wr is a
.n;M/–bordism. Since WrC1 is created from Wr by adding copies of En�r where
H2.E

j ;i
n�r /=H2.@E

j ;i
n�r /D 0, a series of long exact sequence arguments analogous to

those used in Step 1 shows that

H2.Wr /=H2.@Wr /DH2.Wr1
/=H2.@WrC1/:

It then follows that the same surfaces used to show that Wr is a .n;M/–bordism can
be used to show that WrC1 is a .n;M/–bordism since if J is such a surface and
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�1.J / � �1.Wr /
.n/
M , then �1.J / � �1.WrC1/

.n/
M by the functorality of the derived

series localized at M.

To conclude the proof, we will calculate �.@Wn; �/ D �
2.Wn; �/ � �.Wn/, where

�W �1.Wn/! �1.Wn/=�1.Wn/
.nC1/
M . Recall that by [11, Theorem 4.2], �2.V; �/�

�.V / D 0. By Lemma 2.2, �.Ej ;i
r / D 0 for all i , j and r , and by Lemma 2.3,

�2.E
j ;i
r ; �/D0 for all r 6Dn. Thus by [10, Proposition 5.1, Property (5)], �2.Wn; �/�

�.Wn/D
P

j �
2.E

j
n ; �/. ThereforeX

j

�2.Ej
n ; �/D

X
j

�
�.MRn

j
; �/C �.M yRn�1

j
; �/C �.M 1

Rn�2
j

; �/C �.M 2

Rn�2
j

; �/

C � � � C �.M 1

R1
j

; �/C �.M 2

R1
j

; �/C �.M
j ;1
K0
; �/C �.M

j ;2
K0
; �/

�
:

ThusX
j

.��.M
j ;1
K0
; �/� �.M

j ;2
K0
; �//

D

X
j

�
�.MRn

j
; �/C �.M yRn�1

j
; �/C �.M 1

Rn�2
j

; �/C �.M 2

Rn�2
j

; �/

C � � � C �.M 1

R1
j

; �/C �.M 2

R1
j

; �/�
X

j

�2.Ej
n ; �/

�
:

By [10, Lemma 5.1, parts (1)–(3)], and (16), we know �.M
j ;i
K0
; �/D �0.MK0

/ or 0

and we are guaranteed at least m incidents where �.M j ;i
K0
; �/D �0.MK0

/. Thus,

�k�0.MK0
/D

X
j

�
�.MRn

j
; �/C �.M yRn�1

j
; �/C �.M 1

Rn�2
j

; �/C �.M 2

Rn�2
j

; �/

C � � � C �.M 1

R1
j

; �/C �.M 2

R1
j

; �/�
X

j

�2.Ej
n ; �/

�
;

where m� k and k 2 ZC . We can then conclude thatˇ̌
k�0.MK0

/
ˇ̌
D

ˇ̌̌̌X
j

�
�.MRn

j
; �/C �.M yRn�1

j
; �/C �.M 1

Rn�2
j

; �/C �.M 2

Rn�2
j

; �/

C � � � C �.M 1

R1
j

; �/C �.M 2

R1
j

; �/�
X

j

�2.Ej
n ; �/

�ˇ̌̌̌
:

Therefore,

jk�0.MK0
/j �

X
j

�
j�.MRn

j
; �/jCj�.M yRn�1

j
; �/jCj�.M 1

Rn�2
j

; �/jCj�.M 2

Rn�2
j

; �/j

C � � � C j�.M 1

R1
j

; �/jC j�.M 2

R1
j

; �/jC
X

j

j�2.Ej
n ; �/j

�
:
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We can then infer that

mj�0.MK0
/j �m

�
CRn CC yRn�1 CCRn�2 CCRn�2 C � � �CCR1 CCR1 C 3

�
:

By [4, Lemma 2.7], j�2.En; �/j � ˇ2.En/D ˇ2.MRn/Cˇ2.MLn�1
/D 1C 2D 3;

where the first equality is by part (4) of Lemma 2.1. (Note H2.MRn/ D Z and
H2.MLn�1

/D Z˚Z, where each Z summand is generated by a capped off Seifert
surface for a component of Rn and Ln�1 respectively.)

Recall that K0 was chosen so that j�0.MK0
/j> CRn CC yRn�1 CCRn�2 CCRn�2 C

� � � C CR1 C CR1 C 3. This is a contradiction. Thus K cannot bound a .n:5;M/–
solution.

Theorem 6.4 For n � 2, there exists a knot, Kn , of infinite order in Fn=Fn:5 such
that no multiple of Kn is concordant to any knots created by two or more applications
of nontrivial knot doubling operators to knots in F0 . In particular,

mKn 62

M
Pn

Z1 � Fn=Fn:5

for all m 2 ZC . Thus, mKn is distinct from all CHL knots for all n and m 2 ZC .

Proof By Theorem 6.2, for any n there exists a knot Kn 2 Fn=Fn:5 of infinite order
in Fn=FM

n:5
and by Theorem 5.2 and Lemma 4.5 we know that for any knot, J , created

by two or more applications of nontrivial knot doubling operators to a knot in F0 , J is
trivial in Fn=FM

n:5
. Since fF .M/

n g is a filtration of the concordance group this implies
that Km

n is not concordant to J for all m 6D 0.
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