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New series in the Johnson cokernels of
the mapping class groups of surfaces

NAOYA ENOMOTO

TAKAO SATOH

Let †g;1 be a compact oriented surface of genus g with one boundary component,
and Mg;1 its mapping class group. Morita showed that the image of the k th Johnson
homomorphism �M

k
of Mg;1 is contained in the kernel hg;1.k/ of an Sp–equivariant

surjective homomorphism H˝ZL2g.kC1/!L2g.kC2/ , where H WDH1.†g;1;Z/
and L2g.k/ is the degree k part of the free Lie algebra L2g generated by H .

In this paper, we study the Sp–module structure of the cokernel hQ
g;1
.k/=Im.�Mk;Q/

of the rational Johnson homomorphism �M
k;Q WD �M

k
˝ idQ , where hQ

g;1.k/ WD
hg;1.k/˝Z Q . In particular, we show that the irreducible Sp–module corresponding
to a partition Œ1k � appears in the k th Johnson cokernel for any k � 1 .mod 4/ and
k � 5 with multiplicity one. We also give a new proof of the fact due to Morita that
the irreducible Sp–module corresponding to a partition Œk� appears in the Johnson
cokernel with multiplicity one for odd k � 3 .

The strategy of the paper is to give explicit descriptions of maximal vectors with
highest weight Œ1k � and Œk� in the Johnson cokernel. Our construction is inspired by
the Brauer–Schur–Weyl duality between Sp.2g;Q/ and the Brauer algebras, and our
previous work for the Johnson cokernel of the automorphism group of a free group.

20G05; 57M50

Dedicated to the memory of Midori Kato

1 Introduction

Dennis Johnson established a new remarkable method to investigate the group structure
of the mapping class group of a surface and the Torelli group in a series of his pioneer
works [11; 12; 13; 14] in 1980s. Especially, he gave a finite set of generators of the
Torelli group, and constructed a homomorphism � to determine the abelianization of the
Torelli group. Now, his homomorphism � is called the first Johnson homomorphism,
and it is generalized to the Johnson homomorphisms of higher degrees. Over the last
two decades, the study of the Johnson homomorphisms of the mapping class group has
achieved a good progress by many authors including Morita [22], Hain [8] and so on.
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To put it plainly, the Johnson homomorphisms are used to describe “one by one
approximations” of the Torelli group as follows. To explain it, let us fix some notation.
For a compact oriented surface †g;1 of genus g with one boundary component, let
Mg;1 be its mapping class group. Namely, Mg;1 is a group of isotopy classes of
orientation-preserving diffeomorphisms of †g;1 that fix the boundary component
pointwise. The fundamental group �1.†g;1;�/ of †g;1 is isomorphic to a free group
F2g of rank 2g . In this paper we fix an isomorphism �1.†g;1;�/ Š F2g . Let
�2g.k/ be the lower central series of F2g beginning with �2g.1/ D F2g , and set
L2g.k/ WD �2g.k/=�2g.kC 1/. For each k � 1 let Mg;1.k/ be a normal subgroup
of Mg;1 consisting of elements that act on F2g=�2g.kC1/ trivially. Then we have a
descending filtration

Mg;1.1/�Mg;1.2/� � � � �Mg;1.k/� � � �
of Mg;1 such that the first term Mg;1.1/ is just the Torelli group Ig;1 . This filtration
is called the Johnson filtration of Mg;1 . Set grk.Mg;1/ WDMg;1.k/=Mg;1.kC 1/

for each k � 1. Then each of grk.Mg;1/ is an Sp.2g;Z/–equivariant free abelian
group of finite rank, and they are considered as one by one approximations of the
Torelli group. Although to clarify the Sp.2g;Z/–module structure of each grk.Mg;1/

plays an important role on various studies of the Torelli group; even to determine its
rank is quite a difficult problem in general.

In order to study each graded quotients grk.Mg;1/, the Johnson homomorphisms

�Mk W grk.Mg;1/ ,!H�˝Z L2g.kC 1/

of Mg;1 are valuable tools where H WDH1.†g;1;Z/ and H� WDHomZ.H;Z/. Here
we remark that H� is canonically isomorphic to H by the Poincaré duality. In general,
the k th Johnson homomorphism is denoted by �k simply. In this paper, however, to
distinguish the Johnson homomorphism of the mapping class group from that of the
automorphism group of a free group, we attach a subscript M to that of the mapping
class group. (See Section 3.3 for details.) Since each of �M

k
is an Sp.2g;Z/–equivariant

injective homomorphism, determining the image Im.�M
k
/ of �M

k
is one of the most

basic problems. In particular, from a representation-theoretic view, it is important to
clarify the irreducible decomposition of Im.�M

k;Q/ as an Sp.2g;Q/–module where
�M

k;Q WD �Mk ˝ idQ . In the following, the subscript Q always means tensoring with
Q over Z. Now, we have Im.�M

1
/ Š ƒ3H due to Johnson [11]. Furthermore the

Sp.2g;Q/–module structure of Im.�M
k;Q/ is completely determined for 1 � k � 4.

(See a table in Section 3.3.)

On the other hand, Morita [22] began to study the Johnson images systematically,
and gave many remarkable results. Here we recall some of them. First, Morita [22]
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showed that Im.�M
k
/ is contained in the kernel hg;1.k/ of H ˝Z L2g.k C 1/ !

L2g.kC 2/ for any k � 2. (See Section 3.3.) Second, he also showed that Im.�M
k
/

does not coincide with hg;1.k/ in general. Namely, the Johnson homomorphism
�M

k
W grk.Mg;1/ ,! hg;1.k/ is not surjective in general. More precisely, he constructed

an Sp.2g;Q/–equivariant surjective homomorphisms

Trk W hQ
g;1
.k/! SkHQ

such that Trk ı�Mk;Q � 0 for any odd k � 3 using the Magnus representation of Mg;1 .
Here SkHQ is the symmetric tensor product of HQ of degree k , and is isomorphic
to the irreducible Sp.2g;Q/–module with highest weight Œk�. Hence SkHQ appears
in the irreducible decomposition of the cokernel

Coker.�Mk;Q/ WD hQ
g;1
.k/= Im.�Mk;Q/

for odd k � 3. We should remark that throughout the paper Coker.�M
k;Q/ denotes

hQ
g;1
.k/= Im.�Mk;Q/;

not H�Q˝Q LQ
2g
.kC 1/= Im.�M

k;Q/. Now, the map Trk is called the Morita trace, and
SkHQ the Morita obstruction. Here the term “obstruction” means an obstruction for
the surjectivity of the Johnson homomorphism �M

k;Q .

From results for the irreducible decomposition of Coker.�M
k;Q/ for low degrees, it

seems that the number of the irreducible components in Coker.�M
k;Q/ grows rapidly as

degree increases. At the present stage, however, there are few results for obstructions
other than the Morita obstruction for a general degree k . Thus, to establish a new
method to detect a non-trivial irreducible component in Coker.�M

k
/ other than the

Morita obstruction is an important problem in the study of the Johnson homomorphisms.

The main purpose of the paper is to detect new series of obstructions in the Johnson
cokernels. To state our theorem, we will use the following notation. First, we remark
that for each k � 1 the symmetric group SkC2 of degree k C 2 naturally acts on
the space H˝kC2

Q from the right as a permutation of the components. For each
1� i � kC 1, denote by si 2SkC2 the adjacent transposition between i and i C 1,
and by �kC2 the cyclic permutation skC1sk � � � s2s1 . Let P be a subgroup of SkC2

which fixes 1. The group P is isomorphic to SkC1 . The Dynkin–Specht–Wever
element �P for P in the group algebra QSkC2 is defined to be

�P WD .1� s2/.1� s3s2/ � � � .1� skC1sk � � � s2/:
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Our main theorem is:

Theorem 1 (Theorem 7.8) Suppose k � 1 .mod 4/, k � 5 and g � k C 2. An
element

'Œ1k � WD .!˝ .e1 ^ � � � ^ ek// � �P � .1C �kC2C � � �C �kC1
kC2

/

is an Sp–maximal vector of weight Œ1k � in hQ
g;1
.k/. Moreover this gives a unique

Sp–irreducible component with highest weight Œ1k � in Coker �M
k;Q .

In addition to this, we also give a new proof of the fact that the Morita obstruction
uniquely appears in Coker.�M

k
/ for odd k � 3, due to Morita [22] and Nakamura.

(See Theorem 7.7.)

In order to prove these, we use two key facts. The first one is a remarkable result
with respect to grk.Mg;1/ due to Hain [8]. In general, the graded sum gr.Mg;1/ WDL

k�1 grk.Mg;1/ has a Lie algebra structure induced from the commutator bracket of
Ig;1 . In [8], Hain showed that the Lie algebra grQ.Mg;1/ is generated by the degree
one part gr1

Q.Mg;1/ as a Lie algebra. This shows the following. Let M0
g;1
.k/ be the

lower central series of Ig;1 and set grk.M0
g;1
/ WDM0

g;1
.k/=M0

g;1
.kC 1/. Then we

can define the Johnson homomorphism-like homomorphism

� 0k
MW grk.M0

g;1/! hg;1.k/:

(See Section 3.3.) Then Hain’s result above induces Im.�M
k;Q/ D Im.� 0

k;Q
M
/ for any

k � 1.

The second is our previous result for the cokernel of the Johnson homomorphism of
the automorphism group of a free group. By a classical work of Dehn and Nielsen, it
is known that a natural homomorphism Mg;1! Aut.F2g/ induced from the action
of Mg;1 of the fundamental group �1.†g;1;�/Š F2g is injective. Namely, we can
consider Mg;1 as a subgroup of Aut.F2g/. From this view point, we can apply results
for the Johnson homomorphisms of Aut.F2g/ to the study of that of Mg;1 . For any
n� 2, in general, a subgroup IAn consisting of automorphisms of a free group Fn that
act on H1.Fn;Z/ trivially is called the IA–automorphism group of Fn . Let A0n.k/ be
the lower central series of IAn , and set grk.A0n/ WDA0n.k/=A0n.kC 1/ for any k � 1.
Then we can define the Johnson homomorphism � 0

k
W grk.A0n/!H�˝Z Ln.kC 1/

for each k � 1. Then, in our paper [28], we showed that for k � 2 and n� kC 2,

Coker.� 0k;Q/Š CQ
n .k/;

where Cn.k/ WDH˝k=ha1˝� � �˝ak �a2˝� � �˝ak˝a1 j ai 2H i. (See Section 3.3
for details.)
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In our previous paper [5], we gave the irreducible decomposition of Coker.� 0k;Q/Š
CQ

n .k/ as a GL.n;Q/–module. Especially, we showed that SkHQ , which is also
called the Morita obstruction, appears in Coker.� 0

k;Q/ with multiplicity one for any
k � 2, and that ƒkHQ appears with multiplicity one for odd k � 3.

We remark that, as a GL.n;Q/–module, CQ
n .k/ is isomorphic to the invariant part

an.k/ WD .H˝k
Q /Cyck of H˝k

Q under the action of Cyck . Namely, the cokernel
Coker.� 0k;Q/ is isomorphic to Kontsevich’s an.k/ as a GL.n;Q/–module. We also
remark that in our notation an.k/ is considered for any n�2 in contrast to Kontsevich’s
notation for even nD 2g . (See Kontsevich [17; 18].)

Combining Hain’s result above with the fact Coker.� 0
k;Q/ Š CQ

n .k/ for n � k C 2,
we can establish a new method to detect non-trivial Sp–irreducible components in
Coker.�M

k
/. (For more details, see Section 7.1.) The present paper produces the first

successful results for the use of such method.

This paper is organized as follows. In Section 2, we fix some notation. In Section 3,
we recall the theory of the Johnson homomorphisms for the mapping class groups of
surfaces and the automorphism groups of free groups. Especially, we exposit Hain’s
remarkable result on the Johnson homomorphisms of the mapping class groups and
the second author’s result on those of the automorphism groups of free groups. In
Section 4, we prepare some results from the highest weight theory for the symplectic
group Sp.2g;Q/. By using Brauer–Schur–Weyl duality, we recall a description of
the maximal vectors of H˝k

Q as an Sp.2g;Q/–module. In Section 5, we explain a
characterization of elements in hQ

g;1
.k/ by using the Dynkin–Specht–Wever idempotent

and cyclic permutations. Combining this characterization with the description of
maximal vectors in H˝k

Q given in Section 4, we give a description of maximal vectors
in hQ

g;1
.k/ in Section 7.3. In Section 6, by using Kraśkiewicz and Weyman’s results, we

give explicit calculations for the multiplicity of some irreducible representations of the
cyclic group which are obtained from the restriction of those of the symmetric group.
By using these, we obtain a multiplicity formula for some irreducible representation of
Sp.2g;Q/ in hQ

g;1
.k/. This gives an upper bound on the multiplicities of Sp–irreducible

representations in the Johnson cokernels.

Section 7 is the main chapter of this paper. First, we consider a new Sp–equivariant
homomorphism ck W hQ

g;1
.k/! CQ

2g
.k/. This ck is not injective and not surjective.

Then, this gives a new class Ker.ck/ in the Johnson cokernels. Second, we give explicit
multiplicities for Sp–irreducible modules L

Œk�
Sp and L

Œ1k �
Sp in hQ

g;1
.k/ and CQ

2g
.k/. Third,

we explicitly describe their maximal vectors. And we prove that they do not vanish
by our Sp–equivariant homomorphism ck . Thus we detect a series of Sp–irreducible
components in the Johnson cokernels for the mapping class groups of surfaces. Finally,
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in Section 7.5, we discuss a gap between our Ker.ck/ and the k th Johnson image.
Furthermore, we also give a problem on relationships between our results and Conant,
Kassabov and Vogtmann’s recent results on a structure of the abelianization of the
graded Lie algebra hQ

g;1
.

Note added After we wrote this paper, Professor Hiroaki Nakamura told us about
the following personal communication. In 1996, in his letter to Professor Shigeyuki
Morita, he mentioned that, for k D 5; 9; 13, an Sp–module Œ1k � appears in hQ

g;1
.k/

with multiplicity one, based on his explicit calculation in [24]. And he conjectured that
these Sp–irreducible components Œ1k � survive in the Johnson cokernel for k � 5 such
that k � 1 .mod 4/.

2 Notation

Throughout the paper, we use the following notation. Let G be a group and N a
normal subgroup of G .

� The binomial coefficient
�
n
r

�
is denoted by nCr .

� For any real number x , we set bxc WDmaxfn 2 Z j n� xg.
� For any integer p , set

ıp�a .mod m/ WD
�

1 if p � a .mod m/;

0 otherwise:

� The automorphism group Aut.Fn/ of Fn acts on Fn from the right unless
otherwise noted. For any � 2 Aut.Fn/ and x 2 Fn , the action of � on x is
denoted by x� .

� For an element g 2G , we also denote the coset class of g by g 2G=N if there
is no confusion.

� For elements x and y of G , the commutator bracket Œx;y� of x and y is defined
to be Œx;y� WD xyx�1y�1 .

� For elements g1; : : : ;gk 2G , a left-normed commutator

Œ Œ� � � Œ Œg1;g2�;g3�; � � � �;gk �

of weight k is denoted by Œgi1
;gi2

; : : : ;gik
�.

� For any Z–module M and a commutative ring R, we denote M ˝Z R by the
symbol obtained by attaching a subscript R to M , like MR or M R . Similarly,
for any Z–linear map f W A! B , the induced R–linear map AR ! BR is
denoted by fR or f R .
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� For a semisimple G–module M and an irreducible G–module N , we denote
by ŒM WN � the multiplicity of N in the irreducible decomposition of M .

3 Johnson homomorphisms of the mapping class groups and
the automorphism group of free groups

The first aim of this section is to recall the notion of Johnson homomorphisms for the
mapping class groups of surfaces and the automorphism groups of free groups. The
second one is to review the second author’s results on the structure of the Johnson
cokernels with respect to the lower central series of the IA–automorphism group of free
groups. Third, we obtain a diagram (2) at the end of this section by using Hain’s result
(Theorem 3.5). Through this diagram, we can compare the structure of the Johnson
cokernels of the mapping class groups of surfaces with those for the automorphism
groups of free groups. In Section 7.1, we give a new class in the Johnson cokernels for
the mapping class groups of surfaces by using this diagram.

3.1 Mapping class groups of surfaces

Here we recall some properties of the mapping class groups of surfaces. For any
integer g � 1, let †g;1 be the compact oriented surface of genus g with one boundary
component. We denote by Mg;1 the mapping class group of †g;1 . Namely, Mg;1 is
the group of isotopy classes of orientation-preserving diffeomorphisms of †g;1 that
fix the boundary pointwise.

The mapping class group Mg;1 has an important normal subgroup called the Torelli
group. Let �MWMg;1! Aut.H1.†g;1;Z// be the classical representation of Mg;1

induced from the action of Mg;1 on the integral first homology group H1.†g;1;Z/ of
†g;1 . The kernel of �M is called the Torelli group, denoted by Ig;1 . Namely, Ig;1

consists of mapping classes of †g;1 that act on H1.†g;1;Z/ trivially.

Let us observe the image of �M . Take a base point � of †g;1 on the boundary. Then
the fundamental group �1.†g;1;�/ of †g;1 is a free group of rank 2g . We fix a basis
x1; : : : ;x2g of �1.†g;1;�/ as shown Figure 1.

Then the homology classes e1; : : : ; e2g of x1; : : : ;x2g form a symplectic basis of
the homology group H1.†g;1;Z/. Using this symplectic basis, we can identify
Aut.H1.†g;1;Z// as the general linear group GL.2g;Z/. Under this identification,
the image of �M is considered as the symplectic group

Sp.2g;Z/ WD fX 2 GL.2g;Z/ j tXJX D J g for J D
�

0 Ig

�Ig 0

�
;
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x1 x2
xg

xgC1x2g�1x2g

� � �

�

�

Figure 1: Generators x1; : : : ;x2g of �1.†g;1;�/ and a simple closed curve �

where Ig is the identity matrix of degree g .

Next, we consider an embedding of the mapping class group Mg;1 into the auto-
morphism group of a free group of rank 2g . For n � 2 let Fn be a free group of
rank n with basis x1; : : : ;xn . We denote by Aut.Fn/ the automorphism group of
Fn . Let H be the abelianization H1.Fn;Z/ of Fn and �W Aut.Fn/ ! Aut.H / a
natural homomorphism induced from the abelianization map Fn!H . Throughout
the paper, we identify Aut.H / with the general linear group GL.n;Z/ by fixing a
basis e1; : : : ; en of H induced from the basis x1; : : : ;xn of Fn . By a classical work
of Nielsen [25], a finite presentation of Aut.Fn/ is obtained. Observing the images of
the generators of Nielsen’s presentation, we see that � is surjective. The kernel IAn of
� is called the IA–automorphism group of Fn . The IA–automorphism group IAn is a
free group analogue of the Torelli group Ig;1 .

Now, throughout the paper, we identify �1.†g;1;�/ with F2g , and H1.†g;1;Z/ with
H for nD 2g using the basis above. Then the action of Mg;1 on �1.†g;1;�/D F2g

induces a natural homomorphism

'WMg;1! Aut.F2g/:

By a classical work due to Dehn and Nielsen, it is known that ' is injective. More
precisely, we have:

Theorem 3.1 (Dehn and Nielsen) For any g � 1, we have

'.Mg;1/D f� 2 Aut.F2g/ j �� D �g;
where � D Œx1;x2g� Œx2;x2g�1� � � � Œxg;xgC1� 2 F2g , namely � is a homotopy class of
a simple closed curve on †g;1 parallel to the boundary.
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For nD 2g , we have �M D � ı'WMg;1! Sp.2g;Z/, and a commutative diagram:

1 // IA2g
// Aut.F2g/

� // GL.2g;Z/ // 1

1 // Ig;1

?�
'jIg;1

OO

//Mg;1

?�
'

OO

�M // Sp.2g;Z/ //
?�

OO

1

3.2 Free Lie algebras

In this subsection, we recall the free Lie algebra generated by H , and its derivation
algebra. (See Serre [29] and Reutenauer [27] for basic material concerning the free Lie
algebra for instance.)

Let �n.1/� �n.2/� � � � be the lower central series of a free group Fn defined by the
rule

�n.1/ WD Fn; �n.k/ WD Œ�n.k � 1/;Fn�; k � 2:

We denote by Ln.k/ WD �n.k/=�n.kC1/ the k th graded quotient of the lower central
series of Fn , and by Ln WD

L
k�1Ln.k/ the associated graded sum. The degree 1

part Ln.1/ of Ln is just H . Classically, Magnus showed that each of Ln.k/ is a free
abelian, and Witt [30] gave its rank as follows.

(1) rankZ.Ln.k//D 1

k

X
d jk

Möb.d/n
k
d ;

where Möb is the Möbius function. For any k , l � 1, let us consider a bilinear
alternating map

Œ � ; � �LieW Ln.k/�Ln.l/! Ln.kC l/

defined by Œ Œ˛�; Œˇ��Lie WD Œ Œ˛; ˇ�� for any Œ˛� 2 Ln.k/ and Œˇ� 2 Ln.l/, where Œ˛; ˇ� is
a commutator in Fn , and Œ Œ˛; ˇ�� is a coset class of Œ˛; ˇ� in Ln.kC l/. Then Œ � ; � �Lie

induces a graded Lie algebra structure of the graded sum Ln . By a classical work of
Magnus, the Lie algebra Ln is isomorphic to the free Lie algebra generated by H .

The Lie algebra Ln is considered as a Lie subalgebra of the tensor algebra generated
by H as follows. Let T .H / WDZ˚H ˚H˝2˚ � � � be the tensor algebra of H over
Z. Then T .H / is the universal enveloping algebra of the free Lie algebra Ln , and the
natural map �W Ln! T .H / defined by ŒX;Y � 7!X ˝Y �Y ˝X for X , Y 2 Ln is
an injective graded Lie algebra homomorphism. We denote by �k the homomorphism
of degree k part of �, and consider Ln.k/ as a submodule H˝k through �k .
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Here, we recall the derivation algebra of the free Lie algebra. Let Der.Ln/ be the
graded Lie algebra of derivations of Ln . Namely,

Der.Ln/ WD ff W Ln
Z–linear�����! Ln j f .Œa; b�/D Œf .a/; b�C Œa; f .b/�; a; b 2 Lng:

For k � 0, the degree k part of Der.Ln/ is defined to be

Der.Ln/.k/ WD ff 2 Der.Ln/ j f .a/ 2 Ln.kC 1/; a 2H g:
Then, we have

Der.Ln/D
M
k�0

Der.Ln/.k/;

and can consider Der.Ln/.k/ as HomZ.H;Ln.kC 1//DH�˝ZLn.kC 1/ for each
k � 1 by the universality of the free Lie algebra. Let DerC.Ln/ be a graded Lie subal-
gebra of Der.Ln/.k/ with positive degree. (See Bourbaki [3, Chapter II, Section 8].)

3.3 (Higher) Johnson homomorphisms

First we recall the Johnson filtration and the Johnson homomorphisms of the automor-
phism group of a free group. Then we consider those of the mapping class group.

For each k � 1, let Nn;k WDFn=�n.kC1/ of Fn be the free nilpotent group of class k

and rank n, and Aut.Nn;k/ its automorphism group. Since the subgroup �n.kC 1/ is
characteristic in Fn , the group Aut.Fn/ naturally acts on Nn;k from the right. This
action induces a homomorphism Aut.Fn/! Aut.Nn;k/. Let An.k/ be the kernel of
this homomorphism. Then the groups An.k/ define a descending filtration

IAn DAn.1/�An.2/� � � � :
This filtration is called the Johnson filtration of Aut.Fn/. Set

grk.An/ WDAn.k/=An.kC 1/:

Andreadakis [1] originally studied the Johnson filtration, and obtained basic and impor-
tant properties of it as follows:

Theorem 3.2 (Andreadakis [1])

(i) For any k , l � 1, � 2An.k/ and x 2 �n.l/, x�1x� 2 �n.kC l/.

(ii) For any k , l � 1, ŒAn.k/;An.l/� � An.k C l/. In other words, the Johnson
filtration is a descending central filtration of IAn .

(iii) For any k � 1, grk.An/ is a free abelian group of finite rank.
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In order to study the structure of grk.An/, the k th Johnson homomorphism of Aut.Fn/

is defined as follows.

Definition 3.3 For each k � 1, define a homomorphism

z�k W An.k/! HomZ.H;Ln.kC 1//;

� 7! .x mod �n.2/ 7! x�1x� mod �n.kC 2//; x 2 Fn:

Then the kernel of z�k is just An.kC 1/. Hence it induces an injective homomorphism

�k W grk.An/ ,! HomZ.H;Ln.kC 1//DH�˝Z Ln.kC 1/:

This homomorphism is called the k th Johnson homomorphism of Aut.Fn/.

Here we consider actions of GL.n;Z/D Aut.Fn/= IAn . First, since each term of the
lower central series of Fn is a characteristic subgroup, Aut.Fn/ naturally acts on it,
and hence on each of the graded quotients Ln.k/. By (i) of Theorem 3.2, we see that
the action of IAn on Ln.k/ is trivial. Thus the action of GL.n;Z/D Aut.Fn/= IAn

on Ln.k/ is well-defined.

On the other hand, since each term of the Johnson filtration is a normal subgroup of
Aut.Fn/, the group Aut.Fn/ naturally acts on An.k/ by conjugation, and hence each
of the graded quotient grk.An/. By (ii) of Theorem 3.2, we see that the action of IAn

on grk.An/ is trivial. Hence, the quotient group GL.n;Z/D Aut.Fn/= IAn naturally
acts on each grk.An/. With respect to the actions above, we see that the Johnson
homomorphism �k is GL.n;Z/–equivariant for each k � 1.

Furthermore, we remark that the sum of the Johnson homomorphisms forms a Lie
algebra homomorphism as follows. Let gr.An/ WD

L
k�1 grk.An/ be the graded sum

of grk.An/. The graded sum gr.An/ has a graded Lie algebra structure induced from
the commutator bracket on IAn by an argument similar to that of the free Lie algebra
Ln . Then the sum of the Johnson homomorphisms

� WD
M
k�1

�k W gr.An/! DerC.Ln/

is a graded Lie algebra homomorphism. (See also [22, Theorem 4.8].)

In the following, we consider three central subfiltrations of the Johnson filtration of
Aut.Fn/, and “restrictions” of the Johnson homomorphism �k .

The first one is the lower central series of IAn . Let A0n.k/ be the lower central series
of IAn with A0n.1/ D IAn . Since the Johnson filtration is central, A0n.k/ � An.k/

for each k � 1. Set grk.A0n/ WDA0n.k/=A0n.kC 1/. Then GL.n;Z/ naturally acts on
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each of grk.A0n/, and the restriction of z�k to A0n.k/ induces a GL.n;Z/–equivariant
homomorphism

� 0k W grk.A0n/!H�˝Z Ln.kC 1/:

We also call � 0
k

the Johnson homomorphism of Aut.Fn/. Let ik W grk.A0n/! grk.An/

be the homomorphism induced from the inclusion A0n.k/ ,!An.k/. Then � 0
k
D �k ı ik

for each k � 1. Similarly to the sum � of the �k , the sum � 0 WDLk�1 �
0
k
W gr.A0n/!

DerC.Ln/ is a graded Lie algebra homomorphism.

Let Cn.k/ be a quotient module of H˝k by the action of cyclic group Cyck of order
k on the components:

Cn.k/DH˝k
ıha1˝ a2˝ � � �˝ ak � a2˝ a3˝ � � �˝ ak ˝ a1 j ai 2H i

In [28], we determined the cokernel of the rational Johnson homomorphisms � 0
k

in
stable range. Namely, we have:

Theorem 3.4 (Satoh [28]) For any k � 2 and n� kC 2, Coker.� 0
k;Q/Š CQ

n .k/.

We also remark that in our previous paper [5], we studied the GL–irreducible decom-
position of CQ

n .k/. For more details, see Lemma 7.2 and Proposition 7.3.

Next, we consider the Johnson filtration of the mapping class group. By Dehn and
Nielsen’s classical work, we can consider Mg;1 as a subgroup of Aut.F2g/ as above.
Under this embedding, set Mg;1.k/ WDMg;1 \A2g.k/ for each k � 1. Then we
have a descending filtration

Ig;1 DMg;1.1/�Mg;1.2/� � � �
of the Torelli group Ig;1 . This filtration is called the Johnson filtration of Mg;1 . Set
grk.Mg;1/ WDMg;1.k/=Mg;1.kC1/. For each k�1, the mapping class group Mg;1

acts on grk.Mg;1/ by conjugation. This action induces that of Sp.2g;Z/DMg;1=Ig;1

on it.

By an argument similar to that for Aut.Fn/, the Johnson homomorphisms of Mg;1 are
defined as follows. For nD 2g and k � 1, consider the restriction of z�k W A2g.k/!
HomZ.H;L2g.kC 1// to Mg;1.k/. Then its kernel is just Mg;1.kC 1/. Hence we
obtain an injective homomorphism

�Mk W grk.Mg;1/ ,! HomZ.H;L2g.kC 1//DH�˝Z L2g.kC 1/:

The homomorphism �M
k

is Sp.2g;Z/–equivariant, and is called the k th Johnson
homomorphism of Mg;1 . If we consider a GL.2g;Z/–module H as a Sp.2g;Z/–
module, then H�ŠH by the Poincaré duality. Hence, in the following, we canonically
identify the target H�˝Z L2g.kC 1/ of �M

k
with H ˝Z L2g.kC 1/.
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Historically, the Johnson filtration of Aut.Fn/ was originally studied by Andreadakis
[1] in the 1960s as mentioned above. On the other hand, study of the Johnson filtration
and the Johnson homomorphisms of Mg;1 was begun in the 1980s by D Johnson
[11], who determined the abelianization of the Torelli subgroup of the mapping class
group of a surface in [14]. In particular, he showed that Im.�M

1
/ Š ƒ3H as an

Sp.2g;Z/–module, and this gives the free part of H1.Ig;1;Z/.

Now, let us recall the fact that the image of �M
k

is contained in a certain Sp.2g;Z/–
submodule of H ˝Z L2g.k C 1/, due to Morita [22]. In general, for any n � 1, let
H ˝Z Ln.kC1/!Ln.kC2/ be a GL.n;Z/–equivariant homomorphism defined by

a˝X 7! Œa;X �; for a 2H; X 2 Ln.kC 1/:

For nD 2g , we denote by hg;1.k/ the kernel of this homomorphism:

hg;1.k/ WD Ker.H ˝Z L2g.kC 1/! L2g.kC 2//

Then Morita [22] showed that the image Im.�M
k
/ is contained in hg;1.k/. Therefore,

to determine how different Im.�M
k
/ is from hg;1.k/ is one of the most basic problems.

Throughout the paper, the cokernel Coker.�M
k
/ of �M

k
always means the quotient

Sp.2g;Z/–module hg;1.k/= Im.�M
k
/. So far, the Sp–module structure of Coker.�M

k;Q/

is determined for 1� k � 4 as follows.

k Im.�M
k;Q/ Coker.�M

k;Q/

1 Œ13�˚ Œ1� 0 Johnson [11]
2 Œ22�˚ Œ12�˚ Œ0� 0 Morita [21], Hain [8]
3 Œ3; 12�˚ Œ2; 1� Œ3� Asada and Nakamura[2],

Hain [8]
4 Œ4; 2�˚ Œ3; 13�˚ Œ23�˚ 2Œ3; 1�˚ Œ2; 12�˚ 2Œ2� Œ2; 12�˚ Œ2� Morita [23]

Morita [22] showed that the symmetric tensor product SkHQ appears in the Sp–
irreducible decomposition of Coker.�M

k;Q/ for odd k � 3 using the Morita trace map. In
general, however, to determine the cokernel of �M

k
is a difficult problem.

Here, we recall a remarkable result of Hain. As an Sp.2g;Z/–module, we consider
hg;1.k/ as a submodule of the degree k part Der.Ln/.k/ of the derivation algebra
of Ln . On the other hand, the graded sum hg;1 WD

L
k�1 hg;1.k/ naturally has a

Lie subalgebra structure of DerC.Ln/. Therefore we obtain a graded Lie algebra
homomorphism

�M WD
M
k�1

�Mk W gr.Mg;1/! hg;1:
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Then we have:

Theorem 3.5 (Hain [8]) The Lie subalgebra Im.�MQ / is generated by the degree one
part Im.�M

1;Q/Dƒ3HQ as a Lie algebra.

Finally, we consider the lower central series of the Torelli group, and reformulate Hain’s
result above. Let M0

g;1
.k/ be the lower central series of Ig;1 , and set

grk.M0
g;1/ WDM0

g;1.k/=M
0
g;1.kC 1/

for k � 1. Let � 0
k
MW grk.M0

g;1
/!H ˝Z L2g.kC 1/ be the Sp–equivariant homo-

morphism induced from the restriction of z�k to M0
g;1
.k/. Then we have:

Proposition 3.6 (Hain [8]) We have Im.�M
k;Q/D Im.� 0

k;Q
M
/ for each k � 1.

For nD 2g , we have the following commutative diagram:

(2)

Im � 0
k;Q
� � // H�Q˝Q LQ

2g
.kC 1/ // // H˝k

Q
// // CQ

2g
.k/

Im �M
k;Q Im � 0

k;Q
M
?�

OO

� � // hQ
g;1
.k/
� � // HQ˝Q LQ

2g
.kC 1/ // //

o
OO

LQ
2g
.kC 1/

4 Highest weight theory for Sp.2g;Q/

In order to detect a series of Sp–irreducible representations in the Johnson cokernels
for the mapping class groups of surfaces, we use some representation theory of the
symplectic group, for example, the Brauer–Schur–Weyl duality. In this section, first,
we review the highest weight theory for Sp.2g;Q/, a classification of isomorphism
classes of Sp–irreducible (rational) representations and the branching rules for GL to
Sp. These branching rules are used to calculate the multiplicities of Sp–irreducible
representations in hQ

g;1
in Section 7.2. Second, we review the classical Schur–Weyl

duality for GL and the symmetric group, the Brauer–Schur–Weyl duality for Sp, and
the Brauer algebra. From these results, we can obtain a description of a generating
set of the space of Sp–maximal vectors in H˝k

Q . This fact is used in Section 7.3
when we detect a series of Sp–irreducible representations in the Johnson cokernels.
Third, in the last of this section, we explain a result for the irreducible characters of the
Brauer algebras. This enables us to calculate the multiplicities of the Sp–irreducible
representations in H˝k

Q . In particular, we obtain the dimension of Sp–invariant part
of H˝k

Q , which is another proof of Morita’s result [23, Lemma 4.1].

Algebraic & Geometric Topology, Volume 14 (2014)



New series in the Johnson cokernels of the mapping class groups of surfaces 641

4.1 Irreducible highest weight modules for Sp.2g;Q/

Let us consider the general linear group GL.n;Q/ and the symplectic group

Sp.2g;Q/ WD fX 2 GL.2g;Q/ j tXJX D J g for J D
�

0 Ig

�Ig 0

�
;

where Ig is the identity matrix of degree g . We fix a maximal torus

Tn D fdiag.x1; : : : ;xn/ j xj ¤ 0; 1� j � ng
of GL.n;Q/. The intersection Sp.2g;Q/\T2g D fdiag.x1; : : : ;xn;x

�1
n ; : : : ;x�1

1
/g

gives a maximal torus of Sp.2g;Q/. We also fix this maximal torus and write T Sp
2g

.

We define one-dimensional representations "i of Tn by "i.diag.x1; : : : ;xn// D xi .
Then

PGL.n;Q/ WD f�1"1C � � �C�n"n j �i 2 Z; 1� i � ng Š Zn;

PCGL.n;Q/ WD f�1"1C � � �C�n"n 2 PGL.n;Q/ j �1 � �2 � � � � � �ng
give the weight lattice and the set of dominant integral weights of GL.n;Q/, respec-
tively. If nD 2g , we can restrict "i to T

Sp
2g

for 1� i � g . Then

PSp.2g;Q/ WD f�1"1C � � �C�g"g j �i 2 Z; 1� i � gg Š Zg;

PCSp.2g;Q/ WD f�1"1C � � �C�g"g 2 PSp.2g;Q/ j �1 � �2 � � � � � �g � 0g
give the weight lattice and the set of dominant integral weights of Sp.2g;Q/ respec-
tively. In particular, there exists a bijection between PCSp.2g;Q/ and the set of partitions
such that `.�/� g .

Let G be a classical group GL.n;Q/ or Sp.2g;Q/, T its fixed maximal torus, P

its weight lattice and PC the set of dominant integral weight with respect to T . For
a rational representation V of G , there exists an irreducible decomposition V DL
�2P V� as a T –module where V� WD fv 2 V j tv D �.t/v for any t 2 T g. We call

this decomposition a weight decomposition of V with respect to T . If V� ¤ f0g, then
we call � a weight of V . For a weight �, a non-zero vector v 2 V� is called a weight
vector of weight �.

Let U be the subgroup of G consists of all upper unitriangular matrices in G . For a
rational representation V of G , we define V U WD fv 2 V j uv D v for all u 2 U g. We
call a non-zero vector v 2 V U a maximal vector of V . This subspace V U is T –stable.
Thus, as a T –module, V U has a irreducible decomposition V U DL�2P V U

�
, where

V U
�
WD V U \V� .
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Theorem 4.1 (Cartan and Weyl’s highest weight theory)

(i) Any rational representation of V is completely reducible.

(ii) Suppose V is an irreducible rational representation of G . Then V U is one-
dimensional, and the weight � of V U D V U

�
belongs to PC . We call this � the

highest weight of V , and any non-zero vector v 2 V U
�

is called a highest weight
vector of V .

(iii) For any � 2 PC , there exists a unique (up to isomorphism) irreducible rational
representation L� of G with highest weight �. Moreover, for two �;� 2 PC ,
L� ŠL� if and only if �D �.

(iv) The set of isomorphism classes of irreducible rational representations of G is
parametrized by the set PC of dominant integral weights.

(v) Let V be a rational representation of G and �V a character of V as a T –
module. Then for two rational representation V and W , they are isomorphic as
G –modules if and only if �V D �W .

Remark 4.2 We can parametrize the set of isomorphism classes of irreducible rational
representations of GL.n;Q/ by PCGL.n;Q/ . On the other hand, we define the determinant
representation by deteW GL.n;Q/ 3 X ! det X e 2 Q� . The highest weight of this
representation is given by .e; e; � � � ; e/ 2 PCGL.n;Q/ . If � 2 PC satisfies �n < 0,
then L� Š det��n ˝L.�1��n;�2��n;:::;0/ . Moreover the set of isomorphism classes of
polynomial irreducible representations is parametrized by the set of partitions � such
that `.�/� n. We denote the polynomial representations corresponding to a partition
� by L�GL , L.�/ or simply .�/.

Remark 4.3 We can parametrize the set of isomorphism classes of irreducible rational
representations of Sp.2g;Q/ by

PCSp.2g;Q/ Š f�1 � �2 � � � � � �g � 0 j �i 2 Z; 1� i � ng;
namely the set of partitions � such that `.�/�g . In this paper, we denote the irreducible
representation corresponding to � by L�Sp , LŒ�� or simply Œ��.

Note that the natural representation HQ D Q2g of Sp.2g;Q/ is irreducible with
highest weight .1; 0; : : : ; 0/ and H�Q ŠHQ by Poincaré duality. More precisely, we
set i 0 WD 2g� i C 1 for each integer 1� i � 2g . Then for the standard basis feig2g

iD1

of HQ , we see

(3) hei ; ej i D 0D hei0 ; ej 0i; hei ; ej 0i D ıij D�hej 0 ; eii; .1� i � g/:
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There is an isomorphism HQ!H�Q as Sp.2g;Q/–modules given by

(4) HQ 3 v 7! h�; vi 2H�Q:

In general, every irreducible rational representation Œ�� is isomorphic to its dual.

Let us recall Pieri’s formula, the simplest version of the decomposition of tensor product
representations. For two partitions � and � satisfying �� �, the skew shape �n� is
a vertical strip if there is at most one box in each row.

Theorem 4.4 (Pieri’s formula) Let � be a partition such that `.�/� n. Then

L
.1k/
GL ˝L

�
GL Š

M
�

L�GL;

where � runs over the set of partitions obtained by adding a vertical k –strip to � such
that `.�/� n.

4.2 Branching rules from GL.2g;Q/ to Sp.2g;Q/

We regard Sp.2g;Q/ as a subgroup of GL.2g;Q/. We consider the restriction of an
irreducible polynomial representation L�GL to Sp.2g;Q/. We can give its irreducible
decomposition using the Littlewood–Richardson coefficients LR�

��
as follows.

Theorem 4.5 (Fulton and Harris [6, 25.39], and Koike and Terada [16, Proposition
2.5.1]) Let �D .�1 � �2 � � � � � �g � 0/ be a partition such that `.�/� g . Then we
have

ResGL.2g;Q/
Sp.2g;Q/ .L

�
GL/Š

M
x�

N
�x�L

x�
Sp;

where x� runs over all partitions such that `.x�/� g . Here N
�x� D

P
� LR�

�x� , where �
runs over all partitions � D .�1 D �2 � �3 D �4 � � � � / with each part occurring an
even number of times, namely �0 even. Here �0 is a conjugate partition of �.

Remark 4.6 We give a combinatorial description of the Littlewood–Richardson coef-
ficients. (See, eg, Fulton and Harris [6], and Macdonald [20].) For two Young diagrams
� and � satisfying � � �, we denote by �n� a skew Young diagram, which is the
difference of � and �. For a skew Young diagram �n� of size m, a semi-standard
tableau of shape �n� is an array T of positive integers 1; 2; : : : ;m of shape �n� that
is weakly increasing in every row and strictly increasing in every column.
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(i) For two partitions �� �, a semi-standard tableau on �n� is a numbering on
�n�!Z�1 such that the numbers inserted in �n� must increase strictly down
each column and weakly from left to right along each row. For a semi-standard
tableau on �n�, we denote the number of i appearing in this semi-standard
tableau by mi . We call .m1;m2; : : : / a weight of the semi-standard tableau.

(ii) For a semi-standard tableau T on �n�, we define a sequence w.T / of integers
by reading the numbers inserted in �n� from right to left in successive rows,
starting with top row.

(iii) For a sequence wD .a1a2 � � � /, we denote the number of i appearing in a subse-
quence .a1a2 � � � ar / by mi.a1a2 � � � ar /. A sequence w is a lattice permutation
if m1.a1a2 � � � ar /�m2.a1a2 � � � ar /� � � � for any r � 1.

The Littlewood–Richardson coefficients LR��� is the number of semi-standard tableaux
T on �n� with weight � such that w.T / is a lattice permutation.

4.3 Review on the classical Schur–Weyl duality

For the natural representation HQ Š L.1/ of GL.n;Q/, we consider the k th tensor
product representation �k W GL.n;Q/ ! GL.H˝k

Q / of HQ . For each k � 1, the
symmetric group Sk of degree k naturally acts on the space H˝k

Q from the right
as a permutation of the components. Since these two actions are commutative, we
can decompose H˝k

Q as a .GL.n;Q/�Sk/–module. Let us recall this irreducible
decomposition, called the Schur–Weyl duality for GL.n;Q/ and Sk .

Theorem 4.7 (Schur–Weyl duality for GL.n;Q/ and Sk )

(i) Let � be a partition of k such that `.�/� n. There exists a non-zero maximal
vector v� with weight � satisfying the following three conditions:
(a) The Sk –invariant subspace S� WD P

�2Sk

Qv� � � gives an irreducible repre-
sentation of Sk .

(b) The subspace .H˝k
Q /U

�
of weight � coincides with the subspace S� , where

U is the fixed unipotent subgroup of GL.n;Q/ consisting of upper unitrian-
gular matrices.

(c) The GL.n;Q/–module generated by v� is isomorphic to the irreducible
representation L

.�/
GL of GL.n;Q/ with highest weight �.

(ii) We have the irreducible decomposition

H˝k
Q Š

M
�D.�1������n�0/`k

L�� S�

as .GL.n;Q/�Sk/–modules.
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(iii) Suppose n � k . Then fS� j � ` kg gives a complete set of representatives of
irreducible representations of Sk .

Remark 4.8

(i) The irreducible representation S� of Sk is isomorphic to the following Sk –
module.
For a partition � of k , we define two special Young subgroups

C� WDS�1
�S�2

� � � � and R� WDS�0
1
�S�0

2
� � � �

of Sk . Here a partition �0D .�0
1
; �0

2
; : : : / is the conjugate partition of �. In the

group algebras of these two groups, we find idempotents

a� D
1

jR�j
X
�2R�

� 2QR� and b� D
1

jC�j
X
�2C�

sgn.�/� 2QC�:

Then c� D jR�jjC�ja�b� gives an idempotent in QSk , called the Young
symmetrizer for �. The right ideal c� �QSk in QSk gives an irreducible
Sk –module that is isomorphic to S� above.

(ii) We construct v� appearing in the theorem above by the following way.
First, we define v1 ^ v2 ^ � � � ^ vr to be an anti-symmetrizerX

�2Sr

sgn.�/.v1˝ v2˝ � � �˝ vr / � � 2H˝r
Q :

For the natural base feigniD1
of HQ , we define

(5) v� WD .e1 ^ � � � ^ e�0
1
/˝ .e1 ^ � � � ^ e�0

2
/˝ � � � 2H˝k

Q :

Note that v� is a maximal vector of weight � and

v� D .e1˝ � � �˝ e�0
1
˝ e1˝ � � �˝ e�0

2
˝ � � � / � c�:

This v� gives our desirable vector in the theorem above.

4.4 Brauer–Schur–Weyl duality

The first two subsections are based on Hu and Yang [10], and Hu [9]. The last one is
based on Ram [26].
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4.4.1 Brauer algebras Let us define the Brauer algebra Bk.�2g/ with a parameter
�2g and size k .

Definition 4.9 The Brauer algebra Bk.�2g/ over Q is a unital associative Q–algebra
with the following generators and defining relations:

generators W s1; : : : ; sk�1; 
1; : : : ; 
n�1;

relations W s2
i D 1; 
 2

i D .�2g/
i ; 
isi D 
i D si
i .1� i � k � 1/;

sisj D sj si ; si
j D 
j si ; 
i
j D 
j
i .1� i < j � 1� k � 2/;

sisiC1si D siC1sisiC1; 
i
iC1
i D 
i ; 
iC1
i
iC1 D 
iC1;

.1� i � k � 2/;

si
iC1
i D siC1
i ; 
iC1
isiC1 D 
iC1si .1� i � k � 2/:

Remark 4.10 The Brauer algebra Bk.�2g/ is obtained by the following diagrammatic
way.

First of all, the Brauer k diagram is a diagram with 2k specific vertices arranged in
two rows of k each, the top row and the bottom row, and exactly k edges such that
every vertex is joined to another vertex (distinct from itself) by exactly one edge.

� � � � �

� � � � �
We define a multiplication of two diagrams as follows. We compose two diagrams D1

and D2 by identifying the bottom row of D1 with the top row of D2 such that the i th

vertex in the bottom row of D1 coincides with the i th vertex in the top row of D2 . The
result is a graph, with a certain number, n.D1;D2/, of interior loops. After removing
the interior loops and the identified vertices, retaining the edges and remaining vertices,
we obtain a new Brauer k –diagram D1 ıD2 . Then we define a multiplication D1 �D2

by .�2g/n.D1;D2/D1 ıD2 .

� � � � �

� � � � �

� � � � �

D .�2g/

� � � � �

� � � � �
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The Brauer algebra Bk.�2g/ is defined as Q–linear space with a basis being the set
of the Brauer k –diagrams and the multiplication of two elements given by the linear
extension of a product above.

The generators si and 
i correspond to the following diagrams.


i D
1� � � � i� iC1� � � � k�

� � � � � � � � � �

.1� i � k � 1/

si D
1� � � � i� iC1� � � � k�

� � � � � � � � � �

.1� i � k � 1/

4.4.2 Decomposition of tensor spaces (Brauer–Schur–Weyl duality) Let us recall
the inner product on HQ defined by (3). Set i 0 WD 2g�iC1 for each integer 1� i � 2g .
For the standard basis feig2g

iD1
of HQ , we see

hei ; ej i D 0D hei0 ; ej 0i; hei ; ej 0i D ıij D�hej 0 ; eii .1� i � g/:

For each integer 1� i � 2g , we define

(6) e�i D
�

ei0 .1� i � g/;

�ei0 .gC 1� i � 2g/:

Then both of feig2g
iD1

and fe�i g2g
iD1

are bases for HQ such that one is dual to the other
in the sense that hei ; e

�
j i D ıij for any i; j .

The following lemma is obvious, but important for generalizing the Schur–Weyl duality
for Sp.2g;Q/.

Lemma 4.11 The element ! WD
2gP

iD1

ei ˝ e�i 2 H˝2
Q is invariant under the action of

Sp.2g;Q/ on H˝2
Q .

We define a right action of Bk.�2g/ on H˝k
Q as follows.

Proposition 4.12 For any i; j , let us define

�ij D
8<:

1 if i D j ;

�1 if i D j 0;
0 otherwise:
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There is a right action of Bk.�2g/ on H˝k
Q that is defined on generators by

.vi1
˝ � � �˝ vik

/ � 
j WD �ij ijC1
vi1
˝ � � �˝ vij�1

˝
� 2gX

rD1

ek ˝ e�k
�

˝ vijC2
˝ � � �˝ vik

;

.vi1
˝ � � �˝ vik

/ � sj WD �vi1
˝ � � �˝ vij�1

˝ vijC1
˝ vij ˝ vijC2

˝ � � �˝ vik
;

for any vi1
; : : : ; vik

2HQ . Moreover, this action commutes with that of Sp.2g;Q/.

Here we state the Brauer–Schur–Weyl duality.

Theorem 4.13 (Brauer–Schur–Weyl duality for Sp.2g;Q/ and Bk.�2g/)

(i) Let � be a partition of k � 2j for 0 � j � bk
2
c such that `.�/ � g . Then

there exists a maximal vector v� 2H˝k
Q with highest weight � satisfying the

following three conditions:
(a) A Bk.�2g/–submodule

D� WD
X

�2Bk.�2g/

Qv� � �

of H˝k
Q gives an irreducible representation of Bk.�2g/.

(b) The subspace .H˝k
Q /U

�
of H˝k

Q coincides with D� . Here U is the fixed
unipotent subgroup for Sp.2g;Q/.

(c) The Sp.2g;Q/–module generated by v� is isomorphic to the irreducible
representation L

Œ��
Sp of Sp.2g;Q/ with highest weight �.

(ii) We have the irreducible decomposition

H˝k
Q Š

bk
2
cM

jD0

M
�`k�2j ;`.�/�g

L
Œ��
Sp � D�:

as an .Sp.2g;Q/�Bk.�2g//–module.

(iii) Suppose g � k . Then fD� j � ` k � 2j .0� j � bk
2
c/g gives a complete set of

representatives of irreducible representations of Bk.�2g/.

In order to show our main theorem, it is important to observe an explicit construction
of v� and a description of D� . By combining the following theorem with some results
explained in the next section, we obtain a description of the Sp–maximal vectors
in hQ

g;1
.k/. Thus we can get some series of Sp-irreducible representations in the

Johnson cokernels systematically by using a strategy described in Proposition 7.1 and
a subsequent remark.

Algebraic & Geometric Topology, Volume 14 (2014)



New series in the Johnson cokernels of the mapping class groups of surfaces 649

Theorem 4.14 [9, Definition 3.9, Lemma 3.10, Lemma 4.8]

(i) For a partition � of k � 2j for 0 � j � bk
2
c such that `.�/ � g , a maximal

vector v� is given by v� WD !˝j ˝ .e1 ^ � � � ^ e�0
1
/˝ .e1 ^ � � � ^ e�0

2
/˝ � � � .

(ii) We regard a subalgebra generated by si .1� i � k � 1/ in Bk.�2g/ as a group
algebra QSk . Then the right module v� �Bk.�2g/ coincides with v� �QSk as
a Q–vector space.

4.4.3 Character values and decompositions of D� as an Sk –module We give
a branching law of the irreducible Bk.�2g/–modules D� as Sk –modules. But
confusingly, the algebra QSk has an involution �W � 7! sgn.�/� , and the action of
a subalgebra generated by si ’s in Bk.�2g/ on H˝k

Q is twisted by this involution.
Therefore a QSk –module D is isomorphic to sgn˝D as an �.QSk/–module. Here
sgn is the signature representation of Sk . Note that an irreducible Sk –module S�

0

is
isomorphic to sgn˝S� .

For our purposes, we consider the ordinary (untwisted) action of Sk on H˝k
Q in the

following theorem (ii).

Theorem 4.15 [26, Theorem 5.1]

(i) For a partition � of k � 2j for 0 � j � bk
2
c such that `.�/ � g , let ��

Bk.�2g/

be the irreducible character of D� . Then we have

��Bk.�2g/.�/D
X

�`k;���0

�X
ˇ even

LR��0ˇ

�
��Sk

.�/

for any � 2 Sk � (a subalgebra generated by fsigk�1
iD1

). Here ��Sk
is an irre-

ducible character of Sk associated to a partition � of k . The number LR is the
Littlewood–Richardson coefficient. The even partition ˇ D .ˇ1; ˇ2; : : : / is a
partition such that any parts ˇi are even.

(ii) We have that the irreducible decomposition of D� is given byM
�`k;���0

.S�
0

/
LP

ˇ even LR�
�0ˇ

with respect to the ordinary Sk –action on H˝k
Q .

Remark 4.16 For a partition � ` k � 2j , we have the following dimension formula:

dim D� D kC2j .2j � 1/!! � dim S�

This gives the multiplicity of L�Sp in H˝k
Q . For �D 0, the formula above is nothing

but [23, Lemma 4.1].
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5 Dynkin–Specht–Wever idempotent and the free Lie alge-
bras

In this section, we give a characterization of elements in hQ
g;1.k/ by using two specific

idempotents in the group ring of the symmetric group. The first one is the Dynkin–
Specht–Wever idempotent. For an element v 2H˝k

Q , this idempotent gives a necessary
and sufficient condition for v to be contained in the free Lie algebra LQ

2g
.k/. The

other is 1C �k C �2
k
C � � � C �k�1

k
2 QSk , where �k is the cyclic permutation of

length k defined by �k.i/D i C 1 .1 � i � k � 1/ and �k.k/D 1. By using these
two idempotents we obtain a characterization of elements in hQ

g;1
.k/ in Corollary 5.3.

In Section 7.3, we use this corollary to describe Sp–maximal vectors in hQ
g;1
.k/ with

Theorem 4.14.

Let us consider the right action of SkC2 on H
˝.kC2/
Q . Set �i WD si�1si�2 � � � s1 for

each 2� i � kC 2, and

�kC2 WD .1� �2/ � � � .1� �kC2/ 2QSkC2:

This element characterizes the degree .kC2/nd part LQ
2g.kC2/ of the free Lie algebra

LQ
2g generated by HQDQ2g as follows. (See, eg, Garsia [7, Theorem 2.1], Reutenauer

[27, Theorem 8.16], and Morita [23, Lemma 4.5].)

Theorem 5.1 (Dynkin–Specht–Wever)

(i) �2
kC2
D .kC 2/�kC2 . We call an element .1=kC 2/�kC2 the Dynkin–Specht–

Wever idempotent.

(ii) For v1˝v2˝� � �˝vkC2 2H˝kC2
Q , a left-normed element Œv1; v2; : : : ; vkC2� 2

LQ
2g.kC1/ coincides with .v1˝v2˝� � �˝vkC2/ ��kC2 . Hence the right action

of �kC2 on H˝kC2
Q induces a projection

H˝kC2
Q ! LQ

2g
.kC 1/;

and H˝kC2
Q � �kC2 is isomorphic to LQ

2g
.kC 2/.

(iii) For v 2H
˝.kC2/
Q , the following two conditions are equivalent:

(a) v 2 LQ
2g
.kC 2/

(b) v � �kC2 D .kC 2/v

Recall that we need to consider the Sp.2g;Q/–module

hQ
g;1
.k/D Ker.HQ˝Q LQ

2g
.kC 1/! LQ

2g
.kC 2//:
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To characterize hQ
g;1
.k/ in H˝kC2

Q , let us consider the subgroup P of SkC2 that fixes
1. Namely, P is isomorphic to SkC1 . Set

�P WD .1� s2/.1� s3s2/ � � � .1� skC1sk � � � s2/:

We can regard this element in QP as the Dynkin–Specht–Wever idempotent for P .
Using this element, we obtain a characterization of hQ

g;1
.k/ as the following theorem.

Proposition 5.2 [23, Proposition 4.6] For v 2H
˝.kC2/
Q , the following two condi-

tions are equivalent:

(i) v 2 hQ
g;1
.k/

(ii) v � �P D .kC 1/v and v � �kC2 D v

Corollary 5.3 We have

�P �.1C�kC2C�2
kC2C� � �C�kC1

kC2
/ ��P D .kC1/�P �.1C�kC2C�2

kC2C� � �C�kC1
kC2

/

on H˝kC2
Q . Thus we obtain

v � �P .1C �kC2C �2
kC2C � � �C �kC1

kC2
/ 2 hQ

g;1
.k/

for any v 2H˝kC2
Q .

Proof Let us recall the following expansions of a left-normed element in the free Lie
algebra:

(7) Œx1;x2; : : : ;xm�D
X

.�1/r xi1
˝ � � �˝xir

˝x1˝xj1
˝ � � �˝xjm�r�1

;

where the sum runs over all integers r and tuples .i1; : : : ; ir / and .j1; : : : ; jm�r�1/

of integers satisfying the conditions

0� r �m� 1; m� i1 > � � �> ir � 2; 2� j1 < � � �< jm�r�1 �m:

(See eg, [27, Lemma 1.1].) The expansion above is equivalent to

(8)
X

.�1/r�1xi1
˝ � � �˝xir

˝x2˝xj1
˝ � � �˝xjm�r�1

;

where the sum runs over all integers r and tuples .i1; : : : ; ir / and .j1; : : : ; jm�r�1/

of integers satisfying the conditions

0� r �m� 1; m� i1 > � � �> ir � 1; 1� j1 < � � �< jm�r�1 �m

and i1; : : : ; ir ; j1; : : : ; jm�r�1 ¤ 2.
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Note that .v1˝ � � � ˝ vkC2/ � �P D v1˝ Œv2; : : : ; vkC2� for any v1; : : : ; vkC2 2 HQ .
To prove our statement, we shall prove that

(9) .v1˝ � � �˝ vkC2/ � �P � .1C � C � � �C �kC1/

D v1˝ Œv2; : : : ; vkC2�

�
kC2X
jD2

vj ˝ Œ Œv2; v3; : : : ; vj�1�; ŒvjC1; ŒvjC2; : : : ; ŒvkC2; v1� � � � � � �:

In the formula above, the righthand side is contained in HQ˝QLQ
2g
.kC1/. Therefore

if (9) is true, by Theorem 5.1, we obtain our claim.

To prove the formula (9), we set

x1 D Œv1; : : : ; vj�1�; x2 D vj ; x3 D vjC1; : : : ; xkC4�s D vkC2:

Then applying the formula (8), we expand .v1˝ � � �˝ vkC2/ � �P as

v1˝
X

.�1/r�1xi1
˝ � � �˝xir

˝x2˝xj1
˝ � � �˝xjkC3�s�r

satisfying a similar condition to (8). Hence, in .v1˝� � �˝vkC2/��P �.1C�C� � �C�kC1/,
the terms whose first part is equal to vj are given by

(10) vj ˝
X

.�1/r�1xj1
˝ � � �˝xjkC3�s�r

˝ v1˝xi1
˝ � � �˝xir

satisfying the conditions

0� r � kC 3� s; 1� j1 < � � �< jkC3�s�r � kC 2; kC 2� i1 > � � �> ir � 1

and i1; : : : ; ir ; j1; : : : ; jkC3�s�r ¤ 2.

On the other hand, note that we have the following expansion of a right-normed element
in a free Lie algebra:

Œx1; Œx2; : : : ; Œxm�1;xm� � � � � �D
X

.�1/r xj1
˝� � �˝xjm�r�1

˝xm˝xi1
˝� � �˝xir

;

where the sum runs over all integers r , tuples .i1; : : : ; ir / and .j1; : : : ; jm�r�1/ of
integers satisfying the conditions

0� r �m� 1; m� i1 > � � �> ir � 1; 1� j1 < � � �< jm�r�1 �m:

Applying this formula to (10), we obtain �vj ˝ Œx1; Œx2; : : : ; ŒxkC4�s; v1� � � for x1 D
Œv1; : : : ; vj�1�, x2 D vj , x3 D vjC1; : : : , xkC4�s D vkC2 . Thus we have (9).
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6 Multiplicities in ResSk
Cyck

S � via Kraśkiewicz and Weyman’s
combinatorial description

To calculate the multiplicities of the Sp–irreducible representations L
Œk�
Sp and L

Œ1k �
Sp

in hQ
g;1
.k/ and CQ

2g
.k/, we use some multiplicity formulae for some GL–irreducible

representations in hQ
g;1
.k/ and CQ

2g
.k/, and the branching rules from GL to Sp. In

this section, we give a combinatorial description of the multiplicities of some GL–
irreducible representations in LQ

2g
.k/ and CQ

2g
.k/.

Let Cyck be a cyclic group of order k . Take a generator �k of Cyck and a primitive
k th root �k 2 C of unity. In this section, we consider representations of the cyclic
group Cyck over an intermediate field Q.�k/ � K � C . To begin with, we define
one-dimensional representations (or characters) �j

k
W Cyck !K� by �j

k
.�k/D �j

k
for

0� j � k � 1. Especially, we denote the trivial representation �0
k

by trivk . The set
of isomorphism classes of irreducible representations of Cyck is given by f�j

k
; 0 �

j � k � 1g. Consider Cyck as a subgroup of Sk by an embedding � i
k
7! .12 � � � k/i

for 0� i � k � 1. Let us recall the following proposition.

Proposition 6.1 ([5, Proposition 4.1, 4.3], Kljačko [15]) Suppose 2g � k . For a
partition � of k , we have the following multiplicity formulae:

(1) ŒCQ
2g
.k/ WL�GL�D ŒResSk

Cyck
S� W trivk �

(2) ŒLQ
2g
.k/ WL�GL�D ŒResSk

Cyck
S� W �1

k �

We explain a combinatorial description of the righthand side of the above equations:
Kraśkiewicz and Weyman’s combinatorial description for the branching rules of irre-
ducible Sk –modules S� to the cyclic subgroup Cyck . To do this, first we define a
major index of a standard tableau.

Definition 6.2 For a standard tableau T , we define the descent set of T to be the set
of entries i in T such that i C 1 is located in a lower row than that which i is located.
We denote by D.T / the descent set of T . The major index of T is defined by

maj.T / WD
X

i2D.T /

i:

If D.T /D∅, we set maj.T /D 0.

Theorem 6.3 (Kraśkiewicz and Weyman [19], Reutenauer [27, Theorem 8.8, 8.9],
Garsia [7, Theorem 8.4]) The multiplicity of �j

k
in ResSk

Cyck
S� is equal to the number

of standard tableaux with shape � satisfying maj.T /� j modulo k .

Algebraic & Geometric Topology, Volume 14 (2014)



654 Naoya Enomoto and Takao Satoh

Example 6.4 For m� 2, we have the following table on the multiplicities of trivmD
�0

j and �1
j .

� T major index mult. of trivm mult. of �1
m

.m/ 1 2 m� � � 0 1 0

.m� 1; 1/
1 m� � �2

p
p� 1 0 1

.2� p �m/

.1m/

1

m

:::

2

m.m� 1/

2

�
�

0 m odd,
�m

2
m even,

�
1 m odd,
0 m even,

�
1 mD 2;

0 m¤ 2;

.2; 1m�2/

1

m

:::

2

p
m.m� 1/

2
� .p� 1/

�
�

1�p m odd,
1�p� m

2
m even,

�
1 m even,
0 m odd,

�
1 m¤ 2;

0 mD 2:

.2� p �m/

Example 6.5 For m� 3 and a partition �D .m� 2; 12/, we have

(i) ŒResSm

Cycm
S� W trivm�D

�
.m� 2/=2 if m even;
.m� 1/=2 if m odd:

(ii) ŒResSm

Cycm
S� W �1

m�D
�
.m� 3/=2 if m odd;
.m� 2/=2 if m even:

In fact, for a partition

T D
1 m: : :2

p

q

its major index is given by maj.T /D pC q� 2 for 2� p < q �m. Then maj.T /�
0 .mod m/ if and only if pC q D mC 2. Hence we have the number of standard
tableaux of shape � is equal to m

2
� 1 for odd m and m�1

2
for even m. On the other

hand, maj.T / � 1 .mod m/ if and only if p C q D mC 3. Hence the number of
standard tableaux of shape � is equal to m�3

2
for odd m and m�2

2
for even m.
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Example 6.6 For m� 4 and a partition �D .22; 1m�4/, we have

ŒResSm

Cycm
S� W �1

m�D
8<:

m�3
2

if m is odd;
m�4

2
if m� 0 .mod 4/;

m�2
2

if m� 2 .mod 4/:

To prove this, we consider the following two kinds of standard tableaux of shape �:

Tp;q D

1

m

2

p

q

:::
.2� p < pC 1< q �m/; Tp D

1

m

2

p

pC1

:::
.3� p �m� 1/

Their major indices are given by

maj.Tp;q/D m.m�1/

2
C 2�p� q and maj.Tp/D m.m�1/

2
C 1�p:

If m is odd, m.m� 1/=2 � 0 .mod m/. Thus maj.Tp;q/ � 1 .mod m/ if and only
if pC q D mC 1. The number of such pairs .p; q/ is .m� 3/=2. There is no Tp

such that maj.Tp/� 1 .mod m/. If m is even, m.m� 1/=2�m=2 .mod m/. Since
m¤ 2, maj.Tp/� 1 .mod m/ if and only if p Dm=2 for m> 4. If mD 4, there is
no such Tp .

On the other hand, maj.Tp;q/ � 1 .mod m/ if and only if pC q D mC 1C .m=2/
for m D 4; 6; 8 and pC q D mC 1C .m=2/, or 1C .m=2/ for m � 10. If m D 4,
6 or 8, the number of such pairs .p; q/ is 0, 1 or 1 respectively. Suppose m � 10.
If m D 4M , maj.Tp;q/ � 1 .mod m/ if and only if pC q D 6M C 1 or 2M C 1.
The number of such pairs .p; q/ is .M � 1/C .M � 2/D 2M � 3D .m=2/� 3. If
mD 4M C 2, maj.Tp;q/� 1 .mod m/ if and only if pC q D 6M C 4 or 2M C 2.
The number of such pairs .p; q/ is M C .M � 1/D 2M � 1D .m=2/� 2. Therefore
we obtain the claim.

7 Sp–irreducible components of the Johnson cokernels

This section is the main part of this paper. First, in Section 7.1, we introduce an
Sp–equivariant homomorphism ck W hQ

g;1
.k/! CQ

2g
.k/, and give a strategy to detect

Sp–irreducible representations in the Johnson cokernels. In Section 7.2, we calculate the
multiplicities of L

Œk�
Sp and L

Œ1k �
Sp in hQ

g;1
.k/ explicitly. We give their maximal vectors

explicitly in Section 7.3, and show that they do not vanish under ck in Section 7.4. By
these results, we detect L

Œk�
Sp for odd k�3 and L

Œ1k �
Sp for k�5 such that k�1 .mod 4/

in the Johnson cokernels. In the final subsection, we summarize our new classes of
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Johnson cokernels, and give some discussions about relationships between our classes
and recent results of Conant, Kassabov and Vogtmann.

7.1 Our strategy for detecting Sp–irreducible components

In the rest of this paper, we assume g � kC 2. To explain our strategy for detecting
Sp–irreducible components in the Johnson cokernel of the mapping class group, let us
recall the following diagram as mentioned in the end of Section 3:

Im � 0
k;Q
� � // H�Q˝Q LQ

2g
.kC 1/ // // H˝k

Q
// // CQ

2g
.k/

Im �M
k;Q Im � 0

k;Q
M
?�

OO

� � // hQ
g;1
.k/
� � // HQ˝Q LQ

2g
.kC 1/ // //

o
OO

LQ
2g
.kC 1/

Here we may regard it as a diagram of Sp.2g;Q/–modules and Sp.2g;Q/–equivariant
homomorphisms. By Theorem 3.4, we see Coker.Im � 0

k;Q ,! H�Q˝Q LQ
2g
.kC 1//

coincides with CQ
2g
.k/ for 2g � kC 2. Observing a natural isomorphism

H�˝Q LQ
2g
.kC 1/ŠH ˝Q LQ

2g
.kC 1/

induced from the Poincaré duality, we obtain Sp.2g;Q/–equivariant homomorphisms
ck W hQ

g;1.k/! CQ
2g.k/. Note that Im � 0

k;Q
M � Im � 0

k;Q . Then we have the following
criterion for detecting Sp–irreducible components in the Johnson cokernel

Coker.Im � 0k;Q
M! hQ

g;1
.k//:

Proposition 7.1 Let V be an irreducible Sp.2g;Q/–submodule of hQ
g;1.k/. If ck.V /

is a non-trivial (then automatically irreducible) component of CQ
2g.k/, then V is an

irreducible Sp.2g;Q/–module in Coker.Im � 0
k;Q
M
/. In particular, if there is a maxi-

mal vector v of weight � in hQ
g;1.k/ such that ck.v/¤ 0 (then ck.v/ is a maximal in

CQ
2g.k/), then v gives an Sp.2g;Q/–irreducible component in Coker.Im � 0

k;Q
M
/ that

is isomorphic to the irreducible Sp.2g;Q/–module LŒ��Sp .

To find such a maximal vector, we use Theorem 4.14 and Corollary 5.3. Namely, for a
maximal vector v� as in Theorem 4.14, we consider

�� WD v� � �P � .1C �kC2C � � �C �kC2
kC1

/:

If ��¤ 0, this is a maximal vector of weight � such that �� 2 hQ
g;1
.k/ by Corollary 5.3.

Then we investigate whether ck.��/ 2 CQ
2g
.k/ is 0 or not.
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7.2 Some multiplicity formulae

In this subsection, we give some explicit multiplicity formulae for Œk� and Œ1k � in
hQ

g;1
.k/ and CQ

2g
.k/. First, let us recall Proposition 6.1 and the following lemma

obtained by Pieri’s formula (Theorem 4.4).

Lemma 7.2 Suppose n� kC 2. For a partition � of kC 2,

ŒHQ˝Q LQ
n .kC 1/ WL�GL�D

X
�

ŒLQ
n .kC 1/ WL�GL�;

where � runs over all partitions obtained by removing a single node from �.

Proposition 7.3 (i) The multiplicities of the Sp.2g;Q/–irreducible representation
Œk� in hQ

g;1
.k/ and CQ

2g
.k/ are given by

ŒhQ
g;1
.k/ WLŒk�Sp �D

�
1 if k odd;
0 if k even;

ŒCQ
2g
.k/ WLŒk�Sp �D 1:

(ii) The multiplicities of the Sp.2g;Q/–irreducible representation Œ1k � in hQ
g;1
.k/ and

CQ
2g
.k/ are given by

ŒhQ
g;1
.k/ WLŒ1k �

Sp �D
�

1 if k � 1; 2 .mod 4/;

0 if otherwise;
ŒCQ

2g
.k/ WLŒ1k �

Sp �D
�

1 if k odd;
0 if k even:

Proof We will use irreducible decompositions of the restriction ResGL
Sp (see Theorem

4.5) and Pier’s rule (see Theorem 4.4).

(i) If ResGL.2g;Q/
Sp.2g;Q/ L

.�/
GL has an Sp–irreducible component L

Œk�
Sp , then a partition � is

either �D .kC 1; 1/ or .k; 12/. We have

ŒHQ˝Q LQ
2g
.kC1/ WL.kC1;1/

GL �D ŒLQ
2g
.kC1/ WL.kC1/

GL �C ŒLQ
2g
.kC1/ WL.k;1/GL �D 1;

ŒLQ
2g
.kC 2/ WL.kC1;1/

GL �D 1;

ŒHQ˝Q LQ
2g
.kC 1/ WL.k;12/

GL �D ŒLQ
2g
.kC 1/ WL.k�1;12/

GL �C ŒLQ
2g
.kC 1/ WL.k;1/GL �;

D
(

k�2
2
C 1 if k even;

k�1
2
C 1 if k odd;

ŒLQ
2g
.kC 2/ WL.k;12/

GL �D
(

k
2

if k even;
k�1

2
if k odd;

ŒCQ
2g
.k/ WLŒk�Sp �D ŒCQ

2g
.k/ WL.k/GL �D 1:

Thus we obtain the claim.
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(ii) If ResGL.2g;Q/
Sp.2g;Q/ L

.�/
GL has an Sp–irreducible component L

Œ1k �
Sp , then a partition �

is either �D .22; 1k�2/, .2; 1k/ or .1kC2/. We have

ŒHQ˝Q LQ
2g
.kC 1/ WL.1kC2/

GL �D ŒLQ
2g
.kC 1/ WL.1kC1/

GL �D 0;

ŒLQ
2g
.kC 2/ WL.1kC2/

GL �D 0;

ŒHQ˝Q LQ
2g
.kC1/WL.2;1k/

GL �D ŒLQ
2g
.kC1/WL.1kC1/

GL �CŒLQ
2g
.kC1/WL.2;1k�1/

GL �D 1;

ŒLQ
2g
.kC 2/ WL.2;1k/

GL �D 1;

ŒCQ
2g
.k/ WLŒ1k �

Sp �D ŒCQ
2g
.k/ WL.1k/

GL �D
�

1 if kodd;
0 if k even:

Suppose k � 1; 3 .mod 4/. Then

ŒHQ˝Q LQ
2g
.kC 1/ WL.22;1k�2/

GL �

D ŒLQ
2g
.kC 1/ WL.22;1k�3/

GL �C ŒLQ
2g
.kC 1/ WL.2;1k�1/

GL �;

D
(

k�1
2

if k � 3 .mod 4/;
kC1

2
if k � 1 .mod 4/;

ŒLQ
2g
.kC 2/ WL.22;1k�2/

GL �D k�1
2
:

Suppose k � 0; 2 .mod 4/. Then

ŒHQ˝Q LQ
2g
.kC1/ WL.22;1k�2/

GL �

D ŒLQ
2g
.kC1/ WL.22;1k�3/

GL �CŒLQ
2g
.kC1/ WL.2;1k�1/

GL �D k
2
;

ŒLQ
2g
.kC 2/ WL.22;1k�2/

GL �D
(

k�2
2

if k � 2 .mod 4/;
k
2

if k � 0 .mod 4/:

Hence we obtain the claim.

Remark 7.4 By the argument above, the Sp–irreducible component Œ1k �Sp appears
in the restriction of the GL–irreducible component .22; 1k�2/GL .

Remark 7.5 Our calculation above gives a combinatorial description of the GL (and
Sp) irreducible decomposition of hQ

g;1 obtained by Kontsevich in [17; 18].

Remark 7.6 In [24], Nakamura and Tsunogai completely calculated Sp–irreducible
decompositions of hQ

g;1.k/ for 1 � k � 15. In their table, we can check that Sp–
irreducible components Œ1k � have multiplicity one for k D 5; 9; 13 and k D 6; 10; 14.
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7.3 Descriptions of maximal vectors

To give an explicit description of maximal vectors, we use an .i; j /–expansion operator
Dij W H˝k

Q !H
˝.kC2/
Q defined by

.v1˝v2˝� � �˝vk/�Dij WD
2gX

rD1

v1˝� � �˝vi�1˝er˝vi˝� � �˝vj�2˝e�r˝vj�1˝� � �˝vk

for 1� i < j � kC 2. Using this, we obtain several maximal vectors satisfying the
condition of Proposition 7.1. First we consider a maximal vector that defines the Morita
obstruction Œk� in Coker.Im �M

k;Q/.

Theorem 7.7 (Morita and Nakamura) Let k be an odd integer such that k � 3.
Suppose g � kC 2. An element

'Œk� WD .!˝ e˝k
1
/ � �P � .1C �kC2C � � �C �kC1

kC2
/

D 2

�kC1X
iD1

k�iC2X
rD1

.�1/r�1
kCr�1.e

˝k
1
/ �Di;iCr

�
is a maximal vector with highest weight Œk� in hQ

g;1
.k/. Moreover this gives a unique

irreducible component of Œk� in Coker �M
k;Q .

This fact was originally showed by Morita and Nakamura. More precisely, Morita [22]
showed that Œk� appears in hQ

g;1
.k/ for odd k � 3 with multiplicity at least one, using

the Morita trace map. Nakamura showed that the multiplicity of Œk� in hQ
g;1
.k/ for odd

k � 3 is exactly one, and determined the maximal vector with highest weight Œk� in
his unpublished work.

Second we consider a maximal vector that defines the Sp.2g;Q/–module with highest
weight Œ1k � in Coker.Im �M

k;Q/ for k � 1 .mod 4/ and k � 5.

Theorem 7.8 Suppose k � 1 .mod 4/, k � 5 and g � kC 2. An element

'Œ1k � WD .!˝ .e1 ^ � � � ^ ek// � �P � .1C �kC2C � � �C �kC1
kC2

/

D 2

�kC1X
iD1

k�iC2X
rD1

.�1/ır�2;3 .mod 4/
k�1

2
Cb r�1

2
c.e1 ^ � � � ^ ek/ �Di;iCr

�
is a maximal vector with highest weight Œ1k � in hQ

g;1
.k/. Moreover this gives a unique

irreducible component of Œ1k � in Coker �M
k;Q .
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7.4 Proofs of main theorems

We will give proofs of Theorem 7.7 and Theorem 7.8. But, since our proof for
Theorem 7.7 is easier than that of Theorem 7.8, we omit the details for Theorem 7.7.

7.4.1 Proof of Theorem 7.8 Step 1 For p � 2 .mod 4/, we prove

.e1 ^ � � � ^ ek/D12.1� s2/.1� s3s2/ � � � .1� sp � � � s3s2/

D
pX

jD1

.�1/ıj�2;3 .mod 4/
p�2

2

Cb j�1
2
c.e1 ^ � � � ^ ek/D1;1Cj

by the induction on r .

Indeed, if pD2, both sides of the formula above coincide with .e1^� � �^ek/.D12�D13/.
Suppose p > 2 and pC 4 � kC 1. For simplicity we denote .e1 ^ � � � ^ ek/Dij by
D

sgn
i;j . We have:

D
sgn
1;1Cj

.1� spC1 � � � s2/.1� spC2 � � � s2/.1� spC3 � � � s2/.1� spC4 � � � s2/

D .Dsgn
1;1Cj

� .�1/pC1D
sgn
1;2Cj

/.1� spC2 � � � s2/.1� spC3 � � � s2/.1� spC4 � � � s2/

p evenD .D
sgn
1;1Cj

CD
sgn
1;2Cj

/.1� spC2 � � � s2/.1� spC3 � � � s2/.1� spC4 � � � s2/

D .Dsgn
1;1Cj

CD
sgn
1;2Cj

� .�1/pC2D
sgn
1;2Cj

� .�1/pC2D
sgn
1;3Cj

/.1� spC3 � � � s2/.1� spC4 � � � s2/

p evenD .D
sgn
1;1Cj

�D
sgn
1;3Cj

/.1� spC3 � � � s2/.1� spC4 � � � s2/

D .Dsgn
1;1Cj

�D
sgn
1;3Cj

� .�1/pC3D
sgn
1;2Cj

C .�1/pC3D
sgn
1;4Cj

/.1� spC4 � � � s2/

p evenD .D
sgn
1;1Cj

CD
sgn
1;2Cj

�D
sgn
1;3Cj

�D
sgn
1;4Cj

/.1� spC4 � � � s2/

DD
sgn
1;1Cj

CD
sgn
1;2Cj

�D
sgn
1;3Cj

�D
sgn
1;4Cj

� .�1/pC4.D
sgn
1;2Cj

CD
sgn
1;3Cj

�D
sgn
1;4Cj

�D
sgn
1;5Cj

/

p evenD D
sgn
1;1Cj

� 2D
sgn
1;3Cj

CD
sgn
1;5Cj

:

Thus the action of .1�spC1 � � � s2/.1�spC2 � � � s2/.1�spC3 � � � s2/.1�spC4 � � � s2/ on
pX

jD1

.�1/ıj�2;3 .mod 4/
p�2

2

Cb j�1
2
cD

sgn
1;1Cj

is obtained in the following way:
pX

jD1

.�1/ıj�2;3 .mod 4/
p�2

2

Cb j�1
2
c.D

sgn
1;1Cj

� 2D
sgn
1;3Cj

CD
sgn
1;5Cj

/
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D
pX

jD5

n
.�1/ıj�2;3 .mod 4/

p�2
2

Cb j�1
2
c� 2.�1/ıj�0;1 .mod 4/

p�2
2

Cb j�3
2
c

C.�1/ıj�2;3 .mod 4/
p�2

2

Cb j�5
2
c
o
D

sgn
1;1Cj

CD
sgn
12
�D

sgn
13
� p� 2

2
D

sgn
14
C p� 2

2
D

sgn
15

� 2.D
sgn
14
�D

sgn
15
CD

sgn
1;pC2

�D
sgn
1;pC3

/

� p� 2

2
D

sgn
1;pC2

C p� 2

2
D

sgn
1;pC3

CD
sgn
1;pC4

�D
sgn
1;pC5

D
pC4X
jD1

.�1/ıj�2;3 .mod 4/
pC2

2

Cb j�1
2
cD

sgn
1;1Cj

:

Step 2 We have

.e1 ^ � � � ^ ek/Dij skC1 � � � s2s1

D
(
.e1 ^ � � � ^ ek/.�1/k�1DiC1;jC1

k oddD .e1 ^ � � � ^ ek/DiC1;jC1 if j ¤ kC 2;

�.e1 ^ � � � ^ ek/D1;iC1 if j D kC 2;

for k � 1 .mod 4/. Hence we obtain an explicit formula

.!˝ .e1 ^ � � � ^ ek// � �P � .1C �kC2C � � �C �kC1
kC2

/

D 2

kC1X
iD1

k�iC2X
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
c.e1 ^ � � � ^ ek/ �Di;iCj :

In fact,

kC1X
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
cD

sgn
1;1Cj

.1C �kC2C � � �C �kC1
kC2

/

D
kC1X
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
c

�kC2�jX
iD1

D
sgn
i;iCj �

jX
iD1

D
sgn
i;iCkC2�j

�

D
kC1X
iD1

kC2�iX
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
cD

sgn
i;iCj

�
kC1X
iD1

kC1X
jDi

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
cD

sgn
i;iCkC2�j
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D
kC1X
iD1

kC2�iX
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
cD

sgn
i;iCj

�
kC1X
iD1

kC2�iX
jD1

.�1/ıkC2�j�2;3 .mod 4/
k�1

2
CbkC1�j

2
cD

sgn
i;iCj

D
kC1X
iD1

kC2�iX
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
cD

sgn
i;iCj

C
kC1X
iD1

kC2�iX
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
CbkC1�j

2
cD

sgn
i;iCj

D 2

kC1X
iD1

kC2�iX
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
cD

sgn
i;iCj :

Step 3 Let us consider a surjective Sp–homomorphism

contk W H˝.kC2/
Q

��!H�Q˝H
˝.kC1/
Q � H˝k

Q

by composing an Sp–isomorphism

H
˝.kC2/
Q !H�Q˝H

˝.kC1/
Q

induced from HQ
��!H�Q given by (4) in Remark 4.3 and a contraction homomorphism

defined by e�i ˝ej1
˝ej2

˝� � �˝ejkC1
7! he�i ; ej1

i �ej2
˝� � �˝ejkC1

. Then we obtain

contk..e1 ^ � � � ^ ek/Dij /D

8̂̂̂<̂
ˆ̂:
.�2g/.e1 ^ � � � ^ ek/ if i D 1; j D 2;

.�1/j�2.e1 ^ � � � ^ ek/ if i D 1; j � 3;

.�1/j�3.e1 ^ � � � ^ ek/ if i D 2; j � 3;

0 if otherwise:

To prove these formulae, let us recall that

hei ; ej i D 0D hei0 ; ej 0i;
hei ; ej 0i D ıij D�hej 0 ; eii; .1� i � g/; e�i D

�
ei0 .1� i � g/;

�ei0 .gC 1� i � 2g/:

where i 0 WD 2g� i C 1 for each integer 1� i � 2g .

Then we have

contk.D
sgn
12
/D contk

� 2gX
rD1

er ˝ e�r ˝ .e1 ^ � � � ^ ek/

�

D
2gX

rD1

he�r ; er ie1 ^ � � � ^ ek D .�2g/e1 ^ � � � ^ ek :

Algebraic & Geometric Topology, Volume 14 (2014)



New series in the Johnson cokernels of the mapping class groups of surfaces 663

Moreover,

contk.D
sgn
1j
/D contk

� 2gX
rD1

X
�2Sk

sgn.�/er ˝ e�.1/˝ e�.2/˝ � � �˝
j_

e�r ˝ � � �˝ e�.k/

�

D
2gX

rD1

X
�2Sk

sgn.�/he�.1/; er i˝ e�.2/˝ � � �˝
j�2_
e�r ˝ � � �˝ e�.k/

D
X
�2Sk

sgn.�/e�.2/˝ � � �˝
j�2_

e��.1/0 ˝ � � �˝ e�.k/

D�
X
�2Sk

sgn.�/e�.2/˝ � � �˝
j�2_

e�.1/ ˝ � � �˝ e�.k/

D�.e1 ^ � � � ^ ek/ � s1s2 � � � sj�3 D .�1/j�2e1 ^ � � � ^ ek ;

and similarly,

contk.D
sgn
2j
/D contk

� 2gX
rD1

X
�2Sk

sgn.�/e�.1/˝ er ˝ e�.2/˝ � � �˝
j_

e�r ˝ � � �˝ e�.k/

�

D
2gX

rD1

X
�2Sk

sgn.�/her ; e�.1/i˝ e�.2/˝ � � �˝
j�2_
e�r ˝ � � �˝ e�.k/

D
X
�2Sk

sgn.�/e�.2/˝ � � �˝
j�2_

e��.1/0 ˝ � � �˝ e�.k/

D
X
�2Sk

sgn.�/e�.2/˝ � � �˝
j�2_

e�.1/ ˝ � � �˝ e�.k/

D .e1 ^ � � � ^ ek/ � s1s2 � � � sj�3 D .�1/j�3e1 ^ � � � ^ ek :

For i � 3, because of g > k , it is clear that contk..e1 ^ � � � ^ ek/Dij /D 0.

Step 4 We obtain ck.'Œ1k �/¤ 0.

Indeed, for the natural surjection prW H˝k
Q ! CQ

2g
.k/, we have

c.'Œ1k �/D 2

0BBBBB@
kC1X
jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
cck.e1 ^ � � � ^ ekD1;1Cj /

C
kX

jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
cck.e1 ^ � � � ^ ekD2;2Cj /

1CCCCCA
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D 2

0BBBBB@
�2gC

kC1X
jD2

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
c.�1/j�1

C
kX

jD1

.�1/ıj�2;3 .mod 4/
k�1

2
Cb j�1

2
c.�1/j�1

1CCCCCA pr.e1 ^ � � � ^ ek/

D 2

�
�2gC 2C 2

kX
jD2

.�1/j�1Cıj�2;3 .mod 4/
k�1

2
Cb j�1

2
c

�
pr.e1 ^ � � � ^ ek/

D 2

�
�2g� 2C 2

kC1X
jD1

.�1/j�1Cıj�2;3 .mod 4/
k�1

2
Cb j�1

2
c

�
pr.e1 ^ � � � ^ ek/:

Here, we claim that
kC1X
jD1

.�1/j�1Cıj�2;3 .mod 4/
k�1

2
Cb j�1

2
c D 0:

In fact, by setting k D 4KC 1, we have

kC1X
jD1

.�1/j�1Cıj�2;3 .mod 4/
k�1

2
Cb j�1

2
c

D
kC1X
jD1

.�1/ıj�0;3 .mod 4/
k�1

2
Cb j�1

2
c

D
X

1�j�kC1
j odd

.�1/ıj�3 .mod 4/
k�1

2
Cb j�1

2
cC

X
1�j�kC1

j even

.�1/ıj�0 .mod 4/
k�1

2
Cb j�1

2
c

D
2KX

pD0

.�1/ıp�1 .mod 2/
2K CpC

2KC1X
qD1

.�1/ıq�0 .mod 2/
2K Cq�1

D 2

2KX
pD0

.�1/ıp�1 .mod 2/
2K Cp D 2.1� 1/2K D 0:

Hence, we conclude ck.'Œ1k �/D�4.gC 1/ pr.e1 ^ � � � ^ ek/.

Since ŒLŒ1
k � W H˝k

Q � D ŒLŒ1k � W CQ
2g.k/� D 1 and e1 ^ � � � ^ ek is a maximal vector

with highest weight .1k/ of H˝k
Q , we have pr.e1 ^ � � � ^ ek/¤ 0.

Step 5 By Proposition 7.1 and Proposition 7.3, the maximal vector 'Œ1k � gives a
unique irreducible component of Œ1k � in Coker �M

k;Q .

This completes the proof of Theorem 7.8.
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7.4.2 Outline of proof of Theorem 7.7 To begin with, we can show

.e˝k
1

D12/.1� s2/.1� s3s2/ � � � .1� sr � � � s3s2/D
rX

jD1

.�1/j�1
r�1Cj�1.e

˝k
1
/D1;1Cj

by using induction on r . Secondly, we have

.e˝k
1

Dij /skC1sk � � � s2s1 D
�

e˝k
1

DiC1;jC1 if j ¤ kC 2;

�e˝k
1

D1;iC1 if j D kC 2:

Hence we get an explicit formula

.!˝ e˝k
1
/ � �P � .1C�kC2C� � �C�kC1

kC2
/D

kC1X
iD1

k�iC2X
rD1

.�1/r�1
kCr�1.e

˝k
1
/ �Di;iCr :

Thirdly, we have

contk.e
˝k
1

Dij /D

8̂̂̂<̂
ˆ̂:
.�2g/.e˝k

1
/ if i D 1; j D 2;

�.e˝k
1
/ if i D 1; j � 3;

.e˝k
1
/ if i D 2; j � 3;

0 otherwise;

and pr.e˝k
1
/¤ 0. Thus we obtain

ck.'Œk�/D
kC1X
jD1

.�1/j�1
kCj�1 ck.e

˝k
1

D1j /C
kX

jD1

.�1/j�1
kCj�1 ck.e

˝k
1

D2j /

D
�
�2g�

kC1X
jD2

.�1/j�1
kCj�1C

kX
jD1

.�1/j�1
kCj�1

�
pr.e˝k

1
/

D
�
�2gC .�1/kC1C

kX
jD2

˚
.�1/j kCj C .�1/j�1

kCj�1

	C 1

�
pr.e˝k

1
/

D .2� 2g/ pr.e˝k
1
/¤ 0:

Therefore, by Proposition 7.1 and Proposition 7.3, the maximal vector 'Œk� gives a
unique irreducible component of Œk� in Coker �M

k;Q .

This completes the proof of Theorem 7.7.

7.5 Problems for the Johnson cokernels

Finally, we conclude by suggesting a problem for the Johnson cokernels of the mapping
class group.
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By observing the table of Coker.�M
k;Q/ for 1 � k � 4 in Section 3.3, we see that

Coker.�M
k;Q/Š Im.ck/ for 1� k � 4 as an Sp.2g;Q/–module, where ck W hQ

g;1
.k/!

CQ
2g
.k/ is an Sp.2g;Q/–equivariant homomorphism defined in Section 7.1.

In general the cokernel Coker.�M
k;Q/ is not isomorphic to Im.ck/ for k � 6. In fact, for

k D 6 according to the description in [23], the Sp–invariant part of hQ
g;1
.6/= Im.�M

6;Q/

is Q˚3 . On the other hand, that of CQ
2g
.6/ is Q˚2 . Hence we can not detect all of

the Sp–invariant part of hQ
g;1
.6/ using the map c6 . We have heard from Morita about

these facts in a thoughtful e-mail.

Here we suggest a problem to determine the Sp–component of hQ
g;1
.k/ that can be

detected by the map ck . Namely:

Problem 7.9 For any k � 1, determine the image Im.ck/ of ck .

Let us consider a sequence of Sp–submodules of hQ
g;1

,

Im.�Mk;Q/� Ker.ck/� hQ
g;1
;

for each k � 2. Problem 7.9 is equivalent to a problem to determine the Sp–module
structure of the quotient hQ

g;1
=Ker.ck/. We remark that from the description in [23]

as above, for k D 6, an irreducible module Œ0� appears in Ker.c6/= Im.�M
6;Q/ with

multiplicity at least one. (Morita told us this fact in his e-mail to us.) This shows
Im.�M

k;Q/¤ Ker.ck/ in general.

Let .hQ
g;1
/ab be the abelianization of hQ

g;1
as a Lie algebra, and ŒhQ

g;1
; hQ

g;1
� the kernel

of the abelianization hQ
g;1
! .hQ

g;1
/ab . We write

ŒhQ
g;1; h

Q
g;1�.k/

for the degree k part of ŒhQ
g;1
; hQ

g;1
�. It is still open problem to determine the Sp–module

structure of .hQ
g;1
/ab . From Hain’s result (see Theorem 3.5) we have

Im.�Mk;Q/� ŒhQ
g;1
; hQ

g;1
�.k/� hQ

g;1

for each k � 2. In [23], Morita constructed a surjective Lie algebra homomorphism

�M1;Q˚
M
k�1

Tr2kC1W hQ
g;1
!ƒ3HQ˚

M
k�1

S2kC1HQ

using the Morita trace maps Tr2kC1 , where the target is considered as an abelian
Lie algebra. Hence, the Morita obstructions can be detected by hQ

g;1
.k/=Ker.ck/ and

.hQ
g;1
/ab . Recently, in [4], J Conant, M Kassabov and K Vogtmann announced there

are new series in .hQ
g;1
/ab other than the Morita obstructions.

Then we have a problem:
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Problem 7.10 Does there exist an irreducible Sp–module L�Ker.ck/ such that L 6�
ŒhQ

g;1
; hQ

g;1
�.k/? For example, clarify whether or not the Conant–Kassabov–Vogtmann

obstruction is contained in Ker.ck/.
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