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Koszul duality theory for operads over Hopf algebras

OLIVIA BELLIER

The transfer of the generating operations of an algebra to a homotopy equivalent
chain complex produces higher operations. The first goal of this paper is to describe
precisely the higher structure obtained when the unary operations commute with the
contracting homotopy. To solve this problem, we develop the Koszul duality theory
of operads in the category of modules over a cocommutative Hopf algebra. This gives
rise to a simpler category of homotopy algebras and infinity morphisms, which allows
us to get a new description of the homotopy category of algebras over such operads.
The main example of this theory is given by Batalin–Vilkovisky algebras.

18D50, 18G55; 16W30, 55P48

1 Introduction

Homotopy transfer In homotopical algebra, one problem is to know how algebraic
structures behave under homotopy equivalences. For instance, the product of a differ-
ential graded associative algebra induces, on a homotopy equivalent chain complex, a
product which is not associative in general. However, Kadeishvili [16] proved that, in
this case, the homotopy equivalent chain complex carries higher operations, in addition
to the transferred product. These operations endow it with a homotopy associative
algebra structure, also known as A1–algebra, defined by Stasheff in [25]. This is
one of the first examples of a homotopy transfer theorem (HTT). An HTT was also
proved for Lie algebras, for commutative algebras, and more generally, for other types
of algebras using the theory of operads; see Loday and Vallette [21, Section 10.3].

Batalin–Vilkovisky algebras The theory we develop in this paper is motivated
by the example of Batalin–Vilkovisky algebras. These algebras play an important
role in geometry, topology and mathematical physics; see for instance Batalin and
Vilkovisky [2], Barannikov and Kontsevich [1], Manin [22], Chas and Sullivan [6],
Getzler [11] and Lian and Zuckerman [19]. In brief, a BV-algebra structure is given by
a commutative product, a Lie bracket and a unary square-zero BV-operator, satisfying
some compatibility relations. An HTT for BV-algebras was given by Galvez-Carillo,
Tonks and Vallette [10] in terms of a new notion of homotopy BV-algebra. This structure
is very rich, and at the same time very intricate.
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2 Olivia Bellier

However, when the BV-operator commutes with the underlying contracting homotopy, it
induces a unary operator which still squares to zero. In this case, we have that there are
no higher operations arising from the BV-operator when we apply the HTT of [10]. It
is natural to ask what is the precise structure to which it reduces. In this paper, we solve
this question as follows: we insert the square-zero operator in the underlying category
of chain complexes and, then, we work with operads in this category. This implies
that we have to work with operads in the category of modules over a cocommutative
Hopf algebra. For instance, to encode the category of BV-algebras, we use the operad
of Gerstenhaber algebras, which is enriched with an action of the dual numbers Hopf
algebra.

Relative Koszul duality Salvatore and Wahl [24] began the study of operads with an
action of a Hopf algebra. Here, we go even further and we extend the classical Koszul
duality theory to this framework in Section 3.3. At each step of the operadic theory, we
show that all the objects can be enriched with a compatible action of a Hopf algebra
and we prove that the results still hold in this context. In particular, we extend the
bar–cobar constructions in Section 3.2. We define a new notion of homotopy algebras
and their infinity morphisms in Section 4.1, in order to prove a new homotopy transfer
theorem in Section 4.2. We also extend the results of the homotopy theory of algebras
over an operad to the context of algebras over an H–operad in Section 4.3.

Theorem A Let H be a cocommutative Hopf algebra and let P be a Koszul operad
in the category of H–modules. We consider two homotopy equivalent chain complexes
in the category of H–modules, such that one of them is endowed with a compatible
P–algebra structure. Then the second chain complex is endowed with a P1–algebra
structure compatible with the H–action.

The main example of two homotopy equivalent chain complexes is given by a differential
graded algebra and its homology groups. In this case, being homotopy equivalent in the
category of H–modules means just that the contracting homotopy and the H–action
have to commute.

The homotopy category is obtained by localizing the initial category with respect to
the quasi-isomorphisms. The 1–morphisms provide a different description of the
homotopy category of algebras over an operad. It is easier to deal with this description
since the 1–morphisms admit a homotopy inverse; see Vallette [27]. Encoding a
category of algebras with an operad in H–modules, we get a new description of the
associated homotopy category, using simpler 1–morphisms, as follows.
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Theorem B Let H be a cocommutative Hopf algebra and let P be a Koszul operad in
the category of H–modules. The homotopy category of dg P–algebras in H–modules
is equivalent to the homotopy category of P–algebras in H–modules, together with
their 1–H–morphisms.

In the case of BV-algebras, we define a simpler category of homotopy BV-algebras:
a strict homotopy BV-algebra is a homotopy Gerstenhaber algebra together with a
compatible square-zero unary operator action. Theorem A implies that, when the BV-
operator and the contracting homotopy commute, the transferred homotopy BV-algebra
structure reduces exactly to a strict homotopy BV-algebra. Theorem B gives a new
description of the homotopy category of BV-algebras. We also get a new way to prove
the existence of a zigzag of quasi-isomorphisms of BV-algebras, which could help to
study the mirror symmetry conjecture by Kontsevich [17]; see Cao and Zhou [4; 5].

Related literature The idea to put unary operations in the underlying category is
already used by Ginzburg and Kapranov [14], but not exactly in the same way as we do.
We both put the algebra of all the arity one operations in the underlying category, while
removing them from the operad. In [14], they keep track of their action using the tensor
product over this algebra. Instead, we also remove from the operad all the operations
made up of the unary ones, and we keep track of the action of these operations via the
module structure over their algebra. Thus, we can still work with the tensor product
over the ground field. So, homological results hold in our context, while, in [14], one
needs the algebra of unary operations to be semisimple. Nevertheless, we need this
algebra to form a Hopf algebra. Moreover, since Ginzburg and Kapranov remove only
the unary operations from the operad, their homotopy algebra structure is much bigger
than ours.

There are so far two ways of proving an HTT. On the one hand, one can prove it with
model category arguments by Berger and Moerdijk [3]. This relies on a compatibility
between the monoidal and the model structures of the underlying category. But, to the
best of our knowledge, there is not yet a monoidal model category structure on the
category of modules over a cocommutative Hopf algebra together with the tensor product
over the ground field, such that the weak equivalences are the quasi-isomorphisms. On
the other hand, one can prove an HTT with explicit formulae using the Koszul duality
theory for operads, which enables one to prove formality results at the level of algebras
for instance. So, we chose this latter method to prove an HTT for operads over Hopf
algebras.

Layout In the second section, we describe the notion of operads in the category of
modules over a Hopf algebra and the associated objects. We give some examples of
algebras over such operads. In Section 3, we extend the classical Koszul duality to this
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framework. In Section 4, we prove an HTT for algebras over Koszul operads in this
context, and we apply it to the example of Batalin–Vilkovisky algebras. Furthermore,
we study the homotopy theory of such algebras.

Setting Throughout this paper, we work over a field K of characteristic zero and
unadorned tensor products are over K. All the S–modules we consider are reduced,
that is the arity zero space is reduced to zero.

2 Operads over Hopf algebras

2.1 The monoidal category of symmetric modules over a cocommutative
Hopf algebra

We construct the monoidal category of (differential graded) S–modules over a co-
commutative Hopf algebra, following the example of S–modules given by Loday and
Vallette [21, Section 5.1]. We refer to the book of Sweedler [26] for more details on
Hopf algebras.

2.1.1 Recollection on the symmetric monoidal closed category of modules over a
Hopf algebra Let .H; �;�; u; "/ be a cocommutative bialgebra, where .�; u/ and
.�; "/ are respectively the unital associative algebra structure and the counital cocom-
mutative coalgebra structure. We will denote 1H WD u.1K/. Then, we have ".1H /D1K

and H Š Ker."W H !K/˚K1H .

We define the iterated comultiplication �nW H !H˝nC1 by �0 D Id, �1 D� and

�n
WD .�˝ Id˝ � � �˝ Id/ ı�n�1:

The category .H–Mod;˝;K/ of left–H–modules is a symmetric monoidal category
where the structure of the H–module is given as follows:

� On K, it is defined by the map H ˝K
"˝K //K˝K //K where the last map

is the scalar multiplication.

� On the tensor product of two H–modules M and N , it is defined by

h:.m˝ n/D h.0/:m˝ h.1/:n; 8h 2H;8m 2M;8n 2N;

where �.h/ D h.0/ ˝ h.1/ , under the sumless Sweedler notation. The Hopf
compatibility relation ensures that it is a left H–action.
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We assume moreover that H is a Hopf algebra, that is H is equipped with a linear map
S W H !H , called the antipode, which is an inverse of the identity for the convolution
product ?:

S ? IdD u"D Id?S:

Then, for any H–modules M and N , the vector space HomK.M;N / carries an
H–module structure, given by

H ˝HomK.M;N /! HomK.M;N /;

h˝f 7! h:f W m 7! h.0/:f .S.h.1//:m/:

Lemma 2.1 The category of H–modules is closed.

Proof For any triple .A;B;C / of H–modules, the map

Hom.A˝B;C /! Hom.A;Hom.B;C //;

f 7! .a 7! f .a˝�//;

is well defined. It is easy to check that it is a natural isomorphism of H–modules.

The previous results extend to the category of differential graded modules.

Proposition 2.2 We have that the category .dg H–Mod;˝;K/ of differential graded
left–H–modules is a symmetric monoidal closed category, where K is concentrated in
degree 0.

Example Consider the graded algebra D WD KŒı�=.ı2/ of dual numbers, where ı
is of degree C1. It is a cocommutative Hopf algebra where the comultiplication
�W D!D˝D and the antipode S W D!D are respectively given by

�.ı/ WD 1˝ ıC ı˝ 1;

S.ı/ WD �ı:

A D–module is simply a graded vector space endowed with a map of degree C1 that
squares to zero, ie a cochain complex.

2.1.2 The monoidal category of S–H–modules The notion of S–modules can be
defined in any symmetric monoidal category. We make explicit these objects when the
underlying category is equal to the category of H–modules.
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Definition 2.3 An S–H–module M is an S–module M D fM.n/gn2N , such that
each M.n/ has a left–H–module structure which commutes with the Sn –module
structure. For � 2M.n/, the integer n is called the arity of � and � is called an
n–ary operation.

A morphism of S–H–modules f W M ! N is a morphism of S–modules such that
each fnW M.n/!N.n/ is H–equivariant.

We denote the associated category by S–H–Mod.

In particular, each M.n/ is a .H;Sn/–bimodule and each fnW M.n/! N.n/ is a
morphism of .H;Sn/–bimodules.

Definition 2.4 For any S–H–modules M and N , their tensor product is the S–H–
module M ˝N defined by

.M ˝N /.n/ WD
M

iCjDn

IndSn

Si�Sj
M.i/˝N.j /;

where the action of H is induced by the H–module structure on the tensor product
of two H–modules. Since H is cocommutative, the tensor product of H–modules is
symmetric.

Proposition 2.5 The tensor product of S–H–modules is associative with unit the
S–H–module .K; 0; 0; : : :/.

Proof By [21, Proposition 5.1.5], we have an isomorphism of associativity of the
underlying S–modules. It is a morphism of H–modules by coassociativity of the
comultiplication.

Definition 2.6 For any S–H–modules M and N , their composite product is the
S–H–module M ıN defined by

M ıN WD
M
k�0

M.k/˝Sk
N˝k :

Here N˝k stands for the tensor product of k copies of the S–H–module N .

For any pair of morphisms of S–H–modules f W M ! N and gW M 0 ! N 0 , their
composite product is the morphism of S–H–modules f ıgW M ıN !M 0 ıN 0 given
explicitly by the formula

f ıg.�I �1; : : : ; �k/ WD .f .�/Ig.�1/; : : : ;g.�k//:
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In arity n, we have

.M ıN /.n/ WD
M
k�0

M.k/˝Sk

� M
i1C���CikDn

IndSn

Si1
�����Sik

N.i1/˝ � � �˝N.ik/

�
;

where the action of H is induced by the H–module structure on tensor products of
H–modules.

Proposition 2.7 The category of S–H–modules .S–H–Mod; ı; I/ is a monoidal cat-
egory, where the S–H–module I D .0;K; 0; : : :/ concentrated in arity 1 is called
identity S–H–module.

Proof By [21, Proposition 5.1.14], the category of S–modules .S–Mod; ı; I/ is
monoidal. Since the composite product of S–H–modules is defined as the composite
product of the underlying S–modules endowed with the H–action induced by the
comultiplication, the coassociativity and the counitarity of the comultiplication of H

imply that the isomorphisms of associativity and unit of the underlying S–modules are
compatible with the H–module structure.

As for S–modules, the composite product of two S–H–modules is not linear on
the right-hand side. However, the infinitesimal composite product, defined in [21,
Section 6.1.1], extends to the category S–H–Mod to produce a product ı.1/ which is
linear on the right-hand side. Recall that the infinitesimal product is defined by

M ı.1/N WDM ı .I IN /;

where, for any S–modules P , P1 and P2 , P ı .P1IP2/, is the S–module

.P ı .P1IP2//.n/

WD

nM
kD1

P.k/˝Sk

� M
i1C���CikDn

kM
jD1

IndSn

Si1
�����Sik

P1.i1/˝� � �˝P2.ij/„ƒ‚…
j th position

˝ � � �˝P1.ik/

�
:

The infinitesimal objects f ı.1/ g , f ı0 g , 
.1/ and �.1/ , defined in [21, Section 6.1],
also extend to the category S–H–Mod.

2.1.3 Differential graded framework

Definition 2.8 A differential graded S–H–module, or dg S–H–module for short, is a
dg S–module .M; d/ such that each M.n/ is an H–Sn –bimodule and the differential d

is compatible with the H–action.
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A morphism of differential graded S–H–modules f W .M; dM /! .N; dN / is a mor-
phism of the underlying dg S–modules which is H–equivariant. We denote by
dg S–H–Mod the category of dg S–H–modules with their morphisms.

The objects described in the previous section extend to the differential graded framework.
However, they now involve signs in their definition. For more details, we refer the
reader to [21, Section 6.2].

We define the suspension and the desuspension of a graded S–H–module as the
suspension and the desuspension of its underlying graded S–module respectively,
where the action of H is given by the counit of H .

Proposition 2.9 The category of .dg S–H–Mod; ı; I/ is a monoidal category.

Proof This follows by combining Proposition 2.7 and [21, Proposition 6.2.4].

2.2 Operad over a cocommutative Hopf algebra

In [21, Section 5.2], the authors give a monoidal definition of an algebraic operad,
that is an operad in the category of vector spaces. More generally, one can define the
notion of operad in any monoidal category. Here, we point out the extra structure
one gets when one considers operads in the category of S–H–modules instead of just
S–modules.

2.2.1 Monoidal definition

Definition 2.10 An H–operad is a monoid .P; 
; �/ in the monoidal category of S–
H–modules. A morphism ˛W P!Q of H–operads is a morphism of monoids in the
category of S–H–modules, that is a morphism of S–H–modules which is compatible
with the monoidal structures. We denote the category of H–operads by OpH .

Remark An H–operad is just an operad .P; 
; �/, as defined in [21, Section 5.2.1],
such that each P.n/ has an H–action which makes P into an S–H–module and such
that the maps 
 and � commute with the H–action. Furthermore, a morphism of
H–operads is a morphism of the underlying operads which commutes with the action
of H .

When A is an H–module, the S–module

EndA.n/ WD HomK.A
˝n;A/
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is endowed with an H–module structure, according to the previous section, which
makes it into an S–H–module. This structure is explicitly given by

H ˝EndA.n/! EndA.n/;

h˝f 7! h:f WD a1˝ � � �˝ an 7! h.0/:f .S.h.1//:a1; : : : ;S.h.n//:an/:

Lemma 2.11 The triple .EndA , 
EndA
, �EndA

W 1K 7! IdA/, where 
EndA
is the usual

composition map given by 
EndA
.f Ig1; : : : ;gk/ WDf ı.g1˝� � �˝gk/, is an H–operad.

Proof It is immediate to check EndA is an operad. So, we have to prove 
EndA
and

�EndA
are H–equivariant maps. For .f Ig1; : : : ;gk/ 2 EndA.n/, a1˝� � �˝an 2A˝n

and h 2H , we have


EndA
.h:.f Ig1; : : : ;gk//.a1˝ � � �˝ an/

D h.0/:f

� kO
jD1

ŒS.h.nCj/.0//h.nCj/.1/�:gj

� ijO
lD1

S.h.i1C���Cij�1Cl//:ai1C���Cij�1Cl

��

D h.0/:f

� kO
jD1

u".h.nCj//:gj

� ijO
lD1

S.h.i1C���Cij�1Cl//:ai1C���Cij�1Cl

��
D h.0/:.f ı .g1˝ � � �˝gk/.S.h.1//:a1˝ � � �˝S.h.n//:an/

D .h:
EndA
.f Ig1; : : : ;gk//.a1˝ � � �˝ an/:

The H–equivariance of �EndA
follows from the H–module structure of K and from

the fact that the antipode is the inverse of the identity for the convolution product.

Recall that the Hadamard product M˝
H

N of two S–modules M and N is defined to
be the following S–module

M ˝
H

N.n/ WDM.n/˝N.n/:

Proposition 2.12 The Hadamard product of the underlying S–modules of two H–
operads, endowed with the H–module structure on the tensor product of two S–H–
modules, is an H–operad.

Proof Let P and Q be two H–operads. By [21, Section 5.3.3], we have to prove
that the composition map given there is H–equivariant. This is the case since it is the
composite of H–equivariant maps.
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Definition 2.13 An ideal I of an H–operad P is a sub–S–H–module of P such that
the composition 
P.�I �1; : : : ; �k/ is in I as soon as one of the �; �1; : : : ; �k is in I .
The quotient of an H–operad P by the ideal I is the H–operad P=I given by

.P=I/.n/ WD P.n/=I.n/; 8n 2N;

where the composition map 
P=I is induced by 
P .

2.2.2 The free H–operad

Definition 2.14 A free H–operad over an S–H–module M is an H–operad FM

equipped with a morphism �M W M ! FM of S–H–modules, which satisfies the
following universal property.

Any morphism f W M ! P of S–H–modules, where P is an H–operad, extends
uniquely into a morphism zf W FM ! P of H–operads:

M
�M //

f ""

FM

zf
��
P

In other words, the functor F W S–H–Mod!OpH is left adjoint to the forgetful functor
t from OpH to S–H–Mod.

Recall that the free operad T M over an S–module M admits the realization

.T M /.n/Š
M

�2T 0.n/

�.M /;

where T 0.n/ denotes a set of representatives of isomorphisms classes of n–trees. For
any tree � , the treewise tensor module �.M /, defined by Hoffbeck [15, Section 2.6],
is given by

�.M /Š
O
v2V .�/

M.jIvj/;

where V .�/ denotes the set of vertices of � and where Iv denotes the set of entries
of the vertex v . Then, if M is an S–H–module, we have an H–module structure on
the treewise tensor module �.M /, for any tree � in T 0.n/. This action is given by
the map

H ˝ �.M /! �.M /;

h˝mi1
� � �mijV .�/j 7! h.0/:mi1

� � � h.jV .�/j�1/:mijV .�/j ;
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where �jV .�/j�1.h/ WD h.0/˝ � � � ˝ h.jV .�/j�1/ . It amounts to act on the labeling of
each vertex of � using the comultiplication of H .

Proposition 2.15 Let M be an S–H–module and M be its underlying S–module.
The free operad T M endowed with the H–action described above is the free H–operad
over M .

Proof The composition map 
T M , which corresponds to the grafting of trees, is
an H–equivariant map. Moreover, if a morphism f W M ! P of S–modules is H–
equivariant then so is zf W T M ! P .

As a consequence, the free H–operad inherits the weight of its underlying free operad.
The weight of an operation � in the free operad T M is defined as follows:

w.id/D 0;

w.�/D 1; 8� 2M;

w.�I �1; : : : ; �k/D w.�/Cw.�1/C � � �Cw.�k/:

We denote by T M .r/ the S–H–module of operations in T .M / of weight r .

Proposition 2.16 Let M be an S–module and R be a sub–S–module of T M . Then,
the operad T M=.R/, where .R/ is the ideal of T M generated by R, is an H–operad
if and only if

� M is an S–H–module,

� R is a sub–S–H–module of T M .

In this case, the H–module structure is induced by the action on each vertex using the
comultiplication of H .

Proof The proof by Salvatore and Wahl [24, Proposition 4.2] extends to our linear
context.

2.2.3 Algebra over an H–operad

Definition 2.17 Let P be an H–operad. An algebra over P , or for short an H–P–
algebra, is an H–module A equipped with an H–equivariant map 
AW P.A/! A,
which is compatible with the monoidal structure of P . A morphism f W A! A0 of
H–P–algebras is a morphism of H–modules which is compatible with 
A and 
A0 .
We denote by H–P–Alg the category of H–P–algebras.

Algebraic & Geometric Topology, Volume 14 (2014)
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If A is an H–P–algebra, then the map 
A is


AW P.A/D
M
n�0

P.n/˝Sn
A˝n

!A:

For � 2 P.n/ and a1 ˝ � � � ˝ an 2 A˝n , we denote 
A.�I a1; : : : ; an/ simply by
�.a1; : : : ; an/.

Proposition 2.18 Let P be an H–operad. An H–P–algebra structure on an H–
module A is equivalent to a morphism of H–operads P! EndA .

Proof By [21, Proposition 5.2.13], it remains to prove that 
AW P.n/˝A˝n!A is
H–equivariant if and only if ˛W P.n/!EndA.n/ is H–equivariant, since the symmetric
and the H actions are compatible. This follows from the H–action on the space of
morphisms of H–modules.

Proposition 2.19 [24] Let P be a graded H–operad. There exists a graded operad,
the semidirect product P ÌH , such that the category of H–P–algebras, that is H–
modules with an action of the H–operad P , is isomorphic to the category of P ÌH–
algebras, that is modules with an action of the operad P ÌH .

The operad P ÌH is given by the S–module defined by

P ÌH.n/ WD P.n/˝H˝n;

where Sn acts diagonally acting on P.n/ and permuting the elements of H˝n , together
with the composition map defined by


PÌH ..�˝ h/I .�1˝g1/; : : : ; .�k ˝gk//

WD 
P.�I h
1
.0/ � �1; : : : ; h

k
.0/ � �k/˝ h1

.1/ �g1˝ � � �˝ hk
.1/ �gk ;

where h D h1 ˝ � � � ˝ hk , gi D g1
i ˝ � � � ˝ g

ni

i and where hi acts on gi via the
comultiplication of H . The unit of P ÌH is given by id˝1H .

2.2.4 Cooperads over a cocommutative Hopf algebra

Definition 2.20 An H–cooperad is a comonoid .C; �; �/ in the monoidal category
of S–H–modules. A morphism of H–cooperads f W C ! D is a morphism of the
underlying S–H–modules compatible with the comonoidal structure of C and D . We
denote by CoopH the category of H–cooperads. There is an element id 2 C.1/ such
that �.id/D 1K and which is called the identity cooperation.

An H–cooperad C is said to be coaugmented if there is a morphism �W I ! C of
H–cooperads such that �� D IdI .
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The notion of H–cooperad is dual to that of H–operad. From the explicit description of
the composite product of two S–H–modules and the isomorphism between invariants
and coinvariants, it follows that � is made up of H–Sn –bimodule morphisms:

�.n/W C.n/! .CıC/.n/D
nM

kD1

C.k/˝Sk

� M
i1C���CikDn

IndSn

Si1
�����Sik

C.i1/˝� � �˝C.ik/
�

Proposition 2.21 The Hadamard product of two H–cooperads carries an H–cooperad
structure.

Proof Let C and D be two H–cooperads. By [21, Section 8.3.3], it remains to
prove that the decomposition map given there is H–equivariant. This is the case
since this decomposition map is the composite of �C ˝�D with maps of the type
Id˝ � � �˝ � ˝ � � �˝ Id, which are both H–equivariant.

Definition 2.22 Let M be an S–H–module such that M.0/ D 0. The cofree H–
cooperad on M is the H–cooperad, denoted by T c.M /, which is cofree in the
category of conilpotent H–cooperads. It means that T c.M / satisfies the following
universal property.

For any morphism of S–H–modules ˆW C!M , from a conilpotent H–cooperad C ,
such that ˆ.id/D 0, there exists a unique morphism ẑ W C! T c.M / of H–cooperads
whose corestriction to M is equal to ˆ:

C ˆ //

ẑ ##

M

T c.M /

OOOO

2.2.5 From operads to cooperads and vice versa In the classical case, the aritywise
linear dual S–module C� D fHomK.C.n/;K/gn2N associated to a cooperad C carries
an operad structure. The unit is obtained by dualization of the counit �C and the
composition map is obtained by dualization of �C composed with the natural map
from invariants to coinvariants given in [21, Section 5.1.21]. Since H is a Hopf algebra,
if C is moreover an H–cooperad then its aritywise dual has an H–operad structure.
Equally, if P is an H–operad, such that each P.n/ is finite dimensional, then its linear
dual has an H–cooperad structure. We denote this cooperad by Pc .

Algebraic & Geometric Topology, Volume 14 (2014)
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2.2.6 Differential graded framework As for operads, the notion of H–operad ex-
tends to the differential graded framework. In particular, a differential graded H–
operad is a monoid .P; dP ; 
; �/ in the monoidal category .dg S–H–Mod; ı; I/, that
is .P; dP/ is a dg S–H–module and .P; 
; �/ is an H–operad structure on P , such
that 
 and � are morphisms of dg S–H–modules. Moreover, the results on dg operads
of [21, Section 6.3] can be extended to dg H–operads.

We denote by S (resp. S�1 ) the endomorphism H–operad associated to the graded
S–H–module Ks (resp. Ks�1 ), which is nothing but the H–module K concentrated
in degree C1 (resp. in degree �1). Note that we will denote by SM (resp. S�1M )
the Hadamard product of S (resp. S�1 ) with any S–H–module M .

2.3 Examples

2.3.1 Mixed chain complexes A mixed chain complex is a graded vector space
V D V� endowed with two maps: a degree �1 map d and a degree C1 map ı , which
both square to zero and anti-commute. One can see any mixed chain complex either as
a dg–D–module, or as a dg D–I –algebra, where I is the identity D–operad.

2.3.2 Batalin–Vilkovisky algebras

Definition A Gerstenhaber algebra is a differential graded vector space .A; dA/

endowed with

˘ a symmetric binary product � of degree 0,

˘ a symmetric bracket h � I� i of degree C1,

such that dA is a derivation with respect to each of them and such that:

B The product � is associative:

..���/ ��/D .�� .���//:

B The bracket h � I� i satisfies the Jacobi identity

hh � I� iI �iC hh� I� iI �i � .123/Chh� I� iI �i � .321/D 0:

B The product � and the bracket h � I� i satisfy the Leibniz relation

h�I� ��i D .h � I� i ��/C .�� h� I� i/ � .12/:

Algebraic & Geometric Topology, Volume 14 (2014)
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A Batalin–Vilkovisky algebra, or BV-algebra for short, is a Gerstenhaber algebra A

endowed, in addition, with

˘ a unary operator � of degree C1,

such that dA anticommutes with � and such that:

I The operator satisfies �2 D 0.

I The bracket is the obstruction to � being a derivation with respect to the
product �:

h � I� i D� ı .���/� .�.�/ ��/� .���.�//:

I The operator � is a graded derivation with respect to the bracket h � I� i:

� ı .h � I� i/Ch�.�/I � iC h� I�.�/i D 0:

Let G be the operad encoding Gerstenhaber algebras. It is defined by generators and
relations as

G WD T .E/=.R/;

where E DE.2/ WD �K2˚h� I� iK2 , with K2 the trivial representation of the sym-
metric group S2 . The space of relations R is the sub–S–module of T .E/ generated
by the relations B. The operad BV , encoding BV-algebras, is then given by

T .E0/=.R0/;

where E0 WDE˚�K and where R0 is the sub–S–module of T .E0/ generated by the
relations B and I.

Lemma 2.23 The action of D on the generators � and h � I� i of G is given by

ıW � 7! h� I� i;

h � I� i 7! 0;

and induces a D–operad structure on G .

Proof It is clear that E is an S–D–module. Under the action of ı , the associativity
relation is sent to a linear combination of Leibniz relations, the Jacobi relation is sent
to 0 and the Leibniz relation is sent to the Jacobi relation. Thus, R is a sub–S–D–
module of T .E/. We conclude with Proposition 2.16.
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Remark The ı–action on the generators of G corresponds to the effect in homology
of the action of the circle group S1 on the little discs operad which is given by Getzler
in [12, Section 4]. This structure induced in homology is made explicit by Salvatore
and Wahl [24, Section 5].

Let Com denote the operad encoding commutative algebras and Lie1 denote the operad
encoding Lie algebras with a bracket of degree C1. As a consequence of a result by
Markl [23, Theorem 2.7, Example 4.4], we have G Š Com ıLie1 as operads, under
the distributive law

ƒW h�I� ��i 7! .h � I� i ��/C .�� h� I� i/ � .12/:

This isomorphism gives us a way to make explicit the D–operad structure on G . As
S–modules, we have

Com ıLie1 D

nM
kD1

Com.t/˝St

� M
i1C���CikDn

IndSn

Si1
�����Sik

Lie1.i1/˝ � � �˝Lie1.it /

�
:

The action of ı is compatible with the symmetric action, thus it is sufficient to give the
action on the elements of Com.t/˝St

Lie1.i1/˝� � �˝Lie1.it /. Since Com.t/ is given
by the trivial representation on K, an element in Com.t/˝St

Lie1.i1/˝� � �˝Lie1.it /

is of the form L1ˇ � � �ˇLt , with Li 2 Lie1 , for i D 1; : : : ; t ; and where ˇ denotes
the commutative tensor product, that is the quotient of the tensor product under the
permutation of terms.

Proposition 2.24 Under the isomorphism of operads G Š Com ıLie1 , the structure
of D–operad on the right-hand side is given by

ı � .L1ˇ � � �ˇLt /D
X

1�i<j�n

.�1/"i;j hLi ILj iˇL1ˇ � � �ˇ
yLi ˇ � � �ˇ

yLj ˇ � � �ˇLt

where hLi ILj i WD 
Lie1
.h � I� iILi ;Lj / and where the sign "i;j , arising from the

Koszul sign rule, is given by

"i;j D .jLi jC jLj j/.jL1jC � � �C jLi�1j/CjLj j.jLiC1jC � � �C jLj�1j/:

Proof For t D 2, a representative of L1 ˇ L2 is given by � ˝ L1 ˝ L2 , with
L1;L2 2 Lie1 . Since the bracket is sent to 0 under the action of ı , so is any element
of Lie1 . Thus, we get

ı � .�˝L1˝L2/D h� I� i˝L1˝L2 D hL1IL2i:

We conclude the proof by induction on t � 2.
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Remark The action of ı on an element L1ˇ � � �ˇLt in Com ıLie1 is exactly the
image of ı�˝L1ˇ� � �ˇLt under the derivation td' , which is given by Galvez-Carillo,
Tonks and Vallette [10, Proof of Lemma 5]. In particular, ı acts as the Chevalley–
Eilenberg boundary maps defining the homology of Lie algebras.

Proposition 2.25 The category of D–G–algebras is isomorphic to the category of
BV –algebras.

Proof It is a straightforward consequence of Proposition 2.19 conjugated with the
following isomorphism of operads proved by Salvatore and Wahl in [24]:

BV Š G ÌD:

Remark The algebraic structure of a Batalin–Vilkovisky algebra can be encoded in
two different ways, using the operad BV or the D–operad G . When using the graded
D–operad G , the unary operator � is provided by the underlying category of mixed
chain complexes and its relations with the product and the Lie bracket are encoded in
the action of ı on those generating operations.

More generally, we can consider algebras over the homology of the framed little n–
discs operad fDn . Batalin–Vilkovisky algebras correspond to the case n D 2, by
Getzler [11]. In this case, Poisson n–algebras, that is algebras over the homology of
the little n–discs operad Dn , play the role of Gerstenhaber algebras. In the same way,
it is proved in [24] that

fDn ŠDn ÌSO.n/;

as topological operads. Hence, taking the homology, we obtain that

H.fDn/Š H.Dn/ÌH.SO.n//:

In other words, a structure of algebra over H.fDn/ is equivalent to a Poisson n–algebra
structure in the category of H.SO.n//–modules.

However, when n > 3, the algebra H.SO.n// has more than one generator. So, we
can choose to keep some in the operad and to put only a part of these generators in
the underlying category. We still have a Hopf algebra, which acts on the operad thus
obtained.

2.3.3 Differential graded algebras over an operad Let P be an operad. A differen-
tial graded P–algebra is a chain complex .A; dA/ endowed with a P–algebra structure
such that dA is a derivation for all the operations of P . We can encode this structure in
the D–operad P , with the trivial D–action. In particular, for P DAss, the semidirect
product AssÌD is isomorphic to the operad encoding differential graded algebras,
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considered by Livernet, Roitzheim and Whitehouse [20] when the bicomplexes are
concentrated in horizontal degree 0.

3 Relative Koszul duality theory

In this section, we develop the Koszul duality theory for operads over a cocommutative
Hopf algebra H , following the method of Loday and Vallette [21, Chapter 7]. At each
step, we prove that the objects can be enriched with an action of H , and we show that
the results still hold in this context.

Let .P; 
; �; dP/ be a dg H–operad and .C; �; �; dC/ be a dg H–cooperad.

3.1 Twisting morphisms

We consider the following dg S–H–module

.Hom.C;P/ WD fHomK.C.n/;P.n//gn�0 ; @/;

where Sn acts by conjugation and where @.f /D ŒdP ; f � WD dP ıf � .�1/jf jf ı dC .

Proposition 3.1 The dg S–H–module .Hom.C;P/; @/ is a dg H–operad, called the
convolution H–operad.

Proof By Berger and Moerdijk [3, Section 1], the S–module .Hom.C;P/; @/ is an
operad with respect to the composition map


Hom.C;P/.f Ig1; : : : ;gk/ WD 
P ı .f ˝g1˝ � � �˝gk/ ı�C :

Moreover, in [21, Section 6.4.1], it is proved that .Hom.C;P/; 
Hom.C;P/; @/ is a dg
operad. The map 
Hom.C;P/ is H–equivariant as a composite of H–equivariant maps.
And, since dP and dC are H–equivariant, then so is the differential @.

Recall that the following composite defines a pre-Lie product on
Q

n�0 Hom.C;P/.n/:

f ?g WD C
�.1/ //C ı.1/ C

f ı.1/g //P ı.1/ P

.1/ //P :

We denote by HomH–Sn
.C.n/;P.n// the space of H–Sn –bimodule morphisms from

C.n/ to P.n/ and we denote the associated product of S–H–equivariant maps by

HomS–H .C;P/ WD
Y
n�0

HomH–Sn
.C.n/;P.n//:
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Proposition 3.2 The space .HomS�H .C;P/; ?; @/ is a dg pre-Lie algebra. The asso-
ciated Lie bracket induces a dg Lie algebra structure .HomS�H .C;P/; Œ�;��; @/.

Proof By [21, Proposition 6.4.5, Lemma 6.4.6], it only remains to prove that if f
and g are in HomS�H .C;P/ then so is f ? g . This is the case since the pre-Lie
product ? is defined to be the composite of H–equivariant maps.

Consider the Maurer–Cartan equation in the dg-pre-Lie algebra .HomS�H .C;P/; ?; @/

@.˛/C˛ ?˛ D 0:

Definition 3.3 A solution ˛W C ! P of degree �1 to the Maurer–Cartan equation
is called a twisting H–morphism. We denote by TwH .C;P/ the space of twisting
H–morphisms from C to P .

When C is a coaugmented dg cooperad and P is an augmented dg operad, we require
that the composition of a twisting morphism with respectively the coaugmentation map
or the augmentation map vanishes.

3.2 Bar and cobar constructions

Are the two functors TwH .C;�/ and TwH .�;P/ representable?

Recall from [21, Section 6.5], that the bar construction of an augmented dg operad P
is the dg conilpotent cooperad

BP WD .T c.s xP/; dBP/;

and that the cobar construction of a coaugmented dg cooperad C is the dg augmented
operad

�C WD .T .s�1 xC/; d�C/:

Proposition 3.4 Let P be an H–operad and C be an H–cooperad. Then, the H–
module structure of the free operad over an S–H–module makes BP and �C into a dg
H–cooperad and a dg H–operad respectively.

Proof By Proposition 2.15, the free operad T .s�1 xC/ is an H–operad. The differential
d�C is equal to the sum d1C d2 , where d1 is the unique derivation which extends

'W s�1 xC id˝dC // T .s�1 xC/ ;
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and where d2 is the unique derivation which extends

 W .Ks�1
˝ xC/

�s˝�.1/
������! .Ks�1

˝Ks�1/˝ . xC ı.1/ xC/
Id˝�˝Id
������! .Ks�1

˝ xC/ ı.1/ .Ks�1
˝ xC/Š T .s�1 xC/.2/� T .s�1 xC/:

The result [21, Proposition 6.3.15] extends to graded S–H–modules. Indeed, if E

is an S–H–module and ˛W E! T .E/ is a morphism of S–H–modules, the unique
derivation which extends ˛ is a composite of H–equivariant maps. Thus, since '
and  are morphisms of S–H–modules, the derivations d1 and d2 , and hence d�C ,
are H–equivariant maps.

In the same way, we prove that BP is a dg H–cooperad.

Proposition 3.5 The bar and cobar constructions form a pair of adjoint functors

�W fconil. dg H–cooperadsg• faug. dg H–operadsg WB;

such that the adjunction is given by the set of twisting H–morphisms. That is for
every augmented dg H–operad P and every conilpotent dg H–cooperad C , there exist
natural bijections

HomdgOpH
.�C;P/Š TwH .C;P/Š HomdgCoopH

.C;BP/:

Proof It is a consequence of [21, Theorem 6.5.10] and of the definitions of the free
H–operad and the cofree H–cooperad over an S–H–module.

We denote by �C W C!�C and �P W BP ! P the universal twisting H–morphisms
corresponding respectively to the unit �W C! B�C and to the counit �W �BP! P
of the adjunction.

Proposition 3.6 Any twisting H–morphism ˛W C! P factors uniquely through the
universal twisting morphisms �P and �C as follows:

�C
g˛

!!
C

�C
>>

˛ //

f˛   

P

BP
�P

==

where g˛ is a morphism of dg H–operads and f˛ is a morphism of dg H–cooperads.
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Proof It is a consequence of the adjunction given in Proposition 3.5.

When dealing with operads in the monoidal category of dg S–modules, a twisting
morphism ˛ in Tw.C;P/ is called Koszul when a certain chain complex, called the
Koszul complex, is acyclic; see [21, Section 6.6.1].

Definition 3.7 A twisting H–morphism ˛ 2 TwH .C;P/ is said to be Koszul when,
seen as a morphism of dg S–modules, it is a Koszul morphism.

So, the property for a twisting morphism to be Koszul is a homological property
and only depends on the differential structures of C and P . By definition, to be a
quasi-isomorphism is also a homological property, so [21, Theorem 6.6.2] extends to
H–operads to give the following result.

Theorem 3.8 Let P be a connected weight graded dg H–operad and let C be a
connected weight graded dg H–cooperad. Let ˛W C! P be a twisting H–morphism.
The following assertions are equivalent:

(1) The twisting morphism ˛ is Koszul.

(2) The morphism of dg H–cooperads f˛W C! BP is a quasi-isomorphism.

(3) The morphism of dg H–operads g˛W �C! P is a quasi-isomorphism.

Theorem 3.9 The counit �W �BP! P and the unit �W C! B�C of the adjunction
are H–quasi-isomorphisms of dg H–operads and dg H–cooperads respectively.

The resolution �BP is called the bar–cobar resolution of P .

3.3 Koszul duality of H–operads

Definition 3.10 A quadratic H–datum consists of a pair .E;R/ made up of a graded
S–H–module E and a graded sub–S–H–module R of T .E/.2/ called respectively
the generating operations and the relations.

The quadratic H–operad P.E;R/ associated to a quadratic H–datum .E;R/ is the
quotient H–operad of T .E/, which satisfies the following universal property: for any
H–operad P of T .E/ such that the composite of morphisms of S–H–modules

R� T .E/� P
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is trivial, there exists a unique morphism of H–operads which makes the following
diagram commutative:

R // // T .E/ //

$$

P

P.E;R/

OO

Dually, we define the quadratic H–cooperad C.E;R/ associated to a quadratic H–
datum .E;R/.

Proposition 3.11 Let .E;R/ be a quadratic H–datum. The quadratic H–operad (resp.
H–cooperad) associated to .E;R/ is given by the quadratic operad (resp. cooperad)
associated to .E;R/ in the category of S–modules, endowed with the H–module
structure induced by the one on the S–H–module T .E/.

Proof We only prove this result for the quadratic H–operad. In the category of
operads, P.E;R/ is given by the quotient T .E/=.R/ of the free operad on E by
the ideal generated by R. By Proposition 2.16, T .E/=.R/ is an H–operad and, by
assumptions on R and on P , the morphism of operads P.E;R/! P turns out to be
an H–equivariant map.

We can extend the definition of the Koszul dual (co)operad, given in [21, Section 7.2],
to the category of S–H–modules. In the classical case, recall that the Koszul dual
cooperad of quadratic operad P is defined by the cooperad

P ¡
WD C.sE; s2R/;

and the Koszul dual operad of P by the operad

P !
WD .Sc

˝
H
P ¡/�;

where � denotes the aritywise linear dual; see Section 2.2.5.

Proposition 3.12 If P is a quadratic H–operad, then the Koszul dual cooperad (resp.
operad) of P is an H–cooperad (resp. H–operad).

Proof By definition, P ¡ is an H–cooperad. Since �EndKs
is H–equivariant, the

H–operad structure on P ! follows from Proposition 2.21 and Section 2.2.5.
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Proposition 3.13 Let .E;R/ be a quadratic H–datum such that E is a finite dimen-
sional S–H–module. The Koszul dual operad P ! of the quadratic operad PDP.E;R/
admits the quadratic presentation

P !
Š P.s�1S�1

˝
H

E�;R?/;

where R? denotes the sub–S–H–module obtained by proper suspension of the opera-
tions indexing the vertices of the trees of the orthogonal module .s2R/?�T .s�1E�/.2/ ,
which is the image of .s2R/� under the isomorphism .T .E/.2//� Š T .s�1E�/.2/:

Proof By [21, Proposition 7.2.4], this result is true in the category of operads. It is
left to prove that the isomorphism is an H–equivariant map: the restriction of this
isomorphism to the space of generators s�1S�1˝

H
E� is H–equivariant, thus so is the

isomorphism.

Proposition 3.14 Let .E;R/ be a quadratic H–datum and P D P.E;R/ be its
associated quadratic H–operad. The natural H–cooperad inclusion i W P ¡ ,! BP
induces an isomorphism of graded H–operads

i W P ¡ Š
�! H0.B�P/;

where H�.B�P/ denotes the cohomology groups of the syzygy degree cochain complex
associated to BP ; see [21, Section 7.3.1].

Proof By [21, Proposition 7.3.2], we have an isomorphism of operads and the inclusion
P ¡ ,!B0P is exactly the kernel of the differential defining H�.B�P/, that is H0.B�P/.
Since this differential is H–equivariant, this isomorphism is compatible with the H–
module structure.

Lemma 3.15 Let .E;R/ be a quadratic H–datum. Then, the composite

�W C.sE; s2R/� sE
s�1

��!E ,! P.E;R/

associated to .E;R/, is a twisting H–morphism.

Proof It is straightforward from [21, Lemma 7.4.2], since � is a composite of H–
equivariant maps.
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Theorem 3.16 (Koszul criterion) Let .E;R/ be a quadratic H–datum and P D
P.E;R/ be its associated quadratic H–operad. The following statements are equiva-
lent:

(1) The inclusion i W P ¡� BP is a quasi-isomorphism of dg H–cooperads.

(2) The projection pW �P ¡� P is a quasi-isomorphism of dg H–operads.

When these propositions hold, we say that P is a Koszul operad.

Proof This follows from Theorem 3.8.

3.4 Example

Let us now focus on the example of Batalin–Vilkovisky algebras.

Getzler and Jones [13] proved that the operad G is Koszul. Then, by the present
definition, so is the D–operad G .

Lemma 3.17 The action of D on G¡ is induced by

ı� W G¡�Ks � ˚Ksh � I� i;

s � 7! �sh � I� i;

sh � I� i 7! 0:

Proof By definition, the action of D is characterized by its value on the cogenerators
of G¡ , which is deduced from the one on G .

Proposition 3.18 Under the isomorphism of cooperads G¡ Š S�1cComc
1
ıS�1cLiec ,

the structure of D–cooperad on the right-hand side is given by

ı � .L1ˇ � � �ˇLt /D

nX
kD1

.�1/"k L1ˇ � � �ˇL0k ˇL00k ˇ � � �ˇLt ;

where L0
k
ˇL00

k
is the sumless Sweedler’s notation for the image of Lk under the binary

part of �S�1cLiec , that is �S�1cLiec W S�1cLiec
! S�1cLiec.2/˝S2

.S�1cLiec
˝

S�1cLiec/ and

"k D jLk jC � � �C jLt jC 1:
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Proof Recall that, for any S–H–module M , S�1c
M (resp. SM ) denotes the

Hadamard product of S�1c
(resp. S ) with M . To make explicit the action of ı ,

we use the D–operad structure on .G¡/� Š SCom�1 ı SLie, which is given by the
isomorphism of operads .G¡/� Š S2G Š S2.Com ıLie1/. We have

ı � .L1ˇ � � �ˇLt /D ı � .L
�
1ˇ � � �ˇL�t /

�;

with L�
1
ˇ � � �ˇL�t 2 SCom�1 ıSLie. The only elements in SCom�1 ıSLie whose

images under ı � .L�
1
ˇ � � �ˇL�t /

� are nonzero are of the form

L�1ˇ � � �ˇ .L
0
k/
�
ˇ .L00k/

�
ˇ � � �ˇL�t ; k 2 f1; : : : ; tg;

where .L0
k
/�; .L00

k
/� are elements of SLie such that L�

k
D
SLie.s

�1Œ�I��I.L0
k
/�;.L00

k
/�/.

This image is equal to .�1/"kC1 , where "k D jL
�
k
jC � � �C jL�t j.

Remark Dually to the D–operad structure on G , the D–cooperad structure on G¡ is
equal, up to sign, to the image of an element in KŒı�1 ıS�1cComc

1
ıS�1cLiec under

the coderivation d' , given by Galvez-Carillo, Tonks and Vallette [10, Lemma 5].

4 Homotopy algebras and transfer theorem

In this section, we extend some definitions and results of [21, Section 10] to the category
of H–modules, requiring in addition the compatibility with the H–module structure.

4.1 The category of homotopy algebras

Let P be a Koszul H–operad. By definition, a homotopy H–P–algebra, or an H–P1–
algebra, is an algebra over the Koszul resolution P1 WD�P ¡ of P in the category of
H–operads. So, a structure of algebra over P1 on an H–module A is equivalent to a
morphism of H–operads P1W D�P ¡! EndA . Notice that a H–P1–algebra is a
P1–algebra endowed with a compatible H–module structure.

Example Any H–P–algebra structure on an H–module is a particular case of a
H–P1–algebra structure.

Proposition 4.1 The set of H–P1–algebra structures is equivalently given by

HomdgH�Op.�P ¡;EndA/Š TwH .P ¡;EndA/

Š HomdgH�coOp.P ¡;B EndA/Š CodiffH .P ¡.A//;

where CodiffH .P ¡.A// denotes the set of codifferentials on P ¡.A/, that are H–
equivariant coderivations on P ¡.A/ squaring to zero.
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Proof The first two bijections are given by the adjunction of Proposition 3.5. The
proof of Proposition 2.18 implies that

HomS–H–Mod.P ¡;EndA/Š HomH .P ¡.A/;A/:

Moreover, [21, Proposition 6.3.17] extends to H–modules. So, if C is a dg H–cooperad,
V is an H–module and ˛W C.V /! V is H–equivariant, then the unique coderivation
of the cofee C–coalgebra C.V / which extends ˛ is given by a sum of composites of
H–equivariant maps. Thus, we get the isomorphism

HomH .P ¡.A/;A/Š CoderH .P ¡.A//:

We conclude with [21, Proposition 10.1.19], that an element in HomS–H–Mod.P ¡;EndV /

is a solution to the Maurer–Cartan equation if and only if the associated coderivation
on P ¡.V / squares to zero, which does not depend on the H–module structure.

This result provides us with four equivalent definitions of H–P1–algebra structures.
Thus, when dealing with this algebraic structure, we can make an ad hoc choice of one
of those definitions.

By extension of the classical definition of [21, Section 10.2.2], an 1–H–morphism of
H–P1–algebras is a morphism A B of dg H–P ¡ –coalgebras

F W .P ¡.A/; d'/! .P ¡.B/; d /;

where ' and  are the twisting H–morphisms defining the structure of H–P1–algebra
on A and B respectively. We denote by 1–P1–H–alg the category of H–P1–
algebras and their 1–H–morphisms, where the composite of two 1–H–morphisms
is defined as the composite of the associated morphisms of dg H–P ¡ –coalgebras.

Equivalently, an 1–H–morphism of H–P1–algebras is an H–equivariant 1–mor-
phism of the underlying P1–algebras. A 1–H–morphism of H–P1–algebras is
called an 1–H–isomorphism (resp. 1–H–quasi-isomorphism) if its first component
A! B is an H–isomorphism (resp. quasi-isomorphism).

4.2 Homotopy transfer theorem

Let .B; dB/ be a homotopy retract of .A; dA/ in the category of H–modules, that is a
homotopy retract of chain complexes

.A; dA/h
%% p //

.B; dB/;
i

oo

IdA�ip D dAhC hdA;
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such that the maps i , p , h are H–equivariant and i is a quasi-isomorphism.

Theorem 4.2 Let P be a Koszul H–operad. Let .B; dB/ be a homotopy retract of
.A; dA/ in the category of dg–H–modules.

Any H–P1–algebra structure on A, defined by generating operations fm�W A
˝n!

A; � 2 P1g, can be transferred into a H–P1–algebra structure on B , which extends
the transferred operations pm�i˝nW B˝n! B , and such that i extends to an 1–H–
quasi-isomorphism.

Proof We check each step of the proof of [21, Theorem 10.3.2] extends to H–modules.
Since the maps h, i and p are H–equivariant, then the map ‰W B EndA! B EndB ,
defined in [21, Section 10.3.3], is a morphism of H–cooperads. To prove that ‰ is
compatible with the differential structure, we do not care about the H–module structure
so it follows from Van der Laan [18, Theorem 5.2]. Then, as a consequence of the bar–
cobar adjunction, the composite P ¡! B EndA! B EndB defines an H–P1–algebra
structure on B . Similarly, to be an 1–H–quasi-isomorphism does not depend on the
H–module structure therefore, by [21, Theorem 10.3.11], we just have to prove that
the map i1 , defined there, commutes with the H–module structure. This is the case
since it is a composite of such maps.

In particular, the transferred structure and the 1–H–quasi-isomorphism are both given
by the explicit tree-wise formulae of [21, Section 10.3.10, Theorem 10.3.6].

Theorem 4.3 Let P be a Koszul H–operad. Let .A; dA/ be a P ÌH–algebra and
.B; dB/ be a homotopy retract of .A; dA/ in the category of dg–H–modules. Then, B

inherits a structure of H–P1–algebra, which extends the transferred operations, and
such that i extends to an 1–quasi-isomorphism of H–P1–algebras.

Proof By Proposition 2.19, the P ÌH–algebra structure on A is equivalent to an
H–P–algebra structure. Then, we apply Theorem 4.2.

Remark When the operad P ÌH is Koszul, one can apply the HTT for operads, but
the .P ÌH /1–algebra structure can be very complex. If we can do the transfer in
the category of H–modules, then the transferred structure reduces to a much simpler
structure. On the other hand, when the operad P ÌH is not Koszul, the classical
method to transfer an algebraic structure must be improved. While, if the H–operad P
is itself Koszul, then we can apply our version of the HTT, assuming that the homotopy
retract is compatible with the H–action.
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4.3 Homotopy theory for algebras over an H–operad

The results of [21, Chapter 11] extend mutatis mutandis to the framework of H–operads.
The objects and the maps defined there are compatible with the H–module structure.
For the homological considerations, the results still hold because they do not depend
on the H–action. In particular, we obtain the following results.

Theorem 4.4 (Rectification) Let P be a Koszul H–operad. Any H–P1–algebra is
naturally 1–H–quasi-isomorphic to a dg H–P–algebra.

Theorem 4.5 (Equivalence between homotopy categories) Let P be a Koszul H–
operad. The homotopy category of dg H–P–algebras is equivalent to the homotopy
category of H–P–algebras with their 1–H–morphisms.

Remark In particular, we obtain a new description for the homotopy category of
P ÌH–algebras, using a simpler class of 1–morphisms than [21, Theorem 11.4.12].

An advantage of this result lies in the “invertibility” of the 1–H–quasi-isomorphisms.
Indeed, any 1–H–quasi-isomorphism admits an 1–H–quasi-isomorphism in the
opposite direction, as in [21, Theorem 10.4.7], while it is not the case for H–quasi-
isomorphisms. This enables us to prove the following result.

Theorem 4.6 (H–quasi-isomorphism vs 1–H–quasi-isomorphism) Let P be a
Koszul H–operad and A, B be two dg H–P–algebras. The following assertions are
equivalent:

(1) There exists a zigzag of H–quasi-isomorphisms of dg H–P–algebras:

A �
�oo � //� � � � � �

�oo � //B

(2) There exists an 1–H–quasi-isomorphism of dg H–P–algebras A
� B .

Remark Since an H–P–algebra structure is equivalent to a P ÌH–algebra one, the
theorem gives a new and simpler way to prove formality results for P ÌH–algebras.

4.4 Example

When we encode BV-algebra structures with the operad BV , a notion of homotopy
BV-algebra structure is given by Galvez-Carillo, Tonks and Vallette [10]. We describe
the homotopy structure obtained when we use the D–operad G instead, and compare
these two.
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Proposition 4.7 A homotopy D–G–algebra is a mixed chain complex .A; dA; �A/

endowed with a homotopy Gerstenhaber algebra structure such that

�Amp1;:::;pt
�.�1/t�2

nX
iD1

mp1;:::;pt
ıi �AD

tX
kD1

X
p0

k
Cp00

k
Dpk

.�1/"kC1mp1;:::;p
0
k
;p00

k
;:::;pt

;

where nD p1C� � �Cpt and where �AW A!A is the unary operator provided by the
D–module structure on A.

Proof By Proposition 4.1, a structure of D–G1–algebra on a mixed chain complex A

is given by a twisting D–morphism G¡! EndA . It is a twisting morphism G¡! EndA

between the underlying S–modules, that is a homotopy Gerstenhaber structure as
defined in [10, Proposition 16], which commutes with the action of D . This condition
is then a consequence of Proposition 3.18, according to the study of homotopy Ger-
stenhaber algebras done in [10, Section 2.1].

As conjectured at the end of [10, Section 2.4], we have the following relation with the
homotopy BV-algebras.

Proposition 4.8 A homotopy BV-algebra structure (as defined in [10, Theorem 20]),
such that all the operations are trivial except the maps m0

p1;:::;pt
and the map m1

1
, is

equivalent to a D–G1–algebra.

Proof Looking at the explicit description of the homotopy BV-algebra structure given
in [10, Theorem 20], all the relations become trivial except the relations R0

p1;:::;pt
,

defining the homotopy Gerstenhaber structure, the relations R1
p1;:::;pt

, corresponding
to those given in Proposition 4.7, and the relation R2

1
, which means that m1

1
squares

to zero.

From now on, we call a D–G1–algebra a strict homotopy BV-algebra, since a D–
G1–algebra is a homotopy BV-algebra such that the operator � strictly satisfies the
relations of a BV operator.

Remark A strict homotopy BV-algebra is a homotopy BV-algebra such that any
elements in BV ¡ (as defined in [10, Section 1]) containing a vertex decorated by �,
except � itself, acts as zero. If we ask, moreover, that � acts as zero, we get the
notion of strongly trivialized homotopy BV-algebras, defined by Drummond-Cole [8].
In that article, the author proved that any strongly trivialized homotopy BV structure
on a chain complex induces a structure of homotopy hypercommutative algebra; see
Drummond-Cole and Vallette [9], on that complex. Thus, we get another description
of the homotopy hypercommutative structure.
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Theorem 4.9 Let .B; dB; �B/ be a homotopy retract of .A; dA; �A/ in the category
of mixed chain complexes. If A is endowed with a BV-algebra structure (or with a
strict homotopy BV-algebra structure), then B inherits a structure of strict homotopy
BV-algebra which extends the naive transferred operations, and such that i extends to
an 1–D–quasi-isomorphism of strict homotopy BV-algebras.

Proof By Proposition 2.25, A is a D -G–algebra. Then we apply Theorem 4.2.

When the homotopy retract lives in the category of mixed chain complexes, this theorem
shows that the transferred homotopy BV–algebra structure reduces to a strict homotopy
BV–algebra, ie a homotopy BV-algebra structure without higher homotopies arising
from � and its relations with the product and with the bracket.

Proposition 4.10 Let .B; dB/ be a homotopy retract of .A; dA/, in the category of
chain complexes, which satisfies the following side conditions:

hi D phD 0:

If .A; dA; �; h � I� i; �/ is a BV-algebra structure on A such that

�hC h�D 0;

then B inherits a strict homotopy BV-algebra structure, induced by the BV-algebra
structure on A, and such that i extends to an 1–D–quasi-isomorphism of strict
homotopy BV-algebras.

Proof We endow the chain complex .B; dB/ with the unary operator z� induced
by �, and defined by z� WD p�i . The condition �hC h�D 0 implies that z�2 D 0

so .B; dB; z�/ is a mixed chain complex. Moreover, the side conditions imply that the
maps p and i are compatible with z�. Thus, we have a homotopy retract between
.A; dA; �/ and .B; dB; z�/ in the category of mixed chain complexes. We conclude
by applying Theorem 4.9.

This proposition is the result which answers the main question raised at the beginning
of this paper.

When B consists of the homology groups H�.A; d/ of the complex .A; d/, it is always
possible to build a homotopy retract which satisfies the side conditions: it is called the
Hodge decomposition; see Loday and Vallette [21, Lemma 9.4.7]. More precisely, the
chain complex .A; d/ splits into a direct sum of graded spaces as

ADH ˚B˚C;

Algebraic & Geometric Topology, Volume 14 (2014)



Koszul duality theory for operads over Hopf algebras 31

where BDKer.d/\Im.d/, H˚BDKer.d/ and H ŠH�.A; d/. Then, the homotopy
retract is defined as follows:
� i is the inclusion of H in A.
� p is the projection of A onto H .
� h is equal to 0 on H ˚C and is equal to d�1 on B .

In this case, the homotopy retract satisfies the aforementioned side conditions.

Example We consider the following nonunital dg commutative algebra A generated
by

x3; y3; t3; �4; !5; z7; u7 and v8;

where the subscript gives the homological degree, such that the product by u, by v ,
by � and by ! is equal to zero. The algebra A is finite dimensional and spanned by
the elements x , y , t , � , ! , xy , xt , yt , u, z , v , xz , yz , tz , xyz , xyt and xyzt .
We summarize in the following picture the definition of the differential and of the BV
operator on the generators:

0 3 4 5 6 7 8 9 10 13 16

x �
� � // ! xy

� � // u v
�doo xyt xz xyz xyzt

y xt z
�d

bb
=
��

>>

yz

t yt zt

where an element is sent to 0 if nothing else is specified.

Proposition 4.11 The aforementioned algebra .A; d; �/ is a dg BV-algebra. More-
over, its homology H�.A; d/ is endowed with a strict homotopy BV-algebra structure,
such that the inclusion H�.A; d/ ,!A extends to an 1–quasi-isomorphism of strict
homotopy BV-algebras.

Proof It is straightforward to prove that A together with d and � forms a dg BV-
algebra. The Hodge decomposition of A is given by

n 3 4 5 6 7 8 9 10 13 16

Hn x;y; t �
�� // ! xt;yt xyt xz;yz; tz xyz xyzt

Bn xy
� � //

	

hDd�1 $$

u � hDd�1

""
Cn z

�
��
// v
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where an element is sent to 0 if nothing else is specified. The contracting homotopy
and � commute. Then, we apply Proposition 4.10.

Note that the product induced in homology is associative, since the differential on
H�.A; d/ is 0, but the first homotopy for the associativity relation, given by

m0
3 WD p

�
.h.i.�/ � i.�/// � i.�/

�
�p

�
i.�/ � .h.i.�/ � i.�///

�
is not equal to 0. Moreover, the BV operator does not vanish in homology.

Remark Introduced by Deligne, Griffiths, Morgan and Sullivan [7] to study the
differential forms of compact Kähler manifolds and used by Barranikov and Kontse-
vich [1] for the Dolbeault complex of Calabi–Yau manifolds, the ddc–lemma implies the
condition Œ�; h�D 0, but is a strong condition in our setting. Indeed, if the ddc–lemma
is satisfied, then the operator � vanishes on the homology groups.

Encoding the BV-algebra structure in the D–operad G allows us to deal with a notion
of homotopy BV-algebra which is simpler than the one given by Galvez-Carillo, Tonks
and Vallette [10]. The associated notion of 1–morphism is also simplified.

Proposition 4.12 An 1–D–morphism of (strict homotopy) BV-algebras is an 1–
morphism of the underlying (homotopy) Gerstenhaber algebras which commutes with
the extra action of the unary operator, provided by the (strict homotopy) BV-algebra
structures.

Proof It is a consequence of the definition of an 1–morphism in the category of
D–G1–algebras.

Corollary 4.13 The homotopy category of BV-algebras is equivalent to the homotopy
category of strict homotopy BV-algebras with their 1–morphisms. Moreover, for any
BV-algebras A and B , the following assertions are equivalent:

(1) There exists a zigzag of quasi-isomorphisms of BV-algebras:

A �
�oo � //� � � � � �

�oo � //B

(2) There exists an 1–quasi-isomorphism of Gerstenhaber algebras A
� B , com-

muting with the unary operator provided by the BV-algebra structures.

Proof Since the operad G is Koszul, we can apply Theorem 4.5 and Theorem 4.6,
combined with Proposition 4.12.
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This theorem provides a new way to prove the existence of a chain of quasi-isomorphisms
between BV-algebras. In particular, it could help to prove the formality of a BV-algebra.
Moreover, we could hope to use it to study the interpretation of the mirror symmetry
conjecture of Kontsevich [17] in terms of BV-algebras.

The mirror symmetry conjecture says that a certain A–type theory of a Calabi–Yau
manifold can be identified with a B–type theory on a mirror manifold. Cao and Zhou [4]
interpret this conjecture as the existence of a quasi-isomorphism of dg BV-algebras
from the De Rham complex of a Calabi–Yau manifold M to the Dolbeault complex of
a dual Calabi–Yau manifold �M:�
�n��.M/; dDR;^; �; h � I� i

� �
�!
�
�. �M;^� xT ��M˝^�T �M/; x@;^; div; h � I� iS

�
:

Using Corollary 4.13, it is equivalent to the existence of an 1–quasi-isomorphism of
the underlying Gerstenhaber algebras, which commutes strictly with the action of the
unary operators � and div.
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