
msp
Algebraic & Geometric Topology 13 (2013) 1513–1530

Centralizers of finite subgroups
of the mapping class group

HAO LIANG

In this paper, we study the action of finite subgroups of the mapping class group of a
surface on the curve complex. We prove that if the diameter of the almost fixed point
set of a finite subgroup H is big enough, then the centralizer of H is infinite.

20F65, 20F67

1 Introduction

Let S be an orientable surface of finite type with complexity at least 4, Mod.S/
be the mapping class group of S , C.S/ be the curve complex of S and ı be the
hyperbolicity constant of C.S/. (See Section 4 for the definitions of the above objects
and references.) We prove the following theorem.

Main theorem Let H be a finite subgroup of Mod.S/. Let

CH D f� 2 C.S/ W diam.H � �/� 6ıg:

There exists a constant D , depending only on the topological type of S , such that if
diam.CH /�D , then the centralizer of H in Mod.S/ is infinite.

We call points in CH almost fixed points of H . Note that CH is never empty. In fact,
almost fixed points are very easy to find. Let � 2 C.S/. Then any 1–quasicenter of
the H –orbit of � is in CH . (See Bridson and Haefliger [3, Chapter III.� , Lemma 3.3,
p 460] for more detail.)

A motivation of the Main theorem is the following: Consider a sequence of homo-
morphisms ffig from a finitely generated group G to Mod.S/. This sequence of
homomorphisms induce a sequence of actions of G on C.S/. Suppose that the
translation lengths (with respect to some finite generating set of G ) of these actions go
to infinity. In this case, these actions of G on C.S/ converge to a nontrivial action of
G on an R–tree. The Main theorem provides some information about this action.
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Corollary 1.1 Let T be the R–tree obtained as above. Let K be the stabilizer in G

of a nontrivial segment in T . Then there exists N , such that any finite subgroup H of
fi.K/ has infinite centralizer in Mod.S/ for all i �N .

The same phenomenon shows up when one considers the action of a hyperbolic group
on its Cayley graph. We include the proof of the Main theorem for hyperbolic groups
(Theorem 3.1) in this paper for the following reasons: First, even through experts in
geometric group theory might know the proof for hyperbolic groups, as far as the author
knows the proof is not in the literature. Second, since the two proofs are similar, while
the mapping class group case requires many more tools (such as Masur and Minsky’s
theory of hierarchies) and is more technical, we think that the proof of the hyperbolic
group case serves well as a warm-up.

The proofs of both Main theorems are based on a general fact proved in Section 2.
Consider a “nice” finitely generated group G admitting a “nice” action on a infinite
metric graph. Lemma 2.1 says if the cardinality of the set of almost fixed points (see
Section 2 for definition) of a finite subgroup is big enough, then the centralizer of the
finite subgroup is infinite.

In Section 3, we use the hyperbolicity of the Cayley graph of a hyperbolic group to show
that having two almost fixed points far apart implies having a lot of points with small
H –orbit. This is Lemma 3.2. Then we show that the action in this case is “nice” in the
sense of Lemma 2.1 and the Main theorem for hyperbolic groups (Theorem 3.1) follows.
In Section 4, we introduce the basic definitions we need to state the Main theorem and
some tools we use in the proof of it. In Section 5, we prove the Main theorem for the
mapping class group. The proof of the Main theorem for the mapping class group relies
heavily on the theory of hierarchies. Readers who are not familiar with the theory of
hierarchies should read Masur and Minsky [9]. In Section 6, we prove Corollary 1.1.

The author is grateful to Daniel Groves, who has taught the author a lot about the
interplay between the theory of hyperbolic group and the theory of mapping class group
through hierarchies and without whose many helpful suggestions, this paper would
not have been possible. The author also wants to thank the referee for the helpful
comments, especially for the suggestions on how to improve the organization of the
proof of the Main theorem.

2 The key lemma

Lemma 2.1 is a key fact we need in the proofs of the Main theorems, in both the
hyperbolic case and the mapping class group case.
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In order to state Lemma 2.1, we need to introduce some notation. Consider a finitely
generated group G acting properly and cocompactly on an infinite locally finite metric
graph K by isometries. Let H be a finite subgroup of G . Let a be a positive integer.

Suppose the cardinalities of finite subgroups of G are bounded above by some number
C0 .

Let K.0/ be the set of vertices of K and C1 be the number of points in K.0/=G .

For p 2 K , let B.p; a/ denote the a–neighborhood of p in K and cardv.B.p; a//
be the number of vertices in B.p; a/. Since K is locally finite, cardv.B.p; a// is
finite. Since G acts on K cocompactly, there are only finitely many isometry types of
B.p; a/. Hence fcardv.B.p; a// W p 2K.0/g is a finite set of finite numbers. Let C2

be an upper bound for fcardv.B.p; a// W p 2K.0/g.

Let C3 DMaxfcard.stab.p// W p 2K.0/g, where stab.p/ is the stabilizer of p in G .
Note that card.stab.p// is finite for all p 2K.0/ since the action of G on K is proper.
On the other hand, since G acts on K cocompactly, card.stab.p// only has finitely
many different values. Therefore fcard.stab.p// W p 2 K.0/g is a finite set of finite
numbers. So C3 exists.

Lemma 2.1 Let PH D fp 2K.0/ W diam.H �p/ � ag. Then there exists a constant
N , depending only on C0;C1;C2;C3 , such that if card.PH /�N , the centralizer of
H in G is infinite.

Proof It suffices to take N D ..C0C1/.C3/
C0C1/C1.C2/

C0 . Assume card.PH /�N .
We show that in this case the centralizer of H is infinite.

By definition, C1 is the number of G–orbits in K.0/ . By the pigeonhole principle,
there are at least

r1 D
N

C1

points of PH in the same orbit. Choose a subset P D fp1; : : : ;pr1
g of PH so that

all elements of P are in the same G–orbit. Choose gi 2 G so that gi �p1 D pi for
2� i � r1 . Note that g�1

i induces an isometry from B.pi ; a/ to B.p1; a/.

Let H D fh1; : : : ; hdg. First, we consider the action of h1 . For any pi 2 P , we have
h1 �pi 2 B.pi ; a/ by the definition of PH . Therefore, g�1

i � h1 �pi 2 B.p1; a/. Since
cardv.B.p1; a//�C2 , by the pigeonhole principle, there exists v1 2B.p1; a/ such that
for at least r1=C2 many i , g�1

i �h1 �pi D v1 . Let I1 be the subset of f1; : : : ; r1g such
that for any i 2 I1 , we have g�1

i �h1 �pi D v1 , which is equivalent to h1 �pi D gi � v1 .
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Now consider h2 . As above, by the pigeonhole principle, there exists v2 2 B.p1; a/,
and a subset I2 of I1 with card.I2/ � r1=.C2/

2 , such that h2 � pi D gi � v2 for all
i 2 I2 .

Repeating this process for all the elements of H , we have

ht �pi D gi � vt

for all 1� t � d and all i 2 Id , where Id � Id�1 � � � � � I1 and

r2 D card.Id /�
r1

.C2/d
:

Fix an element b 2 Id . For any i 2 Id , we have

h1 �gi �g
�1
b �pb D h1 �gi �p1 D h1 �pi D gi � v1 D gi �g

�1
b � h1 �pb:

Therefore we have

h�1
1 �gb �g

�1
i � h1 �gi �g

�1
b 2 stab.pb/:

We know that card.stab.pb//� C3 . Now applying the pigeonhole principle again, we
know that there exists a subset I1

d
of Id with card.I1

d
/� .r2� 1/=C3 , such that for

any i; j 2 I1
d

,

h�1
1 �gb �g

�1
i � h1 �gi �g

�1
b D h�1

1 �gb �g
�1
j � h1 �gj �g

�1
b ;

which is equivalent to
gj �g

�1
i � h1 D h1 �gj �g

�1
i :

Repeating this process for all the elements of H , we get a subset Id
d

of Id , with
card.Id

d
/� .r2� 1/=.C3/

d , such that for any i; j 2 Id
d

, any 1� t � d ,

gj �g
�1
i � ht D ht �gj �g

�1
i :

Fix c 2 Id
d

. Then for all i 2 Id
d

, all ht 2H , we have

gc �g
�1
i � ht D ht �gc �g

�1
i :

Hence gc � g
�1
i centralizes H for all i 2 Id

d
. Therefore, there are at least card.Id

d
/

elements in the centralizer of H . But since N D ..C0C 1/.C3/
C0 C 1/C1.C2/

C0 , we
have

r1 D
N

C1
D ..C0C 1/.C3/

C0 C 1/.C2/
C0 :

Therefore, since d � C0 , we have

r2 �
r1

.C2/d
� .C0C 1/.C3/

C0 C 1:
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So, again using the fact that d � C0 , we have

card.Id
d /�

r2� 1

.C3/d
� C0C 1:

So there are at least C0C 1 elements in the centralizer of H , but any finite subgroup
of G has cardinality at most C0 , so the centralizer of H must be infinite.

3 Main theorem and proof: the hyperbolic group case

We use the convention that a ı–hyperbolic space is a geodesic metric space in which
all geodesics triangles are ı–thin. (See [3, Chapter III.H, Definition 1.16, p 408] for
more detail.)

Theorem 3.1 Let G be a hyperbolic group with fg1; : : : ;gng as a generating set. Let
KG be the Cayley graph of G with respect to the given generating set. Let ı be the
hyperbolicity constant for KG . Let H be a finite subgroup of G . Let

XH D fx 2KG W diam.H �x/� 6ıg:

There exists a constant D , depending only on ı and n, such that if diam.XH / �D ,
then the centralizer of H in G is infinite.

We call x 2XH almost fixed points of H .

Lemma 3.2 Let x;y 2XH . Suppose d.x;y/� 20ı . Let Œx;y� be a geodesic in KG

connecting x and y . Then for any vertex z 2 Œx;y� such that d.x; z/ � 6ıC 1 and
d.z;y/� 6ıC 1, we have diam.H � z/� 8ı .

x y

h �yh �x

z

z0

z1

h � z

Proof It suffices to prove that d.h � z; z/� 8ı for all h 2H .

Consider the geodesic triangle with edges

Œx;y�; Œx; h �y�; Œy; h �y�:
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KG is ı–hyperbolic, so the triangle satisfies the thin triangle condition. By the
definition of z , we have d.z;y/� 6ıC1. Since y 2XH , we have d.y; h �y/� 6ı by
the definition of XH . Therefore, there is a point z0 2 Œx; h �y� such that d.z; z0/� ı

and d.x; z0/D d.x; z/.

Now consider the triangle with edges

Œx; h �x�; Œx; h �y�; Œh �x; h �y�D h � Œx;y�:

As above, since d.h � z; h �x/D d.x; z/� 6ıC1 and d.x; h �x/� 6ı , there is a point
z1 2 Œx; h �y� such that d.h � z; z1/� ı and d.h �y; z1/D d.h �y; h � z/. So we have

d.z0; z1/D jd.x; z0/C d.h �y; z1/� d.x; h �y/j

D jd.x; z/C d.h �y; h � z/� d.x; h �y/j

D jd.h �x; h � z/C d.h �y; h � z/� d.x; h �y/j

D jd.h �x; h �y/� d.x; h �y/j � 6ı:

Now we know: d.h � z; z/� d.z; z0/C d.h � z; z1/C d.z0; z1/� ıC ıC 6ı D 8ı .

Applying Lemma 2.1 to the action of G on KG , we get the following lemma.

Lemma 3.3 Let H and G be as in Theorem 3.1. Let

PH D fx 2KG W diam.H �x/� 8ıg:

There exists a constant N , depending only on ı and n, such that if card.PH / � N ,
then the centralizer of H in G is infinite.

Proof In order to apply Lemma 2.1, it suffices to show that in the current situation,
C0;C1;C2;C3 are finite and they depend only on ı and n.

By [3, Chapter III.� , Theorem 3.2, p 459], there exists an upper bound, depending
only on ı and n, for the cardinality of finite subgroups of G . So C0 is finite and
depends only on ı and n. We have C1 D 1 since KG=G has only one vertex. Also
C2 is finite and depends only on ı and n by the definition of Cayley graph. Finally,
C3 D 1 since the action is free.

Proof of Theorem 3.1 Let D D N C 12ı C 4, where N is the constant given by
the previous lemma. Then D depends only on ı and n. Let x;y 2 XH such that
d.x;y/�D . Let Œx;y� be a geodesic connecting x;y . Let

B D fz 2 Œx;y� W d.z;x/� 6ıC 1; d.z;y/� 6ıC 1g:

Then card.B/�N and B � PH , where PH is as in the statement of Lemma 3.3. So
card.PH /�N . Therefore, by Lemma 3.3, the centralizer of H in G is infinite.
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4 Mod.S /: Background

Let S D S
;p be an orientable surface of finite type, with genus 
 and p punctures.
The complexity of S is measured by �.S/D 3
 .S/Cp.S/. In this paper, we only
consider surfaces with � � 4. The only exception is the annulus, which only appears
as a subsurface of S .

The mapping class group of S , denoted by Mod.S/, is the group of orientation-
preserving homeomorphisms of S modulo isotopy.

A curve on S will always mean the isotopy class of a simple closed curve that is not
null-homotopic or homotopic into a puncture.

For surface S with � � 5, the curve graph C.S/ consists of a vertex for every curve,
with edges joining pairs of distinct curves that have disjoint representatives on S . The
curve graph is the 1–skeleton of the curve complex introduced by Harvey in [7], which
is the flag complex associated to the curve graph.

When � D 4, the surface S is either a once-punctured torus S1;1 or a four-times-
punctured sphere S0;4 . We have an alternate definition for the curve graph C.S/:
Vertices are still curves. Edges are given by pairs of distinct curves that have represen-
tatives that intersect once (for S1;1 ) or twice (for S0;4 ).

By assigning length 1 to each edge we make C.S/ into a metric graph. We use dS to
denote this metric. Masur and Minsky [8, Theorem 1.1] prove the following.

Theorem 4.1 C.S/ is an ı–hyperbolic metric space, where ı depends on S . Except
when S is a sphere with 3 or fewer punctures, C.S/ has infinite diameter.

When Y is an annulus with incompressible boundary in S , which is not homotopic
into a puncture, C.Y / is also defined. (See Masur and Minsky [9, Section 2.4] for the
definition.)

Since elements in Mod.S/ preserve disjointness of curves, Mod.S/ acts on C.S/ by
isometries. This action is cocompact since there are only finitely many curves on S up
to homeomorphisms, but it is far from proper.

A domain Y in S will always mean an isotopy class of an incompressible, nonperipheral,
connected open subsurface. Note that Mod.S/ acts on the set of all domains of S .

The marking graph M.S/ is a locally finite, connected graph whose vertices are
complete markings on S and whose edges are elementary moves. A complete marking
is a system of closed curves consisting of a base, which is a maximal simplex in the
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flag complex of C.S/, together with a choice of transversal curve for each element
of the base, satisfying certain minimal intersection properties. (See [9, Section 2.5]
for the exact definitions.) We make M.S/ into a metric space by assigning length 1

to each edge. We use dM to denote the metric on M.S/. The marking graph M.S/

admits an proper and cocompact action by Mod.S/ by isometries.

Convention 4.2 For the rest of the paper, by an element � 2 C.S/ or � 2M.S/ we
always mean a vertex of C.S/ or M.S/ and similarly for a subset of C.S/ or M.S/.

In [9], tight geodesics are defined to give some kind of local finiteness to deal with the
fact that the curve graph is locally infinite. (See [9, Definition 4.2] for the definition.)
A hierarchy of tight geodesics between any �;�0 2M.S/ is a particular set of tight
geodesics k , each in C.W / for a subsurface W � S . The hierarchy is required to
contain a tight geodesic in C.S/ between � and �0 , which is called the main geodesic
of the hierarchy. � and �0 are called the initial and terminal marking of the hierarchy.
The subsurface W � S is known as the domain of k . (See [9, Definition 4.4] for the
exact definition of hierarchy.)

Let Y be a proper domain of S with � � 4 or an annular domain. Let �Y W C.S/!

P.C.Y // be the subsurface projection defined in [9, Sections 2.3 and 2.4], where
P.X / denote the set of finite subsets of X . Define dY .A;B/� dY .�Y .A/; �Y .B//

for sets or elements A and B in C.S/.

The geodesics in a hierarchy H behave well with subsurface projections of the initial
and terminal markings of H in the following sense.

Lemma 4.3 [9, Lemma 6.2] There exists constants M1 and M2 depending only on S

such that the following is true: Let I.H/ and T .H/ be the initial and terminal marking
of a hierarchy H , respectively. If Y is any domain in S and dY .I.H/;T .H//�M2 ,
then Y is the domain of a geodesic h in H . Conversely if h 2H and Y is the domain
of h, then jjhj � dY .I.H/;T .H//j � 2M1 .

Hierarchies give rise to quasigeodesic paths between their initial and terminal markings,
which are called hierarchy paths (see [9, Section 5]). Through these hierarchy paths
hierarchies connect the geometry of M.S/ with the geometry of C.S/ and C.Y / for
Y � S . The following lemma is one of the important connections we need.

Lemma 4.4 Let H be a hierarchy. Let c be any positive number. Suppose that the
lengths of all the geodesics in H are less than c . Then the distance between the initial
marking and the terminal marking of H in M.S/ is less than d , where d is a number
depending only on c and the topological type of S .
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Proof By the above lemma, dY .I.H/;T .H// � c C 2M1 for all domain Y of S .
Now apply [9, Theorem 6.12] with M D cC 2M1C 1.

The fellow traveler property of geodesics (Lemma 3.2) is crucial to proof of the Main
theorem (for hyperbolic groups). In general hierarchy paths don’t have this property.
But when the main geodesics of two hierarchies fellow travel, [9, Lemma 6.7] gives us
some control over their hierarchy paths.

The results about hierarchies in [9, Section 6] allow us to make some arguments from
ı–hyperbolic geometry to work for M.S/. This is the approach we are taking.

5 Proof of the Main theorem

In this section we prove the Main theorem for Mod.S/. First, recall its statement.

Main theorem Let H be a finite subgroup of Mod.S/. Let

CH D f� 2 C.S/ W diam.H � �/� 6ıg:

There exists a constant D , depending only on the topological type of S , such that if
diam.CH /�D , then the centralizer of H in Mod.S/ is infinite.

We prove several lemmas before we prove the Main theorem.

Apply Lemma 2.1 to the action of Mod.S/ on M.S/. We get the following lemma.

Lemma 5.1 Let a be any positive integer. Let H be a finite subgroup of Mod.S/.
Let Pa

H
D f� 2M.S/ W diam.H ��/ � ag. There exists a constant N , depending

only on S and a, such that if card.Pa
H
/�N , the centralizer of H is infinite.

Proof In order to apply Lemma 2.1, it suffices to show that in the current situation,
C0;C1;C2;C3 are finite and they depend only on S and a.

By Nielsen Realization Theorem (see [13] for a proof in the case of punctured surfaces)
every finite subgroup of Mod.S/ can be realized as a subgroup of the isometry group
of the surface with some hyperbolic structure. By Hurwitz’s Automorphism Theorem,
the size of the isometry group of a punctured hyperbolic surface is bounded above. (The
bound is 84.g�1/ when g� 2. When g� 1, a similar argument as in [5, Section 7.2]
gives an upper bound for the size of the isometry group.) Hence the orders of finite
subgroups of Mod.S/ are bounded above by a constant which depends only on the
topological type of S . So C0 is finite and depends only on S . By the construction of
M.S/, both C1 and C3 are finite and depend only on S . For the same reason, C2 is
finite and depends only on S and a.
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Lemma 5.2 Suppose there exists a domain Y of S such that either h.Y / D Y or
h.Y / and Y are disjoint for any h 2H . Then the centralizer of H is infinite.

Proof Let A be the set of boundary components of Y and all the H –translates of Y .
Then A is a set of pairwise disjoint curves. Let T D

Q
Œ˛�2A DŒ˛� , where DŒ˛� is the

right Dehn twist around ˛ .

Note that T has infinite order. We will prove the lemma by showing that T is in the
centralizer of H . The idea is as follow: For any h 2 H , we pick a representative
hS 2 HomeoC.S/ of h and construct Th 2 HomeoC.S/ such that hS �Th D Th � hS .
These elements then also commute in Mod.S/. Then we note that for all h 2 H ,
Th ' T . Therefore T D Th in Mod.S/.

For h 2H , h permutes the elements of A. Let�
Œ˛1

1 �; Œ˛
2
1 �; : : : ; Œ˛

j1

1
�
�
; : : : ;

�
Œ˛1

n �; Œ˛
2
n �; : : : ; Œ˛

jn
n �
�

be the decomposition of A into h–cycles. Then we have h � Œ˛
j
i � D Œ˛

jC1
i � and

h � Œ˛
ji

i �D Œ˛
1
i � for 1� i � n.

For each Œ˛� 2A, pick a simple representative ˛ such that representatives of different
elements of A are disjoint. Pick a neighborhood N.˛/ for each ˛ such that neigh-
borhoods of different representatives are disjoint. It is easy to see that we can pick a
representative hS 2HomeoC.S/ of h such that the following are true for all 1� i � n:

(1) hS takes N.˛
j
i / to N.˛

jC1
i / by homeomorphism for j � ji � 1.

(2) hS takes N.˛
ji

i / to N.˛1
i / by homeomorphism.

(3) .hS /
ji is the identity map on N.˛1

i / if .h/ji preserves the two sides of Œ˛1
i �.

(4) .hS /
ji is a “� –rotation” on N.˛1

i / if .h/ji flips the two sides of Œ˛1
i �. Here

the “� –rotation” map is an order 2 orientation-preserving map which flips the two
boundary components of N.˛1

i /.

Next, we define Th . Let Th be the identity map on S �
S
Œ˛�2A N.˛/. For all

1 � i � n, let Th be a right Dehn twist T˛1
i

on N.˛1
i /. For 2 � j � ji , let Th be

T˛j

i
D .hS /

j�1 �T˛1
i
� .hS /

1�j on N.˛
j
i /.

On S �
S
Œ˛�2A N.˛/, Th and hS commute in Mod.S/ since they commute in

HomeoC.S/ as Th is the identity.
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Suppose 1� j � ji � 1. On N.˛
j
i / we have

hS �Th D hS � .hS /
j�1
�T˛1

i
� .hS /

1�j
D .hS /

j
�T˛1

i
� .hS /

1�j ;

Th � hS D .hS /
j
�T˛1

i
� .hS /

�j
� hS D .hS /

j
�T˛1

i
� .hS /

1�j :

So Th and hS also commute in HomeoC.S/, hence in Mod.S/.

On N.˛
ji

i /, we have

hS �Th D hS � .hS /
ji�1
�T˛1

i
� .hS /

1�ji D .hS /
ji �T˛1

i
� .hS /

1�ji ;

Th � hS D T˛1
i
� hS :

If .hS /
ji is the identity, then .hS /

1�ji D hS . Again we see that Th and hS commute
in HomeoC.S/, hence in Mod.S/.

If .hS /
ji is the “� –rotation” f , then f � .hS /

1�ji D hS . Therefore we have

hS �Th D .hS /
ji �T˛1

i
� .hS /

1�ji D f �T˛1
i
� .hS /

1�ji ;

Th � hS D T˛1
i
� hS D T˛1

i
�f � .hS /

1�ji :

One can easily check that f �T˛1
i
D T˛1

i
�f in Mod.S/. So Th and hS commute in

Mod.S/.

Finally, we note that Th projects to T in Mod.S/ and the proof of the lemma is
complete.

Let �0 , �1 be CH . The idea of the following lemma is the same as Lemma 3.2.

Lemma 5.3 Suppose d.�0; �1/ � 20ı . Let Œ�0; �1� be a geodesic in C.S/ connect-
ing �0 and �1 . Then for any vertex b 2 Œ�0; �1� such that dS .�0; b/ � 6ı C 1 and
dS .b; �1/� 6ıC 1, we have diamS .H � b/� 8ı .

Let �0 , �1 2M.S/ such that �0 2 base.�0/, �1 2 base.�1/. Let HD Œ�0; �1� be a
hierarchy [9, Definition 4.4] with initial marking �0 , terminal marking �1 and with
the main geodesic connecting �0 , �1 . For h 2H , Let Hh be the h translate of H .

Define B as follows:

B D fb 2 Œ�0; �H � W dS .�i ; b/� 14ıC 5; i D 0; 1g:

Here [�0; �H ] is the main geodesic of H . For any b 2B , h 2H , let �b be a marking
compatible with a slice [9, Section 5] of H at b . Then h ��b is a marking compatible
with a slice of Hh at h � b . Let Hh

b
D Œ�b; h ��b � be a hierarchy connecting �b and

h ��b .
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Lemma 5.4 Hh
b

is .K;M 0/–pseudoparallel [9, Definition 6.5] to H , where K and
M 0 depend only on S .

Proof By Lemma 5.3, the main geodesic [�0; �H ] of H and the main geodesic
h � Œ�0; �H � of Hh are .8ıC 2; 2ıC 1/–parallel [9, Definition 6.4] at b and h � b for
all b 2 B and h 2H . Now apply [9, Lemma 6.7].

Let M be the constant in [9, Theorem 3.1].

Lemma 5.5 Let b 2 B , h 2H . Suppose Y is the domain of a geodesic of Hh
b

. Then
dY .�0; h ��0/�M and dY .�1; h ��1/�M .

Proof Let Œ�b; h ��b � be the main geodesic in Hh
b

. By Lemma 5.3, we have dS .�b; h �

�b/ � 8ı C 2. Since Y is the domain of a geodesic in Hh
b

, it must be forward
subordinate (see [9, Section 4.1] for the definition) to Œ�b; h � �b � at some vertex � . Let
l be any boundary component of Y . Then dS .l; �/ D 1. Since �0 2 CH , we have
dS .�0; h � �0/� 6ı . Let Œ�0; h � �0� be a geodesic connecting �0 and h � �0 . Let �i be
a point on Œ�0; h � �0�. By the triangle inequality,

dS .�; �i/� dS .�0; �b/� dS .�; �b/� dS .�i ; �0/

� dS .�0; �b/� dS .�b; h � �b/� dS .�0; h � �0/

� .14ıC 5/� .8ıC 2/� 6ı D 3:

Then dS .l; �i/ � dS .�; �i/� dS .l; �/ � 3� 1 D 2. Therefore �i intersects l . As a
result, �i intersects Y . And this is true for all � 2 Œ�0; h

0 � �0�. By [9, Theorem 3.1],
dY .h � �0; �0/�M . The exact same argument shows dY .�1; h ��1/�M .

Now we are ready to prove the Main theorem.

Proof of Main theorem Recall that M is the constant in [9, Theorem 3.1]. Let M1 ,
M2 be the constants in Lemma 4.3. Let K and M 0 be the constants in Lemma 5.4.
Let e D 2M C 8M1CM2C 2KCM 0 . Let d be the constant given by Lemma 4.4
with c D e C 2M1 . Let N be the constant given by Lemma 5.1 with a D d . Let
D DN C 12ıC 10. Note that D depends only on the topological type of S .

We will show that the centralizer of H is infinite provided that dS .�0; �1/�D .

The proof will break into 2 cases: If the length of geodesics of the hierarchies Hh
b

are
bounded for all b 2B , h 2H , then the distance between �b and h ��b in M.S/ are
bounded. In this case, we have enough almost fixed points in M.S/ and we can apply
Lemma 5.1 to conclude that the centralizer of H in Mod.S/ is infinite. On the other
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hand, if there is a “long” hierarchy Hh
b

, we are able to use an argument in Jing Tao’s
thesis [12] to show that there exists a subsurface Y of S such that elements of H

either preserve Y or take Y completely off itself. Then we use Lemma 5.2 to complete
the proof.

Case 1 For any b 2 B , h 2H and any subsurface Y of S supporting a geodesic of
Hh

b
, we have dY .�b; h ��b/� e .

Claim 1 In Case 1, dM.�b; h ��b/� d for all b 2 B , h 2H , where d is one of the
numbers we used to define D .

Proof By Lemma 4.3, the geodesic in Y has length at most eC2M1 . Now the claim
follows from Lemma 4.4 and the definition of d .

Note that Claim 1 says that for any b 2 B , �b is in Pd
H

. Since dS .�0; �1/�D , we
have jPd

H
j � jBj � D � 12ı � 8 � N . By Lemma 5.1 and the definition of N , the

centralizer of H is infinite and the proof is complete in Case 1.

Case 2 There exists bl 2 B , hl 2 H , and a subsurface Y of S which supports a
geodesic of Hhl

bl
, such that dY .�bl

; hl ��bl
/� e .

Claim 2 In Case 2, dY .�0; �1/� 2M C 4M1CM2 .

Proof Since we are in Case 2 we have dY .�bl
; hl ��bl

/� e�M2 . So by Lemma 4.3,
Y is the domain of a geodesic of Hhl

bl
of length at least

e� 2M1 D 2M C 6M1CM2C 2KCM 0:

In particular, this geodesic has length bigger than M 0 . By Lemma 5.4, Hhl

bl
is .K;M 0/–

pseudoparallel to H . So Y is also the domain of a geodesic of H , whose length is at
least 2M C6M1CM2C2KCM 0�2K D 2M C6M1CM2CM 0 . Now applying
Lemma 4.3 again, we know that

dY .�0; �1/� 2M C 6M1CM2CM 0
� 2M1 � 2M C 4M1CM2

as we claim.

We prove the following key claim for Case 2 using an argument in [12, Lemma 3.3.4].

Claim 3 In Case 2, for any h 2H , either h.Y /D Y or h.Y / and Y are disjoint.
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Proof Let h 2H . Applying Claim 2 and Lemma 5.5, we have

dh�1.Y /.�0; �1/D dY .h ��0; h ��1/

� dY .�0; �1/� dY .�0; h ��0/� dY .�1; h ��1/

� 2M C 4M1CM2�M �M D 4M1CM2 �M2:

So by Lemma 4.3, h�1.Y / is also a domain in H . Suppose h�1.Y /¤ Y . Then since
h�1.Y / and Y have the same complexity, they are either disjoint from each other or
they interlock (ie intersect but do not contain each other).

Suppose h�1.Y / and Y are not disjoint. Then by [9, Lemma 4.18], h�1.Y / and Y

are time-ordered [9, Definition 4.16].

First suppose Y �t h�1.Y /(Here �t is the notation for time order). As in the proof
of [9, Lemma 6.11], there exist a slice in H so that its associated compatible marking
� satisfies

dY .�; �1/�M1 and dh�1.Y /.�; �0/�M1:

Then since dh�1.Y /.�; �0/D dY .h ��0; h � �/, we have

dY .�0; h � �/� dY .�0; h ��0/C dY .h ��0; h � �/�M CM1:

By Claim 2, we have

dY .�1; h � �/� dY .�0; �1/� dY .�0; h � �/

� 2M C 4M1CM2� .M CM1/� 2M1:

Therefore, by [4, Lemma 1], we have

dh�1.Y /.�0; h � �/� 2M1:

Hence we get

dY .�0; h
2
� �/� dY .�0; h ��0/C dY .h ��0; h

2
� �/

�M C dh�1.Y /.�0; h � �/�M C 2M1:

Then by Claim 2, we have

dY .�1; h
2
� �/� dY .�0; �1/� dY .�0; h

2
� �/

� 2M C 4M1CM2� .M C 2M1/� 2M1:

Again by [4, Lemma 1], we have

dh�1.Y /.�0; h
2
� �/� 2M1:
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Iterating this argument, we get

dY .�0; h
i
� �/� dY .�0; h ��0/C dY .h ��0; h

i
� �/

�M C dh�1.Y /.�0; h
i�1
� �/�M C 2M1:

Since this is true for all i � 0 and h has finite order, we have

dY .�0; �/�M C 2M1:

Hence, we get

dY .�0; �1/� dY .�0; �/C dY .�; �1/�M C 2M1CM1 �M C 3M1;

contradicting Claim 2.

In the same way, we can show that h�1.Y / �t Y cannot happen either. So h�1.Y /

and Y are not time-ordered and hence are disjoint. Therefore, h.Y / and Y are disjoint
provided that h.Y /¤ Y as required.

Now we apply Lemma 5.2 to conclude that the centralizer of H is infinite. Therefore
the proof of Main theorem is complete.

6 Application

In this section we prove Corollary 1.1.

Let G be a finitely generated group with a generating set fg1; : : : ;gng. Let ffig be a
sequence of homomorphisms from G to Mod.S/. The fi induce a sequence of actions
�i of G on C.S/, where

�i.g/.�/D fi.g/ � �:

Let
di D inf

�2C.S/

�
max

1�t�n
dS .�; fi.gt / � �/

�
:

Suppose di goes to infinity as i goes to infinity. Then �i subconverges to a nontrivial
action � of G on an R–tree T in the sense of Bestvina–Paulin. Replace �i by a
convergent subsequence, which we still denote by �i .

Remark 6.1 In Paulin’s original construction for hyperbolic groups, di goes to infinity
as long as fi are nonconjugate. This is not true for Mod.S/.

Recall the statement of Corollary 1.1.
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Corollary 6.2 Let T be the R–tree obtain as above. Let K be the stabilizer in G of
a nontrivial segment in T . There exists N , such that any finite subgroup H of fi.K/

has infinite centralizer in Mod.S/ for all i �N .

Proof Let Œx;y� be the nontrivial segment in T stabilized by K . Let l D dT .x;y/

and � � 1
10

l . By the construction of T , for i large enough there exists xi ;yi 2 C.S/

such that for all h 2K we haveˇ̌̌
1

di
dS .xi ;yi/� dT .x;y/

ˇ̌̌
� �;ˇ̌̌

1

di
dS .xi ; fi.h/ �xi/� dT .x; �.h/x/

ˇ̌̌
� �;ˇ̌̌

1

di
dS .yi ; fi.h/ �yi/� dT .y; �.h/y/

ˇ̌̌
� �:

(See [2, Proposition 3.6] for more detail.) Since l D dT .x;y/ and h fixes Œx;y�, we
have

dS .xi ;yi/� di.l � �/;

dS .xi ; fi.h/ �xi/� di�;

dS .yi ; fi.h/ �yi/� di�:

Therefore the fi.K/–orbit of xi has bounded diameter. Let Cxi
be a 1–quasicenter

(see [3, Chapter III.� , Lemma 3.3, p 460] for the definition) of the fi.K/–orbit of xi .
Then all the fi.K/–translates Cxi

are also 1–quasicenter of the fi.K/–orbit of xi .
Therefore by [3, Chapter III.� , Lemma 3.3, p 460],

dS .Cxi
; fi.h/ �Cxi

/� 4ıC 2� 6ı:

Similarly, we have
dS .Cyi

; fi.h/ �Cyi
/� 4ıC 2� 6ı:

So xi ;yi are in Cfi .K / , which is defined in the Main theorem.

By the definition of quasicenter, we have

dS .Cxi
;xi/� diam.fi.K/ �xi/� di�;

dS .Cyi
;yi/� diam.fi.K/ �yi/� di�;

and so
dS .Cxi

;Cyi
/� di.l � �/� di�� di� � di.l � 3�/:

Therefore when i is large enough

dS .Cxi
;Cyi

/�D;
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where D is the constant in the Main theorem. Now applying the Main theorem to a
finite subgroup H of fi.K/, we know that H has infinite centralizer in Mod.S/.

Suppose G splits over a finite segment stabilizer C . (G DA�C B if G splits as an
amalgamated free product.) Then Corollary 6.2 allows one to construct homomorphisms
from G to Mod.S/ of the form 'i.a/D fi.a/ for a 2A and 'i.b/D z�1fi.b/z for
b 2 B , where z is an element of Mod.S/ which centralizes fi.C /. We think that
this type of homomorphisms might be useful when one tries to use the “shortening
argument” (see Alibegović [1], Groves [6], Rips and Sela [10] and Sela [11]) to study
Hom.G;Mod.S//.
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