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Bridge number and tangle products

RYAN BLAIR

We show that essential punctured spheres in the complement of links with distance
three or greater bridge spheres have bounded complexity. We define the operation of
tangle product, a generalization of both connected sum and Conway product. Finally,
we use the bounded complexity of essential punctured spheres to show that the bridge
number of a tangle product is at least the sum of the bridge numbers of the two factor
links up to a constant error.

57M25, 57M27, 57M50

1 Introduction

Bridge number is a classical link invariant originally introduced by Schubert as a tool
to study companion tori. In [4], Schubert proves the remarkable fact that given a
composite knot K with summands K1 and K2 , then the following equality holds:
ˇ.K/ D ˇ.K1/C ˇ.K2/� 1, where ˇ.L/ denotes the bridge number of a link L.
Schultens gives a modern proof of this equality in [5].

Connected sum is a classical and intentionally restrictive method of amalgamating
two links in S3 together to create a new link in S3 . Tangle products are the natural
generalization of this amalgamation operation. Roughly speaking, to form an n–strand
tangle product of links K1 and K2 remove an n–strand rational tangle from the 3–
sphere containing K1 and the three sphere containing K2 . Now, glue the resulting
tangles together via some homeomorphism of the 2n–punctured sphere, S . The result
is a tangle product, denoted K1 �S K2 . For a rigorous definition see Section 4. In
particular, connected sums are 1–strand tangle products and Conway products are
2–strand tangle products. Conway products were studied in [3] where Scharlemann and
Tomova produced Conway products which respected multiple bridge surfaces. How
bridge number behaves with respect to Conway products was studied by the author
in [2]. The goal of this paper is to generalize Schubert’s equality for bridge number to
the operation of tangle product.

Because of their generality and the choices involved, tangle products are exceptionally
poorly behaved. For example, for any two n bridge knots K1 and K2 there exists
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an n–strand tangle product K1 �S K2 isotopic to the unknot. Hence, we will have
to restrict our hypothesis to achieve a meaningful lower bound for ˇ.K1 �S K2/ in
terms of ˇ.K1/ and ˇ.K2/. Similarly, if U is the unknot, there exist tangle products
U �S U of arbitrarily high bridge number. This observation implies, in the absence of
additional information, that there does not exist an upper bound for ˇ.K1 �S K2/ in
terms of ˇ.K1/ and ˇ.K2/. The following is the main theorem.

Theorem 1.1 Given an n–strand tangle product K1 �S K2 such that there exists a
minimal bridge sphere for K1�S K2 of distance at least three and the product sphere S

is c–incompressible, then ˇ.K1 �S K2/� ˇ.K1/Cˇ.K2/� n.10n� 6/.

In [2], the key additional hypothesis needed to produce a lower bound on the bridge
number of a Conway product in terms of the bridge number of the two factor links was
that bridge position and thin position coincide for the Conway product. In contrast, the
result presented here is heavily dependent on the hypothesis that the tangle product has
a minimal bridge sphere of distance at least three. This hypothesis allows for a much
stronger structure theorem then that found in [2] and, thus, a more restrictive lower
bound on the bridge number of a tangle product. It is important to note that having the
property that bridge position is thin position and having the property that a minimal
bridge sphere is distance at least three are believed to be independent conditions.

Acknowledgements Research partially supported by NSF and JSPS grants.

2 Preliminaries

In this paper we study smooth links in S3 . Our central tool will be the standard height
function on S3 , hW S3! Œ�1; 1�. The level surfaces of h foliate S3 into concentric
2–spheres and two exceptional points. The bridge number of a link K is the minimal
number of maxima of hjK over all isotopic morse embeddings of K .

A tangle is an ordered pair .B;T / where B is a 3–ball and T � B is a properly
embedded collection of arcs and loops. An untangle is a tangle .B;T / such that T is a
collection of boundary parallel arcs. We say an embedded surface in S3 is k –punctured
if it meets K transversely in k points. A bridge sphere for a link K is an k –punctured
sphere decomposing .S3;K/ into two untangles .H1;T1/ and .H2;T2/.

Definition 2.1 A bridge sphere † is h–level if there exists a regular value r such
that † is isotopic to h�1.r/.
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Given an embedded morse surface S in S3 , let ±S be the singular foliation on S

induced by hjS . A saddle is any leaf of this foliation homeomorphic to the wedge of
two circles. By standard position, we can assume that all saddles of ±S are disjoint
from K .

Definition 2.2 Let K be a link embedded in S3 and S be a surface embedded in S3

which meets K transversely. We say that the pair .K;S/ is in bridge position with
respect to the standard height function on S3 if h is a morse function when restricted
to both K and S and there exist a; b 2 Œ�1; 1� such that

(1) all maxima of K and all maxima of S lie in h�1..b; 1//;

(2) all minima of K and all minima of S lie in h�1..�1; a//;

(3) all saddles of S and all intersection points S \K lie in h�1..a; b//.

Lemma 2.3 For any embeddings of K and S in S3 there is an isotopy of first S and
subsequently K such that the resulting pair .K;S/ is in bridge position. Moreover,
these isotopies fix S and K outside of a neighborhood of their maxima and minima,
preserve the number of maxima of hjK , and the number of saddles of ±S .

Proof After a small isotopy, we can assume that hjK and hjS are morse functions
and S intersects K transversely. Additionally, by general position, we can assume
that both K and S are disjoint from both h�1.1/ and h�1.�1/. Let bo be the largest
value among the heights of all saddles of ±S and all points of S \K . Let ao be
the smallest value among the heights of all saddles of ±S and all points of S \K .
Let aD ao �

1
2
.1C ao/ and b D boC

1
2
.1� bo/. Let M1 be the highest maximum

of S that lies below h�1.b/. Let ˛ be a monotone arc connecting M1 to any point
in S3 above h�1.b/. Since M1 is the highest maximum below h�1.b/, we can
choose ˛ so that the interior of ˛ is disjoint from both K and S . The portion of
the boundary of a regular neighborhood of ˛ lying above M1 is a monotone disk D

such that D is disjoint from K and S except in its boundary. Let DM be a regular
neighborhood of M1 in S . The monotone disk D together with DM cobound a 3–ball
whose intersection with S is DM . Isotope DM to D across this 3–ball. This isotopy
fixes K , is supported in a neighborhood of M1 in S , and raises one maximum of S

above h�1.b/. Repeat this process until all maxima of S lie above h�1.b/. Now that
there are no maxima of S between h�1.a/ and h�1.b/ we can similarly isotope all
the maxima of K above h�1.b/ via an isotopy that fixes S and is supported on a
neighborhood of the maxima of hK . Hence, we have achieved (1) in the definition
of .K;S/ bridge position while preserving the number of maxima of K and the number
of saddles of S . By a symmetric argument, we can also achieve (2) in the definition
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of .K;S/ bridge position while preserving the number of minima of K and the number
of saddles of S . After these isotopies, our choice of a and b guarantee that (3) in the
definition of .K;S/ bridge position is satisfied.

Definition 2.4 A punctured surface S is taut with respect to an h–level bridge
sphere † if ±S contains the fewest number of saddles subject to .K;S/ being in
bridge position.

This notion of taut is different then that found in [2]. Specifically, a taut surface in [2]
is one that has a minimal number of saddles subject to hK having a minimal number
of maxima. In this paper, a taut surface has a minimal number of saddles subject to a
specified bridge sphere appearing as a level sphere of the height function.

3 The saddle structure of n–punctured spheres

In this section we use the notion of taut introduced in the previous section to develop
constraints on ±S when S is an embedded essential punctured sphere. For a more
detailed discussion of the following definitions and their applications see [2].

Any given saddle � D s�
1
_ s�

2
, lies in a level sphere S� D h�1.h.�//. Let D�

1
be the

closure of the component of S� � s�
1

that is disjoint from s�
2

and D�
2

be the closure
of the component of S� � s�

2
that is disjoint from s�

1
.

A subdisk D in ±S is monotone if its boundary is entirely contained in a leaf of ±S

and the interior of D is disjoint from every saddle in ±S . In practice, we will use the
term subdisk in a slightly broader sense, allowing @D to be immersed in S (ie @D is a
saddle). We say a monotone disk is outermost if its boundary is s�

i for some saddle �
and label the disk D� . Similarly, if s�

i bounds an outermost disk D� , we say � is an
outermost saddle. It is usually the case that only one of s�

1
and s�

2
is the boundary of

an outermost disk, so, our convention is to relabel so that @D� D s�
1

. We say � is an
inessential saddle if � is an outermost saddle and D� is disjoint from K .

Suppose � is an outermost saddle. The sphere S� cuts S3 into two 3–balls. The
one that contains D� is again cut by D� into two 3–balls B� and B0� . We chose the
labeling of B� and B0� so that @B� D D�

1
[D� . We say a saddle � is standard if

there is a monotone disk E� in S such that @E� D � and E� is disjoint from K .

By general position arguments, we can assume every saddle � in ±S has a bicollared
neighborhood in S that is disjoint from K and all other singular leaves of ±S . The
boundary of this bicollared neighborhood consists of three circles c�

1
, c�

2
and c�

3
where
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c�
1

and c�
2

are parallel to s�
1

and s�
2

respectively. We can assume c�
1

, c�
2

and c�
3

are
level with respect to h and that c�

1
and c�

2
lie in the same level surface.

Figure 1 illustrates all of the terminology outlined above.

D� B0�

B�

c�
1

s�
1

D�
1

�
D�

2

c�
2

s�
2

c�
3

E�

Figure 1: � is a standard, outermost saddle

For the remainder of the paper S will always denote a punctured sphere. We will
denote the point h�1.1/ as C1 and the point h�1.�1/ as �1.

Lemma 3.1 Let � be an outermost saddle in ±S . There is an ambient isotopy of S

that fixes K , lowers minima of S , raises maxima of S , and fixes S outside of a
neighborhood of the maxima and minima of S such that, after this isotopy, B� does
not contain C1 or �1.

Proof See [5, Lemma 1].

The following lemma is an extension of [5, Lemma 2] to our alternative notion of taut.

Lemma 3.2 Suppose † is an h–level bridge sphere for a link K . If ±S contains an
inessential saddle, then S is not taut with respect to †.

Proof Suppose .K;S/ is in bridge position with respect to †, an h–level bridge
sphere. Let � be an inessential saddle in ±S . We can assume D� contains a unique
maximum and, by Lemma 3.1, B� does not contain C1. Let .a; b/ be the interval in
the definition of .K;S/ bridge position. There exists an open interval .p; q/ such that
h.�/ 2 .p; q/� .a; b/ and h�1.p; q/ contains no saddles other than � , no maxima or
minima of ±S , no maxima or minima of K and no points of K \S . Let s D h.�/.
As described in the following paragraph, horizontally shrink and vertically lower B�

so that the result of the isotopy, call it B�� , is contained in h�1.Œs; q//.
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An isotopy is level-preserving if for every r 2 Œ�1; 1� the isotopy fixes h�1.r/ setwise.
By definition, a level-preserving isotopy preserves the saddle structure of ±S and
the number and height of critical values of hK . Since ±B�

is a collection of disks,
then we can preform a level-preserving isotopy resulting in each leaf of ±B�

being a
standard metric disk of radius �r for each r . After a second level-preserving isotopy,
we can assume each leaf of ±B�

is centered over a common point in h�1.s/. After a
third level-preserving isotopy that contracts leaves of ±B�

when �r > �s and expands
leaves of ±B�

when �r < �s , we can assume that B� is a right cylinder. Horizontally
shrink B� until it is contained in h�1.Œs; q//. Finally, undo the three level-preserving
isotopies. The result is an isotopy supported in a neighborhood of B� that lowers B�

into a neighborhood of h�1.s/ and preserves the saddle structure of ±S and the number
of critical values of hK .

Let S� be the image of S under this isotopy. Similarly, let D�� be the image of D�

under this isotopy and let m be the unique maximum of D�� . Let M be the level
surface containing m. Hence, M \ S� consists of the point m and a collection of
circles.

Prior to the isotopy, we can assume both c�
1

and c�
2

are contained in M . Since � is
the unique critical point of hS in h�1.p; q/, then c�

1
and c�

2
are incident to a common

component of M �S . Thus, after the isotopy m and c�
2

are incident to a common
component of M �S� . We can choose a point n in c�

2
and an arc ˛ in M that is

disjoint from S� except at its boundary fm; ng. Additionally, let ˇ be an arc in S�

that does not meet K , has boundary fm; ng and is transverse to ±C everywhere except
where it passes through s�

1
\ s�

2
so that ˛ and ˇ cobound a vertical disk F that is

disjoint from S except along ˇ . Additionally, after possibly rechoosing ˛ , we can
assume F is disjoint from K since hK has no critical values in .p; q/. Isotope S�

along F to effectively cancel a saddle with a maximum; see Figure 2. Let S�� be the
image of S� under this second isotopy. Notice that the ambient isotopies described
fix all of S3 below h�1.s/, hence, h�1.s/ remains a bridge sphere for K isotopic
to †. The only way for .K��;S��/ to fail to be in bridge position is for maxima
of S�� or K to lie below a saddle of S�� or a point of K \S . In this case use the
isotopy from Lemma 2.3 to raise the maxima of S�� and subsequently the maxima
of K . Thus, we have produced an ambient isotopy of S and K which reduces the
number of saddles of S but preserves both † as an h–level bridge sphere and .K;S/
in bridge position. Hence S is not taut with respect to †.

Definition 3.3 We say � is a removable saddle if � is an outermost saddle where D�

has a unique maximum(minimum) and hjK\B�
has a local endpoint maximum (mini-

mum) at every point of K\D� ; see Figure 3. Otherwise, we say � is nonremovable.
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F

Figure 2

K

�

Figure 3

The following is an adaptation of [2, Lemma 3] to the notion of taut presented here.

Lemma 3.4 Suppose † is an h–level bridge sphere for a link K . If ±S contains a
removable saddle, then S is not taut with respect to †.

Proof Suppose .K;S/ is in bridge position with respect to †, an h–level bridge
sphere. Let � be an removable saddle in ±S . We can assume D� contains a unique
maximum and, by Lemma 3.1, B� does not contain C1. Applying the isotopy
presented in Lemma 3.2, we see that each point xi 2K\D� together with the image
of xi in B�� bound monotone subarcs of K� ; see Figure 4. Since � is removable
neither the xi nor the x�i is a maximum or minimum. Thus, we have eliminated
a saddle of S while preserving .K;S/ bridge position, a contradiction to tautness
of S .

The punctured sphere S decomposes S3 into two 3–balls B1 and B2 . Let � be a
saddle in ±S and L be the level sphere containing c�

1
and c�

2
. Then L� .c�

1
[ c�

2
/ is

composed of two disks and an annulus A. If a collar of @A in A is contained in B1 ,
then we say � is unnested with respect to B1 . If not, we say � is nested with respect
to B1 . We define nested and unnested with respect to B2 similarly. Note that nested
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F

Figure 4

with respect to B1 is the same as unnested with respect to B2 and nested with respect
to B2 is unnested with respect to B1 .

Two saddles � D s�
1
_ s�

2
and � D s�

1
_ s�

2
in ±S are adjacent if, up to labeling, s�

i

and s�
j cobound a monotone annulus in S that is disjoint from K .

The following lemma is an extension of [5, Lemma 3] to our alternative notion of taut.

Lemma 3.5 Suppose † is an h–level bridge sphere for a link K . If ±S contains
adjacent saddles � and � where � is a standard saddle and � and � are nested with
respect to different 3–balls, then S is not taut with respect to †.

Proof Due to the symmetry of the argument we can assume that E� has a unique
maximum. Since � and � are adjacent, then, up to relabeling, s�

1
and s�

1
cobound a

monotone annulus A in S that is disjoint from K . After a small isotopy of K and S ,
we can assume that K[S meets D�

2
in a collection of points and simple closed curves.

After a small tilt of D�
2

, A[E� [D�
2

is a monotone disk. Eliminate the saddle �
by applying the isotopy from the proof of Lemma 3.2 to the 3–ball cobounded by
the monotone disk A[E� [D�

2
and the level disk D�

1
that is disjoint from D�

2
; see

Figure 5. As in the proof of Lemma 3.4, we see that each point of K\D�
2

together
with its image under the isotopy cobound monotone subarcs of K . Similarly, each
curve S \D�

2
together with its image under the isotopy cobounds monotone annulus

in S . Thus, we have produced an ambient isotopy of S and K which reduces the
number of saddles of S but preserves both † as an h–level bridge sphere and .K;S/
in bridge position. Hence, S is not taut with respect to †.

The previous lemmas in this section are independent of bridge sphere distance. Below
we define the distance of a bridge sphere and obtain additional constraints on taut
punctured spheres.

Let † be a 2n–punctured bridge sphere separating .S3;K/ into two n–strand untangles
.H1;T1/ and .H2;T2/. Let Cn be the curve complex for †. Let V1 be the set of
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�

�

�

F

�

�

Figure 5

all isotopy classes of essential simple closed curves in @.H1/�T1 that bound disks
in H1�T1 . Define V2 analogously. The distance of †, denoted d.†/, is the distance
between V1 and V2 in Cn where the metric structure of Cn arises from assigning a
length of one to each edge.

Lemma 3.6 Suppose K is a link with a bridge sphere † of distance three or greater,
then K is not split and K is prime.

Proof This follows immediately from Bachman and Schleimer [1, Theorem 5.1].

Lemma 3.7 Suppose there exists a bridge sphere † for K of distance three or greater.
If S is a c–incompressible punctured sphere that is taut with respect to an h–level
embedding of †, then there do not exist standard saddles � , � and � in ±S such that �
is adjacent to � and � is adjacent to � .

Proof By Lemma 3.6, we know K is nonsplit and prime. We will proceed by proving
the contrapositive of the above statement. Suppose that three such saddles � , �
and � do exist. If ±S contains inessential or removable saddles, then S is not taut by
Lemmas 3.2 or 3.4. If � and � are nested with respect to different three balls, then S

is not taut by Lemma 3.5. Similarly, if � and � are nested with respect to different
three balls then S is not taut by Lemma 3.5. Hence, we can assume that all three
saddles � , � and � have a common nesting and ±S contains no inessential and no
removable saddles.

Assume that E� has a unique maximum and h.�/>h.�/. If E� has a unique minimum
or h.�/ < h.�/ the proof follows similarly. By Lemma 2.3, we can assume there is
a partitioning of the critical values of hjK and hjS as in Definition 2.2. By standard
Morse theory arguments, we can assume that the collection C of all critical points
of hjK , all critical points of hjS , and all points of S \K occur at distinct heights.
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Choose c so that c is strictly between h.�/ and the height of the next higher element
of C . Hence, h�1.c/ is a bridge sphere for K that is isotopic to †. Although an abuse
of notation, we will refer to h�1.c/ as †. Recall the definition of c�

1
and c�

2
from

Section 3 and Figure 1. We can assume that c�
1

and c�
2

lie on †.

Let A� be the monotone annulus with boundary s
�
2
[ s�

1
. Since � is assumed to be

higher than � then A� intersects † in a single simple closed curve c� . In particular, c�

is isotopic to both s
�
2

and s�
1

; see Figure 6.

A�

s
�
1

�
s

�
2

E1
c�

1 E2
c�

2 E3 c�

†

�

A�

s�
1

�

Figure 6

Claim If any of c�
1

, c�
2

or c� bounds a zero or once punctured disk in †, then S is
not taut.

Proof of claim Since all three saddles � , � and � have a common nesting, each
of c�

1
, c�

2
and c� bound pairwise disjoint disks E1 , E2 and E3 respectively in †. To

prove the claim it suffices to show that each of the disks E1 , E2 and E3 meet K in
at least two points.

Suppose, to form a contradiction, that E1 is disjoint from K . S \E1 is a collection
of disjoint simple closed curves. An innermost such curve  bounds a disk D in †
that is disjoint from K and meets S only in its boundary. By c–incompressibility
of S ,  also bounds a disk D0 in S that is disjoint from K . Since K is nonsplit, D

and D0 cobound a 3–ball disjoint from K . Hence, we can eliminate  as a curve
of intersection by isotopying D0 across this 3–ball and just past D . This isotopy
leaves K fixed and can only decrease the number of saddles in ±C . By repeating
this process, we can eliminate all curves of intersection of S with int.E1/. Again,
by c–incompressibility of S , @E1 bounds a disk D0 in C which is disjoint from K .
Since K is nonsplit D0 and E1 cobound a 3–ball. Isotope D0 across this 3–ball

Algebraic & Geometric Topology, Volume 13 (2013)



Bridge number and tangle products 1135

to E1 while fixing K . If D0 contains � , then this isotopy eliminates � , � and � while
creating no new saddles. In this case S was not taut. If D0 does not contain � then,
after the isotopy, � is an inessential saddle. Hence, S is not taut, by Lemma 3.2.

Suppose, to form a contradiction, that E1 meets K in exactly one point. Then S \E1

is a collection of disjoint simple closed curves. An innermost such curve  bounds a
disk D in † that meets S only in its boundary. If D is disjoint from K then apply the
argument in the preceding paragraph to eliminate  . Hence we can assume D meets K

exactly once. By c–incompressibility of S ,  also bounds a disk D0 in S that meets K

exactly once. Since K is prime, D and D0 cobound a 3–ball containing an unknotted
arc of K . Hence, we can eliminate  as a curve of intersection isotopying D0

K
across

this 3–ball and just past DK . This isotopy leaves K fixed and can only decrease the
number of saddles in ±C . By repeating this process, we can eliminate all curves of
intersection of S with int.E1/. Again, by c–incompressibility of S , @E1 bounds a
disk D0 in C which meets K exactly once and E1 [D is the boundary of a three
ball containing an unknotted arc of K . Isotope D0 across this 3–ball to E1 while
fixing K . If D0 contains � , then this isotopy eliminates � , � and � while creating
no new saddles. In this case S was not taut. If D0 does not contain � then, after the
isotopy, � is a removable saddle. Hence, S is not taut, by Lemma 3.4.

By applying nearly identical arguments, we can show that both E2 and E3 meets K

in at least two points. The claim then follows.

Let M be the three ball above † and N be the three ball below †. By construc-
tion c�

1
and c�

2
cobound an annulus A� properly embedded in N and disjoint from K .

Similarly, c�
2

and c� cobound and annulus A� properly embedded in M and disjoint
from K . Since .M;K \M / and .N;K \N / are both untangles then A� and A�

are boundary compressible in M �K and N �K . Let H� be the disk in M gotten
by boundary compressing A� and H� be the disk in M gotten by boundary compress-
ing A� . Both @H� and @H� are disjoint from c�

2
. By the above claim, @H� and @H�

are essential in †. Since @H� 2 A, @H� 2 B , and both @H� and @H� are disjoint
from c�

2
, d.B/D d.A;B/ < 3.

We summarize the results of the previous lemmas using the following definition.

Definition 3.8 A singular foliation ±S for a closed surface S with k –marked points
is admissible if it is induced by the standard height function on S3 via some Morse
embedding of S into S3 such that the following hold:

(1) there do not exist standard saddles � , � and � in ±S such that � is adjacent
to � and � is adjacent to � ;

(2) every outermost disk of ±S contains at least one marked point.
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The following structure lemma is of independent interest. Bachman and Schleimer
showed that twice the genus plus the number of boundary components of an essential
surface serves as an upper bound for the distance of any bridge sphere for a knot [1].
In other words, a high distance bridge sphere forces a high intrinsic complexity for any
essential embedded surface in a knot complement. In contrast, Theorem 3.9 implies that
if K has a bridge sphere of distance 3 or greater, then any essential punctured sphere
can be isotoped so that the number of saddles in the induced foliation is bounded with
respect to the number of punctures. Colloquially, if there exists a bridge sphere that is
not low distance, then every essential punctured sphere has low extrinsic complexity.

Theorem 3.9 Suppose there exists a bridge sphere † for K of distance three or
greater and S is taut with respect to an h–level embedding of †, then the following
hold:

(1) there do not exist standard saddles � , � and � for S such that � is adjacent to �
and � is adjacent to � ;

(2) every outermost disk of the foliation of S induced by the standard height function
contains at least one point of K\S .

Proof By Lemmas 3.2 and 3.7, ±S is admissible with marked points S \K when S

is taut.

For a fixed surface type and number of puncture points, the number of saddles in any
admissible singular foliation is bounded.

Lemma 3.10 If S is topologically a 2–sphere with k –marked points and ±S is
admissible, then the number of saddles in ±S is at most 5k � 8.

Proof Let ±S be an admissible singular foliation for S that has a maximal number
of saddles.

Claim All marked points are contained in the collection of outermost disks of ±S .

Proof of claim Suppose not. Hence, there is a puncture point x not on an outermost
disk of ±S . There is a nonsingular leaf ˛ in ±S containing x . Isotope S in a
neighborhood of ˛ as in Figure 7. The resulting singular foliation remains admissible
but has one more saddle then ±S , contradicting the maximality of the number of saddles
of ±S .

Claim All outermost disks of ±S contain exactly one puncture point.
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˛

Figure 7

Proof of claim Every outermost disk of ±S meets K in at least one point, by the
definition of admissible. Suppose there is an outermost disk D� that contains two
puncture points x and y . Let ˛x and ˛y be the closed curves in ±S containing x

and y respectively. Up to relabeling we can assume that ˛y bounds a monotone disk
in ±S that contains x . Alter ±S in a neighborhood of ˛y as in Figure 8. The resulting
singular foliation remains admissible but has one more saddle than ±S , contradicting
the maximality of the number of saddles of ±S .

˛

Figure 8

We proceed by induction on k � 2.

Suppose k D 2, then the maximal number of saddles is two, as depicted in Figure 9.

Assume ±S has at most 5.l � 1/� 8 saddles for k D l � 1. We will show ±S has at
most 5l � 8 saddles for k D l .
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Figure 9

Choose ±S to have the maximal number of saddles of any admissible singular foliation.
Since all puncture points are contained in outermost disks of ±S and all outermost disks
of ±S contain exactly one puncture point, then S can be decomposed into a collection
of 1–punctured disks, annuli and pairs of pants glued together along a collection of
circles so that the 1–punctured disks are in one-to-one correspondence with outermost
disks of ±S , the annuli are in one-to-one correspondence with the standard saddles
of ±S and the pairs of pants are in one-to-one correspondence with the nonstandard
saddles. Since 1–punctured disks and annuli contribute zero to Euler characteristic,
pairs of pants contribute �1, and �.S/ D 2 � l , then ±S contains exactly l � 2

nonstandard saddles. Since we can assume l > 2 there exists a nonstandard saddle
for ±S . Label this saddle � . By passing to an outermost nonstandard saddle and
possibly relabeling c�

1
, c�

2
and c�

3
we can assume that both c�

1
and c�

2
bound disks F�

1

and F�
2

respectively in ±S such that both F�
1

and F�
2

are disjoint from all nonstandard
saddles. Each of F�

1
and F�

2
meets a unique outermost disk of ±S . By condition (2)

of the definition of admissible and the previous claim, each of these disks contains
a unique marked point. By condition (1) of the definition of admissible, each of F�

1

and F�
2

contains at most two saddles, all of which are standard. If one of F�
1

or F�
2

contains fewer than two saddles, then we would contradict the fact that ±S was chosen
to contain a maximal number of saddles. Hence, we can assume that each of F�

1

and F�
2

contains exactly two saddles. Replace a neighborhood of the union of F�
1

and F�
2

in ±S with a single monotone disk M containing a unique marked point.
Call the resulting singular foliation ±�

S
and notice that ±�

S
is a foliation for a sphere

with l � 1 marked points. Notice that ±�
S

has five fewer saddles than ±S . If we
can show that ±�

S
is admissible, then, by the induction hypothesis, ±S has at most

5.l � 1/� 8C 5D 5k � 8 saddles and we have proven the theorem.

Algebraic & Geometric Topology, Volume 13 (2013)



Bridge number and tangle products 1139

Beginning with an embedding of a sphere with l marked points in S3 realizing FS ,
use the isotopy from Lemma 3.2 to eliminate the outermost saddles in F�

1
and F�

2

and iterate this process until � is outermost and can be eliminated similarly. Since the
isotopy in Lemma 3.2 preserves the singular foliation induced by the height function
outside a neighborhood of F�

1
[F�

2
, then this process produces an embedding of a

sphere with l � 1 marked points into S3 with induced singular foliation ±�
S

.

If ±�
S

fails Definition 3.8(1), then, by inclusion of the complement of M in ±�
S

into ±S ,
then ±S also fails criteria (1), a contradiction.

Let D� be an outermost disk of ±�
S

. If D� is again an outermost disk in ±S via
inclusion, then D� contains one marked point by the admissibility of ±S . If D� is not
an outermost disk for ±S , then D� contains M and, thus, contains a marked point.

Hence, ±�
S

is admissible.

4 Tangle products

In this section we define tangle product and use the combinatorial result of the previous
section to show that, under suitable hypothesis, the bridge number of a tangle product
is superadditive up to constant error.

Definition 4.1 A graph G is an n–star graph if G has n edges and nC 1 vertices
such that n of the vertices are valence one and one of the vertices is valence n. Denote
by @G the set of valence one vertices.

Definition 4.2 Let K1 and K2 be links embedded in distinct copies of S3 , S3
1

and S3
2

. Let G1 and G2 be n–star graphs embedded in S3
1

and S3
2

respectively such
that Gi \Ki D @Gi . Let �.Gi/ be a small, closed, regular neighborhood of Gi in S3

i

such that .�.Gi/;Ki \�.Gi// is an untangle tangle. Let Bi D S3
i � int.�.Gi//. A

link in S3 obtained by gluing @B1 to @B2 via a homeomorphism such that points
in @.B1/\K1 are mapped to points in @.B2/\K2 is called an n–strand tangle product
of K1 and K2 and is denoted by K1 �S K2 . The image of @B1 and @B2 under this
identification is called the product sphere and is denoted S .

Proof of Theorem 1.1 Let † be a minimal bridge sphere for K1 �S K2 of distance
at least three. We can assume that † is h–level and that S is taut with respect to †.
By Theorem 3.9, ±S is admissible. By Lemma 3.10, ±S contains at most 10n� 8

saddles, since k D 2n.
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If the set of saddles ±S is nonempty, then it contains at least two outermost disks.
Since K\S contains 2n points and ±S contains at least two outermost disks, there
exists an outermost saddle � such that D� meets K1 �S K2 in at most n points.
We can eliminate � via the ambient isotopy that horizontally shrinks and vertically
lowers B� as in the proof of Lemma 3.2. This isotopy produces at most n new maxima
for hK1�S K2

; see Figure 10. By repeating this process, we can eliminate all saddles
of ±S at the cost of creating at most n new maxima per saddle. Thus, we can assume
we have an embedding of K1�S K2 with at most ˇ.K1�S K2/Cn.10n�8/ maxima
such that ±S contains no saddles. Denote this embedding of K1 �S K2 by K� .

Figure 10

If ±S contains no saddles, there is a level-preserving isotopy of S3 taking S to a
standard round 2–sphere. Such an isotopy preserves the number of maxima of hK � .
Recall that S decomposes S3 into two 3–balls B1 and B2 . The link K1 can
be recovered from the tangle .B1;K

� \ B1/ by gluing an untangle .B3;R/ to
.B1;K

� \B1/ along their common 2n–punctured sphere boundary; see Figure 11.
The number of maxima of the resulting embedding of K1 is at most n more than
the number of maxima of hjK � in B1 . By a similar argument, we can produce
an embedding of K2 with at most n more maxima than the number of maxima
of hjK � in B2 . Hence, ˇ.K1/ � n C ˇ.K2/ � n � ˇ.K1 �S K2/ C n.10n � 8/,
or ˇ.K1 �S K2/� ˇ.K1/Cˇ.K2/� n.10n� 6/.

This ends the proof.

Remark 4.3 With more detailed analysis the constant �n.10n� 6/ that appears in
the statement of Theorem 1.1 can be improved. However, the author believes it can not
be improved beyond a quadratic expression in n using the techniques presented in this
paper.
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