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An étalé space construction for stacks

DAVID CARCHEDI

We generalize the notion of a sheaf of sets over a space to define the notion of a small
stack of groupoids over an étale stack. We then provide a construction analogous
to the étalé space construction in this context, establishing an equivalence of 2–
categories between small stacks over an étale stack and local homeomorphisms over
it. These results hold for a wide variety of types of spaces, for example, topological
spaces, locales, various types of manifolds, and schemes over a fixed base (where
stacks are taken with respect to the Zariski topology). Along the way, we also prove
that the 2–category of topoi is fully reflective in the 2–category of localic stacks.

22A22, 58H05, 53C08; 18B25, 14A20, 18F20

1 Introduction

The purpose of this article is to extend the theory of sheaves of sets over spaces to
a theory of small stacks of groupoids over étale stacks. We provide a construction
analogous to the étalé space construction in this context and establish an equivalence
of 2–categories between small stacks over an étale stack and local homeomorphisms
over it.

Étale stacks model quotients of spaces by certain local symmetries, and their points can
posses intrinsic (discrete) automorphism groups. A more or less direct consequence
of the existence of points with nontrivial automorphism groups is that étale stacks
form not only a category, but a bicategory. A widely studied class of such stacks in
the differentiable setting is orbifolds. Orbifolds arose initially out of foliation theory,
but currently enjoy a wide variety of other uses. More generally, differentiable étale
stacks are an important class of stacks as they include not only all orbifolds, but more
generally, all stacky leaf spaces of foliated manifolds. The passage from spaces to étale
stacks is a natural one as such a passage circumvents many obstructions to geometric
problems. For example, it is not true that every foliation of a manifold M arises from
a submersion f W M !N of manifolds, however, it is true that every foliation on M

arises from a submersion M ! X , where X is allowed to be an étale differentiable
stack; see Moerdijk [17]. Similarly, it is not true that every Lie algebroid over a
manifold M integrates to a Lie groupoid G�M (Crainic and Fernandes [4]) however
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it is true when the arrow space G is allowed to be an étale differentiable stack; see
Tseng and Zhu [20]. Continuing this theme, it is not always possible for a stack over
a space to be realized as the sheaf of sections of some local homeomorphism from
another space (unless it is actually a sheaf of sets), but it is possible once this other
space is allowed to be an étale stack, as we show in this paper. Étale stacks are also
a natural setting to consider sheaves in, as the results of Pronk [19] imply that étale
stacks are faithfully represented by their topos of sheaves.

Recall that for a topological space X , a sheaf over X is a sheaf over its category of
open subsets, O.X /, where the arrows are inclusions. The corresponding topos is
denoted as Sh.X /. For small (pre-)sheaves over X , there is an étalé space construction:

Given a presheaf F over X , there exists a topological space L.F / and a local homeo-
morphism

L.F /W L.F / �!X

such that for every open subset U of X , sections of the map L.F / over U are in
bijection with elements of aF.U /, where aF is the sheaf associated to F . The space
L.F / (together with its map down to X ) is called the étalé space of F . More precisely
there is a pair of adjoint functors

SetO.X /
op

L
// TOP=X;

�
oo

such that
L.U /D U ,�!X:

Here L takes a presheaf to its étalé space and � takes a space over X to its sheaf of
sections. This adjunction restricts to an equivalence

Sh.X /
L
// Et.X /

�
oo

between the category of sheaves over X and the category of local homeomorphisms
over X .

Remark The étalé space construction works for a larger class of spaces than just
topological spaces. For example, if X were a smooth manifold, then the étalé space of
a sheaf F would inherit the canonical structure of a (possibly non-Hausdorff) manifold,
making the projection

LF W LF !X

a local diffeomorphism. Similarly for a small Zariski sheaf over a scheme. In this paper,
we fix a category S of spaces, equipped with a suitable class of morphisms which
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we call local homeomorphisms in S . (For example, for smooth manifolds, this class
of morphisms is the class of local diffeomorphisms.) Examples of such categories of
spaces are locales, sober topological spaces, various types of manifolds and schemes.

Similarly, a small stack over a space X is a stack (of groupoids) Z over the category
of open subsets of X . It is not reasonable to hope to construct an étalé space for Z
whose sections over an open subset U are equivalent to Z.U /, unless each of the
groupoids Z.U / are (equivalent to) sets, since sections of a map of spaces can only
form a set. Hence, one can only find an étalé space for sheaves. If there were to be an
étalé “space” associated to a stack, this “space” would need to actually be an object of
a bicategory, so that sections of the map

L.Z/ �!X

could form a genuine nondiscrete groupoid. In this paper we show that this can be
accomplished if we, instead of searching for an étalé space, look for an étalé étale
stack, which we less awkwardly name the étalé realization of Z . In fact, we extend this
result to the setting of small stacks of groupoids over étale stacks, for various notions
of spaces.

We define the notion of a small sheaf and stack over an étale stack in much the same
way as for topological spaces, by finding an appropriate substitute for a Grothendieck
site of open subsets. Sheaves over this site are what we call small sheaves over X ,
and similarly for stacks. For example, if G is a discrete group acting on a topological
space X , the stacky quotient X==G is an étale topological stack, and a small sheaf
over X==G is the same as a G –equivariant sheaf over X , which can be described as a
space E equipped with an action of G and a local homeomorphism E!X which is
equivariant with respect to the two G–actions. If X happens to be an orbifold, then
there is an existing notion of sheaf over X , and it agrees with the definition of a small
sheaf over X in the sense of this paper.

Remark The reason for the adjective small is that there is also the notion of a large
sheaf or stack. For example, if X is a topological space, a large sheaf over X is a
sheaf over the induced Grothendieck site TOP=X . Sheaves on this site are canonically
equivalent to the slice category Sh.TOP /=X . More generally, for any stack X on
TOP , there is a canonical 2–topos of large stacks over X , which is equivalent to
St.TOP /=X . In other words, a large stack over X is simply a map Y ! X from
another stack. A small sheaf or stack over a space or stack should be thought of as
algebraic data attached to that space or stack, whereas a large sheaf or stack should
be thought of as a geometric object sitting over it. This distinction was highlighted by
Metzler [15].
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1.1 Organization and main results

Section 2 starts by briefly recalling the basic definitions of étale stacks. It is then
explained how to associate to any stack a canonical topos of small sheaves in a functorial
way. In case the stack in question is presented by a spatial groupoid G , this topos is
equivalent to the classifying topos BG as defined by Moerdijk [16]. Following Kock
and Moerdijk [12], we associate to every (atlas for an) étale stack a canonical small site
of definition for its topos of small sheaves. We define small stacks to be stacks over
this site. We then give an abstract description of a generalized étalé space construction
in this setting, which we call the étalé realization construction.

As a demonstration of the abstract machinery developed in this section, we also prove a
tangential (yet highly interesting) theorem to the effect that, in some sense, topological
stacks subsume Grothendieck topoi, once we replace the role of topological spaces
with that of locales:

Theorem 1.1 There is a 2–adjunction

Top
S

// LocSt;
Sh

oo

exhibiting the bicategory of topoi (with only invertible 2–cells) as a reflective subbicat-
egory of localic stacks (stacks coming from localic groupoids).

Section 3 aims at giving a concrete description of the abstract construction given in
Section 2. For this, we choose to represent small stacks by groupoid objects in the
topos of small sheaves. We then show how a generalized action groupoid construction
gives us a concrete model for the étalé realization of small stacks. As a consequence,
we prove:

Theorem 1.2 For any étale stack X , there is an adjoint equivalence of 2–categories

St.X /
L
// Et.X /;

�
oo

between small stacks over X and the 2–category of étale stacks over X via a local
homeomorphism.

Here L is the étalé realization functor and � is the “stack of sections” functor. We
also determine which local homeomorphisms over X correspond to sheaves:

Theorem 1.3 A local homeomorphism f W Z!X over an étale stack X is equivalent
to the étalé realization of a small sheaf F over X if and only if it is a representable map.
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Finally, in Section 4 we provide a concrete model for the “stack of sections” functor �
in terms of groupoid objects in the topos of small sheaves.
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for useful comments about the introduction of this paper. This research was conducted
during my studies as a Ph.D. student at Utrecht University in the Netherlands. I am
currently a postdoc at the Max Planck Institute for Mathematics in Bonn, Germany.

2 Small sheaves and stacks over étale stacks

2.1 Conventions and notations concerning spaces and stacks

Throughout this article, S shall denote a fixed category whose objects we shall call
“spaces,” equipped with an appropriate class of morphisms, which we will refer to
simply as local homeomorphisms. Here is a list of possibilities:

(I) Locales and local homeomorphisms.

(II) Sober topological spaces and local homeomorphisms.

(III) Any type of manifold (e.g., smooth manifolds, C k manifolds, analytic manifolds,
complex manifolds, supermanifolds . . . ) with the appropriate version of local
diffeomorphism, provided we remove all separation conditions. For example,
manifolds will neither be assumed paracompact nor Hausdorff.

(IV) Schemes over any fixed base and Zariski local homeomorphisms. When viewed
as maps of locally ringed spaces, Zariski local homeomorphisms are those maps

.f; '/W .X;OX / �! .Y;OY /

such that f is a local homeomorphism and 'W f �.OY / ��!
� OX is an isomor-

phism. Again, we do not impose any separation conditions.

This list need not be exhaustive. See Appendix B for a more systematic treatment. We
will also sometimes argue point-set theoretically about objects of S , however, in all
such cases, the arguments can be extended to locales and supermanifolds etc in the
usual way. A morphism in S will simply be called “continuous.” For example, if S is
taken to be the category of smooth manifolds, the phrase “continuous map” will mean
a smooth map and “local homeomorphism” will mean local diffeomorphism. Similarly
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for the other examples above. The reason for not imposing any separation conditions is
to consider the étalé space (espace étalé) of a sheaf over a manifold, scheme etc as a
manifold or scheme itself.

Definition 2.1 An S –groupoid is a groupoid object in S . For example, a topological
groupoid is a groupoid object in TOP , the category of topological spaces. Explicitly,
it is a diagram

G1 �G0
G1

m
// G1

s
//

t
//

yi

��

G0

1

ZZ

of topological spaces and continuous maps satisfying the usual axioms. Forgetting
the topological structure (i.e., applying the forgetful functor from TOP to Set), one
obtains an ordinary small groupoid. Throughout this article, we shall denote the source
and target maps of a groupoid by s and t respectively. Similarly, a localic groupoid is
a groupoid object in locales.

S –groupoids form a 2–category with continuous functors as 1–morphisms and contin-
uous natural transformations as 2–morphisms, respectively. (Recall that e.g., when S

is smooth manifolds, by continuous, we mean smooth.) We will denote this 2–category
by S–Gpd .

Remark A Lie groupoid is a groupoid object in smooth manifolds such that the
source and target maps are submersions. Traditionally, Lie groupoids are required
to have a Hausdorff object space, however, as every manifold is locally Hausdorff,
any Lie groupoid in the sense we defined is Morita equivalent to one that meets this
requirement. (See Definition 2.8.) We will not dwell on this issue as we will soon
restrict our attention to étale groupoids.

Consider the 2–category GpdSop
of weak presheaves in groupoids over S , that is

contravariant (possibly weak) 2–functors from the category S into the 2–category of
(essentially small) groupoids Gpd .1

We recall the 2–Yoneda Lemma:

1Technically speaking, we may have to restrict ourselves to a Grothendieck universe of such spaces. If
S is the category of smooth manifolds, we may avoid this by replacing St.S/ with stacks on Cartesian
manifolds, i.e., manifolds of the form Rn , which form a small site.
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Lemma 2.1 [5] If C is an object of a category C and X a weak presheaf in GpdCop
,

then there is a natural equivalence of groupoids

HomGpdC
op .C;X /' X .C /;

where we have identified C with its representable presheaf under the Yoneda embed-
ding.

If G is a topological group or a Lie group, then a standard example of a weak presheaf
is the functor that assigns to each space the category of principal G –bundles over that
space (this category is a groupoid). More generally, let G be an S –groupoid. Then G
determines a weak presheaf on S by the rule

X 7�! HomS–Gpd..X /
.id/;G/;

where .X /.id/ is the S –groupoid whose object space is X and has only identity
morphisms. This defines an extended Yoneda 2–functor zyW S–Gpd!GpdSop

and we
have the obvious commutative diagram

S

. � /.id/

��

y
// SetS

op

. � /.id/

��

S–Gpd
zy

// GpdSop
;

where y denotes the Yoneda embedding. We denote by ŒG� the associated stack on
S , a ı zy.G/, where a is the stackification 2–functor (with respect to the open cover
Grothendieck topology). ŒG� is called the stack completion of the groupoid G .

Remark There is a notion of principal bundle for topological groupoids and Lie
groupoids, and ŒG� is in fact the functor that assigns to each space the category of
principal G–bundles over that space.

Definition 2.2 A stack X on TOP is a topological stack if it is equivalent to ŒG� for
some topological groupoid G . A stack X on Mfd , the category of smooth manifolds,
is a differentiable stack if it is equivalent to ŒG� for some Lie groupoid G . Similarly,
one can define a localic stack.

Definition 2.3 An S –groupoid G is étale if its source map s (and therefore also its
target map t ) is a local homeomorphism.

Definition 2.4 A stack X is on S étale if it is equivalent to ŒG� for some étale
S –groupoid G .
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Definition 2.5 A morphism f W Y!X of stacks is said to be representable if for any
map from a space T ! X , the weak 2–pullback T �X Y is (equivalent to) a space.

Remark A morphism 'W X!Y between stacks is an epimorphism (or in the language
of [13], 0–connective) if it is locally essentially surjective in the following sense:

For every space X and every morphism f W X ! Y , there exists an open cover
U D .Ui ,!X /i of X such that for each i there exists a map zfi W Ui! Y , such that
the following diagram 2–commutes:

Ui� _

��

zfi
// Y

'

��

X
f
// X :

In words, this just means any map X ! Y from a space X locally factors through '
up to isomorphism.

Definition 2.6 An atlas for a stack X is a representable epimorphism X ! X from
a space X .

Remark A stack X comes from an S –groupoid if and only if it has an atlas. If
X ! X is an atlas, then X is equivalent to the stack completion of the groupoid
X �X X �X . Conversely, for any S –groupoid G , the canonical morphism G0! ŒG�
is an atlas.

Definition 2.7 Let P be a property of a map of spaces. It is said to be invariant under
change of base if for all

f W Y �!X

with property P , if
gW Z �!X

is any representable map, the induced map

Z �X Y �!Z

also has property P . The property P is said to be invariant under restriction if this
holds whenever g is an open embedding. Being invariant under change of base implies
being invariant under restriction. A property P which is invariant under restriction is
said to be local on the target if any

f W Y �!X
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for which there exists an open cover .U˛!X / such that the induced mapa
˛

U˛ �X Y �!
a
˛

U˛

has property P , must also have property P .

Examples of such properties are being an open map, local homeomorphism, proper
map, closed map etc.

Proposition 2.1 A stack X over S is étale if and only if it admits an étale atlas
pW X ! X , that is a representable epimorphism which is a local homeomorphism.

Proof This follows from the fact that if G is any S –groupoid, the following diagram
is 2–Cartesian:

G1

s
��

t
// G0

��

G0
// ŒG�;

where the map G0! ŒG� is induced from the canonical map G0! G .

Remark Traditionally speaking, a differentiable stack is a stack X equivalent to
ŒG�, where G is a Lie groupoid. This is equivalent to it having an atlas which is a
representable submersion.

Definition 2.8 An internal functor 'W H!G of S –groupoids is a Morita equivalence
if the following two properties hold:

(i) (Essentially surjective) The map t ıpr1W G1�G0
H0!G0 admits local sections,

where G1 �G0
H0 is the fibered product

G1 �G0
H0

pr2
//

pr1

��

H0

'
��

G1
s

// G0:

(ii) (Fully faithful) The following is a fibered product:

H1

'
//

.s;t/
��

G1

.s;t/
��

H0 �H0

'�'
// G0 �G0:

Two S –groupoids L and K are Morita equivalent if there is a chain of Morita equiva-
lences L H!K . Also, L and K are Morita equivalent if and only if ŒL�' ŒK�.
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Every internal functor H! G induces a map ŒH�! ŒG� and the induced functor

Hom.H;G/ �! Hom.ŒH�; ŒG�/

is full and faithful, but not in general essentially surjective. However, any morphism

ŒH� �! ŒG�

arises from a chain
H K! G;

with K!H a Morita equivalence. In fact, the class of Morita equivalences admits
a calculus of fractions, and stacks arising from S –groupoids are equivalent to the
bicategory of fractions of S –groupoids with inverted Morita equivalences. For details,
see [19].

Definition 2.9 By an étale cover of a space X , we mean a surjective local home-
omorphism U ! X . In particular, for any open cover .U˛/ of X , the canonical
projection a

˛

U˛ �!X

is an étale cover.

Definition 2.10 Let H be an S –groupoid. If U D U !H0 is an étale cover of H0 ,
then one can define the Čech groupoid HU . Its objects are U and the arrows fit in the
pullback diagram

.HU /1 //

.s;t/

��

H1

.s;t/

��

U �U // H0 �H0;

and the groupoid structure is induced from H . There is a canonical map HU ! H
which is a Morita equivalence. Moreover,

(1) Hom.ŒH�; ŒG�/ ' holim
�������!

U2Cov.H0/

HomS–Gpd.HU ;G/;

where the weak 2–colimit above is taken over a suitable 2–category of étale covers.
For details, see [7].

Applying (1) to the case where ŒH� is a space X , by the Yoneda Lemma we have

ŒG�.X / ' holim
�������!

U2Cov.X /

HomS–Gpd.XU ;G/:
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Definition 2.11 Let C be a 2–category and C an object. The slice 2–category C=C

has as objects morphisms 'W D!C in C . The morphisms are 2–commutative triangles
of the form

D

'

��

f
// E

 

��

˛

>F

C

with ˛ invertible. A 2–morphism between a pair of morphisms .f; ˛/ and .g; ˇ/
going between ' and  is a 2–morphism in C ,

!W f H) g;

such that the following diagram commutes:

 f
 ! +3  g

'
˛

\d

ˇ

:B

We end by a standard fact we will find useful later:

Proposition 2.2 For any stack X on S , there is a canonical equivalence of 2–
categories St.S=X /' St.S/=X .

The construction is as follows:

Given Y! X in St.S/=X , consider the stack

zY.T ! X / WD HomSt.S/=X .T ! X ;Y! X /:

Given a stack W in St.S=X /, consider it as a fibered category
R
W! S=X . Then

since S=X '
R
X (as categories), the composition

R
W !

R
X ! S is a category

fibered in groupoids presenting a stack fW over S , and since the diagramR
W

  ��R
X // S

commutes,
R
W!

R
X corresponds to a map of stacks eW ! X .

We leave the rest to the reader.
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2.2 Adjunctions of bicategories

Definition 2.12 Let C and D be bicategories, and suppose that F W C ! D and
GW D ! C are 2–functors. We say that F is left adjoint to G (or G right adjoint
to F ) and write F a G if for each pair of objects C 2 C0 and D 2 D0 , there exist
equivalences of categories

�C;D W HomC.F.C /;D/ ��!
� HomD.C;G.D//

and
 C;D W HomD.C;G.D// ��!

� HomC.F.C /;D/;

with
˛C;D W �C;D ı C;D DH)

� id

and
ˇC;D W id DH)�  C;D ı�C;D ;

such that ��;� and  �;� are weak natural transformations in each variable, and ˛�;�
and ˇ�;� are modifications in each variable.

Definition 2.13 For each C in C , we have the morphism

�C;F.C /

�
idF.C /

�
DW �C W C �!GF.C /:

These assemble into a weak natural transformation

�W idC H)GF;

called the unit of the adjunction. Similarly, for each D , we have the morphism

 G.D/;D

�
idG.D/

�
DW �D W FG.D/ �!D:

These assemble into a weak natural transformation

�W FG H) idD;

called the counit of the adjunction.

Definition 2.14 A subbicategory i W C0 ,! C is called a reflective subbicategory if the
inclusion i has a left adjoint. Dually, if the inclusion i has instead a right adjoint, it is
called a coreflective subbicategory.

The following proposition is standard:
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Proposition 2.3 If

C
F

// D
G

oo

is an adjunction of bicategories with F a G , it restricts to an equivalence between,
on one hand, the full subbicategory of C , on those objects for which the unit is an
equivalence, and on the other hand, the full subbicategory of D , for which counit is an
equivalence.

Definition 2.15 If C is a bicategory such that for each pair of objects C and D in C ,
HomC.C;D/ is a groupoid, C is a .2; 1/–category.

Now suppose that D is any cocomplete .2; 1/–category, i.e., one which has all small
weak colimits, and f W C!D is any weak functor. Then f induces a pair of adjoint
functors

GpdCop

f�

// D;
f �

oo

with f � a f� . Explicitly

f�.D/.C /D HomD.f .C /;D/;

and f � is uniquely determined up to equivalence by the fact that it is weak colimit
preserving and

f �.y.C //' f .C /:

It follows that f � can be given explicitly by the formula

f �.X /D holim
�������!

C!X

f .C /:

The functor f � is the weak left Kan extension of f along the Yoneda embedding
yW C! GpdCop

.

2.3 Grothendieck topoi

A concise definition of a Grothendieck topos is as follows:

Definition 2.16 A category E is a Grothendieck topos if it is a reflective subcategory
of a presheaf category SetC

op
for some small category C ,

(2) E
j�

// SetC
op
;

j�
oo

with j � ?j� , such that the left adjoint j � preserves finite limits. From here on in,
topos will mean Grothendieck topos.
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Remark It is standard that this definition is equivalent to saying that E is equivalent
to ShJ .C/ for some Grothendieck topology J on C ; see for example [14].

Definition 2.17 A geometric morphism from a topos E to a topos F is a an adjoint pair

E
f�

// F ;
f �

oo

with f � ?f� , such that f � preserve finite limits. The functor f� is called the direct
image functor, whereas the functor f � is called the inverse image functor.

In particular, this implies, somewhat circularly, that (2) is an example of a geometric
morphism.

Topoi form a 2–category. Their arrows are geometric morphisms. If f and g are
geometric morphisms from E to F , a 2–cell

˛W f H) g

is given by a natural transformation

˛W f � H) g�:

In this paper, we will simply ignore all noninvertible 2–cells to arrive at a .2; 1/–
category of topoi, Top.

2.4 Locales and frames

Locales are basically the essence of space one arrives at after liberating the definition
of a topological space from the need of an underlying set. We give a more detailed
review in Appendix A. Recall that the category of frames has as objects complete
lattices of a certain kind and its morphisms are given by functions that preserve finite
meets and arbitrary joins. The category of locales is dual to that of frames. Locales are
generalized spaces and find their home in the domain of so-called pointless topology;
see for example [8].

Definition 2.18 Given a topological space X , we denote its lattice of open subsets
by O.X /.

A continuous map f W X ! Y induces a map

O.Y / �!O.X /; U 7�! f �1.U /;
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which is a map of frames and, hence, is a map

O.f /W O.X / �!O.Y /

in the category of locales. This makes O into a functor

OW TOP �! LOC:

In fact, this functor has a right adjoint

ptW LOC �! TOP :

The adjoint pair O ? pt restricts to an equivalence between sober topological spaces
and locales with enough points (both “sober” and “with enough points” have a precise
mathematical meaning; see Appendix A). This result is known as Stone duality. The
class of sober spaces is quite large in practice. It includes many highly non-Hausdorff
topological spaces such as the prime spectrum with the Zariski topology, Spec.A/, for
a commutative ring A.

There is a canonical full and faithful 2–functor ShW LOC! Top which sends a locale
X to its topos of sheaves Sh.X /.

2.5 Small sheaves as a Kan extension

Let Top denote the bicategory of Grothendieck topoi, geometric morphisms, and
invertible natural transformations, as in Section 2.3. There is a canonical functor

S �! Top;

which assigns each space X its topos of sheaves Sh.X /. By (weak) left-Kan extension,
we obtain a 2–adjoint pair Sh ? S ,

GpdSop

Sh
// Top;

S
oo

where GpdSop
denotes the bicategory of weak presheaves in groupoids. In fact, the

essential image of S lies entirely within the bicategory of stacks over S , St.S/, where
S is equipped with the standard “open cover” Grothendieck topology [2]. So, by
restriction, we obtain an adjoint pair

(3) St.S/
Sh

// Top:
S

oo

Definition 2.19 For X a stack over S , we define the topos of small sheaves over X
to be the topos Sh.X /.
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Remark Suppose that X ' ŒG� for some S –groupoid G . Then we may consider the
nerve N.G/ as a simplicial object in S ,

G0 G1oo
oo G2 � � �oo

oo
oo

:

By composition with the Yoneda embedding, we obtain a simplicial stack

y ıN.G/W �op
�! St.S/:

The weak colimit of this diagram is the stack ŒG�. Since Sh is a left adjoint, it follows
that Sh.ŒG�/ is the weak colimit of the simplicial topos

Sh.G0/ Sh.G1/oo
oo Sh.G2/ � � �oo

oo
oo

:

From [16], it follows that Sh.ŒG�/' BG , the classifying topos of G . We will return to
a more concrete description of the classifying topos later.

For the rest of this subsection, we will assume that S is the category of sober topological
spaces, or locales, unless otherwise noted.

The adjoint pair Sh ? S restricts to an equivalence between, on one hand, the subbi-
category of St.S/ on which the unit is an equivalence, and, on the other hand, the
subbicategory of Top on which the counit is an equivalence.

Proposition 2.4 If X is an étale stack, then the unit is an equivalence.

Proof Let T be a space, then

S.Sh.X //.T /D Hom.Sh.T /;Sh.X //;

and the latter is the groupoid of geometric morphisms from Sh.T / to BG , where G is
some groupoid representing X . From [16], this in turn is equivalent to X .T /.

Let Et denote the full subbicategory of St.S/ consisting of étale stacks. Then, since
the unit restricted to Et is an equivalence, Sh restricted to Et is 2–categorically fully
faithful. We now identify its essential image.

Definition 2.20 A topos E is an étendue if there exists a well-supported object E 2 E
(i.e., E! 1 is an epimorphism) such that the slice topos E=E is equivalent to Sh.X /
for some space X .

Theorem 2.2 [1, Exposé iv, Exercise 9.8.2e] A topos E is an étendue if and only if
E ' BG for some étale groupoid G .
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Corollary 2.1 Sh induces an equivalence between the bicategory of étale stacks and
the bicategory of étendues.

Remark This result was original proven in [19].

This corollary should be interpreted as evidence that for étale groupoids G , Sh.ŒG�/DBG
is the correct notion for the topos of sheaves over ŒG� since just as for spaces, morphisms
between étale stacks are the same as geometric morphisms between their topoi of
sheaves.

Corollary 2.2 Let X ' ŒG� and Y ' ŒH� be two stacks with Y étale. Then

Hom.X ;Y/' Hom.BG;BH/:

2.6 Topoi as stacks

The adjoint pair Sh ? S from the previous subsection allows us also to prove another
interesting result, which we shall now do, for completeness. First, we will need the
concept of étale-completeness. Let G be a localic groupoid, and let

G0 �! ŒG�

be the associated atlas of the localic stack ŒG�. Since Sh is a left adjoint, it preserves
epimorphisms, so we have an associated epimorphism

pW Sh.G0/ �! Sh.ŒG�/' BG:

By [10, C.5.3], the pullback topos

Sh.G0/�BG Sh.G0/

is equivalent to sheaves on a locale Sh.bG 1/ for some locale bG 1 , and moreover, this
canonically gives rise to a localic groupoid bG with objects G0 such that the following
diagram is a weak pullback:

Sh.bG1/

s
��

t
// Sh.G0/

p
��

Sh.G0/
p
// BG:

In particular, BbG ' BG . Notice that there is a canonical homomorphism of localic
groupoids,

�G W G �! bG :
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Definition 2.21 A localic groupoid G is étale-complete if the diagram

Sh.G1/

s
��

t
// Sh.G0/

p
��

Sh.G0/
p
// BG

is a (weak) pullback diagram of topoi. For details, see [16].

Remark Given x;y points of G0 , consider the associated geometric morphisms
yxW Set! Sh.G0/, yyW Set! Sh.G0/. Then G is étale-complete if and only if natural
isomorphisms

˛W yx� ıp� H) yy� ıp�

are in bijection with arrows gW x! y in G1 .

Remark For any localic groupoid G , bG is étale-complete. It is called the étale-
completion of G .

Remark Every étale groupoid is étale-complete [16].

Proposition 2.5 [16, Section 7.2] The assignment G 7! bG extends to a 2–functor

b. � /W LOC–Gpd �! EtcLOC–Gpd

from localic groupoids to étale-complete localic groupoids, which is left adjoint to the
inclusion, and with unit �.

Definition 2.22 A stack X over LOC is étale-complete if it is equivalent to ŒG� for
some étale-complete G .

Remark Proposition 2.4 and its proof remains valid if étale is replaced with étale-
complete.

Let EtC denote the full subbicategory consisting of étale-complete stacks. By the
above remark, Sh restricted to EtC is also 2–categorically fully faithful.

Theorem 2.3 Sh induces an equivalence between the bicategory of étale-complete
stacks and the bicategory Top of topoi. In particular,

SW Top �! St.S/

exhibits Grothendieck topoi as a reflective full subbicategory of stacks on locales.
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Proof It suffices to show that Sh is essentially surjective. Every topos is equivalent to
BG for some localic groupoid G [11], and hence to Sh.X / for some localic stack X
over locales. The result now follows from the fact that every localic groupoid G has an
étale-completion yG such that BG ' B yG .

Corollary 2.3 The adjunction (3) restricts to a adjunction

Top
S

// LocSt;
Sh

oo

exhibiting the 2–category of topoi as a reflective subbicategory of localic stacks.

Remark In light of the fact that every topos E with enough points is equivalent to
BG for some topological groupoid G [3], one may be tempted to claim that étale-
complete topological stacks are equivalent to topoi with enough points. However, the
proof just given does not work for the topological case as a topological groupoid’s
étale-completion may not be a topological groupoid, but only a groupoid object in
locales.

Remark Most of what has been done in this subsection caries over for smooth man-
ifolds if we use ringed topoi rather than just topoi. In particular, the result of Pronk
that étale differentiable stacks and smooth étendue are equivalent can be proven along
these lines.

2.7 The classifying topos of a groupoid

Definition 2.23 Given an S –groupoid H , a (left) H–space is a space E equipped
with a moment map �W E!H0 and an action map

�W H1 �H0
E �!E;

where
H1 �H0

E //

��

E

�

��

H1
s

// H0

is the fibered product, such that the following conditions hold:

(i) .gh/ � e D g � .h � e/ whenever e is an element of E and g and h elements of
H1 with domains such that the composition makes sense.

(ii) 1�.e/ � e D e for all e 2E .

(iii) �.g � e/D t.g/ for all g 2H1 and e 2E .
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A map of H–spaces is simply an equivariant map, i.e., a map

.E; �; �/ �! .E0; �0; �0/

is map f W .E; �; /! .E0; �0/ in S=H0 such that

f .he/D hf .e/;

whenever this equation makes sense.

Remark This definition extends for localic groupoids in the obvious (diagrammatic)
way.

Definition 2.24 An H–space E is an H–equivariant sheaf if the moment map � is
a local homeomorphism. The category of H–equivariant sheaves and equivariant maps
forms the classifying topos BH of H .

2.8 The small site of an étale stack

Definition 2.25 Let H be an étale S –groupoid. Let Site.H/ be the following category:
The objects are the open subsets of H0 . An arrow U ! V is a section � of the source-
map sW H1!H0 over U such that t ı � W U ! V as a map in S . Composition is by
the formula � ı �.x/ WD �.t.�.x//.

There is a canonical functor i W O.H0/ ,!Site.H/ which sends an inclusion U ,!V in
O.H0/ to 1jU , where 1 is the unit map of the groupoid, and O is as in Definition 2.18.

This functor induces a Grothendieck pretopology on Site.H/ by declaring covering
families to be images under i of covering families of O.H0/. The Grothendieck site
Site.H/ equipped with the induced topology is called the small site of the groupoid H .

Remark Given an étale stack X with an étale atlas X ! X , we can describe
Site.X �X X �X / in terms of this stack and atlas. Denote the S –groupoid

X �X X �X

by H . Let Site.X ;X / denote the following category: The objects of are open subsets
of X DH0 and the arrows are pairs .f; ˛/, such that

U � p

  

f
//
VnN

~~

X

  

˛

=E

X

~~

X

:
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In other words, it is the full subcategory of St.S/=X ' St.S=X / (Proposition 2.2)
spanned by objects of the form U ,!X ! X , with U �X open. We claim that this
category is canonically equivalent to Site.H/. To see this, suppose � is a section of s

over U whose image lies in t�1.V /. We can associate to it the map

˛.�/W U �!H1; x 7�! �.x/:

Then, letting
f WD t ı � W U �! V;

˛.�/W U !H1 is a continuous natural transformation

U � p

!!

f
//
VnN

}}

H0

""

˛.�/
;C

H0

}}

H:

Applying stack-completion, one arrives at an arrow in Site.X ;X /. Conversely, if one
has a diagram of the form

U � p

  

f
//
VnN

~~

X

  

˛

=E

X

~~

X

then since the canonical map
zy.H/ �! ŒH�

is object-wise full and faithful, this must correspond to continuous natural transforma-
tion as in the previous diagram. But such a natural transformation, by definition, is a
continuous map

˛W U �!H1

such that
s ı˛ D idU and t ı˛ D f:

Spelling this out, one arrives at an equivalence of categories.

Definition 2.26 Given an object U � H0 of Site.H/, the space s�1.U / comes
equipped with a canonical left H–action along the target map t . Since the target map
is a local homeomorphism, this H–space is in fact an equivariant sheaf. We denote it
by mU .
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Extend this to a functor as follows:

Given � W U ! V in Site.H/, define a map

f W s�1.U / �! s�1.V /

by sending

x
h
�! y to t.�.x//

�.x/�1

������! x
h
�! y;

which is clearly H–equivariant. Conversely, given and H–equivariant map

f W s�1.U / �! s�1.V /;

let � WD yi ıF ı 1jU , where yi denotes the morphism

H1 �!H1

which sends an arrow to its inverse. The map � is an object of Site.H/ and it is easy
to check that this defines a natural bijection

HomSite.H/.U;V /Š HomBH.mU ;mV /:

Hence we get a full and faithful functor mW Site.H/! BH .

Proposition 2.6 [12] The left Kan extension of m along the Yoneda embedding

yW Site.H/ �! Sh..Site.H//

is an equivalence between the topos of sheaves for the Grothendieck site Site.H/ and
the classifying topos BH .

Definition 2.27 By a small stack over an étale stack X ' ŒH�, we mean a stack Z
over Site.H/. We denote the 2–category of small stacks over X by St.X /.

Remark This definition does not depend on the choice of presenting groupoid since,
if G is another groupoid such that ŒG�' X , then

Sh.Site.G//' BG ' BH' Sh.Site.H//

and hence St.Site.G//' St.Site.H// by the comparison lemma for stacks [1]. A more
intrinsic equivalent definition is that a small stack over X is a stack over the topos
Sh.X / in the sense of Giraud in [6], that is a stack over Sh.X / with respect to the
canonical Grothendieck topology, which in this case is generated by jointly epimorphic
families. Even better, since we are dealing with étale stacks, in light of Corollary 2.1,
we may instead work with the bicategory of étendues. Then, a small stack over an
étendue E is precisely a stack over E , with its canonical site.
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2.9 The étalé realization of a small stack

Recall that for a sheaf F over a space X , the étalé space (espace étalé) is a space
E!X over X via a local homeomorphism (étale map), such that the sheaf of sections
of E ! X is isomorphic to F . In fact, the étalé space can be constructed for any
presheaf, and the corresponding sheaf of sections is isomorphic to its sheafification.
For topological spaces, as a set, E is the disjoint union of the stalks of F and the
topology is induced by local sections.

For S topological spaces or locales, this construction may be carried out abstractly as
follows:

Consider the category of open subsets of X , O.X /, where the arrows are inclusions,
as in Definition 2.18. This category, equipped with its natural Grothendieck topology,
is of course the site over which “sheaves over X ” are sheaves. There is a canonical
functor j W O.X /! S=X which sends an open U � X to U ,! X . The category
S=X is cocomplete, hence there is an induced adjunction

SetO.X /
op

L
// S=X:

�
oo

Here, L takes a presheaf to its étalé space and � takes a space T ! X over X to
its sheaf of sections. The composite � ıL is isomorphic to the sheafification functor
aW SetO.X /! Sh.X /, and the image of L lies completely in the subcategory Et.X /
of S=X spanned by spaces over X via a local homeomorphism. When restricted to
Sh.X / and Et.X /, the adjoint pair L ? � is an equivalence of categories

Sh.X /
L
// Et.X /:

�
oo

This construction can be done for any category of spaces S topos-theoretically as
follows:

The canonical functor j W O.X /! S=X produces three adjoint functors j! ? j
�

? j�

Sh.X / //
//
Sh.S=X /;oo

where the Grothendieck topology on S=X is induced from the open cover topology on
S . For a sheaf F over X , j!.X /D y.L.F //, where y denotes the Yoneda embedding
yW S=X ,! Sh.S=X /.

Hence,
y ıLW SetO.X /

op
�! Sh.S=X /
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can be identified with the left Kan extension of

O.X /
j
�! S=X

y
,�! Sh.S=X /

along Yoneda.

We now turn our attention to generalizing this construction to work when both X and
F are stacks. Let H be an étale groupoid and let X ' ŒH�. In light of the remark after
Definition 2.25, there is a canonical fully faithful functor

jHW Site.H/ �! S=X

which sends U � H0 to U ,! H0 ! X . This produces three adjoint functors
j! ? j

�

? j�

GpdSite.H/op
//
//
St.S=X /:oo

We denote j! by L and j � by � .

More explicitly, j! is the weak left Kan extension of jH along Yoneda, and

�.Y/.U /D HomSt.S=X /.y.U ,!H0! X /;Y/:

Remark Under the equivalence given in Proposition 2.2, Y may be viewed as stack
Y in St.S/ together with a map

f W Y �! X :

From this point of view, �.f W Y!X / assigns an open subset U of H0 the groupoid
of “sections of f over U ,” which can be described explicitly as the groupoid whose
objects are pairs .�; ˛/ which fit into a 2–commutative diagram

Y

f

��

U
� � //

�

::

H0
//

˛
2:

X ;

and whose morphisms .�; ˛/! .� 0; ˛0/ are 2–cells

U Y

�

""

� 0

<<!
��
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such that the following diagram commutes:

jH.U /
˛ +3

˛0  (

f ı �

f!

��
f ı � 0:

Definition 2.28 Let Z be a weak presheaf in groupoids over Site.H/. Then L.Z/ is
the étalé realization of Z .

Proposition 2.7 Let Y be any stack in St.S=X /. Then �.X / is a stack.

Proof This is immediate from the fact that Y satisfies descent.

In fact, we can say more:

Theorem 2.4 The 2–functor � ıL is equivalent to the stackification 2–functor

aW GpdSite.H/op
�! St.Site.H//' St.X /:

Proof Suppose Z is a weak presheaf in groupoids over Site.H/. Then

�.Z/.V /'L.Z/.V ,!H0! X /:

Let G.Z/ be the weak presheaf in groupoids over S=X given by

G.Z/' holim
�������!

U!Z

y.U ,!H0! X /:

Then �L.Z/.V /' a.G.Z//.V ,!H0! X /, where a is stackification.

Note:

G.Z/.W ,!H0! X /
' holim
�������!

U!Z

HomSt.S=X /
�
y.W ,!H0! X /;y.U ,!H0! X /

�
' holim
�������!

U!Z

HomS=X
�
W ,!H0! X ;U ,!H0! X

�
' holim
�������!

U!Z

HomSite.H/.W;U /

'

�
holim
�������!

U!Z

y.U /
�
.W /

' Z.W /:
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Given any weak presheaf in groupoids W over a Grothendieck site .C;J /, we define
WC by

WC.C /D holim
�������!

.Ci!C /i

holim
 �������

�Y
i

W.Ci/ !!
Y
i;j

W.Cij/ !!
!

Y
i;j;k

W.Cijk/

�
:

Then a.W/DWCCC (see for instance [13, Section 6.5.3]). Now,

G.Z/C.jH.V //

D holim
�������!

.Vi ,!V /i

holim
 �������

�Y
i

G
�
jH.Vi/

�
!!

Y
i;j

G
�
jH.Vij/

�
!!
!

Y
i;j;k

G
�
jH.Vijk/

��

' holim
�������!

.Vi ,!V /i

holim
 �������

�Y
i

Z.Vi/!!
Y
i;j

Z.Vij/!!
!

Y
i;j;k

Z.Vijk/

�
' ZC.V /:

Hence
�L.Z/.V /' a.G.Z//.V ,!H0! X /

' .G.Z//CCC.V ,!H0! X /
' ZCCC.V /
' a.Z/.V /:

Corollary 2.4 The adjunction L ? � restricts to an adjunction

St.X /
zL

// St.S=X /;
z�
oo

where zL and z� denote the restrictions. This further restricts to an adjoint equivalence

St.X /
xL

// Ess.L/
�
oo

between St.X / and its essential image under L.

The first part of Corollary 2.4 is clear. In general, a 2–adjunction restricts to an
equivalence between, on one hand, those objects for which the component of the unit
is an equivalence, and on the other hand, those objects for which the component of the
counit is an equivalence. Hence, it suffices to prove that the essential image of L is
the same as the essential image of xL. In fact, we will prove more, namely:

Algebraic & Geometric Topology, Volume 13 (2013)



An étalé space construction for stacks 857

Proposition 2.8 Suppose Z is a weak presheaf of groupoids over Site.H/. Then
L.Z/'L.a.Z///.

Proof zL ı a and L are both weak colimit preserving and agree on representables.

Remark If X is equivalent to a space X , then this construction generalizes the étalé
space construction from sheaves over X to stacks over X (in the ordinary sense). In
the particular case when the stack over X is a sheaf of sets, then its étalé realization is
its (Yoneda-embedded) étalé space.

3 A concrete description of étalé realization

The construction given for the étalé realization of a small stack over an étale stack,
as of now, is rather abstract, since it is given as a weak left Kan extension. In order
to work with this construction, we wish to give a more concrete description of it. To
accomplish this, it is useful first to have a more concrete hold on how to represent these
small stacks themselves.

For a general Grothendieck site .C;J /, one way of representing stacks is by groupoid
objects in sheaves. Given a groupoid object G in Sh.C/, it defines a strict presheaf of
groupoids by assigning an object C of C the groupoid

HomGpd.Sh.C//
�
y.C /id;G

�
;

where y.C /id is the groupoid object in sheaves with objects y.C / and with only
identity arrows, where y denotes the Yoneda embedding. This strict presheaf is a sheaf
of groupoids. In fact, there is an equivalence of 2–categories between groupoid objects
in sheaves, and sheaves of groupoids. Moreover, every stack on .C;J / is equivalent to
the stackification of such a strict presheaf arising from a groupoid object in sheaves.
For details, see Appendix C.

In our case, we have a nice description of sheaves on Site.H/, namely, it is the
classifying topos BH of equivariant sheaves. Hence, we can model small stacks over
ŒH� by groupoid objects in H–equivariant sheaves. In the following subsection, we
will describe a way to construct from a given groupoid object K in equivariant sheaves,
an étale stack over ŒH� which will turn out to be equivalent to the étale realization of
the stack over Site.H/ associated to K .
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3.1 Generalized action groupoids

Definition 3.1 Let H be any S –groupoid and let K be a groupoid object in H–
spaces. In particular we have two H–spaces .K0; �0; �0/ and .K1; �1; �1/ which are
the underlying objects and arrows of K . Note that the source map

sW .K1; �1; �1/ �! .K0; �0; �0/

and target map
t W .K1; �1; �1/ �! .K0; �0; �0/

are maps s; t W .K1; �1; /! .K0; �0; / in S=H0 , hence �0ısD�0ıt D�1 . Similarly
for other structure maps.

We define an S –groupoid HËK as follows:

The space of objects of H ËK is K0 . An arrow from x to y is a pair .h; k/ with
h 2H1 and k 2K1 such that kW hx! y (which implicitly means that s.h/D�0.x/).
We denote such an arrow pictorially as

x
hÜ hx

k
�! y:

In other words, .HËK/1 is the fibered product H1 �H0
K1 :

H1 �H0
K1

pr1

��

pr2
// K1

�1

��

H1
t

// H0;

and the source and target maps are given by

s.h; k/D h�1s.k/ and t.h; k/D t.k/:

We need to define composition. Suppose we have two composable arrows:

x
hÜ hx

k
�! t.k/

h0Ü h0t.k/
k0

�! t.k 0/:

Notice that �1.k/D �0.t.k// so that h0 can act on k . So we get an arrow

h0 � kW .h0h/x �! h0t.k/:

We define the composition to be

x
h0hÜ h0hx

k0.h0�k/
�������! y:
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In other words
.h0; k 0/ ı .h; k/ WD .h0h; k 0 ı .h0 � k//:

The unit map K0! .HËK/1 is given by

x 7�! .1�0.x/; 1x/;

and the inverse map is given by

.h; k/�1
WD .h�1; h�1

� k�1/:

Notice that if K is actually an H–space E considered as a groupoid object with only
identity morphisms, then HËK is the usual action groupoid HËE . Hence, we call
HËK the generalized action groupoid of K , or simply the action groupoid.

Remark This construction is known. It appears, for example, in [18] under the name
semidirect product.

Notice that each action groupoid HËK comes equipped with a canonical morphism
�KW HËK!H given by

.�K/0 D �0W K0 �!H0

and
.�K/1 D pr1W .HËK/1 DH1 �H0

K1 �!H1:

The following proposition is immediate:

Proposition 3.1 If H is étale and K is a groupoid object in H–equivariant sheaves,
then HËK is étale and the components of �K are local homeomorphisms.

Remark Each groupoid object K in H–spaces has an underlying S –groupoid K and
there is a canonical map �KW K!HËK given by the identity morphism on K0 and
on arrows by

k 7�! .1�1.k/; k/:

Let .S–Gpd/=H denote the slice 2–category of S –groupoids over H . We will show
that the action groupoid construction

K 7�!
�
.HËK/

�K
&H

�
extends to a 2–functor

HËW Gpd.H–spaces/ �! .S–Gpd/=H:
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Suppose 'W K! L is a homomorphism of groupoid objects in H–spaces. Then we
can define HË .'/W HËK!HËL on objects as '0 and on arrows by

.h; k/ 7�! .h; '.k//;

which strictly commutes over H . Finally, for 2–cells, given an internal natural trans-
formation

˛W ' H)  

between two homomorphisms
K �! L;

˛ is in particular a map of H–spaces ˛W K0! L1 . It is easily checked that the map
.�L/1 ı˛W K0! .HËL/1 encodes a 2–cell

HË .˛/W HË .'/H)HË . /;

where � is as in the remark directly proceeding Proposition 3.1 We leave it to the reader
to check that this is a strict 2–functor.

Remark This restricts to a 2–functor

HËW Gpd.BH/ �! .Set –Gpd/=H;

where Set denotes the category whose objects are spaces and arrows are all local
homeomorphisms.

Let us now define a strict 2–functor in the other direction,

P W .S–Gpd/=H �! Gpd.H–spaces/:

On objects: Let 'W G!H be a map of S –groupoids. Consider the associated principal
H–bundle over G . Its total space is H1 �H0

G0 , where

H1 �H0
G0

pr1

��

pr2
// G0

'0

��

H1
s

// H0

is a pullback diagram. Together with its projection pr2W H1 �H0
G0! G0 , it is a right

G–space with action given by

.h;x/g WD .h'.g/; s.g//:

Algebraic & Geometric Topology, Volume 13 (2013)



An étalé space construction for stacks 861

We define
P .'/ WD .H1 �H0

G0/ÌG;

that is, the right action groupoid of the underlying G–space of the associated principal
bundle of ' . Since the left H–action and right G–action on H1�H0

G0 commute, this
becomes a groupoid object in H–spaces. Explicitly, the objects of P .'/ are H1�H0

G0

equipped with the obvious left H–action along s ı pr1 given by

h0.h;x/D .h0h;x/:

The arrows are the fibered product

H1 �H0
G1

pr1

��

pr2
// G1

'0ıt

��

H1
s

// H0;

equipped with an analogously defined left H–action along s ı pr1 . The source and
target maps are defined by

s.h;g/D .h'.g/; s.g// and t.h;g/D .h; t.g//:

Composition and units are defined in the obvious way.

The following proposition is immediate:

Proposition 3.2 If H is étale and '0 is a local homeomorphism (which implies that
so is '1 ), then P .'/ is a groupoid object in BH .

We will now define P on arrows:

Suppose we are given an arrow

.f; ˛/W
�
G
'

&H
�
�!

�
L
 

&H
�
:

We wish now to define an internal functor P ..f; ˛//. On objects, define it by:

P
�
.f; ˛/

�
.h;x/D

�
h˛.x/�1; f .x/

�
:

On arrows, define it by

P
�
.f; ˛/

�
.h;g/D

�
h'.g/˛.s.g//�1 .f .g//�1; f .g/

�
:

It is routine to verify that this defines an internal functor.
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We now define P on 2–cells:

Suppose we are given a 2–cell !W .f; ˛/) .f 0; ˛0/ between two maps�
G
'

&H
�
�!

�
L
 

&H
�
:

Define an internal natural transformation

P .!/W P
�
.f; ˛/

�
H) P

�
.f 0; ˛0/

�
; P .!/.h;x/D

�
h˛.x/; !.x/

�
:

We leave it to the reader to check that P is indeed a strict 2–functor.

Lemma 3.1 There exists a natural transformation "W H ËP ) id.S–Gpd/=H whose
components are equivalences.

Proof Given 'W G!H , consider the left-action of H�G on

H1 �H0
G0 D P .'/0

along
.h;x/ 7�! .t.h/;x/

defined by
.l;g/ � .h;x/ WD .lh'.g/�1; t.g//:

Consider
�P.'/W .H�G/Ë .H1 �H0

G0/ �! .H�G/;

where �P.'/ is the canonical morphism.

By direct inspection, we see that HËP .'/ is canonically isomorphic to

z�P.'/ WD pr1 ı �P.'/:

Consider the map

z�' WD pr2 ı �P.'/W .H�G/Ë .H1 �H0
G0/ �! G:

Let �' W H1 �H0
G0 ! H1 be the obvious projection map. Then �' is a natural

isomorphism from ' ı z�' to z�P.'/ . Hence .z�' ; ��1
' / is a morphism in .S–Gpd/=H

from z�P.'/ to ' . It is easy to check that

�W HËP H) id.S–Gpd/=H

defined by
".'/D .z"' ; �

�1
' /;
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is a strict natural transformations of 2–functors. It remains to see that its components
consist of equivalences.

Define �' W G! .H�G/Ë .H1 �H0
G0/ on objects by

�'.x/D .1'.x/;x/;

and on arrows by
�'.g/D

�
.1'.s.g//; s.g//; .'.g/;g/

�
:

Then
z"' ı�' D idG :

Note that z�P.'/ ı�' D ' so that �' is a morphism in .S–Gpd/=H .

Define
�' W H1 �H0

G �! .H�G/Ë .H1 �H0
G0/1

by
�'.h;x/D

�
.1'.x/;x/; .h; 1x/

�
:

Then �' encodes a 2–cell idHËP.'/) �' ı "' .

Corollary 3.1 The 2–functors

HËW Gpd.H–spaces/ �! .S–Gpd/=H

and
HËW Gpd.BH/ �! .Set –Gpd/=H

are bicategorically essentially surjective.

3.2 Action groupoids are étalé realizations

Let H be an étale groupoid and X its associated étale stack, ŒH�. Let

Y W .Set –Gpd/=H �! St.S/=X

be the 2–functor which sends a groupoid 'W G!H over H to

Œ'�W ŒG� �! ŒH�D X :

Consider furthermore the canonical 2–functor

Œ � �BHW Gpd.BH/ �! St.Site.H//

which associates a groupoid object K in BH with its stack completion.
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Theorem 3.2 The 2–functor Œ � �BH is essentially surjective and faithful (but not in
general full), and the 2–functors xL ı Œ � �BH and Y ıHË are equivalent.

The proof of this theorem is quite involved, so it is delayed to Appendix D.

Remark In particular, this implies that if Z is a small stack over X represented by a
groupoid object K in BH , then L.Z/' Y .HËK/.

Definition 3.2 A morphism Y!X of étale stacks is said to be a local homeomorphism
if it can be represented by a map 'W G!H of S –groupoids such that '0 (and hence
'1 ) is a local homeomorphisms of spaces. Denote the full sub-2–category of St.S/=X
spanned by local homeomorphisms over X by Et.X /.

In light of Theorem 3.2 and Proposition 2.8, the essential image of L is precisely the
local homeomorphisms over X . Moreover, with Corollary 2.4, this implies:

Corollary 3.2

St.X /
xL

// Et.X /;
�
oo

is an adjoint equivalence between St.X / and local homeomorphisms over X .

Remark Note that there is a small error in [15, top of page 44]; the construction
P1 , which assigns a stack Z over a space X an étale groupoid over X via a local
homeomorphism, is not functorial with respect to all maps of stacks. It is only functorial
with respect to strict natural transformations of stacks, but in general, one must consider
also pseudonatural transformations. The above corollary may be seen as a corrected
version of this construction, in the case that X is a space X .

3.3 The inverse image functor

Suppose f W Y!X is a morphism of étale stacks. This induces a geometric morphism
of 2–topoi St.Y/ ! St.X /, where by this we mean a pair of adjoint 2–functors
f � ?f� , such that f � preserves finite (weak) limits. (For details about n–topoi, see
[13, Section 6.4].) To see this, note that there is a canonical trifunctor

Top �! 2–Top;

from topoi to 2–topoi, which sends a topos E to the 2–topos of stacks over E with the
canonical topology. Since

ShW St.S/ �! Top
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is a 2–functor, we get an induced geometric morphism

Sh.f /W Sh.Y/ �! Sh.X /;

which in turn gives rise to a geometric morphism

St.f /W St.Y/ �! St.X /;

after applying the trifunctor Top! 2–Top. We denote the direct and inverse image
2–functors by f� and f � .

We also get an induced geometric morphism between the 2–topoi of large stacks,

St.f /W St.S=Y/ �! St.S=X /:

This arises as the adjoint pair of slice 2–categories

St.S/=Y
f�

// St.S/=X ;
f �
oo

induced by f . The inverse image 2–functor f � is given by pullbacks: If Z! X is
in St.S/=X , then f �.Z! X / is given by Y �X Z! Y .

Theorem 3.3 The following diagram 2–commutes:

St.X /
xL
//

f �

��

St.S/=X

f �

��

St.Y/
xL
// St.S/=Y;

where xL is as in Corollary 2.4.

Proof As both composites f � ı xL and xLıf � are weak colimit preserving, it suffices
to show that they agree on representables. We fix an étale S –groupoid H such that
ŒH�' X and choose a particular G such that

ŒG�' Y

and f D Œ'� with 'W G ! H an internal functor. Choose a representable sheaf
mU 2 BH . From [16], for any equivariant sheaf

H E
�
�!H0;

'�.E/ as a sheaf over G0 is given by

G0 �H0
E �! G0
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and has the G–action
g � .x; e/D .t.g/; '.g/ � e/:

Hence xL.f �mu/ is given by Y .G Ë .G0�H0
s�1.U ///. Explicitly, the arrows may be

described by pairs .g; h/ 2 G1 � s�1.U / such that

s'.g/D t.h/:

The other composite,
f � xL.mu/;

is given by
ŒG��ŒH� ŒHË s�1.U /� �! ŒG�:

Since the extended Yoneda 2–functor preserves all weak limits, and stackification
preserves finite ones, this pullback may be computed in S –groupoids. Its objects are
triples

.z; h; ˛/ 2 G0 � s�1.U /�H1

such that
'0.z/

˛
�! t.h/:

Its arrows are quadruples

.g; h; h0; ˛/ 2 G1 �H1 � s�1.U /�H1

such that
s.'.g//D s.˛/ and t.˛/D s.h0/D t.h/:

Such a quadruple is an arrow from .s.g/; h; ˛/ to .t.g/; h0h; h0˛'.g/�1/. The projec-
tions are defined by

pr1W G �H .HË s�1.U // �! G;
.z; h; ˛/ 7�! z;

.g; h0; h; ˛/ 7�! g;

and

pr2W G �H .HË s�1.U // �!HË s�1.U /;

.z; h; ˛/ 7�! h;

.g; h0; h; ˛/ 7�! .h0; h/:

We now define an internal functor

�W G �H .HË s�1.U // �! G Ë .G0 �H0
s�1.U //
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on objects by
.z; h; ˛/ 7�! .z; ˛�1h/

and on arrows by
.g; h0; h; ˛/ 7�! .g; ˛�1h/:

We define another internal functor

 W G Ë .G0 �H0
s�1.U // �! G �H .HË s�1.U //

on objects as
.z; h/ 7�! .z; 1s.h/; h

�1/

and on arrows as
.g; h/D .g; 1s.h/; 1s.h/; h

�1/:

Note that  is a left inverse for � . We define an internal natural isomorphism

!W  ı � H) idG�H.HËs�1.U //

by

!.z; h; ˛/D .1z; h
�1; h; ˛/W .z; h; ˛/ �! .z; 1s.h/; h

�1˛/D  �.z; h; ˛/:

As both � and  commute strictly over G , this establishes our claim.

3.4 A classification of sheaves

From Corollary 3.2, we know that for an étale stack X , the 2–category of local
homeomorphisms over X is equivalent to the 2–category of small stacks over X . A
natural question is which objects in Et.X / are actually sheaves over X , as opposed to
stacks, i.e., what are the 0–truncated objects?

Theorem 3.4 A local homeomorphism f W Z! X over an étale stack X is a equiva-
lent to xL.F / for a small sheaf F over X if and only if it is a representable map.

Proof Suppose F is a small sheaf over X ' ŒH� with H an étale S –groupoid. Denote
by

xL.F / �! X

the map xL.F /. We wish to show that

xL.F / �! X

Algebraic & Geometric Topology, Volume 13 (2013)



868 David Carchedi

is representable. It suffices to show that the 2–pullback

H0 �X xL.F /

��

// xL.F /

��

H0
a

// X ;

is (equivalent to) a space, where aW H0 ! X is the atlas associated to H . By
Theorem 3.3, this pullback is equivalent to the total space of the étalé space of the sheaf
a�.F / over H0 . Conversely, suppose Z!X is a representable local homeomorphism
equivalent to xL.W/ for some small stack W . Then the pullback

H0 �X xL.F /

is equivalent to a space. This implies that a�.W / is a sheaf of sets over H0 . By
definition a�.W/ assigns to each open subset U of H0 the groupoid W.mU /. It
follows that W must be a sheaf.

Corollary 3.3 For an étale stack X , the category of small sheaves over X is equivalent
to the 2–category of representable local homeomorphisms over X .

Remark This implies that the 2–category of representable local homeomorphisms
over X is equivalent to its 1–truncation.

Remark This gives a purely intrinsic definition of the topos of sheaves Sh.X /. In
particular, a posteriori, we could define a small stack over X to be a stack over this
topos. We note for completeness that a site of definition of this topos is the category of
local homeomorphisms T !X from T a space, with the induced open cover topology.
This is equivalent to the category of principal H–bundles whose moment map is a
local homeomorphism.

4 A groupoid description of the stack of sections

Now that we have a concrete description of xL in terms of groupoids, it is natural to
desire a similar description for � (where xL and � are as in Corollary 2.4).

Lemma 4.1 Suppose that 'W T !H is a local homeomorphism from a space T , with
H an étale groupoid. Then �.Œ'�/ is the equivariant sheaf P .'/ 2 BH , where P is as
in Section 3.1.
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Proof Let mU be a representable sheaf in BH . Then

�.Œ'�/.U /' Hom
�
xL.mU /; Œ'�

�
' Hom

�
ŒHË s�1.U /�; Œ'�

�
:

Since T is a sheaf, the later is in turn equivalent to

HomGpd=H.HË s�1.U /; '/:

This follows from the canonical equivalence

Hom
�
zy.HË s�1.U //;T

�
' Hom

�
ŒHË s�1.U /�;T

�
:

In fact, this is a set, since T has no arrows, so there are no natural transformations. An
element of this set is the data of a groupoid homomorphism

 W HË s�1.U / �! T

together with an internal natural transformation

ˇW �mU
H) ' ı :

To ease notation, let ˛ WD ˇ�1 . Since T is a space,  1 is determined by  0 by the
formula

 1..h; 
 //D  0.
 /D  0.h
 /:

Notice that this also imposes conditions on  0 , namely that it is constant on orbits.
The internal natural transformation is a map of spaces

˛W s�1.U / �!H1

such that for all 
 2 s�1.U /,

˛.
 /W ' 0.
 /! t.
 /:

Because of the constraints on  , the naturality condition is equivalent to

˛.h
 /D h˛.
 /:

This data defines a map
mU �! P .'/

by
s�1.U / �!H1 �H0

T; 
 7�! .˛.
 /;  0.
 //:

Conversely, any map f W mU ! P .'/ defines a morphism

yf W HË s�1.U / �! T
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on objects by pr2ıf (and hence determines it on arrows), and since f is H–equivariant
and the H–action on H1�H0

T does not affect T , this map is constant on orbits. The
map f induces an internal natural transformation

f̨ W ' ı yf �! �mU

by f̨ D pr1 ıf . This establishes a bijection

HomGpd=H.HË s�1.U /; '/Š HomBH.mU ;P .'//:

Hence
�.Œ'�/.U /' HomBH.mU ;P .'//;

so we are done by the Yoneda Lemma.

Theorem 4.2 Suppose that 'W G!H is a homomorphism of étale S –groupoids with
'0 a local homeomorphism. Then �.Œ'�/ is equivalent to the stack associated to the
groupoid object P .'/ in BH .

Proof Let aW G0! ŒG� denote the atlas of the stack ŒG�. There is a canonical map

pW �.Œ'� ı a/ �! �.Œ'�/;

and since a is an epimorphism, it follows that p is an epimorphism as well. Since p

is an epimorphism from a sheaf to a stack, it follows that

�.Œ'� ı a/��.Œ'�/ �.Œ'� ı a/� �.Œ'� ı a/;

is a groupoid object in sheaves (i.e., the classifying topos BH), whose stackification
is equivalent to �.Œ'�/. We will show that this groupoid is isomorphic to P .'/. This
isomorphism is clear on objects from the previous lemma.

Since pullbacks are computed object-wise, as a sheaf,

�.Œ'� ı a/��.Œ'�/ �.Œ'� ı a/

assigns U 2 Site.H/ the pullback groupoid

�.Œ'� ı a/.U /��.Œ'�/.U / �.Œ'� ı a/.U /;

which is indeed (equivalent to) a set. It is the set of pairs of objects in �.Œ'� ı a/.U /

together with a morphism in �.Œ'�/.U / between their images under p.U /.

Since for all S –groupoids, the induced map

Hom.L;K/ �! Hom.ŒL�; ŒK�/
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is full and faithful, we may describe this set in terms of maps of groupoids. It has the
following description:

An element of �.Œ'�ıa/.U /��.Œ'�/.U /�.Œ'�ıa/.U /, can be represented by two pairs
.�0; ˛0/ and .�1; ˛1/, such that for i D 0; 1,

HË s�1.U /

�mU

--

�i
// G0

za

��
˛i{� G

'

��

H;

where zaW G0! G is the obvious map such that Œza�D a, together with a 2–cell

ˇW za ı �0 H) za ı �1;

such that the following diagram commutes:

(4)

' ı za ı �0

'ˇ +3

˛0  (

' ı za ı �1

˛1v~
�mU

Each pair .�i ; ˛i/ represents

ŒHË s�1.U /�

Œ�mU
�

--

Œ�i �
// G0

a

��

Œ˛i �|� ŒG�
Œ'�

!!

ŒH�;

i.e., the element .Œ�i �; Œ˛i �/ of the set �.Œ'� ı a/.U /. The groupoid structure on

�.Œ'� ı a/��.Œ'�/ �.Œ'� ı a/� �.Œ'� ı a/;

is such that the data �
.�0; ˛0/; .�1; ˛1/; ˇ

�
is an arrow from .Œ�0�; Œ˛0�/ to .Œ�0�; Œ˛0�/.
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Recall that the arrows of P .'/ are the equivariant sheaf described as the fibered product

H1 �H0
G1

pr1

��

pr2
// G1

'0ıt

��

H1
s

// H0;

equipped with the left H–action along s ı pr1 given by

h � .
;g/D .h
;g/;

and that the source and target maps are given by

s.h;g/D .h'.g/; s.g// and t.h;g/D .h; t.g//:

Viewing the arrows of P .'/ as a sheaf, they assign U the set

Hom.mU ;P .'/1/:

Let

�.U /W �.Œ'� ı a/.U /��.Œ'�/.U / �.Œ'� ı a/.U / �! Hom.mU ;P .'/1/

be the map that sends
� WD

�
.�0; ˛0/; .�1; ˛1/; ˇ

�
to the morphism

�.�/W mU �!H1 �H0
G1; 
 7�! .˛1.
 /; ˇ.
 //:

It is easy to check that this morphism is H–equivariant, hence is a map in BH . We
will show that under the identification

�.Œ'� ı a/.U /Š P .' ı za/.U /D Hom.mU ;P .' ı za//;

�.U / respects source and targets. Indeed, suppose we start with a triple

� WD
�
.�0; ˛0/; .�1; ˛1/; ˇ

�
:

By Lemma 4.1, each .�i ; ˛i/ corresponds to an element of

�.Œ'� ı a/.U /;

which in turn corresponds to a morphism

(5)
mU D s�1.U / �!H1 �H0

T;


 7�! .˛i.
 /; �i.
 //;
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in BH . Now �.U /.�/ is a map from d0�.U /.�/ to d1�.U /.�/, where we have used
simplicial notation for the source and target. For each i , we have a map

mU

�.U /.�/
������!H1 �H0

G1

di
�!H1 �H0

G0;

which we may interpret as an element of

P .'/0.U /D P .' ı za/.U /:

From (5) and the definition of the source and target map, it follows that

s�.U /.�/D 
 7�! s.˛1.
 /; ˇ.
 //

D 
 7�! .˛1'ˇ.
 /; sˇ.
 //

D 
 7�! .˛0.
 /; �0.
 //;

and

t�.U /.�/D 
 7�! t.˛1.
 /; ˇ.
 //

D 
 7�! .˛1.
 /; tˇ.
 //

D 
 7�! .˛1.
 /; �1.
 //:

Hence �.U / respects the source and target. We will now show it is an isomorphism.
Suppose we are given an arbitrary equivariant map

� W mU �!H1 �H0
G1:

Denote its components by
�.
 /D .h.
 /;g.
 //:

Since � is H–equivariant, it follows that h is H–equivariant and g is H–invariant.
Now

s ı � W mu �! P .'/0;

s�.
 /D
�
h.
 /'.g.
 //; s.g.
 //

�
;

and

t ı � W mu �! P .'/0;

t�.
 /D
�
h.
 /; t.g.
 //

�
:

Each of these maps correspond to an element in

P .'/0.U /Š �.Œ'� ı a/.U /:
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By Lemma 4.1, we know that s ı � corresponds to the morphism of groupoids

bs ı � W HË s�1.U /D s�1.U / �! G0

given on objects as

 7�! s.g.
 //;

together with a 2–cell
˛s� W Œ'� ı a ı bs ı � H) �mU

;

given by
˛s� D pr1 ı s ı �:

Explicitly we have:
˛s� .
 /D h.
 /'.g.
 //:

Similarly, we know that t ı � corresponds to the morphism

bt ı � W HË s�1.U /D s�1.U / �! G0

given on objects as

 7�! t.g.
 //;

together with a 2–cell
˛t� W Œ'� ı a ı bt ı � H) �mU

;

given by
˛t� D pr1 ı t ı �;

and we have:
˛t� .
 /D h.
 /:

The map
ˇ.�/ WD pr2 ı � W s

�1.U / �! G1

which assigns 
 7! g.
 / encodes a natural transformation

ˇ.�/W bs ı � H) bs ı � :
Moreover, we have that

˛t�'ˇ.
 /D h.
 / ı'.g.
 //D ˛s�.
 /;

which implies the diagram (4) commutes.

Define a map

„.U /W Hom.mU ;P .'/1/ �! �.Œ'� ı a/.U /��.Œ'�/.U / �.Œ'� ı a/.U /
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which assigns the morphism � W mU ! P .'/1 the triple�
.bs ı � ; ˛s� /; .bt ı � ; ˛t� /; ˇ.�/

�
:

This map is clearly inverse to � . We leave it to the reader to check that �.U / respects
composition. It then follows that the groupoids in sheaves

�.Œ'� ı a/��.Œ'�/ �.Œ'� ı a/ and P .'/

are isomorphic.

Appendix A: A brief review of locales

In this appendix, we give a brief introduction to the theory of locales. Many ideas were
taken from [9] and [10]. The concept of a locale is the essence of space one arrives at
after liberating the definition of a topological space from the need of an underlying set
of points. Let us recall the definition of a topological space, so that we can see how it
naturally gives rise to the concept of a locale. A topological space is a set X together
with a subset

O.X /� P .X /

of the power set, called the open subsets, for which the following properties hold:

(1) The intersection of finitely many opens is open.

(2) The union of an arbitrary set of opens is open.

(3) Both X and the empty set ∅ are open.

Notice that .1/ and .2/ above make no reference to the underlying set X . Now, the
power set P .X / has much more structure than just a set. In particular, it is a lattice.
Recall that a lattice is a partially ordered set .P;�/ (poset) such that for any two
elements a and b there exists an element a^ b , called the meet of a and b which is
the greatest element less than both a and b , and dually there is an element a_b which
is the smallest element greater than a and b . P .X / is a lattice since given any two
subsets A and B , they have a meet given by

A\B

and a join given by
A[B:

Algebraic & Geometric Topology, Volume 13 (2013)



876 David Carchedi

Conditions .1/ and .2/ guarantee that O.X / is a sublattice of P .X /, and that moreover,
O.X / has arbitrary joins, given by arbitrary unions by virtue of .2/. Moreover, finite
meets distribute over arbitrary joins, that is:

U \

�[
˛

V˛

�
D

[
˛

U \V˛;

a property inherited from P .X /. This leads to the following definition:

Definition A.1 A frame is a lattice L, with arbitrary joins, such that finite meets
distribute over arbitrary joins.

Remark Since a frame must have arbitrary joins, it follows that it has a maximal
element, 1. For a topological space, the maximal element of O.X / is clearly X . By
the adjoint functor theorem, any lattice in which finite meets distribute over arbitrary
joins must also have arbitrary meets. Hence it follows that a frame much also have a
minimal element, 0. In the case of a topological space X , the arbitrary meets cannot
necessarily be computed in P .X /, that is, they are not always given by intersection.
Indeed, for a set .V˛/˛ of opens, the meet is given by

int
�\
˛

V˛

�
;

the interior of the intersection. In particular, the minimal element in O.X / is the meet
of all open subsets, i.e., the empty set ∅. Hence the analogue of .3/ for a frame is that
it must have a maximal and minimal element.

Now, suppose that f W X ! Y is a continuous map of topological spaces. That is, the
induced map

P .f /W P .Y / �! P .X /;

which sends a subset
A� Y to f �1.A/;

carries O.Y / to O.X /. Notice that P .f / is more than a map of lattices, as it preserves
arbitrary meets and arbitrary joins. Consequently, the induced map of lattices

O.f /W O.Y / �!O.X /

preserves finite meets and arbitrary joins. (It need not preserve arbitrary meets, as these
need not be given by intersection.) This leads to the following definition:

Definition A.2 A map of frames is a function f W L!L0 which preserves finite meets
and arbitrary joins.
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Consequently, frames form a category Frm. Since maps of spaces induce maps of their
associated frames in the opposite direction, if one wishes to view frames as generalized
spaces, one should use their opposite category. In doing so, it is customary to give
them another name. Indeed, this is the definition of a locale:

Definition A.3 The category of locales is the opposite category of Frm and is denoted
by LOC . A map of locales will be called continuous.

There is an evident functor
OW TOP �! LOC:

If X is a topological space, then a point of X is the same thing as a morphism �!X

from the one point space. Hence, this suggests a reasonable definition:

Definition A.4 A point of a locale L is a morphism

O.�/ �! L:

The set of points is denoted by pt.L/.

Whereas this is a natural definition to make, it is important to note that in general, if X

is a topological space, points of X may not be the same as points of O.X /. In fact,
the induced map between the points of X and the points of O.X / is a bijection if and
only if X is sober. We will now give a more topological description of sobriety.

Definition A.5 Let A�X be a subspace of a topological space. A is reducible if it
can be written as

ADA1[A2;

with both A1 and A2 proper closed subsets of A. A subset is called irreducible if it is
not reducible.

Remark Let x 2X . Then the closure fxg is an irreducible closed subset of X .

Definition A.6 A topological space X is sober if and only if every irreducible closed
subset is the closure of a unique point in X .

The class of sober spaces is quite large in practice. It includes all Hausdorff spaces
and also many highly non-Hausdorff topological spaces such as the prime spectrum
of a commutative ring, with the Zariski topology, Spec.A/ (or more generally the
underlying space of any scheme).

Algebraic & Geometric Topology, Volume 13 (2013)



878 David Carchedi

Suppose that L is a locale. Note that

O.�/D f∅;�g:

Define a map of sets

'LW L �! P .pt.L//;

l 2 L 7�! fp 2 pt.L/ j in Frm, pW L �!O.�/ satisfies p.l/D �g:

It can be checked that 'L is a map of frames, so its image defines a sublattice of
P .pt.L//. In fact, this sublattice defines a topology on the set pt.L/. This defines a
functor

ptW LOC �! TOP :

Moreover, since O.pt.L//, as a frame, is the image of 'L , there is a canonical induced
map of locales

�LW O.pt.L// �! L:

Definition A.7 A locale L has enough points if �LW O.pt.L//!L is an isomorphism.

Theorem A.1 (Stone duality) The functor pt is right adjoint to O . Moreover, this
adjunction restricts to an equivalence between sober topological spaces on one hand
and locales with enough points on the other.

A.1: Covers and local homeomorphisms

Let X be a topological space. Then an open subset of X is the same as an element of
the associated locale O.X /. This leads naturally to the following definition:

Definition A.8 Let L be a locale and U an element of L. Then U is called an open
subset of L.

For this definition to be justified, to an element of a locale L, there should be an
associated inclusion of an open sublocale. We will make this precise. To build up our
intuition, consider a topological space X and let

i W A ,�!X

be the inclusion of any subspace. Then the corresponding map of frames is

i�1
W O.X / �!O.A/D fV 2O.X / j U �Ag;

U 7�!A\U:
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So let U 2 L be an element of a locale. We can define the frame

#U WD fl 2 L j l � U g:

By the above, if LDO.X /, this is the frame O.U /. Now there is a frame homomor-
phism ��

U
W L!#U , given by the same formula, namely

l 7�! U^ l:

This defines a map of locales �U W U ! L (where we have abused notation to identify
U with its locale #U .). This map represents the open inclusion of U .

Definition A.9 Let f W L0! L be a map of locales. It is an open embedding if there
exists an element U 2 L and a factorization of f of the form

L0 ��!� #U
�U
�! L:

Notice that, viewing frames as categories (since they are in particular posets), the
functor ��

U
is right adjoint to the inclusion .�U /!W #U ,! L. Hence, the element U

may be recovered as .�U /!.1/. It follows that if f W L0! L is an open embedding,
then its associated map of frames f �W L! L0 has a left adjoint f! and f!.1/ is the
element of L corresponding to its open image. This allows us to make sense of an
open covering:

Definition A.10 A family of open embeddings

.f˛W L˛ �! L/

is an open covering if _
˛

.f˛/!.1/D 1:

Definition A.11 A map of locales f W L0! L is a local homoeomorphism if there
exists an open covering .i˛W U˛! L0/˛ of L0 such that for each ˛ , the composite

U˛
i˛
�! L0

f
�! L

is an open embedding. A local homeomorphism is said to be surjective if the family

.U˛
i˛
�! L0

f
�! L/˛

is an open covering of L.

Each locale carries a canonical Grothendieck pretopology on its underlying poset:
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Definition A.12 Declare a collection of morphisms .U˛!U /˛ in L, in other words,
a collection of objects U˛ such that

U˛ � U;

to be a covering family, if and only if
W
˛ U˛ D U . Note that this is equivalent to

demanding that the induced maps .U˛! U / form an open covering. The resulting
Grothendieck topology on L is called the open cover topology. The associated topos of
sheaves will simply be denoted by Sh.L/ and will be called the topos of small sheaves
on L.

Proposition A.1 [14] The assignment L 7! Sh.L/ extends to a full and faithful
2–functor

ShW LOC �! Top:

Corollary A.1 The induced 2–functor

ShW TOP �! Top

is full and faithful when restricted to sober topological spaces.

Let L be a locale and suppose U is an open subset. Suppose that we have a commutative
diagram of posets and functors

L
��

U

~~

��
V

  

#U
f

// #V:

Then for any l 2#U ,

f .l/D f .��U .l//D �
�
V .l/D l ^V:

For f to be a map of frames, f must preserve finite meets and arbitrary joins. In
particular, it must preserve the maximal element 1. This means one must have

f .U /D U^V D V;

which is equivalent to demanding V � U . Moreover, one can check that if V � U ,
that f defined as above is a map of frames. The following proposition is immediate:

Proposition A.2 Let L be a locale. Then the canonical functor

L
�
�! LOC=L;

U 7�! �U W U ! L;

is fully faithful. Its essential image is the subcategory spanned by open embeddings.
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For any locale L, the category of locales over L, LOC=L, is cocomplete, so one may
form the left Kan extension L of � with respect to the Yoneda embedding

yW L ,�! SetL
op
:

L comes with a right adjoint �W

SetL
op

L
// LOC=L:

�
oo

The functor � sends a map
L0 �! L

of locales to the induced presheaf of sections of this map. This presheaf is easily seen
to be a sheaf. Moreover, one has the following classical theorem:

Theorem A.2 The adjunction

SetL
op

L
// LOC=L

�
oo

restricts to an adjoint equivalence

Sh.L/
L
// Et.L/;

�
oo

where Et.L/ is the subcategory of LOC=L spanned by local homeomorphisms over L.

The functor L associates to each sheaf F on L a locale

LF W LF �! L

over L via a local homeomorphism, called the étalé space of F . F can be recovered
as the sheaf of sections of LF .

Appendix B: Categories of spaces

We now formalize exactly what properties are needed of a category of spaces for the
results of this paper to apply to it. For a category S to be considered a category of
spaces, it will need to be equipped with a functor

U W S �! LOC;

and a distinguished class of morphisms which we will call S –local homeomorphisms.
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Definition B.1 Let U W S ! LOC be a category over LOC and let Set be a subcat-
egory of S , on the same objects, such that for every

f W X �! T

in Set , U.f / is a local homeomorphism of locales. U induces a functor

U et
W Set

�! LOCet ;

where LOCet denotes the category of locales and local homeomorphisms. Set is
called admissible if the following conditions hold:

(1) Every isomorphism in S is in Set .

(2) If f and g are composable arrows of S and any two of f , g and fg are in
Set , then all three are.

(3) S has pullbacks along morphisms in Set , Set is stable under these and U

preserves these pullbacks.

(4) The canonical functor Set ! S preserves coequalizers.

(5) If f W U T !UZ is a local homeomorphism of locales and there exists a family
of morphisms in Set

.T˛ �! T /˛

such that the induced morphisma
˛

U T˛ �! U T

is a surjective local homeomorphism of locales, and each composite

U T˛ �! U T �! UZ

is equal to U.'˛/ for some '˛ in S , then there exists a morphism 'W T !Z

in S such that U.'/D f .

(6) The induced functor
U et
W Set

�! LOCet

is faithful and locally an equivalence in the following sense: For every object
T 2 S , the induced functor

U et
T W S

et=T �! LOCet=U T

is an equivalence of categories.

If Set is admissible, morphisms in Set are called S –local homeomorphisms.
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Definition B.2 Let U W S ! LOC be a category over LOC with an admissible
subcategory Set of S –local homeomorphisms. Then S is called a category of spaces
if the following conditions hold:

(a) S has and U preserves finite coproducts.

(b) If 'W U T !X is a surjective local homeomorphism, then there exists a Z in
S such that U.Z/ŠX .

If S is a category of spaces, we will often refer to objects of S simply as spaces,
morphisms as continuous and S –local homeomorphisms as local homeomorphisms.

The following is a nonexhaustive list of examples of categories of spaces in the sense
of Definition B.2. In each case, the functor U is obvious, so shall be omitted.

(I) Locales and local homeomorphisms.

(II) Sober topological spaces and local homeomorphisms.

(III) Any type of manifold (e.g., smooth manifolds, C k manifolds, analytic manifolds,
complex manifolds, supermanifolds . . . ) with the appropriate version of local
diffeomorphism, provided we remove all separation conditions. For example,
manifolds will neither be assumed paracompact nor Hausdorff.

(IV) Schemes over any fixed base and Zariski local homeomorphisms. When viewed
as maps of locally ringed spaces, Zariski local homeomorphisms are those maps

.f; '/W .X;OX / �! .Y;OY /

such that f is a local homeomorphism and 'W f �.OY / ��!
� OX is an isomor-

phism.

Remark By the conventions of Definition B.2, in this paper, if S is taken to be, for
example, the category of smooth manifolds, the phrase “continuous map” will mean a
smooth map and “local homeomorphism” will mean local diffeomorphism. Similarly
for the other examples above.

Remark In all of the examples listed, S has and U preserves arbitrary coproducts.
We see no reason to impose this, however it does make the theory a bit nicer.

We now give some basic consequences of the definition.

Since U et
T

is an equivalence by .6/, we may pick for each T a left adjoint  T making
the pair

 T a U et
T

Algebraic & Geometric Topology, Volume 13 (2013)



884 David Carchedi

an adjoint equivalence. Let us fix such a  T for each T once and for all. Let

�T W S
et=T �! Set

be the forgetful functor. By convention, if

V ,�! U T

is an open subset, then we will often refer to �T T .V ,! U T / as an open subset
of T and denote it again by V . Any morphism isomorphic to the inclusion of an
open subset is said to be an open embedding. It easily follows then that for any local
homeomorphism in S , f W X ! T , there exists an open covering family (in the sense
of Definition B.3)

.V˛ �!X /

of X such that each composite

V˛ �!X �! T

is an open embedding.

Let f W T 0! T and gW T 00! T be objects in Set=T . Then by .3/, f �g exists and
is given by the canonical map

T 0 �T T 00 �! T:

In particular, Set has pullbacks and they are preserved and reflected by the canonical
functor

Set
�! S:

By .6/, U et
T

is an equivalence, hence U.f � g/ D U.f / � U.g/ in LOCet=U T .
Since the canonical diagram

Set=T

��

U et
T
// LOCet=U T

��

Set
U

// LOCet

commutes, it follows that

U.T 0 �T T 00/D U T 0 �U T U T 00:

This shows that U et W Set ! LOCet preserves and reflects pullbacks.
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Definition B.3 We say a collection of local homeomorphisms .T˛! T /˛ in S is a
covering family of local homeomorphisms if the induced morphisma

˛

U T˛ �! U T

is a surjective local homeomorphism of locales. The family is called a open covering
family if each map

U T˛ �! U T

is an open embedding.

Proposition B.1 If S is a category of spaces, by either declaring covering families
to be covering families of local homeomorphisms, or open covering families (as in
Definition B.3), one gets a Grothendieck pretopology on S .

Proof By .1/, every isomorphism is a cover. The pullback of a cover is readily seen
to be a cover by virtue of .3/. Transitivity of covers follows from the fact that the
composite of two surjective local homeomorphisms of locales is again a surjective local
homeomorphism.

Definition B.4 Both of these pretopologies induce the same Grothendieck topology,
which we will call the open cover topology on S .

Definition B.5 The functor
U W S �! LOC

canonically assigns each space T the topos Sh.U T /. This is called the topos of small
sheaves on T . By abuse of notation, we will denote Sh.U T / by Sh.T /.

Remark Denote by O.T / the essential image of

O.U T /
�
�! LOCet=U T

 T
�! Set=T:

The open cover topology on Set induces a Grothendieck topology on O.T / such that

Sh.O.T //' Sh.U T /:

Example 1 If S is topological spaces, then for a space X , Sh.X / is the ordinary
topos of sheaves on X . If S is schemes, then for a scheme X , Sh.X / is the topos of
sheaves on the small Zariski site of X .

Algebraic & Geometric Topology, Volume 13 (2013)



886 David Carchedi

Combining .6/ and Theorem A.2, we see that for each T there is a canonical equiva-
lence

Et.T / WD Set=T ' LOCet=U T D Et.U T /' Sh.T /:

Suppose that F is a sheaf over U T and that zLF W zLF !U T is its étalé space. Under
the equivalence U et

T
, this corresponds to a local homeomorphism

LF W LF �! T

in S . Let
V ,�! T

be an open subset.

Proposition B.2 The canonical map

�.LF;V / �! �. zLF ;U V /

from sections of LF over V in S to sections of zLF over U V in LOC is a bijection.

Proof Since U et is faithful by .6/, the map is injective. Suppose that

� W U V �! zLF

is a section of zLF . Let .u˛W V˛ ,!LF / be an open covering family of LF such that
for each ˛ , LF ıu˛ is an open embedding. Notice that in the following diagram, each
square is a pullback in LOC :

z��.U V˛/� _

z��.u˛/

��

// U V˛� _

��

// U V˛� _

U.LFıu˛/

��

U V
z�

// zLF
zLF
// U T:

Observe that

.z��.U V˛/
z��.u˛/
�������! U V /

is an open cover covering. By .6/, using  T we may assume without loss of generality
that for each ˛ ,

z��.u˛/D U.�˛W W˛ ,! V /;

for some open covering
.�˛W W˛ ,! V /
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of V in S . So we have an open covering .�˛W W˛ ,! V / such that for each ˛ , the
composite

U W˛ �! U V
z�
�! zU .LF /

is the image under U of an open embedding in S . Hence, by .5/, there exists a
� W V !LF , such that U.�/D z� .

Consequently, F is isomorphic the sheaf of sections of LF . When viewing F as a
sheaf on O.T /, we shall call LF its étalé space in S . We can arrange this into a
functor

LW Sh.T / �! Et.T /:

The following theorem is immediate:

Theorem B.1 For every space T in S , the étalé space functor L is part of an adjoint
equivalence

Sh.T /
L
// Et.T /;

�
oo

where � associates a local homeomorphism f W X ! T its sheaf of sections.

Proposition B.3 If S is a category of spaces,

U et
W Set

�! LOCet

creates finite colimits.

Proof Let F W J ! Set be any finite diagram. If J is empty, we are done by (a), so
suppose not. Suppose that U etF has a colimit. Lets denote it by X and lets denote
the associated colimiting cocone by

�W U etF H)�X :

This cocone corresponds canonically to a functor

J
z�
�! LOCet=X:

Notice that the canonical mapa
j2J

�.j /W
a
j2J

UF.j / �!X

Algebraic & Geometric Topology, Volume 13 (2013)



888 David Carchedi

is a surjective local homeomorphism. By (a),a
j2J

UF.j /Š U

�a
j2J

F.j /

�
;

so by (b), we can assume without loss of generality that X D U.T / for some T . By
.6/, we can consider the composition

J
z�
�! LOCet=X

 T
�! Set=T;

which corresponds to a cocone
x�W F �!�T

for F with vertex T . It readily follows that U et x� is isomorphic to � in the category of
cocones for U etF , hence is colimiting, so we may assume without loss of generality
that �D U et x� . It suffices to show that x� is colimiting. Let Z be an arbitrary space.
Composition with x� produces a canonical map

b.x�/W HomSet .T;Z/ �! Cocone.F;Z/:

We wish to show this map is a bijection. Notice that the following diagram commutes

HomSet .T;Z/
c.x�/

//

U et

��

Cocone.F;Z/

��

HomLOCet .U T;UZ/
b�
// Cocone.U etF;UZ/;

and the vertical arrows are injective since U et is faithful by .6/. It follows that b.x�/ is
injective. It suffices to show that it is surjective. Let �W F!�Z be a cocone on Z for
F . Then, since �DU et x� is colimiting, there exists a unique � W U T !UZ such that

U et�D
�
U etF

�
D)�U T

�
D)�U Z

�
:

Notice that .F.j /
x�.j/
�! T /j is a covering family of local homeomorphisms. Moreover,

for each j , the composite

UF.j /
U x�.j/
����! U T

U�
�! UZ

is equal to U.�.j //. By .5/, it follows that there exists z� W Z!T such that U et z� D � .
It follows that

U etb.x�/ D U et�;
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and since U et is faithful, this implies

b.x�/.z�/D �:
By the same proof, if x� is any cocone for which U et x� is colimiting, then x� must be
colimiting.

Remark If S is a category of spaces and S has, and U preserves, arbitrary coproducts,
by the same proof

U et
W Set

�! LOCet

creates all colimits.

Corollary B.1 If S is a category of spaces, the open cover topology on S is sub-
canonical.

Proof It suffices to show that if .T˛! T / is a covering family of local homeomor-
phisms, then

T Š lim
�!

�a
T˛ �T Tˇ�

a
T˛

�
:

By .3/ and .4/, this coequalizer may be computed in Set , which exists and is preserved
by U et by Proposition B.3. By the same proposition, it suffices to show that

U T Š lim
�!

U
�a

T˛ �T Tˇ�
a

T˛

�
:

Notice that

lim
�!

U
�a

T˛ �T Tˇ�
a

T˛

�
Š lim
�!

�a
U T˛ �U T U Tˇ�

a
U T˛

�
:

Since the open cover topology on LOC is subcanonical, we are done.

Appendix C: Sheaves in groupoids versus stacks

Definition C.1 Let C be a small category. A strict presheaf in groupoids over C is a
strict 2–functor F W Cop! Gpd to the 2–category of (small) groupoids. Notice that
this is the same as a 1–functor Cop! �1.Gpd/, where the target is the 1–category of
groupoids. A morphism of strict presheaves is a strict natural transformation (i.e., a
natural transformation between their corresponding 1–functors into �1.Gpd/). A 2–
morphism between two natural transformations ˛i W F)G , i D 1; 2, is an assignment
to each object C of C a natural transformation

w.C /W ˛1.C /H) ˛2.C /;

subject to the following condition:
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For all f W D! C , we have two functors from F.C / to G.D/, namely

G.f /˛1.C /D ˛1.D/F.f / and G.f /˛2.C /D ˛2.D/F.f /:

Given our assignment C 7! w.C /, we have two different natural transformations
between these functors: G.f /w.C / and w.D/F.f /. w is called a modification if these
two natural transformations are equal. Modifications are the 2–cells of strict presheaves.
This yields a strict 2–category of strict presheaves in groupoids Psh.C;Gpd/.

Proposition C.1 The 2–category Psh.C;Gpd/ is equivalent to the 2–category of
groupoid objects in SetC

op
.

Proof Let . � /i W �1.Gpd/ ! Set, i D 0; 1; 2 be the functors which associate to a
groupoid G its set of objects G0 , its set of arrows G1 and its set G2 of compos-
able arrows respectively. Let F W Cop ! �1.Gpd/ be a strict presheaf of groupoids.
Then each Fi is an ordinary presheaf of sets. Moreover, for each C , F.C / is a
groupoid, which we may write as demanding certain diagram involving each F.C /i
to commute. These assemble to a corresponding diagram for the global Fi , showing
they form a groupoid object in SetC

op
, Q.F /. Given 1–morphism ˛W F ) G in

Psh.C;Gpd/, let Q.˛/W Q.F / ! Q.F / be the internal functor with components
Q.˛/i.C / D ˛.C /i for i D 0; 1. Finally, let w be a modification from ˛ to ˇ .
Then, in particular, for each C , w.C /W ˛.C /) ˇ.C / is a natural transformation, so
it is a map w.C /W F.C /0 ! G.C /1 satisfying the obvious properties. It is easy to
check that the conditions for w to be a modification are precisely those for the family
.w.C /W F.C /0!G.D/1/ to assemble into a natural transformation

Q.w/W F0 H)G1:

Since w is point-wise a natural transformation, Q.w/ is an internal natural transfor-
mation. It is easy to check that this is indeed an equivalence of 2–categories with an
explicit inverse on objects given by

G 7�! Hom. � ;G/:

Definition C.2 Let .C;J / be a Grothendieck site. Then a sheaf of groupoids is a
strict presheaf F W Cop! �1.Gpd/ such that for any covering family .Ci! C /i , the
induced morphism

F.C / �! lim
 �

�Y
i

F.Ci/ !!
Y
i;j

F.Cij/

�
is an isomorphism of groupoids. Sheaves of groupoids form a full sub-2–category
Sh.C;Gpd/ of strict presheaves of groupoids.
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The following proposition is easily checked:

Proposition C.2 The 2–functor QW Psh.C;Gpd/!Gpd.SetC
op
/ restricts to an equiv-

alence QW Sh.C;Gpd/! Gpd.Sh.C//.

Analogously to sheaves of sets, there is a 2–adjunction

Sh.C;Gpd/
i
// Psh.C;Gpd/;

sh
oo

where sh denotes sheafification.

Denote by j W Psh.C;Gpd/! GpdCop
the “inclusion” of strict presheaves into weak

presheaves. We use quotations since this functor is not full. The following proposition
is standard:

Proposition C.3 Let Z be a strict presheaf of groupoids. Then

a ı j .Z/' a ı j ı i ı sh.Z/;

where a denotes stackification.

In other words, if you start with a strict presheaf of groupoids, sheafify it to a sheaf
of groupoids and then stackify the result, this is equivalent to stackifying the original
presheaf.

Corollary C.1 Every stack is equivalent to aıj ıi.W/ for some sheaf of groupoids W .

Appendix D: Proof of Theorem 3.2

In this appendix, we will prove that the generalized action groupoid construction
described in Section 3.1 yields a concrete description of étalé realization. For technical
reasons, we start by fixing an ambient Grothendieck universe U . Recall the following
definition from [1, Exposé ii]:

Definition D.1 A locally U –small Grothendieck site .E;V / is called a U –site if there
exists a U –small set of objects G , called topological generators, such that every object
E 2 E admits V –cover by a family of morphisms all of whose sources are in G .

Theorem D.1 [1, Exposé ii, Théorème 3.4] If .E;V / is a U –site, then the category
of presheaves of U –small sets on E is locally U –small. Moreover, the full subcategory
thereof consisting of U –small V –sheaves is reflective, and the reflector is left exact,
hence this subcategory is a U –topos.
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Remark In particular, a U –site is not necessarily U –small. An important example of
a U –site which is not U –small is the following:

Suppose .C;J / is a U –small site. Let E WD ShUJ .C/ be the U –topos of J –sheaves
of U –small sets. Equip E with the canonical topology, which is generated by jointly
surjective epimorphic families. Denote this site by .E ; can/. This site is clearly not
U –small, but it is a U –site, since the set of representable sheaves is U –small (since it is
a copy of C ) and topologically generates E (because of the Yoneda lemma). Moreover,
the category of U –small sheaves on this site, is canonically equivalent to E itself. More
generally, if .C;J / is not U –small, but just a U –site, .E ; can/ is still a U –site; its
topological generators are the image of those of C under the Yoneda embedding.

Lemma D.2 Let E be a U –small topos, .D;K/ be a U –small site and

GW E �! StUK .D/

be a left exact 2–functor from E into the 2–topos (in U ) of K–stacks of (essentially)
U –small groupoids, which preserves coproducts and epimorphisms. Denote by

yyE W E �! StUcan.E/

the Yoneda embedding of E into the 2–topos of U –small stacks on E . Then there
exists (an essentially unique) U –small weak colimit preserving 2–functor

LU
E W StUcan.E/ �! StUK .D/;

which when restricted to E along yE agrees with G (up to equivalence).

Proof Let V be a larger Grothendieck universe such that U 2 V . Then .E ; can/ is a
V –small site. Consider the canonical inclusion

iVD W StUK .D/ �! StVK .D/:

By [13, Remark 6.3.5.17], this inclusion preserves U –small weak colimits (apply ��1

to functor in this proposition, and note that ��1 is a colimit preserving functor of
infinity categories). Let bE denote the 2–topos in V of V –small weak presheaves of
groupoids on E . Let LV

E denote the weak left Kan extension of iVD ıG along the
Yoneda embedding yyV of E into bE . Denote its right adjoint by RV

E . Explicitly, for
Z 2 StVK .D/, RV

E .Z/ is the weak presheaf that assigns E 2 E , the groupoid

RV
E .Z/.E/' Hom.LV

E yy
V.E/;Z/

' Hom.iVDG.E/;Z/:
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Since G and iVD both preserve coproducts and epimorphisms, and are left exact (the
latter since limits are computed point-wise) their composite preserves covers, and since
Z is a stack, it follows that this presheaf satisfies descent for the canonical topology
on E , so is an object of StVcan.E/. Hence, by abuse of notation, there is an induced
2–adjunction

StVcan.E/
LV

E

// StVK .D/:
RV

E
oo

The 2–functor LV
E is uniquely determined up to equivalence by the fact that it is

V –small weak colimit preserving, and agrees up to equivalence with iVD ıG when
restricted to E along yyV . Define

LU
E WDLV

E ı iVE ;

where iVE is the canonical inclusion

iVE W StUcan.E/ �! StVcan.E/;

which is U –small weak colimit preserving. It follows that LU
E is U –small weak colimit

preserving, and by construction, when restricted to E along the Yoneda embedding yyU

of E into U –small stacks over E , it agrees up to equivalence with G . It suffices to
show that the essential image of LU

E lies in the essential image of iVD , i.e., U –small
K–stacks. Let Y 2 StUcan.E/. Then Y is a stack over the topos E in the sense of
[6], hence there exists groupoid object K 2 Gpd.E/ such that Y ' ŒK� is its stack
completion. In particular, this implies that Y is the weak colimit of the truncated
semisimplicial diagram

K2!!
!K1!!K0;

when viewed as a diagram in StUcan.E/, i.e., taking the weak colimit after applying yyU ,
the Yoneda embedding into U –small stacks over E . Hence

LU
E .Y/DLV

E iVE .Y/

'LV
E iVE

�
holim
�������!

yyUKn

�
' holim
�������!

LV
E yy

VKn

' holim
�������!

iVDG.Kn/

' iVD
�

holim
�������!

G.Kn/
�
:

Therefore, the essential image of LU
E consists entirely of U –small K–stacks.
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Let X ' ŒH� be an étale stack, with H an étale S –groupoid. Consider the 2–functor

HËW Gpd.BH/ �! .Set –Gpd/=H

from Section 3.1. Denote by G the composition

(6) BH
q
,�! Gpd.BH/ HË

�! .Set –Gpd/=H Y
�! St.S=X /;

where q is the canonical inclusion.

Proposition D.1 The 2–functor G as defined above preserves coproducts and epimor-
phisms.

Proof The fact that G preserves coproducts can be checked immediately. As far as
epimorphisms, suppose that

'W E �! F

is an epimorphism in BH . To show that G.'/ is an epimorphism in St.S=X /, it
suffices to show that the map

t ı pr1W .HËF /1 �F E �! F

is an epimorphism in BH , where

.HËF /1 �F E
pr2
//

pr1

��

E

'

��

.HËF /1
s

// F

is the pullback diagram in BH . However, .HËF /1 is itself the pullback

.HËF /1

��

s
// F

�

��

H1
s

// H0;

where � is the moment map of F . Since ' is, in particular, a map in S=H0 , � ı'D�,
where � is the moment map of E . Hence .HËF /1�F E is in fact the fibered product

H1 �H0
E D .HËE/1:

The map t ıpr1 can then be identified with t ıHË .'/ which is an epimorphism since
t is and HË .'/ is the pullback of ' along

sW .HËF /1 �! F:
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Lemma D.3 The composite

Y ıHËW Gpd.BH/ �! St.S=X /

preserves epimorphisms and weak pullbacks.

Proof Suppose that 'W K!L is an epimorphism in Gpd.BH/. This implies that the
induced map

t ı pr1W L1 �L0
K0 �! L0

is an epimorphism. In particular, this means that, when viewed as a map of underlying
spaces, it is a surjective local homeomorphism, i.e., an étale cover. There is a canonical
map

L1 �L0
K0 �! .HËL/1 �L0

K0

induced by the canonical homomorphism �LW L! .HËL/ (see the remark directly
preceding Proposition 3.1) such that the following diagram commutes:

.HËL/1 �L0
K0

tıpr1

��

L1 �L0
K0

66

tıpr1
// L0:

Hence
t ı pr1W .HËL/1 �L0

K0 �! L0

is a surjective local homeomorphism. This implies that Y ıHË .'/ is an epimorphism.

To show that Y ıHË preserves weak pullbacks, it suffices to show that HË does, since
Y preserves finite weak limits. Suppose that

P //

��

B

ˇ

��

A
˛
// C

is a weak pullback diagram in BH . Explicitly, we may describe P by its objects being
triples

.a; b; l/ 2A0 �B0 �C1

such that
l W ˛.a/ �! ˇ.b/;
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with the obvious structure of an étale H–space (we can take the moment map �0 to be
the projection onto B0 followed by its moment map �0 ). Its arrows from

.a; b; l/ �! .a0; b0; l 0/

can be described by pairs
.ka; kb/ 2A1 �B1

such that the following diagram commutes:

˛.a/
l
//

˛.ka/

��

ˇ.b/

ˇ.kb/

��

˛.a0/
l 0
// ˇ.b0/:

This condition on the arrows can be expressed as a pullback diagram, hence they also
inherits the structure of an étale H–space. Now, the objects of HËP are the same as
P . The arrows

.a; b; l/ �! .a0; b0; l 0/

in HËP can be described by triples .h; kha; khb/ such that

.kha; khb/W .ha; hb; hl/ �! .a0; b0; l 0/

is an arrow in P . These of course assemble into a space which can be constructed via
pullbacks as well, with moment map �1 . With the choice of moment maps � , HËP

becomes an S –groupoid over H by factoring it through

�BW HËB �!H:

Let P 0 denote the weak pullback

P 0 //

��

HËA

��

HËB // HËC:

Its objects can be described by quadruples

.a; b; h; l/ 2A0 �B0 �H1 �C1

such that
kW h˛.a/ �! ˇ.b/:

A quick calculation shows that its arrows

.a; b; h; l/ �! .a0; b0; h0; l 0/

Algebraic & Geometric Topology, Volume 13 (2013)



An étalé space construction for stacks 897

can be described by quadruples

.ha; ka; hb; kb/ 2H1 �A1 �H1 �B1

such that
kaW haa �! a0 and kbW hbb �! b0;

and such that

(7)
�
h0ha; l

0
ı .h0 �˛.ka//

�
D
�
hbh; ˇ.kb/ ı .hb � l/

�
:

We may regard P 0 as an S –groupoid over H by factoring it through its canonical
projection onto HËB .

There is of course a canonically induced map

F W HËP �! P 0

coming from the cone obtained by applying HË to the diagram expressing P as a
pullback. On objects, F sends a triple

.a; b; l/ 7�! .a; b; 1�1.l/; l/;

where
�1W C1 �!H0

is the moment map. On arrows it sends

.h; kha; khb/ 7�! .h; kha; h; khb/:

Define a homomorphism ƒW P 0! P on objects by

.a; b; h; l/ 7�! .ha; b; 1�1.l/; l/

and on arrows by sending quadruples

.ha; ka; hb; kb/W .a; b; h; l/ �! .a0; b0; h0; l 0/

to triples
.h0hah�1

D hb; h
0
� ka; kb/:

Notice that ƒ strictly commutes over H and ƒ ıF D idHËP . Moreover, consider the
continuous map

!W P 00 �! P 01

given by
.a; b; h; l/ 7�! .h; 1ha; 1�0.b/; 1b/;
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where �0 is the moment map of B . Notice that

!.a; b; h; l/W .a; b; h; l/ �! .ha; b; 1�1.l/; l/:

It follows that ! is an internal natural transformation

!W id0P H) F ıƒ:

It is easy to check that it is indeed a 2–morphism in S–Gpd=H , hence F is an
equivalence.

Corollary D.1 There exists a weak colimit preserving 2–functor

LBHW Stcan.BH/ �! St.S=X /;

whose restriction to BH along the Yoneda embedding

yyBHW BH ,! Stcan.BH/

agrees with G from (6) up to equivalence.

(We have suppressed the role of the Grothendieck universe U for simplicity.)

Proof The 2–functor G can be easily checked to preserve the terminal object, so by
Lemma D.3, it follows that it is left exact. Combining this with Proposition D.1, the
result then follows from Lemma D.2.

Lemma D.4 Let
Y W .Set –Gpd/=H �! St.S/=X

be the 2–functor which sends a groupoid 'W G!H over H to

Œ'�W ŒG� �! ŒH�D X :

Then for U �H0 an open subset, the stacks y.U ,!H0! X / and

Y .�mU
/D Œ�mU

�

are canonically equivalent in St.S/=X , where mU is the equivariant sheaf associated
to the representable U 2 Site.H/0 (Definition 2.26), and

�mU
W HËmU �!H

is as in the remark directly preceding Proposition 3.1.
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Proof HËmU has objects s�1.U / and arrows are of the form

.h; 
 /W 
 �! h ı 
:

Define an internal functor
fU W HËmU �! U id

on objects as

s�1.U /
s
�! U

and on arrows by
.h; 
 / 7�! s.
 /:

Define another internal functor

gU W U
id
�!HËmU

on objects as
x 7�! 1x

and on arrows as
x 7�! .1x; 1x/:

Clearly
fU ıgU D idU id :

Moreover, there is a canonical internal natural transformation

�U W gU ıfU H) idHËmU
;

given by
�U .
 /D .
; 1s.
 //:

Denote by aU W U
id!H , the composite

U ,�!H0 �!H:

Notice that gU extends to a morphism from aU W U
id!H to HËmU in .Set –Gpd/=H

as �mU
ıgU D aU . Note that the formula

˛U .
 /D 

�1

defines an internal natural transformation

˛U W �mU
H) aU ıfU :
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Hence .fU ; ˛U / is morphism in .Set –Gpd/=H from �mU
to aU . It is easy to check

that �U is in fact a 2–cell in .Set –Gpd/=H . Hence aU and �mU
are canonically

equivalent, so the same is true of their images under Y .

Consider the functor

mW Site.H/ �! BH;

from Proposition 2.6. Then, this is a morphism of sites, and in light of the aforemen-
tioned proposition, it induces an equivalence of bicategories

m!W St.Site.H// �! Stcan.BH/:

The 2–functor m! is the weak left Kan extension of yyBH ım (See Corollary D.1 for
the notation) along the Yoneda embedding

yyHW Site.H/ ,�! St.Site.H//:

In other words, it is the unique weak colimit preserving 2–functor whose restriction to
Site.H/ along yyH agrees with yyBH ım up to equivalence.

Corollary D.2 The étale realization 2–functor

xLW St.Site.H// �! St.S=X /

from Corollary 2.4 is equivalent to LBH ım! .

Proof This follows from Lemma D.4 together with Corollary D.1.

Theorem D.5 Consider the canonical 2–functor

Œ � �BHW Gpd.BH/ �! St.Site.H//;

which associates a groupoid object K in BH with its stack completion. Then Œ � �BH is
essentially surjective and faithful (but not in general full), and the 2–functors xLı Œ � �BH
and Y ıHË are equivalent.

Proof The fact that Œ � �BH is essentially surjective follows from the fact that every
stack is equivalent to a strict 2–functor, which is in particular a sheaf of groupoids, i.e.,
a groupoid object in sheaves. The fact that is faithful follows from the fact that sheaves
of groupoids considered as weak presheaves are separated (i.e., prestacks). Let K be a
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groupoid object in BH . Then the following is a 2–Cartesian cube all of whose edges
are epimorphisms:

K2
d2

//

d1

��

d0

~~

K1

d0}}

d1

��

K1
d1

//

d0

��

K0

p

��

K1

d0~~

d1
// K0;

p
}}

K0

p
// K

where pW K0!K is the canonical map. From Lemma D.3,

Y ıHË .p/W ŒHËK0� �! ŒHËK�

is an epimorphism, and also, applying Y ıHË to the above cube, results in another
2–Cartesian cube, this time in the 2–topos St.S=X /, all of whose edges are again
epimorphisms. The fact that this cube is Cartesian means that the diagram obtained by
deleting the vertex ŒHËK� and all edges into it, namely

ŒHËK2� !!
! ŒHËK1� !! ŒHËK0�;

is the truncated semisimplicial Cěch nerve of the epimorphism Y ıH Ë .p/. From
[13], since St.S=X / is a 2–topos, this implies that

ŒHËK�' holim
�������!

�
ŒHËK2� !!

! ŒHËK1� !! ŒHËK0�
�
:

Notice that in the 2–topos St.Site.H/,

ŒK�BH ' holim
�������!

�
K2 !!
! K1 !! K0

�
:

From Corollary D.2, this implies that

xLŒK�BH 'LBH ım!.ŒK�BH/' holim
�������!

�
ŒHËK2� !!

! ŒHËK1� !! ŒHËK0�
�
:

Hence
xLŒK�BH ' ŒHËK�:

We leave the rest of the details to the reader.
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