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Proof of a stronger version of
the AJ Conjecture for torus knots

ANH T TRAN

For a knot K in S3, the sl,—colored Jones function Jg (n) is a sequence of Laurent
polynomials in the variable ¢ that is known to satisfy non-trivial linear recurrence
relations. The operator corresponding to the minimal linear recurrence relation is
called the recurrence polynomial of K. The AJ Conjecture (see Garoufalidis [4])
states that when reducing ¢ = —1, the recurrence polynomial is essentially equal
to the A—polynomial of K. In this paper we consider a stronger version of the AJ
Conjecture, proposed by Sikora [14], and confirm it for all torus knots.

57N10; 57M25

1 Introduction

1.1 The AJ Conjecture

For aknot K in S3, let Jg (n) € Z[t*'] be the colored Jones polynomial of K colored
by the n—dimensional simple sl —representation (Jones [8], and Reshetikhin and Turaev
[13]), normalized so that for the unknot U,

2n_ 4+—2n
Jun) =[n]:= 51

The color n can be assumed to take negative integer values by setting Jg (—n) =
—Jg (n). In particular, Jg(0) = 0. It is known that Jx (1) = 1, and Jg(2) is the
ordinary Jones polynomial.

t2_z—2

Define two operators L, M acting on the set of discrete functions f: Z — R :=C[t*!]

by
(L)) := f(n+1), (Mf)(n):=*"f(n).

It is easy to see that LM = t> M L. Besides, the inverse operators L=, M1 are
well-defined. One can consider L, M as elements of the quantum torus

T :=RLE, MEY /(LM —>ML),

which is not commutative, but almost commutative.
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Let
Ag ={P €T | PJg =0},

which is a left-ideal of T, called the recurrence ideal of K. It was proved by Garo-
ufalidis and L& in [5] that for every knot K, the recurrence ideal Ag is non-zero. An
element in Ag is called a recurrence relation for the colored Jones polynomials of K.

The ring 7 is not a principal left-ideal domain, ie, not every left-ideal of 7 is generated
by one element. By adding all inverses of polynomials in ¢, M to T, one gets a principal
left-ideal domain 7'; cf [4]. The ring T can be formally defined as follows. Let R(M)
be the fractional field of the polynomial ring R[M]. Let T be the set of all Laurent
polynomials in the variable L with coefficients in R(M ),

T= {Z L)L

jEZ

Ji(M)eR(M), fj =0 almost everywhere},

and define the productin 7 by f(M)L¥-g(M)L! = f(M)g(t?** M)LK+,

The left-ideal extension Ag := 7~‘AK of Ag in T is then generated by a polynomial

d
ag(t: M, L) =) ag j(t, M)L,
j=0

where d is assumed to be minimal and all the coefficients ag ; (t, M) € Z[tT', M| are
assumed to be co-prime. That g can be chosen to have integer coefficients follows
from the fact that Jx (1) € Z[t*!]. The polynomial ag is defined up to a polynomial
in Z[t*!, M]. Moreover, one can choose ag € Ak, ie, it is a recurrence relation for
the colored Jones polynomials. We will call ag the recurrence polynomial of K.

Let & be the map reducing ¢ = —1. Garoufalidis [4] formulated the following conjecture
(see also Frohman, Gelca and Lofaro [3], and Gelca [6]).

Conjecture 1 (AJ Conjecture) For every knot K, e(ag) is equal to the A—polyno-
mial, up to a polynomial depending on M only.

The A—polynomial of a knot was introduced by Cooper, Culler, Gillet, Long and Shalen
[1]; it describes the SL,(C)—character variety of the knot complement as viewed from
the boundary torus. Here in the definition of the A—polynomial, we also allow the
factor L — 1 coming from the abelian component of the character variety of the knot
group. Hence the A —polynomial in this paper is equal to L —1 times the A—polynomial
defined in [1].
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Proof of a stronger version of the AJ Conjecture for torus knots 611

The AJ Conjecture was verified for the trefoil and figure 8 knots by Garoufalidis [4],
and was partially checked for all torus knots by Hikami [7]. It was established for
some classes of two—bridge knots and pretzel knots, including all twist knots and
(=2, 3, 6n £+ 1)—pretzel knots, by L& and the author [9; 10]. Here we provide a full
proof of the AJ Conjecture for all torus knots. Moreover, we show that a stronger
version of the conjecture, due to Sikora, holds true for all torus knots.

1.2 Main results

For a finitely generated group G, let x(G) denote the SL,(C)—character variety of
G ; see eg Culler and Shalen [2], and Lubotzky and Magid [11]. For a manifold ¥ we
use x(Y) also to denote x (71 (Y)). Suppose G = Z?2, the free abelian group with 2
generators. Every pair of generators w, A will define an isomorphism between x(G)
and (C*)?/t, where (C*)? is the set of non-zero complex pairs (M, L) and 7 is the
involution t(M, L) := (M~', L™1), as follows: Every representation is conjugate
to an upper diagonal one, with M and L being the upper left entries of x and A,
respectively. The isomorphism does not change if one replaces (i1, A) by (u=!,A71).

For an algebraic set V' (over C), let C[V] denote the ring of regular functions on
V . For example, C[(C*)2/t] = t°, the o —invariant subspace of t:= C[M*! L*1],
where o (MKLY) .= M—* L~

Let K be a knot in S? and X = S3\ K its complement. The boundary of X is a
torus whose fundamental group is free abelian of rank two. An orientation of K will
define a unique pair of an oriented meridian p and an oriented longitude A such that
the linking number between the longitude and the knot is zero. The pair provides an

identification of x(9X) and (C*)?/t that actually does not depend on the orientation
of K.

The inclusion dX < X induces an algebra homomorphism
0: C[x(0X)] =t — C[x(X)].

We will call the kernel p of 6 the A—ideal of K it is an ideal of t°. The A-ideal was
first introduced in [3]; it determines the A—polynomial of K. In fact p = (Ag - t)?,
the o—invariant part of the ideal Ag -t C t generated by the 4—polynomial Ag .

The involution ¢ acts on the quantum torus 7 also by o(M kp! y=M —kL=1. Let
A% be the o —invariant part of the recurrence ideal Ak ; it is an ideal of 77 . Sikora
[14] proposed the following conjecture.

Conjecture 2 Suppose K is a knot. Then \/e(A%) = p.
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612 Anh Tran

Here ,/e(A%) denotes the radical of the ideal £(A%) in the ring t° = &(77).

It is easy to see that Conjecture 2 implies the AJ Conjecture. Conjecture 2 was verified
for the unknot and the trefoil knot by Sikora [14]. In the present paper we confirm it
for all torus knots.

Theorem 1 Conjecture 2 holds true for all torus knots.

1.3 Plan of the paper

We provide a full proof of the AJ Conjecture for all torus knots in Section 2 and prove
Theorem 1 in Section 2.

1.4 Acknowledgements

This paper was done when the author was a graduate student in the School of Mathe-
matics, Georgia Institute of Technology. The author would like to thank T'T Q Lé for
his guidance, S Garoufalidis for helpful discussions, and the referee for suggestions.

2 Proof of the AJ Conjecture for torus knots

We will always assume that knots have framings O.

Let T(a,b) denote the (a, b)—torus knot. We consider the two cases, a,b > 2 and
a = 2, separately. Lemmas 2.1 and 2.5 below were first proved in [7] using formulas
for the colored Jones polynomials and the Alexander polynomial of torus knots given
in Morton [12]. We present direct proofs here.

2.1 Thecase a,b > 2

Lemma 2.1 One has

Tty (142) =1 4O F1 ) 4 =2abr1) @by nt1) =1 " Aa—b)(nt1)
a, = a, s

2 _1-2
where Ay 1= 12k + 172k,
Proof By [12], we have
(n—1)/2
2 . .
(1) Tr@apy(m) =170 =D N 4@t D g 4 1),
j=—(n-1)/2
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Proof of a stronger version of the AJ Conjecture for torus knots 613

where [k]:= (12K —1=2%) /(12 —¢~2). Hence:

IT@b)(n+2)
(n+1)/2
_ t—ab((n+2)2—1) Z t4bj(aj+1)[2aj 1]
j=—(m+1)/2
(n—1)/2
_ ;—ab((n+2)>-1) Z 407 @D 4]+ (—ab((n+2)>=1)
j==—(n-1)/2
% (tb(”+1)(a(”+1)+2)[a(n + 1) + 1] o lb("+1)(a(”+1)_2)[a(n + 1) _ 1])

Caaba) PR arb) ) =1 A @byt 1)
ZZ _ Z—Z

— t_4ab(n+1)JT(a,b)(n) +¢

Lemma 2.2 The colored Jones function of T (a, b) is annihilated by the operator
Fap = c3L3 + ¢y L? + ¢ L + ¢y where:

_ ZZ(tZ(a+b)Ma+b + Z—2(a+b)M—(a+b))

C3 .
2 (Zz(a—b)Ma—b + [—Z(a—b)M—(a—b))
Cy = _t—2ab (t2(14(a+b)Ma+b + t—4(a+b)M—(a+b))
+l_2 (l4(a—b)Ma—b + l—4(a—b)M—(a—b)))
1 = _t—8ab1\4—2abc3
o= —l‘_4abM_2ab62

Proof It is easy to check that ¢3r~4¢2(1+2) 4 ¢ — ¢, y=4abrt1) 4 o0 — () and

3 (M atbymn+2) =1 ha—b)n+2)) + 12t (*Mat+byn+1) =1 *Aia—bynt1)) = O.

Algebraic & Geometric Topology, Volume 13 (2013)



614 Anh Tran

Hence, by Lemma 2.1, F, 5 J1(4,5)(n) is equal to:

3JT@p)y M+ 3) + 2 J1@ap) (0 +2) + 1 IT@p) (n+ 1) + coJT(a,6) ()

abi) P rarb) ) —1 _2K<a—b)(n+z))

=3 (l_4ab("+2) JT(a,b) m+1)+1 22

12X atb)(n+1) — t_z)\(a—b)(n—i-l))

Yo (t_4ab(n+l)JT(a,b)(n) 4 y2ab(n+1) =

+c1dr@py(n+1) +coJra,p)(n)
= (c3t™490FD) 4 ) Iy (4 1) + (eat 49T 4 o) T4y (1)

+ (~2ab(n+1) (C3 t2)¥(a+b)(n+2) - t_z)‘(a—b)(n+2)
Z2 _ Z—Z

2ab [2)\(a+b)(n+l) _t_z)\(a—b)(n—i—l))

+ cot 22

=0
This proves Lemma 2.2. |
Recall that a7 (g p) is the recurrence polynomial of 7'(a,b).

Proposition 2.3 For a,b > 2, one has arqp) = Fap-

Proof By Lemma 2.2 it suffices to show that if an operator P = P,L?> + P, L + Py,
where the P; are polynomials in C [t%1, M], annihilates the colored Jones polynomials
of T'(a,b) then P =0.

Indeed, suppose P J7(q,p)(1n) = 0. Then, by Lemma 2.1:

0= PyJr@p(n+2)+ PiJr@pn+1)+ PoJrgp(n)

- _ [2)\, +b +1 —Z_Z)\, —b +1
— Pz(l‘ 4ab(n+l)JT(a,b)(7’l)+f 2ab(n+1) (a+b)(n [2)_t_2 (a—b)(n ))

+ PrIr@p(n+ 1) + PoJr(ap) (1)
= ([—4ab(n+1)P2 + PO)JT(a,b)(n) + Pl JT(a,b)(n + 1)

aba) PR @b ) =1 A a—b)n+1)

+ Pyt 22

Let P, = (~4ab+D p, 4 Py oand

2 -2
pl — p,y—2ab+n) ! Aa+b)(n+1) =1 “Aa—b)(n+1)
0 — XA 22 .
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Proof of a stronger version of the AJ Conjecture for torus knots 615

Then,
) Py J7(ap)(n) + Pri7@p)(n+1)+ Py =0.

Note that P, and Pj are polynomials in C[t*!, M]. We need the following lemma.

Lemma 2.4 The lowest degree in t of Jq,p)(n) is

In = —abn® +ab + (1 - (=1)""")(a—-2)(b-2).

Proof From (1), it follows easily that [, = —abn? + ab if n is odd, and [, =
(—abn? + ab) + (ab —2b —2a + 4) if n is even. O

Let us complete the proof of Proposition 2.3. Suppose P), P; # 0. Let r, and s, be
the lowest degrees (in ) of P, and P; respectively. Note that, when n is large enough,
rp and s, are polynomials in n of degrees at most 1. Equation (2) then implies that
r+ 1y =8n+ L, i€

'n—=Sp =lpt1 —ln =—ab@n+1) = (=1)"(@-2)(b-2)

This cannot happen since the LHS is a polynomial in 7, when 7 is large enough, while
the RHS is not (since (¢ —2)(b —2) > 0). Hence P, = Py = Py = 0, which means
P =0. i

It is easy to see that e(ar(q,p)) = M~2abpra _ pr—ay( b — M_b)AT(a,b) where

Ar(apy = (L—1)(L2 M2 —1) is the A—polynomial of T'(a, b) when a, b > 2. This
means the AJ Conjecture holds true for 7'(a,b) when a,b > 2.

2.2 The case a =2

Lemma 2.5 One has

Tr.py @+ 1) ==t~ @ D8 g () + 72020 + 10,

Proof By (1), we have

(n—1)/2
2 . .
Jrapyn) =200 =0 N 4RI ),
j=—m—-1)/2
Hence
n/2
JT(Z b)(”l + 1) — l_2b((n+1)2_1) Z t4bk(2k+1)[4k + 1]
k=—n/2
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616 Anh Tran

Set k =—(j +3). Then:

Jre.pnn+1)
—(n+1)/2
— 26 +1)?=1) o D@+ 1)
j=(m=1)/2
(n—1)/2
- z—2b(("+1)2—1)(— o QD 4 1) 4 20D g 4 1])
j=—(n—1)/2
= —¢~ Db g by () + 17220 4 1

This proves Lemma 2.5. a

Lemma 2.6 The colored Jones function of T (2, b) is annihilated by the operator
Gyrp= drL? +di L + dy where

dy =t>’M?*—172M2,
d] - [—Zb ([—4bM—2b(t2M2 _ Z_ZM_Z) _ ([6M2 _ t_6M_2)),
do:=—t" M2 (O M? — 17 M 2).

Proof From Lemma 2.5 we have
Jrapm+1) = =420y o () + 172020 1),
Jrapym+2) =80TV g0 (n) — 80TV gy 4 1] 72 Dby 3],
It is easy to check that
t—8(n+1)bd2 _ z_(4”+2)bd1 +dy =0,
dy (—t 780 FV8 Ry 4 1] 72T DO 0 1 3)) 4 dy 220 4 1] = 0.
Hence:
G2,5J7(2,6) (1)
=dyJrp)(n+2)+diJrp(n+1)+doJr2,) (1)
_ dz(l_s(”ﬂ)bJT(z,b)(n)—1_6(”+1)b[2n + 1]+t_2(”+1)b[2n + 3])
+dy (—t7 WDl g gy () + 172020 4 1)) + do T 2.5y (1)
= (¢80t Db g, =@t gy 4 do) I 2.8y (1)
+d, (_Z—G(n—i-l)b[zn 1] 20D, 3) + di 2 n 41
=0
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Proof of a stronger version of the AJ Conjecture for torus knots 617

This proves Lemma 2.6. O
Proposition 2.7 One has ar; py = Gop .

Proof By Lemma 2.6, it suffices to show that if an operator P = P L + Py, where
the P; are polynomials in C[t*!, M], annihilates the colored Jones polynomials of
T(2,b) then P =0.

Indeed, suppose PJr(3,4)(n) = 0. Then:

0=PiJrep(n+1)+ PoJr2,p)(n)
= Py (—t7 G0 r 0 5y () + 172020 1)) + PoJr(a.) ()
= (=742l P Po) 1y () + 172020 1]y
Let P| = —¢~@n¥Dbp, Py and P = ¢t=2"°[2n + 1]P;. Then P, P} are poly-
nomials in C[t*', M] and P{J(n) 4 Pj = 0. This implies that P; = Pj = 0 since

the lowest degree in 7 of Jr(; p)(n) is —2bn? + 2b, which is quadratic in n, by
Lemma 2.4. Hence P = 0. |

It is easy to see that s(ar(z,p)) = M_Zb(M2 — M_Z)AT(zsb) where A7 p) =
(L —1)(LM?b +1) is the A—polynomial of T'(2,b). This means the AJ Conjecture
holds true for 7'(2, b).

3 Proof of Theorem 1
As in the previous section, we consider the two cases, a,b > 2 and a = 2, separately.

3.1 Thecasea,b > 2
We claim that:

Proposition 3.1 The colored Jones function of T (a, b) is annihilated by the operator
PQ where:
P = t—lOab(L3M2ab + L—BM—Zab)
_(ZZ(Q—b) +t2(b—a))t—4ab(L2M2ab _|_ L—2M—2ab) +t2ab(LM2ab _|_ L—IM—Zab)
_(t2ab +l_2ab)(L +L_1) + (ZZ(a—b) +Z2(b—a))([4ab +Z_4ab)
Q = t—6ab(L3M2ab + L—3M—2ab)
_(lz(a-i-b)+t—2(a+b))q—ab(L2M2ab+L—2M—2ab)+l—2ab(LMZab+L—1M—Zab)
_(Z2ab +t_2ab)(L +L—1) +2(t2(a+b) +t_2(a+b))
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Proof We first prove the following two lemmas.

Lemma 3.2 One has

tzabn)\(a—b)(n—i—l) _ t_zabn)\(a—b)(n—l)

OJ1 b)) = 142 (g — hacsp) 2,2

Proof Let

Caabn P harbyn =1 A a—byn
t2 _ [—2 :

g(n):=t
Then, by Lemma 2.1, J7(p)(n +2) = t_4“b("+1)JT(a’b) (n) +g(n+1). Hence:
OQJr(a,b)(n)
_ ;—6ab (14ab(n+3)JT(a,b) (n+3)+ t_4“b(”_3)JT(a,b)(” — 3))
. (t2(a+b) +t—2(a+b))t—4ab (l4ab(n+2)JT(a,b)(n +2) +t_4ab(n_2)JT(a,b)(n_2))
+l_zab(l4ab(n+l)JT(a,b)(n +1) +l_4ab(n_l)JT(a,b)(n_ 1))
— (2% 117298 (T (n + 1) + T apy (1 — 1))
2¢O 4 m2@E0)y Fr (1)
= 175 (19 (T + 1) + Trapy (n—1))
+ t2ab(n+5)g(n +2)— t—2ab(n—5)g(n — 2))
_ (t2(a+b) + t—2(a+b))t—4ab (2t4abJT(a,b) (n)
+ t2ab(n+4)g(n +1)— 1_2“”("_4)g(n — 1))
1728 (149 (0 by (1= 1)+ Tra.py (n 4 1)) + (29203 —=2ab0=3)) o (1))
— (£290 4 17298 (T p iy (n + 1) + J1(apy (1 — 1))
£ 2(¢2@D) 4 m2@E0)y g ()
— ;—6ab (tzab(”+5)g(n +2)— t_z"b(”_5)g(n — 2))
. (tz(a+b) + t—2(a+b))[—4ab (tZab(n+4)g(n +1) _t—2ab(n—4)g(n _ 1))
+ (—2ab (tzab(n+3) _ t_zab(”_3))g(n)

Using the definition of g(n), we get:

12X — 20
QJT(a,b)(n):t“ab(tzab” (a+b)(n+122) = (a—b)(n+2)

2 -2
_—2abn " Matb)-2) ! k(a—b)(n—z))
l2 _ t—2
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Proof of a stronger version of the AJ Conjecture for torus knots 619

_(Z2(a+b) + t—2(a-|-b))t4ab><

(t2abn Phatb)nr1) =1 “Aa—b)(nt1)
t2 _ [—2

2 -2
_~2abn Matb) 1) ! k(a—b)(n—l))
l2 _ Z_Z

2 -2
+Z4ab (ZZabn _ Z—Zabn) t )‘(Cl‘f‘b)" —! )"(a—b)n
12 2

Now applying the equality Ag4; + Ax—; = ArA;, we then obtain

[zabn)\(a—b)(n—i—l) _ t_zabn)h(a—b)(n—l)

0 J1(apy () = t**""2(hgip — hamp) 22

This proves Lemma 3.2. a
Let 1(n) := 12"} (a_pynr1) — 290" M a—b) (n—1) -
Lemma 3.3 The function h(n) is annihilated by the operator P, ie, Ph(n) = 0.

Proof Let c =a—b. Then:

Ph(n)
— ;—10ab (t4ab(n+3)h(n +3) + 4=y — 3))
_ (t2(a—b) + t2(b—a))t—4ab (Z4ab(n+2)h(n +2)+ 1_4“b(”_2)h(n — 2))
+ t2ab(t4ab(n+1)h(n +1)+ [—4ab(n—1)h(n — 1))
— (2% + 17295 (h(n + 1) + h(n = 1)) + (2070 4 2G=D)(pdab y ~haby )
= (PO Ny = 2P )
+ 172D gy =PI )
_ AC(ZZab(3n+4))\c(n+3) _ [2abnkc(n+l) + t—zabnkc(n_l) _ l_zab(3”_4)?nc(n—3))
+ (2BCMEDY oy —12OFD ) TR0 m2abCn=y )
— (12 4 t—Zab)(ZZab(n-i-l)}\c(ndl_z) _2ab(+D))

+ t2ab(n—1)kcn _ [—Zab(n—l))\c(n_z))

+ kc(l4ab + t_4ab)([2abn)\c(n+1) _ t—2abnkc(n_1))
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Note that Agy; + Ax—; = ArA;. Hence:
P/’l(l’l) — (_t2ab(n—2))\c(n+2) + t_Zab(n+2))¥c(n—2))
— kc(_tZabnkc(n_H) + t—2abnkc(n_l))

+ (_ZZab(n-i-Z))wn + t—2ab(n—2)kcn)

_ (IZab + t—2ab)([2ab(n+1))\c(n —2ab(n+1))\cn

+2) 1
4 2ab(i=D)) L ym2ab(=Dy )
A1 ey (p2aby by
— _(r4ab 4 y4ab l)tzab”)»c(n+2) (49D el l)t_zab")\c(n—z)
— (4ab oy pmhab gy 2ebn — m2abmyy
+he (14 174 L D (2P ety = 172 A1)
= — (b 4 74ab 4 1)280 (3 ot hen — Achequt))
+(r4ab 4 hab ) m2abn (g den = hehe(na))

=0
This proves Lemma 3.3. a
Proposition 3.1 follows directly from Lemmas 3.2 and 3.3. |

3.2 Thecasea =2

We claim that:

Proposition 3.4 The colored Jones function of T'(2, b) is annihilated by the operator

R=1""(L>M?* + L72M720) + (2> + 725y (L + L")
—(t4 +l_4)l_2b(LM2b + L—IM—Zb) + (M2b +M_2b) —2(t4 +[_4).

Proof From Lemma 2.5 we have
Treayn+1) =170 I 4y () +1720 20+ 1],
JT(2,b)(” +2) = t_S(”H)bJT(z,b)(n) —1_6(”“)”[2;1 +1]+ l_z(”+l)b[2n 13,
Jra.pyn—1)= =428 gm0 4y (n) + 12020 — 1],
JT(Z,b) (n—2) = Z8(n—1)b JT(2,b) (n) — t6(n—1)b[2n —1]+ t2(n—1)b[2n —3).

Algebraic & Geometric Topology, Volume 13 (2013)



Proof of a stronger version of the AJ Conjecture for torus knots 621

Hence
RITpyn) = 424020 Iy gy (n+2) + 17428 70 4y (0 — 2))
+ (ZZb + t_Zb)(JT(z,b)(I’l + 1)+ Jr@pn— 1))
— (TR (AT g 1)+ Dl g (= 1)
+ (@ 41748 2t + 7)) I 2.8 (1)
_ t‘4b(—t_2(”_1)b[2n + l]+t2("+3)b[2n +3]
— 20 Dby ] 420Dk, )
+ (@0 10 (PP 20+ 1]+ 2P 20 — 1]
(@t —|—t_4)t_2b(t(2”+4)b[2n + 1]+ 208, — 1]
—(t +17H2b (120 2n 4 1]+ 172020 - 1]
= 122120 (2n 4 3]+ [2n — 1] — (¢* + 17 H)[2n + 1))
+ 128720 (on 3] 4 20 4 1] - (* + 720 — 1))
=0,

since [k 4 1]+ [k — 1] = (2! +172h)[k]. O

3.3 Proof of Theorem 1

We first note that the A—ideal p, the kernel of 6: t — C[x(X)], is radical, ie, \/p=p,
since the character ring C[x(X)] is reduced, ie, has nil-radical 0, by definition.

Lemma 3.5 Suppose 6(t, M, L) € Ag. Then there are polynomials g(t, M) €
C[t*', M) and y(t, M, L) € T such that

I
gt, M)

Moreover, g(t, M) and y(t, M, L) can be chosen so that e(g) # 0.

3) S, M,L) = y(t, M, Lyag(t, M, L).

Proof By definition o is a generator of A , the extension of Ag in the principal
left-ideal domain 7. Since § € Ag, it is divisible by ag in 7. Hence (3) follows.

We can assume that ¢ 4+ 1 does not divide both g(¢, M) and y (¢, M, L) simultaneously.
If e(g) =0 then g is divisible by ¢ + 1, and hence y is not. But then from the equality
g6 = yag, it follows that o g is divisible by ¢ 4+ 1, which is impossible, since all the
coefficients of powers of L in ax are supposed to be co-prime. a
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Showing /e(A%) Cp For torus knots, by Section 1, we have e(ag) = f(M)Ag,
where f(M) e C[M*!']. For every § € Ag, by Lemma 3.5, there exist g(t, M) €
C[t*',M] and y € T such that § = ﬁ yag and g(g) # 0. It implies that

1
@ ) = Sy 1)e(@r) = st () S (M) A

The A—polynomial of a torus knot does not contain any non-trivial factor depending
on M only. Since e(y) € t = C[L*!, M*!], equation (4) implies that

e(y) f(M)
e(g(M)) (M )
is an element of t. Hence &(y) € Ak - t, the ideal of t generated by Ag . It follows
that e(Ag) C Ak -t and thus e(A%) C (Ag -t)° =p. Hence \/e(A%) C /P =p.
Showing p C /e(A%) For a,b > 2, by Proposition 3.1 the colored Jones function of
T (a, b) is annihilated by the operator PQ. Note that
e(PQ) = (L+ L' —2)2(L*M? + L7220 —2)?

= L2 (L7 Ml (L — 1AM — 1))t

If u €p then u = vA. where

T(a,b)’
Ay =L ML —1D)(L>M>*P —1) = L7 M~ Ap 4
and v € C[M*!, L*!]. It is easy to see that o(v) = Lv, since o(u) = u and

o(A. L4’ This implies that o(v2L) = o (v)>L~! = v2L. We then

T(a b)) = T(a,b)"
have

‘=04 47, ) =W L2 PQ) € e(A%).

hence u € \/e(A%).

For a = 2, by Proposition 3.4 the colored Jones function of T'(2, b) is annihilated by
the operator R. Note that 0(R) = R and

e(R)=(L+L~ "' =) (LM + L' M~ 42y = (L-' M~ (L—1)(L M’ +1))*.

If u €p then u = vA. where

T(2,b)’
Aoy =L MP(L-1D)@M?® +1)= L' M A7)

and ve C[M*!, L*1]. Ttis easy to see that o(v) = —v and hence o (v?) =0 (v)o (v) =
v2. We then have
u?=v AT(2b)_8(v R) € e(A%).
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hence u € \/e(A%).

In both cases p C /e(A% ). Hence /(A% ) = p for all torus knots.
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