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Conservative subgroup separability
for surfaces with boundary

MARK D BAKER

DARYL COOPER

If F is a compact surface with boundary, then a finitely generated subgroup without
peripheral elements of GD�1.F / can be separated from finitely many other elements
of G by a finite index subgroup of G corresponding to a finite cover zF with the
same number of boundary components as F .

57M05; 20E26, 57M07, 57M10, 57N05

Suppose F is a compact surface with nonempty boundary. A nontrivial element of
�1.F / is peripheral if it is represented by a loop freely homotopic into @F . A covering
space pW zF!F is called conservative if F and zF have the same number of boundary
components: j@F j D j@ zF j.

Theorem 0.1 (Main Theorem) Let F be a compact, connected surface with @F ¤ �
and H � �1.F / a finitely generated subgroup. Assume that no element of H is
peripheral. Given a (possibly empty) finite subset B � �1.F / nH , there exists a
finite-sheeted cover pW zF ! F such that:

(i) There is a compact, connected, �1 –injective subsurface S � zF such that
p�.�1.S//DH .

(ii) p�.�1. zF // contains no element of B .

(iii) zF nS is connected and incl�W H1.S/!H1. zF / is injective.

(iv) The covering is conservative.

This theorem, for F orientable and without (iii), is due to Masters and Zhang [5]
and is a key ingredient in their proof that cusped hyperbolic 3–manifolds contain
quasi-Fuchsian surface groups [4; 5]. Without (iii) and (iv) the theorem is a special
case of well-known theorems on subgroup separability of free groups (see Hall, Jr [1])
and surface groups (see Scott [6; 7]). For a discussion of subgroup separability and
3–manifolds, see Long and Reid [3].

The proof in [5] uses the folded graph techniques due to Stallings; see Kapovich and
Myasnikov [2]. The shorter proof below uses cut and cross-join of surfaces. A cover is
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called good if properties (i)–(ii) hold and very good if (i)–(iii) hold. The idea is to start
with a good cover and then pass to a second cover which is very good. Then cross-join
operations (defined below) are used to reduce the number of boundary components of
a very good cover until it is conservative.

1 Constructing a very good cover

We first explain a geometric condition on a cover of F which ensures it is good, and
then use Theorem 1.3 to construct a very good cover.

Choose a basepoint x in the interior of F and suppose pW FH ! F is the cover
corresponding to H . There is a compact, connected, incompressible subsurface S in
the interior of FH which is a retract of FH and which contains a lift zx of x . Each
element g 2 �1.F;x/ determines a unique lift zx.g/ 2 FH of the basepoint x . The
surface S can be chosen large enough to contain fzx.b/ W b 2 Bg. Then pjS W S ! F

is a local homeomorphism.

If � W F 0! F is any cover and there is a lift of pjS to � W S! F 0 (thus � ı� D pjS )
which is injective, we say S lifts to an embedding in the cover F 0 . The work of
M Hall [1] and P Scott [6] shows there is a finite cover F 0! F such that S lifts to an
embedding in F 0 .

Proposition 1.1 (Good cover) Under the hypotheses of the main theorem, if
� W F 0! F is any cover and S lifts to an embedding in F 0 , then the cover is good.

Proof With the notation above, a based loop representing an element b 2 B lifts to
a path in F 0 that starts at the basepoint zx 2 LD �.S/ but ends at some other point
zx.b/¤ zx in L.

Addendum 1.2 (Very good cover) There is a very good cover zF ! F of finite
degree with j@ zF j even.

Proof We start with a good cover F 0 of F with finite degree and the subsurface
S � F 0 described above and then construct a cover of F 0 with the required properties.
Let pW zF ! F 0 be the regular cover given by the kernel of the map of �1.F

0/ onto
H1.F

0;S IZ=2/. There is a lift zS of S to this cover by construction. The conclusions
follow from Theorem 1.3 below.

The following allows us to lift a �1 –injective subsurface to a regular cover where it is
H1 –injective and nonseparating.
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Theorem 1.3 Suppose F is a compact, connected surface, possibly with boundary,
which contains a compact, connected subsurface S ¤ F . Assume that S \ @F is a
(possibly empty) union of components of @F and no component of cl.F n S/ is a
disc or a boundary parallel annulus. Let pW zF ! F be the cover corresponding to the
kernel of the natural homomorphism of �1.F / onto G D H1.F;S IZ=2/. If zS0 is
a connected component of p�1.S/ then X D cl. zF n zS0/ is connected and the map
i�W H1. zS0/!H1. zF / induced by inclusion is injective. Moreover j@ zF j is even.

Proof The hypotheses imply G ¤ 0. Let Y be a connected component of X . Then
@Y D .Y \@ zF /t.Y \ zS0/. We claim that p.Y /�S . Otherwise pjY W Y ! cl.F nS/

is a covering map which is injective since pj.Y \ zS0/ is injective. Thus Y is a lift of
a component Z of cl.F nS/.

If Z \S is connected, then since Z is not a disc or boundary parallel annulus, the
image of H1.ZIZ=2/ in G is not trivial. Thus Z does not lift to the G–cover, a
contradiction.

Hence Z \ S contains at least two distinct circle components B1;B2 . There is a
loop ˛ D ˇ � 
 � F which is the union of two arcs connecting B1 and B2 : one arc
ˇ �Z and one arc 
 � S . Since ˛ has mod 2 algebraic intersection number 1 with
the boundary component B1 of S it is a nonzero element of G . It follows that the
lift ž � Y of ˇ has endpoints in different components of p�1.S/, since otherwise ˛
would lift to a loop. But @ ž � @Y � @ zS0 which is a contradiction. Thus p.Y /� S .

It follows that Y contains some component zS1¤
zS0 of p�1.S/ in its interior. However

the cover is regular so there is a covering transformation � taking zS0 to zS1 . Thus if
zS0 is not orientable then Y is not orientable and if zS0 contains a component of @ zF
then so does Y .

Choose some Riemannian metric on F . This metric pulls back to one on zF which is
preserved by covering transformations. If X is not connected, let Y be a component
of X with smallest area.

As shown above, Y contains an zS1 ¤
zS0 in its interior. The covering transformation

� taking zS0 to zS1 takes each component of zF n zS0 to a component of zF n zS1 with
the same area. One of the components of zF n zS1 contains zS0 , so all the others must
be strictly contained in Y , which contradicts that Y has minimal area. Hence X D Y

is connected.

To show the injectivity of i� , note the long exact homology sequence of the pair . zF ; zS0/

yields

0 �!H2. zF /
j�

�!H2. zF ; zS0/
ı
�!H1. zS0/

i�
�!H1. zF /;
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so that we have the following equivalences: ker i� D 0 if and only if Image ı D 0

if and only if j� is an isomorphism. By excision H2. zF ; zS0/ Š H2.X;X \ zS0/ Š

H2.X; @X \ @ zS0/.

Suppose @F ¤ � . Then X \ @ zF ¤ � , since otherwise @ zF � zS0 , but we have shown
�. zS0/�X , which is a contradiction. Now X \@ zF ¤� implies H2.X; @X \@ zS0/D 0,
so that Image ı D 0 hence ker i� D 0.

The remaining case is @F D � . Here X \ zS0 D @ zS0 D @X . If zF is orientable, then so
is X , and it follows that j� is an isomorphism, hence ker i� D 0.

If zF is nonorientable, we claim X must also be nonorientable; hence H2.X; @X /D 0

so that 0D Image ı D ker i� .

Indeed, if X is orientable then zF is orientable. This is because �. zS0/�X so �. zS0/

orientable. This is a lift of S so S is orientable. Thus the homomorphism �1.F /!Z2

that sends a loop to 0 if and only if it is orientation preserving vanishes on �1.S/ and
so factors through G . It follows that every orientation reversing loop in F has nonzero
image in G so zF is orientable.

It remains to show j@ zF j is even. The action of G on zF is free. Since Z2
2

does not
act freely on S1 it follows that if j@ zF j is odd then G Š Z2 and is generated by some
component C of @F . Let Z be the component of cl.F n S/ that contains C . By
excision Z2 ŠG ŠH1.Z;Z \S/. Since Z is not a disc or an annulus with C one
of the boundary components the only other possibility is that Z D cl.F nS/ is a pair
of pants with only one boundary component in S . But then j@F j is even hence so is
j@ zF j.

The following is easily deduced from the proof of Theorem 1.3 and will be used in the
next two sections of the paper.

Remark 1.4 If F is a surface and S � F is a subsurface and X D cl.F n S/ is
connected and X \ @F ¤ � then i�W H1.S/!H1.F / is injective.

2 Cross-joining covers

Suppose F is a surface and ˛1 and ˛2 are disjoint arcs properly embedded in F . Let
N.˛i/� ˛i � Œ�1; 1� be disjoint regular neighborhoods of the arcs ˛i in F such that
˛i � ˛i � 0 and N.˛i/\ @F D .@˛i/� Œ�1; 1�. The sets ˛i � .0;˙1�� F are called
the ˙ sides of ˛i .
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Conservative subgroup separability for surfaces with boundary 119

Given a homeomorphism hW N.˛1/!N.˛2/ taking the C side of ˛1 to the C side
of ˛2 , the cross-join of F along .˛1; ˛2/ is the surface K defined as follows. The
surface F� D F n .˛1[˛2/ contains four subsurfaces ˛i � .0;˙1�. Let F cut be the
surface obtained by completing these subsurfaces to ˛i � Œ0;˙1�. Thus F cut has two
copies ˛Ci ; ˛

�
i of ˛i in @F cut and identifying these copies suitably produces F . The

surface K is the quotient of F cut obtained by using h to identify ˛�
1

to ˛C
2

and ˛C
1

to ˛�
2

. Note that here we do not require F to be connected, so that ˛ and ˇ might be
in different components of F .

There are two special cases of cross-join which will be used to change the number of
boundary components of a surface:

Lemma 2.1 Suppose the compact surface F contains two disjoint properly embedded
arcs ˛ and ˇ . In addition suppose that

(1) either F is connected and the endpoints of ˛; ˇ lie on four distinct components
of @F ,

(2) or F is the union of two connected components A and B and ˛ �A has both
endpoints on the same boundary component and ˇ�B has endpoints on distinct
boundary components.

Then a surface K obtained by cross-joining along these arcs has j@Kj D j@F j � 2.
Furthermore �.K/D �.F / and K is connected.

Proof We verify that K is connected. In the first case this follows since the arcs
do not disconnect the boundary components on which they have endpoints; therefore
F n .˛[ˇ/ is connected. In the second case it follows because B nˇ is connected,
and every point in K is connected to a point in this subset by an arc.

Suppose pW zF ! F is a (possibly not connected) covering of surfaces and ˛ is an
arc properly embedded in F . Suppose z̨1 and z̨2 are two distinct lifts of ˛ to zF ;
then they are disjoint. The map p provides a homeomorphism between small regular
neighborhoods of these two arcs. Using this to cross-join produces a surface zF 0 and
since the identifications are compatible with p there is a covering map p0W zF 0! F .

An important special case is when zF is a .d C 1/–fold cover which is the disjoint
union of a 1–fold cover F1! F and some connected d –fold cover Fd ! F . Then
cross-joining an arc in F1 with one in Fd produces a connected cover of degree dC1.

To produce a new cover F 0 of F by a cross-join along two arcs in some cover zF
requires the arcs to be disjoint from each other. If S is embedded in zF and these arcs
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are also disjoint from S , then S lifts to an embedding in F 0 , so the cover F 0 is good.
We call the combination of these two properties the disjointness condition.

There is a metric condition, involving some arbitrary choice of Riemannian metric on
F , that ensures the disjointness condition is satisfied and therefore that the new cover
is good. The next lemma provides a uniform upper bound on the lengths of the arcs we
will use to cross-join in any cover of F .

Lemma 2.2 (Short arcs) Suppose F is a compact, connected surface with a Rie-
mannian metric such that the diameter of F is `. If zF is a finite connected cover of
F then:

(1) If A and B are distinct components of @F then there is an arc ˛ in F connecting
them and length.˛/� `.

(2) If some component A of @F has (at least) two preimages in @ zF then there is an
embedded arc ˛ in F of length at most 2` which lifts to an arc with endpoints
on distinct preimages of A.

Proof The first claim is obvious. For the second claim, since every point in zF is
within a distance at most ` of some point in p�1.A/ and zF is connected, some point
in zF is within a distance at most ` of points in two distinct components of p�1.A/.
This gives an arc ˇ in zF of length at most 2` which connects two distinct components
of p�1.A/.

Let 
 W Œ0; 2R�! zF be a shortest arc connecting two distinct components of p�1.A/

and parametrized by arc length. Then R� `. To complete the proof we show that 

projects to an embedded arc in F . Observe that

d zF .
 .t/;p
�1.A//Dmin.t; 2R� t/

otherwise there is a shorter arc connecting two distinct components of p�1.A/. It
follows that

dF .p.
 .t//;A/Dmin.t; 2R� t/

This means that the distance in F of a point on p ı 
 from A is given by arc length
along p ı 
 . It follows that ˛ D p ı 
 is the required embedded arc.

An arc of length at most 2` is called short. The next lemma provides a conservative
cyclic cover with large diameter of a surface F . If a short arc in F connects two
distinct boundary components, then so does every covering translate of it. If S lifts to
the cover then there are many different translates of the short arc that are far from each
other and far from the lift of S . In particular the disjointness condition is satisfied by
suitable translates of a lifted short arc in this cover.
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Lemma 2.3 (Big covers) Suppose F is a compact connected surface with k � 2

boundary components and which contains a compact, connected, incompressible subsur-
face S � interior.F / with F nS connected. Given n> 0 there is a conservative finite
cyclic cover zF ! F of degree bigger than n and a lift, zS , of S to zF . Furthermore
zF n zS is connected and the map i�W H1. zS/!H1. zF / induced by inclusion is injective.

Proof Let Y be the surface obtained from F n interior.S/ by gluing a disc onto
each component of @S . Then Y is a connected surface with k boundary components
and there is a natural isomorphism of H1.F /=H1.S/ onto H1.Y /. Choose a prime
p >max.k; n/. Because Y is connected, there is an epimorphism from H1.Y / onto
Z=p which sends one component of @Y to k�1 and all the other .k�1/ components
of @Y to �1. Now .k�1/ is coprime to p because 2� k < p . Therefore this defines
a conservative cyclic p–fold cover zY of Y . It also determines a conservative cyclic
p–fold cover zF of F such that S lifts to zS . Since zY is connected, it follows that
X D zF n zS is connected. Also X \ @ zF D @ zF is not empty. Hence i� is injective by
Remark 1.4.

3 Proof of main theorem

In this section all covers are of finite degree. Given a cover pW zF ! F , the excess
number of boundary components E.p/ for this cover is defined as E.p/Dj@ zF j�j@F j.
By Addendum 1.2 there is a very good cover pW zF ! F with j@ zF j even. If E.p/D 0

the theorem is proved; otherwise we construct another very good cover with smaller
excess, and repeating this process a finite number of times yields a very good cover
with zero excess.

These constructions use various very good covers of F . We will choose a lift of S to
each cover and identify this lift with S and refer to the lift as S . This should not cause
confusion.

We will also use the big cover Lemma 2.3 to replace a very good cover zF ! F by
another very good cover F 0! F with the same excess and very large diameter. This
process is called taking a big cover. We will rename F 0 as zF .

Given zF very good, we will use (except in one case) one of the two cross-joins
described in Lemma 2.1 to produce a new connected very good cover F 0 of F with
smaller excess. We first take a big cover so that there are lifts of a short arc that are
far apart and disjoint from S in zF . Then we change zF with a cross-join to produce a
good connected cover F 0 , which has smaller excess by Lemma 2.1.
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To verify F 0 is very good we check below that F 0nS is connected, then by Remark 1.4
this implies incl�f W H1.S/!H1.F

0/ is injective, so F 0 is very good.

First observe that the cyclic cover produced by Lemma 2.3 leaves zF nS connected.
Since the cross-join arcs are disjoint from S they also determine a cross-join of zF nS .
This cross-joined subsurface is F 0 nS which is connected by Lemma 2.1 as required.

Case when j@F j D 1 By Lemma 2.2 there is a properly embedded, short arc, ˛ , in F

which is covered by an arc ˇ with endpoints on two distinct boundary circles of @ zF .
After taking a big cover we may assume the diameter of zF is much larger than the
length of ˛ and the diameter of S ; thus ˇ can be chosen to be disjoint from S in zF .

Cross-join . zF ; ˇ/ with .F; ˛/ to obtain a cover F 0 with one fewer boundary circle
than zF . There is a lift of S to F 0 and F 0 nS is connected. Repeat the process until
we obtain a cover with only one boundary component. This completes the proof when
j@F j D 1.

Case when j@F j � 2 First we show how to make E.p/ even by performing a cross-
join if needed. This first step will increase the number of boundary components.

Suppose E.p/ is odd. By Addendum 1.2 j@ zF j is even, so j@F j is odd. We can make
E.p ) even by cross-joining . zF ; z̨/ and .F; ˛/ to obtain a cover p0W F 0 ! F . To
perform the cross-join, choose a short embedded arc ˛ � F with endpoints on two
distinct circles C , C 0 of @F and a lift z̨ � zF , with endpoints on two preimages zC ,
zC 0 . After taking a big cover we can assume that z̨ is disjoint from S in zF . Then F 0 is
the cross-join of .F; ˛/ and . zF ; z̨/. The surface S lifts to F 0 and F 0 nS is connected
by Lemma 2.1.

Here is the outline of the rest of the proof. If E.p/¤ 0 then it is even. We proceed as
follows using suitable cross-joins to construct new coverings. If there are two different
components C;C 0 � @F which both have more than one preimage in @ zF then we find
a short arc ˛ in F connecting C and C 0 and cross-join zF to itself along two suitable
lifts of ˛ in zF . This reduces the excess by 2. After finitely many steps we obtain a
cover so that at most one component C � @F has more than one preimage. A single
cyclic cross-join (defined below) is done simultaneously to reduce the excess to zero.
Here are the details.

Suppose A and B are distinct circles in @F which both have (at least) two distinct
preimages zAi ; zBi for i D 1; 2 in @ zF . Choose a short arc 
 in F with endpoints on A

and B . Let ˛i be a lift of 
 with one endpoint on zAi and ˇi a lift with an endpoint on
zBi . Inductively we assume that zF nS is connected. After taking a big cover we may

assume that these arcs are all far apart and far from S . Thus there is a cover, obtained
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by cross-joining along any pair of distinct arcs chosen from this set of four, and S lifts
to this cover.

We claim that there is a pair of these arcs which have endpoints on four distinct boundary
components of zF . It follows from Lemma 2.1 that cross-joining along this pair reduces
the excess by 2 and S lifts to the cover F 0 so produced. Furthermore, since zF nS is
connected it follows that F 0 nS is connected by Lemma 2.1.

If ˛1 and ˛2 do not both have endpoints on the same lift zB of B the pair .˛1; ˛2/

works. Similarly if ˇ1 and ˇ2 do not both have endpoints on the same lift zA of A

the pair .ˇ1; ˇ2/ works. The remaining case is (after relabeling) ˛1 and ˛2 both have
endpoints on a component zB ¤ zB2 which covers B and ˇ1; ˇ2 both have endpoints
on some component zA¤ zA2 which covers A. Then ˛2 connects A2 to zB ¤ zB2 and
ˇ2 connects B2 to zA¤ zA2 . Thus the pair .˛2; ˇ2/ works.

Repeating this process a finite number of times reduces the excess by an even number
until either j@ zF j D j@F j or else there is a unique component C of @F with more
than one preimage. In the latter case the excess is even so there is an odd number of
preimages p�1.C /D fC0; : : : ;C2kg.
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Figure 1: Cyclic cross-joining, 2kC 1D 5 illustrated

Refer to Figure 1. Choose a component A of @ zF that does not cover C . This is
possible because j@F j � 2. Let ˇ be a short arc in F with endpoints on p.A/ and C .
For each i there is a lift ˇi of ˇ with one endpoint on Ci and the other on A. After
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taking a big cover we may assume all these lifts are far apart and far from S . Orient
each arc ˇi so it points from A to Ci and call the left side C and the right side �.
Now cross-join cyclically as follows. Cut zF along the union of these arcs and join the
� side of ˇi to the C side of ˇiC1 , with all integer subscripts taken mod 2kC 1.

The resulting cover has a single preimage of C . Indeed, each Ci has been cut at one
point to give an interval Di D Œt

C
i ; t
�
i � where the label i denotes an endpoint of ˇi

and t˙i is on the ˙ side of ˇi . These intervals are then glued by identifying t�i in Di

to tC
iC1

in DiC1 . The result is obviously connected; it is a single circle.

To analyse the preimage of p.A/ the circle A was cut at 2k C 1 points to produce
2kC 1 subarcs Ei D Œu

C
i ;u

�
iC1

� where u˙i is on the ˙ side of ˇi . Then Ei is glued
to EiC2 by identifying u�

iC1
with uC

iC2
(see figure 1). Since there are 2kC1 intervals

and the i –th one is glued to the .i C 2/–th one the result is connected because 2 is
coprime to 2kC 1. This gives the required conservative cover completing the proof of
the main theorem.
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