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Obstructions for constructing equivariant fibrations

ASLI GÜÇLÜKAN İLHAN

Let G be a finite group and H be a family of subgroups of G which is closed under
conjugation and taking subgroups. Let B be a G –CW–complex whose isotropy
subgroups are in H and let F D fFH gH2H be a compatible family of H –spaces. A
G –fibration over B with the fiber type F D fFH gH2H is a G –equivariant fibration
pW E! B where p�1.b/ is Gb –homotopy equivalent to FGb

for each b 2 B . In
this paper, we develop an obstruction theory for constructing G –fibrations with the
fiber type F over a given G –CW–complex B . Constructing G –fibrations with a
prescribed fiber type F is an important step in the construction of free G –actions on
finite CW–complexes which are homotopy equivalent to a product of spheres.

57S25; 55R91

1 Introduction

In 1925, Hopf stated a problem which was later called the topological spherical space
form problem: Classify all finite groups which can act freely on a sphere Sn , n> 1.
One variant of this problem was solved by Swan [14]. He proved that a finite group
acts freely on a finite complex homotopy equivalent to a sphere if and only if it has
periodic cohomology. By using Swan’s construction and surgery theory, the topological
spherical space form problem has been completely solved by Madsen, Thomas and
Wall [9]. It turns out that a finite group G acts freely on a sphere if and only if G has
periodic cohomology and any element of order 2 in G is central (see [9, Theorem 0.5]).

One of the generalizations of this problem is to classify all finite groups which can
act freely on a finite CW–complex homotopy equivalent to a product of k –spheres
Sn1 � � � � �Snk for some n1; : : : ; nk . Recently, Adem and Smith [1] gave a homotopy
theoretic characterization of cohomological periodicity and as a corollary they obtained
a tool to construct free group actions on CW–complexes homotopy equivalent to a
product of spheres. More precisely, they have shown that a connected CW–complex X

has periodic cohomology if and only if there is a spherical fibration over X with a
total space E that has a homotopy type of a finite dimensional CW–complex. As
a consequence they proved that if G is a finite group and X is a finite dimensional
G –CW–complex whose isotropy subgroups all have periodic cohomology, then there
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is a finite dimensional CW–complex Y with a free G–action such that Y ' Sn �X .
As remarked in [1], the second result can also be obtained using the techniques given
by Connolly and Prassidis in [3]. More recently, Klaus [6] proved that every p–group
of rank 3 acts freely on a finite CW–complex homotopy equivalent to a product of
three spheres using similar techniques.

The method used by Connolly and Prassidis [3] is to construct a spherical fibration
inductively over the skeleta by dealing with cells in each dimension separately. This
is a standard strategy in obstruction theory. Note that if there is an orientable G–
spherical fibration over the n–skeleton of a CW–complex, then its restriction to the
boundary of each .nC1/–cell � will be an orientable G� –fibration with the fiber FG� ,
where G� is the isotropy subgroup of � . Associated to this G� –fibration over @� ,
there is a classifying map from @� to the space B AutG� FG� where AutG� FG� is
the topological monoid of self G� –homotopy equivalences of FG� . Combining the
attaching map of � with the classifying map gives us an element in the n–th homotopy
group of B AutG� FG� . Therefore we obtain a cellular cochain which assigns a
homotopy class in �n.B AutG� FG� / to each .nC1/–cell. This cochain vanishes if
and only if the G–fibration over the n–skeleton extends to a G–fibration over the
.nC1/–skeleton. In the situation Connolly and Prassidis consider, this cochain can be
killed by taking fiber joins. Using this idea, Ünlü [17] gives a concrete cell-by-cell
construction of G –spherical fibrations in his thesis.

In obstruction theory, one often has obstructions as cohomology classes which tells
when a construction can be performed on the next skeleton after some modifications. In
other words, the cohomological obstruction class vanishes if and only if the restriction
of the construction to the .n�1/–skeleton extends over the .nC1/–skeleton. Having a
cohomological obstruction is better than having a cochain class as an obstruction since
a cohomology class is more likely to be zero. Note that if pW E! B is a G –fibration
and b 2 BH then the fiber p�1.b/ is an H –space. When BH is connected for
H � G , there is an H –space FH such that for every b 2 BH , the fiber p�1.b/ is
H –homotopy equivalent to FH . Moreover, if BH is connected for every H � G ,
the family of H –spaces FH forms a compatible family (see Definition 2.5). In this
case, the G –fibration pW E!B is said to have the fiber type fFH g. In this paper, we
notice that the cohomological obstructions for constructing G –fibrations with a given
fiber type live in Bredon cohomology of B with coefficients in �n;F (see Section 4
for the definition) and we prove the following theorem.

Theorem 1.1 Let G be a finite group and H be a family of subgroups of G which
is closed under conjugation and taking subgroups. Let B be a G–CW–complex
whose isotropy subgroups are in H such that BH is simply connected for every
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H 2 Iso.B/. Let F D fFH gH2H be a compatible family of finite H –CW–complexes
and pW En ! Bn be a G–fibration over the n–skeleton of B with the fiber type
fFH gH2H where n� 2.

(1) There is a cocycle p̨ 2C nC1
H .BI�n;F / which vanishes if and only if p extends

to a G–fibration over BnC1 with a total space G–homotopy equivalent to a
G –CW–complex.

(2) The cohomology class Œ p̨ � 2 H nC1
G;H .BI�n;F / vanishes if and only if the G–

fibration pjBn�1 W p�1.Bn�1/ ! Bn�1 extends to a G–fibration over BnC1

with a total space G –homotopy equivalent to a G –CW–complex.

Moreover if B is a finite G –CW–complex then the total space of the obtained fibration
has the G–homotopy type of a finite G–CW–complex whenever En has the G–
homotopy type of a finite G –CW–complex.

To prove this theorem we first define an obstruction cochain in the chain complex of
Bredon cohomology and show that it is a cocycle. We call this cocycle an obstruction
cocycle. Then we show that the difference of obstruction cocycles of any two extensions
of the G –fibration pjBn�1 is the coboundary of a cochain called the difference cochain.
If there is an extension of pjBn�1 to a G–fibration over BnC1 , then the obstruction
cocycle of the restriction of this extension to Bn vanishes. This means that the
obstruction cocycle of p is a coboundary and represents a cohomology class which
vanishes. This proves the “if” direction of the above theorem.

For the “only if” direction it suffices to show that for every cochain d there is a G–
fibration q over Bn with qjBn�1 D pjBn�1 such that d is the difference cochain of
the extensions p and q of pjBn�1 . Here the most technical part is the construction
of a G–fibration q with these properties. That is because it is not clear how to glue
G –fibration pjBn�1 to G –fibrations over the n–cells corresponding to the cochain d .
For quasifibrations it suffices to take the adjunction of the total spaces to glue two
quasifibrations over different base. However, in order to obtain a fibration one needs to
put some G –tubes between total spaces of these G –fibrations to create enough space
to deal with G –homotopies. We use a generalization of a result due to Tulley [16] to
produce a G –fibration q with the required properties.

The paper is organized as follows: Section 2 contains definitions and preliminary results
on equivariant fibrations. In Section 3, we give a method to glue G–fibrations over
different base spaces by generalizing a construction due to Tulley [16]. Finally, we
prove Theorem 1.1 in Section 4.
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2 Equivariant fibrations

In this section, we give the basic definitions of the equivariant fibration theory. We
refer the reader to Lück [8] and Waner [19] for more details.

Definition 2.1 Let G be a finite group. A G –map pW E!B is called a G –fibration
if it has the G–homotopy lifting property with respect to every G–space X , that is,
given a commutative diagram of G –maps

X � f0g E

X � I B

h

H

p
zH

there exists a G –map zH W X � I !E such that p zH DH and zH jX�f0g D h.

Equivalently, a G –map pW E! B is a G –fibration if there is a G –map

�W �p D f.e; !/ 2E �BI
j p.e/D !.0/g !EI

such that �.e; !/.0/ D e and p�.e; !/ D ! . The G–map � is called a G–lifting
function. In the nonequivariant theory, Dold [4] proved that being a fibration is a local
property. The same proof applies to the equivariant case.

Definition 2.2 A covering U of G–invariant open sets of B is called numerable
G –covering if U is locally finite and there is a G–map fU W B! I such that U D

f �1
U
.0; 1� for every U 2 U .

Theorem 2.3 A G–map pW E ! B is a G–fibration if there is a numerable G–
covering U of B such that pjU W p

�1.U /! U is a G –fibration for each U 2 U .

The notion of an equivalence between G –fibrations is defined naturally as follows: Let
pi W Ei ! B be a G –fibration for i D 1; 2. A fiber preserving G –map f W E1!E2

is called a G–fiber homotopy equivalence if there is a fiber preserving G–map
gW E2 ! E1 such that the compositions fg and gf are G–homotopy equivalent
to identity maps through G –homotopies which are fiber preserving at each time t 2 I .
In this case, we write p1 'G p2 . As in the nonequivariant case, a fiber preserving
G –homotopy equivalence between G –fibrations is a G –fiber homotopy equivalence
(see May [10, page 50] for the proof of the nonequivariant case).
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In [12], Stasheff proved a classification theorem for nonequivariant fibrations up to
fiber homotopy equivalences. When a G –fibration is over a path-connected space with
trivial G–action, the fiber at each point in the base has a natural G–space structure
and all fibers are G–homotopy equivalent with respect to this structure. In this case,
the theory of G–fibrations is essentially the same as the nonequivariant one and we
have the following classification theorem.

Theorem 2.4 Let AutG.FG/ be the monoid of G –equivariant self homotopy equiva-
lences of a finite G –CW–complex FG . If B is a CW–complex with trivial G –action
then there is a one-to-one correspondence between the set of G –fiber homotopy equiv-
alence classes of G–fibrations pW E! B with fibers having the G–homotopy type
of FG and the set of homotopy classes of maps B!B AutG.FG/. The equivalence is
obtained by taking the pullback fibration from the universal fibration over B AutG.FG/.

This classification theorem can be proved by using the same techniques and ideas from
Stasheff [12]. Also, Waner constructs a classifying space for a more general set of
equivariant fibrations in [18] and the above theorem can be obtained as a special case
of his result.

The monoid AutG.FG/ is not connected in general. However, its connected compo-
nents are homotopy equivalent via the maps .AutG.FG/; f /! .AutG.FG/;g/ with
�! g�f �1 where f �1 is the homotopy inverse of f . Furthermore, when the map
�1.B/! ŒFG ;FG �G is trivial, B AutIG.FG/ classifies G –fibrations pW E! B with
trivial G –actions on the base where AutIG.FG/ is the connected component of identity
in AutG.FG/ (see Adem and Smith [1] for nonequivariant case).

For G–fibrations whose G–action on the base is not trivial, we need to consider the
collection of equivariant spaces. Note that if p is a G –fibration over B and b 2 BK ,
then the space p�1.b/ is closed under K–action and hence a K–space. Moreover, when
BK is connected, the spaces p�1.b/ and p�1.b0/ are K–homotopy equivalent for
every b; b02BK . On the other hand, when H a�K , we have h.ab/Da.a�1ha/bDab

for every h 2H and b 2BK , hence ab 2BH . Clearly, the H –space p�1.b/, where
the H –action on p�1.b/ is given by conjugation and the H –space p�1.ab/ are
H –homeomorphic. Therefore, when BH is connected for every isotropy subgroup H

of B , the spaces p�1.b/ and p�1.ab/ are H –homotopy equivalent for every isotropy
subgroups H;K with H a �K .

Definition 2.5 Let H be a family of subgroups of G which is closed under conjugation
and taking subgroups. A family FDfFH gH2H of H –spaces is said to be a compatible
family if FH is H –homotopy equivalent to FK for every H;K 2H with H a �K

for some a 2G where the H –action on FK is given by h �y D a�1hay .
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Let F D fFH gH2H be a compatible family where H contains the isotropy subgroups
of B . We say pW E ! B is a G–fibration with the fiber type F D fFH gH2H if
FH 'H p�1.b/ for every b 2 BH and for every isotropy subgroup H of B . When
BH is connected for every H 2H , every G–fibration over B is a G–fibration with
the fiber type F . However, a G–fibration pW E ! B does not necessarily have a
fiber type.

3 Tulley’s theorem for G –fibrations

The aim of this section is to prove an equivariant version of a theorem due to Tulley
(see [16, Theorem 11]). The proof uses the same ideas and methods from [16; 15].

Theorem 3.1 Let p1W E1! B and p2W E2! B be G–fiber homotopy equivalent
G–fibrations. Then there is a G–fibration q over B � I such that qjB�f0g D p1 and
qjB�f1g D p2 .

We call the G–fibration qW Z ! B � I in Theorem 3.1 a G–tube between p1 and
p2 . Let f W E1!E2 be a fiber preserving G –map between G –fibrations p1 and p2

over B . Recall that the mapping cylinder Mf of f is the adjunction space E1�I[f E2

where f .e/D .e; 0/ for each e 2 E1 . We define the G–map pf W Mf ! B over B

by pf .x; s/D p1.x/ and pf .y/D p2.y/ for any x 2E1 , y 2E2 , and s 2 I .

Lemma 3.2 Let f W E1! E2 be a fiber preserving G–map between G–fibrations
p1 and p2 over B . Then the induced G –map pf W Mf ! B is a G –fibration.

Proof The proof is similar to the proof of [15, Theorem 1]. Let �i W �pi
! Ei

I

be a G–lifting function for pi , i D 1; 2. Since �pf D �p1
� I [ zf �p2

where
zf .e; !/ D .f .e/; !/, to show that pf is a G–fibration it suffices to construct a
G –map �W �p1

� I !M I
f

such that �j�p1
�f0g D �2 ı

zf , pf �..e; !/; s/D ! , and
�..e; !/; s/.0/D .e; s/.

Define �W �p1
� I !M I

f
by

�.e; !; s/.t/D

�
.�1.e; !/.t/; s� t/ t � s,
�2.z; !

s/.t � s/ s � t ,

where z D f ı�1.e; !/.s/ and !s is given by !s.t/D !.sC t/ when sC t � 1 and
!s.t/D 1, otherwise. Clearly, � is a continuous G –map which satisfies the relations
�j�p1

� f0g D �2 ı
zf , pf �..e; !/; s/D ! , and �..e; !/; s/.0/D .e; s/.
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In order to prove Theorem 3.1, it suffices to construct G –fibrations q1W Z1!B�I and
q2W Z2!B � I with q1jB�f0g D p1 , q1jB�f1g D q2jB�f0g D pf and q2jB�f1g D p2

where f is the fiber preserving G–map between p1 and p2 . That is because once
we have such G–fibrations, we can obtain a G–tube between p1 and p2 by gluing
q1 and q2 as follows. Let Z D Z1 [i1

Mf � I [i2
Z2 where i1.x/ D .x; 0/ and

i2.x/D .x; 1/ for every x 2Mf . Define the G –map qW Z! B � I by

q.z/D

8̂<̂
:
.�1.q1.z//;

1
3
�2.q1.z/// z 2Z1,

.�1.q2.z//;
2
3
C

1
3
�2.q2.z/// z 2Z2,

.pf .x/;
1
3
.1C t// z D .x; t/ 2Mf � I ,

where �i is the projection map to the i –th coordinate. Since we can extend the lifting
functions for q1 and q2 to lifting functions for qjB�Œ0;6=9/ and qjB�.4=9;1� , respectively,
G–maps qjB�Œ0;6=9/ and qB�.4=9;1� are G–fibrations. Therefore qW Z! B � I is a
G –fibration by Theorem 2.3.

Proposition 3.3 Let Z2 D f.e; s; t/ 2 E1 � I � I j s C t � 1g [ zf E2 � I in
Mf � I , where zf W E1 � f0g � I is defined by zf .e; 0; t/ D .f .e/; t/. Then q2 D

.pf � id/jZ2
W Z2! B � I is a G –fibration with q2jB�f0g D pf and q2jB�f1g D p2 .

Z2

B � I

^s

>
t q2

Proof Let r W Mf � I !Z2 be defined by r jE2�I D idE2�I and

r jE1�I�I .x; s; t/D

�
.x; s; t/ sC t � 1,
.x; t; t/ otherwise.

Then r is a fiber preserving G–retraction. Let H W X � I ! B and hW X ! Z2 be
given G–maps with H jX�f0g D p2 ı h. Since pf � id is a G–fibration, there is a
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G –map xH W X � I !Mf � I which makes the following diagram commute:

X � f0g Z2 Mf � I

X � I B � I B � I

xH
p2

h

H

pf �id
zH

r

i

Then the G–map zH W X � I ! Z2 defined by zH D r xH satisfies p2
zH D H and

zH jX�f0g D h.

Definition 3.4 Let pi W Ei ! B be a G–fibration for i D 1; 2 with E1 � E2 and
p2jE1

D p1 . Then p1 is said to be a G–deformation retract of p2 if E1 is a
G –deformation retract of E2 via fiber preserving G–retraction, that is, if there is a
G –map H W E2�I!E2 such that H0D idE2

, H.e; 1/2E1 and p2H.e; t/Dp2.e/

for every e 2 E2 . If H also satisfies the relation H.e; t/D e for every e 2 E1 , we
say p1 is a strong G –deformation retract of p2 .

To show that there is a G–tube q1W Z1! B � I between p1 and pf , we need the
following proposition. The nonequivariant version of this proposition is proved by
Tulley [16] and used in a recent paper by Steimle [13].

Proposition 3.5 If p1 is a strong G–deformation retract of p2 then the G–map
q D .p2 � id/jZ W Z! B � I where Z D f.e; t/ 2 E2 � I j e 2 E1 when t > 0g is a
G –fibration.

Z

B � I

E1

q

Proof We are using the same approach that is used in the proof of Theorem 3.1 in
Langston [7]. Let H W E2 � I ! E2 be a strong G–deformation retraction of the
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G –fibration p2 onto p1 . Let �W �p2
!EI

2
be a G –lifting function for p2 . Define a

G –map �0W �q!ZI by �2

�
�0..e; !2.0//; .!1; !2//.t/

�
D !2.t/ and

�1

�
�0..e; !2.0//; .!1; !2//.t/

�
D

8̂<̂
:

H.�.e; !1/.t/; t=!2.t// !2.t/ > 0; !2.t/� t ,

e t D !2.t/D 0,

H.�.e; !1/.t/; 1/ t > 0; t � !2.t/.

Clearly, q�0..e; !2.0//; .!1; !2// D .!1; !2/ and �0..e; !2.0//; .!1; !2//.0/ D e .
Therefore we only need to check the continuity of �1�

0 at t D 0. For this it suffices to
show that the adjoint map e�1�0W �q � I !E2 is continuous at t D 0.

Let .e˛; !1;˛; !2;˛; t˛/ be a net converging to .e; !1; !2; 0/. Let U be an open
neighborhood of e 2 E1 . Since H W E2 � I ! E2 is continuous, V D H�1.U / is
open. Since .e; t/2V for every t 2 I , there are open neighborhoods At 3 e and Vt 3 t

such that At�Vt �V , for all t 2 I . Since I is compact, there exist t1; : : : ; tn such that
I D

Sn
iD1 Vti

. Then AD
Tn

iD0 Ati
is an open neighborhood of e with the property

that H.A�I/�U . Since � is continuous, there is ˇ such that z�.e˛; !1;˛; t˛/2A for
every ˇ > ˛ . Therefore e�1�0.e˛; !1;˛; !2;˛; t˛/ 2 U for every ˛ > ˇ as desired.

It is proved in [11, Corollary 2.4.2] that when f W E1!E2 is a homotopy equivalence
then E1 is a strong deformation retract of Mf . The same proof applies to G –fibrations
(see [5, Lemma 2.5.2]). Therefore, by Proposition 3.5, there is a G –tube q1 between
p1 and pf . Note that p2 is also a strong G–deformation retract of pf and one can
also use Proposition 3.5 to construct a G–tube between p2 and pf . This completes
the proof of Theorem 3.1. As an immediate corollary, we have:

Corollary 3.6 Let B1;B2 and B be topological spaces such that B � B1 \B2 . If
p1W E1!B1 and p2W E2!B2 are G –fibrations with p1jB 'G p2jB then there is a
G –fibration over B1[i1

.B�I/[i2
B2 extending p1 and p2 where ij W B�fj g!Bj

are inclusions.

Proof By Theorem 3.1, there is a G–tube qW Z! B � I between p1jB and p2jB .
Without loss of generality, we can consider q over B � Œ1

3
; 2

3
� with qjB�f1=3g D p1

and qjB�f2=3g D p2 . Let

zZ DE1[k1

�
p�1

1
.B/� Œ0; 1

3
�
�
[m1

Z [m2

�
p�1

2
.B/� Œ2

3
; 1�
�
[k2

E2;

where k1W p
�1
1
.B/�f0g!E1 , k2W p

�1
1
.B/�f1g!E2 and m1W p

�1
1
.B/� f1

3
g!Z ,

m2W p
�1
2
.B/� f2

3
g !Z are the inclusions. Define a G –map

zqW zZ! B1[i1
.B � I/[i2

B2
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by zqjEi
D pi , zqjZ�Œ1=3;2=3�.z; t/D q.z/ and for j D 1; 2 by zq.e; t/D pj .e/ when

t 2 Œ2.j � 1/=3; .2j � 1/=3�/.

B1 B2

B � I

zZ

zq

Clearly the restriction of zq to the following subsets are G –fibrations˚
B1[i1

B � Œ0; 2
9
�;B � Œ1

9
; 5

9
�;B � Œ4

9
; 8

9
�;B � Œ7

9
; 1�[i2

E2

	
:

Therefore, by Theorem 2.3, zq is a G –fibration.

Theorem 3.7 Let pi W Ei ! B , i D 1; 2, be G–fiber homotopy equivalent G–
fibrations such that E1 and E2 have the G–homotopy type of a G–CW–complex.
Then there is a G–tube q between p1 and p2 whose total space is G–homotopy
equivalent to a G –CW–complex.

Proof Let f W E1! E2 be a G–fiber homotopy equivalence. Recall that the total
space of the G –tube q we constructed is Z DZ1[i1

Mf � Œ
1
3
; 2

3
�[Z2 where

Z1 D
˚
.e; t/ 2Mf � Œ0;

1
3
� j e 2Mf if 0< t � 1

3
; e 2E1 if t D 0

	
;

Z2 D
˚
.x; s; t/ 2E1 � I � Œ2

3
; 1� j sC 3t � 3

	
[f E2 � Œ

2
3
; 1�:

Clearly, Z is a strong G–deformation retract of Mf . On the other hand, Mf is
G –homotopic to E2 and hence it has a G –homotopy type of a G –CW–complex.

Corollary 3.8 A G –fibration pW E!Sn�1 over .n�1/–sphere with trivial G –action
on the base extends to a G –fibration over a disk if and only if it is G –fiber homotopy
equivalent to a trivial G –fibration.

Proof Since Dn is contractible, the “only if” part holds. For the “if” part, let p be
G –fiber homotopy equivalent to a trivial fibration. Consider Dn as the cone of Sn�1 ,
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that is, Dn D Sn�1 � Œ0; 2�=� where .y; 2/ � �. Let B1 D Sn�1 � Œ1; 2�=�, and
B2 DB D Sn�1�f1g. Then "jB ' p where "W B1�FG!B1 where FG D p�1.x/

for some x 2 Sn�1 . By Corollary 3.6, there is a G –fibration extending p .

Remark In [3], the statement of Corollary 3.8 appears on page 137 but in there the
total spaces were attached directly which results in a G –quasifibration from which one
gets a G –fibration by taking the corresponding Hurewicz fibration.

4 Constructing G –fibrations

In this section, we introduce an obstruction theory for constructing G –fibrations over
G–CW–complexes and we prove Theorem 1.1. An adequate cohomology theory to
develop such an obstruction theory is Bredon cohomology. Let us first fix some notation
for Bredon cohomology. We refer the reader to Bredon [2] and Lück [8] for more
detailed information about Bredon cohomology.

Let G be a finite group and H be a family of subgroups of G which is closed under
conjugation and taking subgroups. The orbit category OrH.G/ relative to the family H
is defined as the category whose objects are left cosets G=H where H 2H and whose
morphisms are G–maps from G=H to G=K . Recall that any a 2 G with H a � K

induces a G–map yaW G=H ! G=K defined by ya.H / D aK and conversely, any
G –map from G=H to G=K is of this form.

Let B be a G–CW–complex whose isotropy subgroups are all in H . A coefficient
system for the Bredon cohomology is a contravariant functor M W OrH.G/ ! Ab ,
where Ab is the category of abelian groups. A morphism T W M !N between two
coefficient systems is a natural transformation of functors. Note that a coefficient system
is a Z OrH.G/–module with the usual definition of modules over a small category.
Since the Z OrH.G/–module category is an abelian category, the usual notions for
doing homological algebra exist.

Given a local coefficient system M W OrH.G/!Ab , one defines the cochain complex
C �H.BIM / of B with coefficients in M as follows: Let C n

H.BIM / be the submodule
of
L

H2H HomZ.Cn.B
H IZ/;M.G=H // formed by elements .f .H //H2H which

makes the following diagram commute:

Cn.B
K IZ/

f .K /
����! M.G=K/

xan

??y M.ya/

??y
Cn.B

H IZ/
f .H /
����! M.G=H /
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for any H;K 2H with H a �K . Here xaW BK !BH is given by xa.x/D ax for any
x2BK and xa� denotes the induced map between the chain complexes. The coboundary
map ıW C n

H.BIM /! C nC1
H .BIM / is defined by .ıf /.H /.�/D f .H /.@�/ for any

H 2H and for any .nC1/–cell � of BH .

Definition 4.1 The Bredon cohomology H�
G;H.BIM / of G–CW–complex B with

coefficients in M is defined as the cohomology of the cochain complex C �H.BIM /.

Let F D fFH gH2H be a compatible family. Since F is compatible, we can consider
the universal K–fibration uK W EK !B AutIK .FK / with trivial K–action on the base
as an H –fibration with the fiber FH via conjugation action whenever H a �K . Let
zaW B AutIK .FK /! B AutIH .FH / be the classifying map of this fibration. Define a
contravariant functor �n;F W OrH.G/!Ab by letting

�n;F .G=H /D �n.B AutIH .FH //;

�n;F .yaW G=H !G=K/D ��.za/W �n.B AutIK .FK //! �n.B AutIH .FH //:

From now on we assume that BH is simply connected for every H 2 Iso.B/, where
Iso.B/ is the set of isotropy subgroups of B . Let pW E ! Bn be a G–fibration
over the n–skeleton of B with the fiber type F D fFH gH2H where n � 2. For
every H 2 H , the map pH W p

�1.BH
n / ! BH

n is an H –fibration. In particular,
the H –fibration pH is classified by a map �p;H W B

H
n ! B AutIH FH when H is

an isotropy subgroup. For an arbitrary H 2 H and .nC1/–cell � of BH
n with an

attaching map f� W Sn! B
G�
n � BH

n , the G� –fibration f �� .pH / is classified by the
map ResG�

H
ı�p;G� ı f� . Here, ResG�

H
W B AutIG� FG� ! B AutIH FH is induced by

the relation H �G� . When H 2 Iso.B/, the maps ResG�
H
ı�p;G� ıf� and �p;H ıf�

are homotopic since they both classify the H –fibration f �� .pH /. Moreover, when
H;K 2H with H a �K , we have za ıResG�

K
' ResGa�

H
ı za for every .nC1/–cell �

of BK .

We define

p̨ 2

Y
H2H

HomZ.CnC1.B
H /; �n.B AutIH FH //

by p̨.H /.�/D .ResG�
H
/�Œ�p;G� ıf� � for every H 2H and for every .nC1/–cell �

of BH with an attaching map f� W Sn! B
G�
n . For p̨ to be a cochain, the following
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diagram must commute up to homotopy

Sn
f�
����! B

G�
n

�p;G�
����! B AutIG� FG� xa

??y za

??y
Sn

fa�
����! B

Ga�
n

�p;Ga�
����! B AutIGa�

FGa�

for every a2G . The first square commutes because B has a G –CW–complex structure.
Since za is the classifying map of the Ga� –fibration uG� and �p;G� is the classifying
map of pG� , the pullback of the universal Ga� –fibration uGa�

by the composition
za ı �p;G� is Ga� –fiber homotopy equivalent to the fibration pG� considered as an
Ga� –fibration. On the other hand, the pullback of the Ga� –fibration pGa�

by xa is
Ga� –fiber homotopy equivalent to the fibration pG� , so .�p;Ga�

ıxa/�uGa�
'Ga�

pG� .
Therefore the Ga� –fibrations .zaı�p;G� /

�uGa�
and .�p;Ga�

ıxa/�uGa�
are Ga� –fiber

homotopy equivalent. By Theorem 2.4, the maps zaı�p;G� and �p;Ga�
ıxa are homotopic

and hence p̨ is a cochain in C nC1
H .B; �n;F /.

Proposition 4.2 p̨ is a cocycle.

Proof For an H 2 Iso.B/, p̨.H / 2C nC1.BH ; �n.B AutIH FH // is the obstruction
cochain for extending the map �p;H W B

H
n ! B AutIH FH to the .nC1/–skeleton

of BH . Therefore, by classical obstruction theory, we have

.ı p̨/.H /.�/D ı. p̨.H //.�/D 0

for any .nC2/–cell � of BH . On the other hand, for arbitrary H 2 H , we have
.ı p̨/.H /.�/D .ResG�

H
/�
�
ı p̨.G� /.�/

�
D 0. So, ı p̨ D 0.

We call p̨ the obstruction cocycle. From now on we assume that the total spaces of
G–fibrations that we consider have the homotopy type of a G–CW–complex unless
otherwise stated.

Proposition 4.3 A G–fibration pW En ! Bn with the fiber type F D fFH gH2H ,
where FH is a finite H –CW–complex, extends to a G–fibration over the (n+1)-
skeleton BnC1 if and only if p̨ D 0. Moreover if En has the G–homotopy type of
a finite G–CW–complex then the total space of the fibration that we obtain has the
G –homotopy type of a finite G –CW–complex.

Proof If the obstruction cocycle is zero, then Œ�G� ıf� �D 0 for any .nC1/–cell �
of B . By Theorem 2.4, the restriction pj@� is G� –fiber homotopy equivalent to
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the trivial G� –fibration "W @� �FG� ! @� . Let ˇ� W @� �FG� ! p�1.@�/ be the
G� –fiber homotopy equivalence between them. By Corollary 3.8, pj@� extends to a
G� –fibration zp� W Z! � over � . Let us define

E0 D

� a
�2InC1

G �G�

�
Z [i1

.p�1.@�/� I/
��
[i2

E;

where InC1 is the set of representatives of G –orbits of .nC1/–cells and ij ’s are the
corresponding inclusions for j D 1; 2. Let qW E0! BnC1 be defined by relations

qjZ D zp� ; qjp�1.@�/�I D pj@� � id and qjE D p:

By Theorem 2.3, the G –map q is a G –fibration.

Since all the fibers and the base space have the G –homotopy type of a G –CW–complex,
E0 is G–homotopy equivalent to a G–CW–complex. More precisely, for each orbit
representative � 2 InC1 , we can deform G �G�

�
Z [i1

.p�1.@�/ � I/
�
[i2

E to
G �G� .� �FG� /[ˇ� E relative to E via a G –map as shown in Figure 1.

Figure 1

Proposition 4.3 proves the first part of Theorem 1.1. The second part of the theorem says
that if p̨ is cohomologous to zero, that is, p̨D ıd for some cochain d 2C n

H.B; �n;F /

then the G –fibration pjBn�1
W p�1.Bn�1/!Bn�1 extends to a G –fibration over BnC1 .

In order to prove this, we redefine p over the n–skeleton relative to the .n�1/–skeleton
in such a way that the obstruction cocycle of this new G –fibration vanishes.

Let p1 and p2 be G–fibrations over Bn whose restrictions to Bn�1 are G–fiber
homotopy equivalent. Then by Corollary 3.6, there is a G –fibration qW Z! .B � I/n
with qjBn�f0gDp1 and qjBn�f1gDp2 . Let ‰q;H W .B

H �I/n!B AutIH FH be the
classifying map of the fibration qH for H 2 Iso.B/. Note that the composition ‰q;H ıij
gives a classifying map for the H –fibration pH

j where ij ’s are the corresponding inclu-
sions. As before, the map ResGae

H
ı‰q;Gae

ıfae is homotopic to zaıResGe

K
ı‰q;Ge

ıfe for
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every .nC1/–cell e of BK �I with the attaching map feW Sn�1!B
G�
n and for every

H a � K . Therefore, the map dp1;q;p2
2
Q

H2H HomZ.Cn.B
H /; �n.B AutIH FH //

defined for an n–cell � of BH by

dp1;q;p2
.H /.�/D .�1/nC1.ResG�

H
/�Œ‰q;G� ıf��I �;

is a cochain in C n
H.BI�n;F /. We call dp1;q;p2

the difference cochain. As in the
standard theory, we have the following.

Proposition 4.4 ıdp1;q;p2
D p̨1

� p̨2
.

Proof It suffices to show that dp1;q;p2
.H /D p̨1

.H /� p̨2
.H / for every H 2 Iso.B/.

Let o‰ 2C nC1.BH � I; �n.B AutIH FH // be the obstruction cocycle to the extension
of ‰q;H to .BH � I/nC1 . Then ıo‰D0. On the other hand, o‰.H /.�/D Œ‰q;H ıf� �

for every .nC1/–cell � of BH � I . Therefore, as in the proof of the corresponding
result in the standard theory, we have

0D .ıo‰/.H /.� � I/

D o‰.H /.@� � I/C .�1/nC1
�
o‰.H /.� � f1g/� o‰.H /.� � f0g/

�
D Œ‰q;H ıf@��I �C .�1/nC1

�
Œ‰q;H ıf��f1g�� Œ‰q;H ıf��f0g�

�
D .�1/nC1.dp1;q;p2

.H /.@�/C p̨2
.H /.�/� p̨1

.H /.�//

D .�1/nC1.ıdp1;q;p2
.H /.�/C p̨2

.H /.�/� p̨1
.H /.�//

for any .nC1/–cell � of BH . This implies that for every H 2 G and for every
.nC 1/�cell � of BH , we have

ıdp1;q;p2
.H /.�/D . p̨1

� p̨2
/.H /.�/

and hence ıdp1;q;p2
D p̨1

� p̨2
.

Proposition 4.4 immediately implies the “if” direction of Theorem 1.1(2). To see this,
note that if the G –fibration pjBn�1

extends to a G –fibration zp over BnC1 then

ıdp;q; zpjBn
D p̨ �

0‚…„ƒ
˛ zpjBn

D p̨;

hence the cohomology class Œ p̨ � vanishes. For the “only if” direction, we need the
following observation.

Proposition 4.5 Let pW E! Bn be a G–fibration over Bn with the fiber type F D
fFH gH2H where FH is a finite H –CW–complex for every H 2H . Then for every
d 2C n

H.BI�n;F /, there is a G –fibration qW Z! .B�I/n such that dp;q; zpD d where
zp D qjBn�f1g . Moreover if E has the G –homotopy type of a finite G –CW–complex
then the space q�1.Bn � f1g/ has the G –homotopy type of a finite G –CW–complex.
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Proof For an n–cell � of B , the G� –map xp� W p�1.x�/[p�1.@�/� I !x� [ @� � I ,
where xp� jp�1.x�/D pjp�1.x�/ and xp� jp�1.@�/�I D pjp�1.@�/� id, is a G� –fibration and
it is classified by the map �p;G� ı�1 where �1W x� [ @� � I ! x� is the projection to
the first coordinate. Let E� be the pullback of xp� by the map

xf� D .f� ı�1; f� � id/W Dn
� f0g[Sn�1

� I !x� [ @� � I

where f� W .Dn;Sn�1/! .x�; �/ is the characteristic map of � .

Let X1Df.x; 1/2Dn�f1g j 1
2
� jxj � 1g, X2Df.x; 1/2Dn�f1g j 1

4
� jxj � 1

2
g, and

X3Df.x; 1/2Dn�f1g j 0� jxj � 1
4
g. Let p1W E

1
� !X1 be the induced G� –fibration

. xf�f /
�. xp� / where f W X1!Dn � f0g[Sn�1 � I is given by

f .x; 1/D

(
.2x�x=jxj; 4jxj � 3/ 3

4
� jxj � 1,

.2x�x=jxj; 0/ 1
2
� jxj � 3

4
.

Note that p1jSn�1
1
�f1g D f

�
� . xpj@� / and p1jSn�1

1=2
�f1g is the trivial G� –fibration with

the fiber F D p�1.f� .0//, where Sn�1
r is the .n�1/–sphere of radius r .

Since d.G� /.�/ 2 �n.B AutIG� FG� /, it is represented by a map

‰� W .D
n
1=4;S

n�1
1=4 /! .B AutIG� FG� ;�/:

Let u0
G�
D E AutIG� FG� �AutI

G�
FG�

F ! B AutIG� FG� . Then the restriction of the
G� –fibration ‰�� .u

0
G�
/W E2

� !X3 to Sn�1
1=4
�f1g is the same as the trivial G� –fibration

with the fiber F . By gluing these fibration with the trivial one over X2 , we obtain a
G� –fibration E1

� [F �X2[E2
� !Dn � f1g over Dn � f1g. Let zp� W zE� ! � be the

corresponding G� –fibration over � . As in the proof of Proposition 4.3, the G –map

zE D
�`

�2In
G �G�

�
zE� [i1

p�1.@�/� I
��
[i2

p�1.Bn�1/

zp

??y
Bn

is a G –fibration over Bn . Moreover, when E has the G –homotopy type of a G –CW–
complex, so does zE .

Let q WE[ .p�1.Bn�1/�I/[ zE! .B�I/n be the G –fibration defined by qjE Dp ,
qj zE D zp , and qjp�1.Bn�1/�I D pjBn�1

� id. Then dp;q; zp.G� /.�/ is represented by
the classifying map

�‰W Dn
� f0g[Sn�1

� I [X1[X2[X3! B AutG� FG� ;

Algebraic & Geometric Topology, Volume 12 (2012)



Obstructions for constructing equivariant fibrations 1329

where �‰jDn�f0g[Sn�1�I D �p;G��1
xf� ; �‰jX1

D �p;G��1
xf�f�‰jX2

D c�p;G� .f� .0//
; �‰jX3

D‰� :

Here, c�p;G� .f� .0//
is the constant map at �p;G� .f� .0//. Since �‰jDn�f0g[Sn�1�I[X1

is homotopic to the constant map c�p;G� .f� .0//
relative to Sn�1

1=2
� f1g, the classifying

map �‰ also represents d.G� /.�/. Therefore, we have d D dp;q; zp .

Now we can prove the “only if” of the main theorem as follows.

Proof of Theorem 1.1 It only remains to show that if p̨ is cohomologous to zero
then there is a G –fibration over BnC1 which extends pjBn�1

. Let p̨ D ıd for some
d 2Hom.Cn.B/; �n;F /. By Proposition 4.5, there is a G –fibration q over B�I such
that d D dp;q; zp where zpD qjBn�f1g . Since p̨ D ıd D p̨�˛ zp , we have ˛ zp D 0 and
hence zp extends to a G –fibration over BnC1 .

Remark In Theorem 1.1, one can replace the assumption that BH is simply connected
for every H 2H with the assumption that the map �1.B

H /! ŒFH ;FH �H is trivial
for every H 2H . In applications, one often has fibers which are homotopy equivalent
to spheres and one can take fiber joins to make this map trivial.
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