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On Legendrian graphs

DANIELLE O’DONNOL

ELENA PAVELESCU

We investigate Legendrian graphs in .R3; �std/ . We extend the Thurston–Bennequin
number and the rotation number to Legendrian graphs. We prove that a graph can be
Legendrian realized with all its cycles Legendrian unknots with tbD�1 and rotD 0

if and only if it does not contain K4 as a minor. We show that the pair .tb; rot/ does
not characterize a Legendrian graph up to Legendrian isotopy if the graph contains
a cut edge or a cut vertex. When we restrict to planar spatial graphs, a pair .tb; rot/
determines two Legendrian isotopy classes of the lollipop graph and a pair .tb; rot/
determines four Legendrian isotopy classes of the handcuff graph.

57M25, 57M50; 05C10

1 Introduction

We begin the systematic study of Legendrian graphs in R3 with the standard contact
structure. These are embedded graphs that are everywhere tangent to the contact
planes. Legendrian graphs have appeared naturally in several important contexts in
the study of contact manifolds. They are used in Giroux’s proof of existence of open
book decompositions compatible with a given contact structure [8]. Eliashberg and
Fraser [5] used Legendrian graphs to prove that in a tight contact structure the unknot
is determined up to Legendrian isotopy by the invariants tb and rot. Yet no study of
Legendrian graphs, until now, has been undertaken. We remedy this by establishing
the foundations for what we expect will be a very rich field.

Throughout this paper we consider finite graphs. A spatial graph is an embedding of a
graph in R3: An abstract graph is a set of vertices together with a set of edges between
them, without any specified embedding. We refer to an abstract graph as simply a
graph. In Section 3, we address the question of existence of Legendrian embeddings of
spatial graphs and we prove the following:

Theorem 1.1 Given any embedded graph G in R3 , there exists a Legendrian realiza-
tion of G in .R3; �std/.
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We then extend the classical invariants, the Thurston–Bennequin number (tb) and the
rotation number (rot), from Legendrian knots to Legendrian graphs.

Mohnke [11] proved that the Borromean rings and the Whitehead link cannot be
represented by Legendrian links of trivial unknots, that is, unknots with tb D �1

and rotD 0. The trivial unknot is the one unknot that attains the maximal Thurston–
Bennequin number of its topological class. As an application of our invariants, we
ask which graphs admit Legendrian embeddings with all cycles trivial unknots. In
Section 4, we give a full characterization of these graphs in the form of the following:

Theorem 1.2 A graph G admits a Legendrian embedding in .R3; �std/ with all its
cycles trivial unknots if and only if G does not contain K4 as a minor.

The proof of this theorem relies partly on the fact that the trivial unknot has an odd
Thurston–Bennequin number, that is, tbD �1. We prove the reverse implication in
more generality, for Lodd . This represents the set of topological knot classes with odd
maximal Thurston–Bennequin number.

Theorem 1.3 Let G be a graph that contains K4 as a minor. There does not exist a
Legendrian realization of G such that all its cycles are knots in Lodd realizing their
maximal Thurston–Bennequin number.

It is known that certain Legendrian knots and links are determined by the invariants tb
and rot: the unknot by Eliashberg and Fraser [5], the torus knots and the figure eight
knot by Etnyre and Honda [6] and the links consisting of an unknot and a cable of that
unknot by Ding and Geiges [3]. In Section 5, we ask what types of spatial graphs are
classified up to Legendrian isotopy by the pair .tb; rot/ and we prove the following
theorem.

Theorem 1.4 No graph containing at least one cycle and at least one cut edge or one
cut vertex is determined up to Legendrian isotopy by the pair .tb; rot/.

This means that even uncomplicated graphs carry more information than the set of
knots represented by their cycles.

We consider the lollipop graph and the handcuff graph. In order to have a classification
by the pair .tb; rot/, we must first narrow to a specific topological class. We investigate
planar spatial graphs; these are embedded graphs that are ambient isotopic to planar
embeddings. Not to be confused with planar graphs, which refers to an abstract graph
that has a planar embedding. For topological planar graphs, in the case of the handcuff
graph there are exactly four Legendrian realizations for each pair .tb; rot/ and in the
case of the lollipop graph there are exactly two Legendrian realizations for each pair
.tb; rot/.
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2 Background

2.1 Spatial graphs

A spatial graph is an embedding f of a graph G in R3 (or S3 ), also called a spatial
embedding or graph embedding. We remind the reader that an abstract graph, one
without an embedding, will be referred to as simply a graph. We will be considering
spatial graphs in R3 throughout this paper. Two spatial graphs f .G/ and xf .G/
are ambient isotopic if there exits an isotopy ht W R3 ! R3 such that h0 D id and
h1.f .G//D xf .G/. Similar to knots, there is a set of Reidemeister moves for spatial
graphs described by Kauffman [9].

Here we remind the reader of some basic graph theoretic terminology. We are consid-
ering the most general of graphs, so there can be multiedges (edges that go between
the same pair of vertices) and loops (edges that connect a vertex to itself). The valence
of a vertex is the number of endpoints of edges at the given vertex. Two vertices are
adjacent if there is an edge between them. The complete graph on n vertices, Kn ,
is the graph with n vertices and with exactly one edge between each pair of vertices.
A graph H is a minor of G if H can be obtained from a subgraph of G by a finite
number of edge contractions.

Since we are considering topological questions about Legendrian graphs throughout
this paper, it is important to be aware of intrinsic properties of graphs. A property is
called intrinsic if every embedding of G in R3 (or S3 ) has the property. A graph G

is minor minimal with respect to a property if G has the property but no minor of G

has the property. Such properties are characterized by their full set of minor minimal
graphs. A classical example of this is Kuratowski’s Theorem [10] where nonplanar
graphs are characterized. A graph G is nonplanar if there does not exist a planar
embedding of G . Kuratowski’s Theorem says, the complete graph on five vertices K5

and the complete bipartite graph K3;3 are the minor minimal set of graphs for the
property of nonplanarity.

A spatial graph is said to contain a knot (or link) if the knot (or link) appears as a
subgraph of G . A graph G is intrinsically knotted if every embedding of G in R3

(or S3 ) contains a nontrivial knot. A link L is split if there is an embedding of a
2–sphere F in R3 XL such that each component of R3 XF contains at least one
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component of L. A graph G is intrinsically linked if every embedding of G in R3

(or S3 ) contains a nonsplit link. The combined work of Conway and Gordon [2],
Sachs [13] and Robertson, Seymour and Thomas [12] fully characterized intrinsically
linked graphs. They showed that the Petersen family is the complete set of minor
minimal intrinsically linked graphs. Unlike the intrinsically linked graphs, the set of
intrinsically knotted graphs has not been characterized.

These three intrinsic properties: nonplanarity, being intrinsically linked, and being
intrinsically knotted are distinct and form a hierarchy of complexity. It is known
that all intrinsically knotted graphs are intrinsically linked [12]. It is obvious that all
intrinsically linked graphs are nonplanar. So we see that

fnonplanar graphsg � fintrinsically linked graphsg � fintrinsically knotted graphsg:

We return to these issues when considering Theorem 4.3 and Corollary 4.4.

2.2 Legendrian knots

Let M be an oriented 3–manifold and � a 2–plane field on M . Then � is a contact
structure on M if � D ker˛ for some 1–form ˛ on M satisfying ˛^ d˛ > 0.

On R3 , the 1–form ˛ D dz � y dx defines a contact structure called the standard
contact structure, �std . There is a diffeomorphism of R3 taking the standard contact
structure �std to the symmetric contact structure �sym given in cylindrical coordinates
by ˛1 D dz C r2 d� . In this paper, we switch between �std and �sym when conve-
nient. Darboux’s theorem says that any contact structure on a manifold M is locally
diffeomorphic to �std .

A curve 
 � .M; �/ is called Legendrian if for all p 2 
 and �p the contact plane
at p , Tp
 � �p .

Throughout the rest of this section we will work with Legendrian knots in .R3; �std/.
Here Legendrian curves, in particular knots and links, are studied via projections and a
common projection is the front projection (on xz–plane). The Legendrian condition
implies that y D dz=dx (the y–coordinate can be recovered as the slope in the xz–
plane). Therefore, front projections of Legendrian knots do not have vertical tangencies.
Figure 1 shows two front projections of Legendrian unknots and that of a Legendrian
right-handed trefoil. Since the positive y –axis points inside the page, at each crossing
the overstrand is always the one with smaller slope.

Apart from the topological knot class, there are two classical invariants of Legen-
drian knots, the Thurston–Bennequin number (tb) and the rotation number (rot). The
Thurston–Bennequin number measures the amount of twisting of the contact planes
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Figure 1. Legendrian unknots and Legendrian right-handed trefoil

along the knot and it does not depend on the chosen orientation of K . To compute
the Thurston–Bennequin number of a Legendrian knot K , consider a nonzero vector
field v transverse to � , take K0 the push-off of K in the direction of v and define
tb.K/ WD lk.K;K0/. The invariant tb.K/ measures the twisting of the contact framing
on K with respect to the Seifert framing. For a Legendrian knot K , tb.K/ can be
computed from its front projection zK as

tb.K/D writhe. zK/� 1
2

# cusps . zK/:

To define the rotation number, rot.K/, assume K is oriented and K D @†, where
†�R3 is an embedded oriented surface. When restricted to †, the contact planes form
a trivial 2–dimensional bundle and the trivialization of �j† induces a trivialization on
�jK DK �R2 . Let v be a nonzero vector field tangent to K pointing in the direction
of the orientation on K . The winding number of v about the origin with respect to this
trivialization is the rotation number of K , rot.K/. The vector fields d1 D @=@y and
d2 D�y .@=@z/� @=@x define a positively oriented trivialization for �std . Therefore,
rot.K/ is given by the signed count (C for counterclockwise and � for clockwise)
of how many times the positive tangent vector to K crosses d1 as we travel once
around K . The tangent vector aligns with one of the vectors d1 or �d1 at the points
corresponding to cusps in the front projection, zK , and one can check that

rot.K/D 1
2
.# down cusps� # up cusps/. zK/:

Given a Legendrian knot K , Legendrian knots in the same topological class as K can
be obtained by stabilizations. A stabilization means replacing a strand of K in the front
projection of K by one of the zigzags in Figure 2. The stabilization is said to be positive
if down cusps are introduced and negative if up cusps are introduced. The Legendrian
isotopy type of K changes through stabilization and so do the Thurston–Bennequin
number and rotation number: tb.S˙.K//D tb.K/� 1 and rot.S˙.K//D rot.K/˙ 1.

Eliashberg [4] proved that if K is a Legendrian knot in .R3; �std/ and † is a Seifert
surface for K , then

tb.K/Cjrot.K/j � ��.†/:
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K

SC.K/

S�.K/

Figure 2. Positive and negative stabilizations in the front projection

In particular, if K is the unknot, then tb.K/ � �1. If T is the right-handed trefoil,
then tb.T /� 1. Both inequalities are sharp and equalities are realized for the first and
third knots in Figure 1.

3 Legendrian graphs

Definition 3.1 A Legendrian graph in a contact 3–manifold .M; �/ is a graph embed-
ded in such a way that all its edges are Legendrian curves that are nontangent to each
other at the vertices. This will also be referred to as a Legendrian embedding of G or a
Legendrian realization of G , for a given graph G .

It should be noted that, for Legendrian graphs, if all edges around a vertex are oriented
outward, then no two tangent vectors at the vertex coincide in the contact plane.
However, two tangent vectors may have the same direction but different orientations
resulting in a smooth arc through the vertex. It is a result of this structure that the order
of the edges around a vertex in a contact plane is not changed up to cyclic permutation
under Legendrian isotopy.

Theorem 3.2 Given any embedded graph G in R3 there exists a Legendrian realiza-
tion of G in .R3; �std/.

Proof Denote the vertices of G by v1; v2; : : : ; vn , and fix these points. Every
point vi has an �–neighborhood Ui contactomorphic to a neighborhood of the origin
in .R3; �sym/, in cylindrical coordinates .r; �; z/. Via this diffeomorphism, the contact
plane �vi

is identified with the plane z D 0 at the origin. Near each vertex vi , we
modify G through ambient isotopy such that the edges incident with vi are segments
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which lie in the contact plane �vi
and are identified with � –constant segments in the

plane z D 0. The edges of G are thus Legendrian near each vertex.

Consider an edge e between two vertices vi and vj and let e be identified with the �i –
ray near vi and with the �j –ray near vj . Denote by pi 2Ui and pj 2Uj the two points
which are identified with .�=2; �i ; 0/ and .�=2; �j ; 0/. Denote by epi

the Legendrian
segment between vi and pi identified with the segment 0� r � �=2; � D �i ; z D 0,
and by epj

the Legendrian segment between vj and pj identified with the segment
0� r � �=2; � D �j ; z D 0. Denote by eij the arc of e between pi and pj . We can
C 0 –approximate eij by a Legendrian arc feij , in such a way that the union of arcs
epi
[feij [epj

is a C 1 –curve. We do this by choosing a C 0 –close approximation of the
front projection of eij by a regular curve eij with no vertical tangencies, with isolated
cusps and such that at each point p 2 eij the slope of eij is close to the y –coordinate of
the point on eij projecting to p . We can do this while keeping the endpoints pi and pj

fixed and in such a way that the Legendrian lift of eij to feij coincides with e near pi

and pj ; see Geiges [7, Section 3.3.1]. The curve epi
[feij [ epj

is a Legendrian curve
which is C 0 –close to e .

We approximate all other edges in the same way, and we obtain a Legendrian C 0 –
approximation of G (ie, a Legendrian graph topologically ambient isotopic to G ).

Similar to Legendrian knots, Legendrian graphs can be studied via front projections.
Two generic front projections of a Legendrian graph are related by Reidemeister moves
I, II and III together with three moves given by the mutual position of vertices and
edges; see Baader and Ishikawa [1]. See Figure 3.

The order of edges around a vertex in the front projection is not the same as the order in
the contact plane. Through Legendrian isotopy, the order of the edges around a vertex
in the contact plane does not change but the order in the front projection may change
(see move VI).

We extend the classical invariants tb and rot to Legendrian graphs. A cycle in a
Legendrian graph is a piecewise smooth Legendrian knot, a simple closed curve that
is everywhere tangent to the contact planes but has finitely many points (the vertices)
where it may not be smooth. We first define the invariants tb and rot for piecewise
smooth Legendrian knots, then we extend the definition to Legendrian graphs.

Given any piecewise smooth Legendrian knot K , there is a natural way to construct a
smooth knot from K . We define the standard smoothing of a cycle K of a Legendrian
graph to be the C 1 –curve obtained by replacing K in an �–neighborhood of each
vertex by the lift of a minimal front projection of a smooth curve, which coincides
with K outside of the �–neighborhood. The projection is minimal in the sense that no
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I

II

III

IV IV

V

VI

Figure 3. Legendrian isotopy moves for graphs: Reidemeister moves I, II
and III, a vertex passing through a cusp (IV), an edge passing under or over
a vertex (V), an edge adjacent to a vertex rotates to the other side of the
vertex (VI). Reflections of these moves that are Legendrian front projections
are also allowed.

extra stabilizations or knotting are introduced with this approximation. See Figure 4.
We denote the standard smoothing of a piecewise smooth Legendrian knot K by Kst .

Figure 4. Approximation by a C 1 –curve near a vertex. The grey edges which
are part of the cycle K are replaced by the bold arc C 1 –arc near the vertex.

The uniqueness of this construction is proved by the following theorem.

Theorem 3.3 If K1 and K2 are piecewise smooth Legendrian knots which are iso-
topic as Legendrian graphs, then their standard smoothings are isotopic Legendrian
knots.

Proof Since K1 and K2 are isotopic as Legendrian graphs, their front projections, �K1

and �K2 , are related by a finite sequence of Reidemeister moves I–VI and Legendrian
planar isotopy. Thus to show that the standard smoothings of K1 and K2 are isotopic
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we need only show that the standard smoothings of valence two subgraphs of the
Reidemeister moves IV, V and VI result in isotopic Legendrian knots.

For Reidemeister move IV, there are two different possibilities of valence two subgraphs
up to reflection and planar isotopy to be considered; see Figure 5(a). After smoothing,
the move either shows no change or a planar isotopy.

For Reidemeister move V, there are two different possibilities of valence two subgraphs
up to reflection and planar isotopy to be considered; see Figure 5(b). After smoothing,
the move either shows a planar isotopy or a difference of a Reidemeister move II.

For Reidemeister move VI, there are three different possibilities of valence two sub-
graphs up to reflection and planar isotopy to be considered; see Figure 5(c). After
smoothing, the move either shows no change, a planar isotopy, or a difference of a
Reidemeister move I.

(c)

(b)

(a)
IV IV IV IV

V V

VI VI VI

Figure 5. Subdiagrams of Legendrian graphs moves

Of course, for any piecewise smooth Legendrian knot there are isotopic Legendrian
knots which can be obtained by a small isotopy near each vertex moving the edges
so that they have parallel tangents at the vertex. In light of Theorem 3.3, we have the
following:

Corollary 3.4 The isotopy class of a piecewise smooth Legendrian knot contains
Legendrian embeddings from exactly one isotopy class of a Legendrian knot, the knot
obtained by its standard smoothing.

This parallels the relationship between knots in the piecewise linear category and knots
in the smooth category.
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Given a piecewise smooth Legendrian knot K and its standard smoothing Kst ,one
could take the definition of the classical invariants to be tb.K/D tb.Kst/ and rot.K/D
rot.Kst/. However, since we will be using the said definitions to define invariants for
Legendrian graphs, we would like to define them in such a way that smoothings are not
needed. It should be noted that any other definition of tb and rot that coincides with
the invariants for smooth Legendrian knots will be equivalent to the above definition,
as a result of Theorem 3.3.

3.1 The Thurston–Bennequin number

Let K represent a piecewise smooth Legendrian knot and v a vector field along K

which is transverse to the contact planes. Let K0 be the push-off of K in the direction
of v and let tb.K/ WD lk.K;K0/. Since the change in direction at the singular points
occurs in the contact plane, a transverse push-off is still well-defined. This definition
coincides with that for smooth knots.

Definition 3.5 For a Legendrian graph G , fix an order on the cycles of G and define
the Thurston–Bennequin number of G , denoted by tb.G/, to be the ordered list of the
Thurston–Bennequin numbers of the cycles of G . If G has no cycles, define tb.G/ to
be the empty list.

3.2 The rotation number

We define the rotation number of a piecewise smooth Legendrian knot K � .R3; �std/

as follows: Consider an embedded oriented surface † � R3 with @† D K and
endow K with the orientation induced by that on †. Consider the trivialization
of �std given by the two vectors d1 D @=@y and d2 D�y.@=@z/� @=@x . Denote by
v1; v2; : : : ; vs; vsC1D v1 the vertices on K , in cyclic order as given by the orientation.
Denote by ei for i D 1; : : : ; s the edge of K between vi and viC1 , and denote by Ti

for i D 1; : : : ; s the unit vector field tangent to ei pointing in the direction of the
orientation on K . We follow Ti in the trivialization given by d1 and d2 and count with
sign the number of times Ti passes d1 . At each vertex vi , i D 2; : : : ; sC 1,if Ti�1

and Ti do not coincide, we complete the rotation counterclockwise if fTi�1;Tig is a
positively oriented basis for �vi

and clockwise if fTi�1;Tig is a negatively oriented
basis for �vi

. This is equivalent to completing by a rotation from Ti�1 towards Ti in
the direction of the shortest angle between them. Note that since one edge is oriented
towards the vertex and one edge is oriented away from the vertex, Ti�1 and Ti cannot
be opposite to each other.

Algebraic & Geometric Topology, Volume 12 (2012)



On Legendrian graphs 1283

Denote by p.K/ the number of times d1 is passed in the counterclockwise direction
and by n.K/ the number of times d1 is passed in the clockwise direction as K is
traced once. We define the rotation number of K by

rot.K/ WD p.K/� n.K/:

Let L.K/ denote the Legendrian isotopy class of K . The above discussion gives a
recipe of how to compute the rotation number for a particular embedding of a piecewise
smooth Legendrian knot. However, when K changes through Legendrian isotopy, the
tangent vector at K changes continuously and the edges cannot pass over one another
at the vertices. Thus we get a continuous map rotW L.K/!Z. The rotation number is
therefore a Legendrian isotopy invariant for piecewise smooth Legendrian knots. If K

is a smooth Legendrian knot then we recover the rotation number for K .

Definition 3.6 For a Legendrian graph G , fix an order on the cycles of G with
orientation and define the rotation number of G , denoted by rot.G/, to be the ordered
list of the rotation numbers of the cycles of G . If G has no cycles, define rot.G/ to be
the empty list.

4 Nonrealization of maximal tb

A trivial unknot is one with tbD�1 and rotD0 (like the first unknot shown in Figure 1).
The trivial unknot attains the maximal possible Thurston–Bennequin number for an
unknot. In [11], Mohnke used the Kauffman polynomial to prove that the Borromean
rings and the Whitehead link cannot be realized as Legendrian links of trivial unknots.

In this section we determine which graphs can be Legendrian realized in such a way
that all cycles are trivial unknots. We will see that there are many graphs, even planar
graphs, with no such Legendrian realization. We give a full characterization of these
graphs. We also present a more general result about which graphs can be realized with
all their cycles having maximal tb for a class of knots. The following two lemmas will
be useful.

Lemma 4.1 The front projections of any two Legendrian realizations of a graph in
.R3; �std/ are related by a finite sequence of Legendrian isotopies and changes of the
following two types:
� replacement of one edge with a different Legendrian arc between the same

vertices (changing the number of stabilizations in the edge and/or the number of
crossings of the edge with itself),

� replacement of two edges (changing the number of crossings between the two
edges).
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Proof If the two Legendrian realizations are Legendrian isotopic, then the two front
projections differ by Legendrian isotopy only. In this case one projection can be taken
to the other projection by planar isotopies and Reidemeister moves I–VI. If not, the two
front projections may differ in number of edge stabilizations or number of crossings.
The stabilizations occur on a single edge while the crossings may occur on a single
edge or between two edges. In this case, when the realizations are not Legendrian
isotopic, to take one front projection to the other replacement of one edge or a pair of
edges will be needed in addition to planar isotopy and Reidemeister moves I–VI.

Lemma 4.2 For any Legendrian embedding L of K4 in .R3; �std/,X

2�L

tb.
 /� 0 mod 2;

where �L is the set of cycles in L.

Proof Denote by v1 , v2 , v3 and v4 the vertices of an abstract K4 . There are seven
cycles in K4 : four 3–cycles (v1v2v3; v1v2v4; v1v3v4; v2v3v4 ) and three 4–cycles
.v1v2v3v4; v1v2v4v3; v1v3v2v4 ). Each edge appears in four different cycles and each
pair of edges appears in two different cycles. Consider the embedding K of K4 shown
in Figure 6.

v1

v2 v3

v4

Figure 6. A Legendrian embedding of K4

For this embedding, there are six cycles with tbD�1 and one cycle (v1v2v4v3 ) with
tbD�2, thus

S WD
X

2�K

tb.
 /D�8:

Take an arbitrary Legendrian embedding of K4 , call it L. By Lemma 4.1, the front
projection for this embedding differs from K by a finite sequence of Legendrian
isotopies and changes of the form described above in one edge or two edges. Since tb
is an invariant, S does not change under isotopy.

� If a change in a single edge is made, the tb for all four cycles containing this
edge is modified by the same quantity.

� If a change in two edges is made, the tb for both cycles containing this pair of
edges is modified by the same quantity.
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Thus, the parity of the sum of the tb’s over all cycles remains unchanged throughout
the process and X


2�L

tb.
 /� 0 mod 2:

We define Lodd to be the set of topological knot classes with odd maximal Thurston–
Bennequin number. We have the following theorem:

Theorem 4.3 Let G be a graph that contains K4 as a minor. Then there does not exist
a Legendrian realization of G such that all its cycles are knots in Lodd realizing their
maximal Thurston–Bennequin number.

Proof It suffices to prove the theorem for G DK4 , since any graph that contains K4

as a minor contains a subdivision of K4 (see Definition 4.6). Assume all seven
cycles of K4 can be realized with odd maximal Thurston–Bennequin number, 2tnC1,
n D 1; : : : ; 7. Then

P7
nD1.2tn C 1/ 6� 0 mod 2, contradicting the conclusion of

Lemma 4.2.

Since the unknot has odd maximal tbD�1 we obtain the following corollary. Recall
that the trivial unknot is the unknot with maximal Thurston–Bennequin number.

Corollary 4.4 Let G be a graph that contains K4 as a minor. Then there does not
exist a Legendrian realization of G such that all its cycles are trivial unknots.

When we consider a graph G that contains K4 as a minor and an arbitrary Legendrian
embedding f .G/,Corollary 4.4 guarantees either f .G/ contains a nontrivial knot or
that all cycles of f .G/ are unknots but they do not all have maximal tb. For any
intrinsically knotted graph (see Section 2.1) Corollary 4.4 is not surprising, since
every embedding of an intrinsically knotted graph contains a nontrivial knot. However,
those graphs that contain K4 as a minor include some planar graphs and all nonplanar
graphs. Corollary 4.4 is most impressive for those planar graphs but also adds to our
understanding of all those graphs which are nonplanar and not intrinsically knotted.

Here we outline the implications of Theorem 4.3. Given an arbitrary Legendrian
embedding f .G/ of a graph G that contains K4 as a minor, Theorem 4.3 implies
that either f .G/ does not contain knots exclusively from Lodd or f .G/ contains only
knots from Lodd and they do not all attain their maximal tb. So Theorem 4.3 gives
more information about intrinsically knotted graphs. One example of an intrinsically
knotted graph is K7 ; see Conway and Gordon [2]. There are embeddings of K7 with
unknots as all but one cycle which is a trefoil. Both the unknot and the right-handed
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trefoil have odd maximal Thurston–Bennequin number, so Theorem 4.3 implies that
for such a Legendrian embedding not all cycles attain their maximal tb. There are
many other knots whose maximal Thurston–Bennequin number is odd. Additional
examples are the figure eight knot, the 61 knot and its mirror image and the 62 knot
and its mirror image.

Remark 4.5 There is a more general version of Theorem 4.3 that is an immediate
consequence of the proof, though it is cumbersome to state. Let G be a graph that
contains K4 as a minor. Let S be a subdivision of K4 contained in G . Then there
does not exist a Legendrian realization of G such that S contains precisely an odd
number of cycles that are knots in Lodd realizing their maximal Thurston–Bennequin
number.

If we focus on embeddings with only unknots as in Corollary 4.4, the converse also
holds. It is worth noting, since the set of intrinsically knotted graphs is a subset of
nonplanar graphs and K4 is planar, that all of those graphs that do not contain K4

as a minor are also planar. Thus there is no obvious obstruction to the converse of
Corollary 4.4. Before proving the converse we introduce some needed definitions and
observations.

Definition 4.6 (1) A path between two vertices v1 and v2 of a graph G is a finite
sequence of at least two edges starting at v1 and ending at v2 , with no repetition of
vertices.

(2) A vertex of the graph G is said to be a cut vertex if by deleting the vertex (and all
incident edges) the resulting graph has more connected components than G .

(3) An edge of G is said to be a cut edge if by deleting the edge the resulting graph
has more connected components than G .

(4) A subdivision of the graph G is a graph obtained by replacing a finite number
of edges of G with paths (one can think of this as adding a finite number of vertices
along edges of G ).

Remark 4.7 Let G be a graph which does not contain K4 as a minor. Let v1 , v2 ,
v3 and v4 be four vertices in a cycle of G , appearing in this order. For any such
formation, there are not two edges or paths, other than the ones already contained in
the cycle, connecting v1 and v3 and connecting v2 and v4 . Otherwise v1 , v2 , v3

and v4 represent the vertices of a (subdivision of) K4 . See Figure 7(a).
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Remark 4.8 Let G be a graph which does not contain K4 as a minor. Let v1 , v2

and v3 be three vertices in a cycle of G . For any such formation, there is not an
additional vertex v with distinct edges (or paths that only intersect in v ) connecting v
to the vertices v1 , v2 and v3 . Otherwise v1 , v2 , v3 and v represent the vertices of a
(subdivision of) K4 . See Figure 7(b).

(a) (b)

v1v2

v3 v4

v

v1

v2 v3

Figure 7. Embeddings of K4 as described in Remarks 4.7 and 4.8

Theorem 4.9 If G is a graph that does not contain K4 as a minor, then it can be
Legendrian realized in .R3; �std/ in such a way that all its cycles are trivial unknots.

Proof We need only prove the theorem for G connected, with no cut edges and no
cut vertices. In all other cases such components (connected components with no cut
edges nor cut vertices) of G can be realized in the same way and cut edges can be
realized in any fashion (as they do not appear in any cycle).

In what follows, all edges of G are realized as nonstabilized arcs. Let C be one of
the cycles of G and s the number of vertices of C . Realize C in such a way that
its front projection consists of s � 1 horizontal edges and one edge on top of these.
Label the vertices on C with v1 , v2 ,. . . , vs , in this order, from left to right. Realize
all the other edges between vertices of C on top of the horizontal edges of C , in a
nested fashion as shown in Figure 8(a). By Remark 4.7, we can realize these edges
without any crossings. Otherwise, the four endpoints of two crossing edges represent
the vertices of a (subdivision of) K4 .

Next, for each pair of vertices .vi ; vj /, i < j , of C for which there exists at least
one path between vi and vj not containing any additional vertices of C , realize one
of these paths under the horizontal line of C . Call this path P1

ij . For each t > 1, if
there is another path between vi and vj not containing additional vertices of C or
P1

ij ; : : : ;P
t�1
ij , realize this path under P t�1

ij . See Figure 8(b). Let this set of paths
between vi and vj be denoted by

Pij WD fP
1
ij ;P

2
ij ; : : : ;P

t
ij ; : : : g:

This is a finite set.
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By construction, all paths in Pij are nested, without any crossings, they have the
vertices vi and vj in common and are disjoint otherwise. By Remark 4.7, we can
realize all the paths appearing thus far without any crossings.

Additionally, for any vertices vi , vj , vk and vl of C , with .vi ; vj / ¤ .vk ; vl/, no
element of Pij has any vertices (distinct from vi , vj , vk and vl ) or edges in common
with any element of Pkl . We prove the observation by contradiction. There are four
different cases of .vi ; vj /¤ .vk ; vl/, that is, (1) i D k and j ¤ l , (2) i ¤ k and j D l ,
(3) j D k and (4) i; j ; k and l are all distinct. Suppose a path P in Pij and a path Q

in Pkl have at least one vertex other than vi , vj , vk and vl in common. Let V be the
nonempty set of vertices that the paths P and Q have in common, distinct from vi ,
vj , vk and vl . For the subcases (1), (3) and (4), let w 2 V be the vertex in this set
closest to vl on the path Q. Then the part of the path Q from w to vl is distinct from
the path P . So this path between w and vl together with the two parts of P going
from vi to w and from w to vj are all paths joining w to the cycle C which only
intersect in the endpoint w . Thus by Remark 4.8, we have a contradiction. Similarly,
for case (2), let u 2 V be the vertex in this set closest to vi on the path P . Then the
part of the path P from u to vi together with the two parts of Q going from vk to u

and from u to vl are all paths joining u to the cycle C which only intersect in the
endpoint u. Thus by Remark 4.8 we have a contradiction.

Further, we treat each of the elements in Pij , for all i; j , 1� i < j � s , as if it were
the path of horizontal edges in C . We realize the edges with vertices on each such
path above the path and the paths with endpoints on each such path below the path.
We continue to realize each new edge on top of the path its vertices lie on and each
new path below the path its vertices lie on.

(a) (b)

C C

v1 v2

vi vj

vs�1 vs

Figure 8. First steps in Legendrian realizing G with all cycles unknots of
maximal tb. The cycle C is blue.

Claim (1) This is a Legendrian embedding of G (ie all edges and vertices of G are
realized).

(2) All cycles in this embedding have maximal tbD�1.
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Proof of (1) The above construction is a prescription for a front projection, thus as
long as all vertices and edges of G are realized we have a Legendrian embedding. The
two cases of assuming a vertex was not realized and assuming an edge was not realized
will be treated concurrently. If there exists an edge of G which has not been realized,
then there is an edge or a path in G between two realized vertices that has not been
realized. If there exists a vertex of G which has not been realized, then, since G was
assumed without cut edges and connected, there is a path in G between two realized
vertices that has not been realized. We show that the existence of such an edge or path
leads to a contradiction.

Let v and w represent two realized vertices of G such that there is a nonrealized edge
or path (containing exclusively edges that have not been realized) between v and w .
The vertices v and w cannot both be in C , since all paths and edges between these
vertices have been realized. For the same reason, v and w cannot both be vertices on
the same element of a Pij or on the same path realized at a later stage.

From the vertex w we will form a cycle Cw in the realized projection. The cycle Cw
consists of the path to the right of w formed by choosing the edge that is to the right
and upper most at each vertex (this path will connect w with vs ), the path to the left
of w formed by taking the edge that is to the left and upper most at each vertex (this
path will connect w with v1 ) and the edge connecting v1 and vs . The vertex v is not
on the cycle Cw , or we would have realized a path between v and w . Now let Px be
the path in the realized projection formed by starting at v and choosing the edge that is
to the right and upper most at each vertex until the vertex is a vertex of Cw . Call this
vertex x . Let Py be the path in the realized projection formed by starting at v choosing
the edge that is to the left and upper most at each vertex until the vertex is a vertex
of Cw . Call this vertex y . The vertices w , x and y are all on the cycle Cw , the (edges
or) paths Px , Py and the unrealized edge or path from v to w are all disjoint away
from v , thus by Remark 4.8, this cannot occur. Therefore there is no such unrealized
edge or path.

Proof of (2) Since the construction does not contain any crossings, we need only show
that no cycle exhibits a stabilization. Assume there is a cycle in the embedding which
represents a stabilized unknot. Since all edges were realized as nonstabilized arcs in the
first place, at each cusp of this unknot there is a vertex of G . In the stabilized unknot
there are at least two left cusps and two right cusps. We denote the vertices at the left
cusps by w1 and w3 and the vertices at the right cusps by w2 and w4 , with the four
vertices appearing in order w1 , w2 , w3 , w4 in the cycle. Without loss of generality
we may assume that either w2 , w3 and w4 are at consecutive right-left-right cusps
and w1 is on the left of w3 , as in Figure 9(a), or w1 , w4 and w3 are at consecutive
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left-right-left cusps and w2 is on the right of w4 , as in Figure 9(b). We show that a
K4 necessarily exists.

w1

w2

w3

w4

w1

w2

w3

w4

(a) (b)

Figure 9. Cycle representing a stabilized unknot

We prove the case pictured in Figure 9(a). The other case is similar. We consider a
path P2 which starts at w2 and always follows along an edge to the right at each vertex.
We also consider a path P4 which starts at w4 and always follows along an edge to
the right at each vertex. Denote the first vertex where P2 and P4 intersect by u. The
vertex u may be w2 , w4 , vs or a point in between. The path which follows P2 from
w2 to u and then P4 from u to w4 is a path between w2 and w4 which is disjoint
from both w1 and w3 , since both w1 and w3 lie on the left of both w2 and w4 . This
is a third path between w2 and w4 , in addition to the two included in the stabilized
cycle. Now consider a path P3 which starts at w3 and always follows along an edge
to the left at each vertex. The path P3 will eventually reach v1 and will intersect the
stabilized cycle in a vertex u0 situated on the arc of the cycle which goes between w2

and w4 and does not contain w3 . The vertices u0 , w2 , w3 and w4 are the vertices of
a (subdivision of) K4 .

Remark 4.10 Recall that a graph G is minor minimal with respect to a property if
G has the property but no minor of G has the property. Corollary 4.4 together with
Theorem 4.9 show that K4 is minor minimal with respect to the property of not having
a Legendrian embedding with all cycles trivial unknots. Not only that, but Theorem 4.9
shows that K4 is the only graph in this minor minimal set, thus characterizing this
property.

5 Legendrian graphs classified by classical invariants

It is known that certain types of Legendrian knots and links are determined by the
classical invariants tb and rot in .R3; �std/. Eliashberg and Fraser [5] showed that the
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Legendrian unknot is determined by tb and rot. Etnyre and Honda [6] showed the
same holds for torus knots and the figure eight knot. Ding and Geiges [3] showed that
links consisting of an unknot and a cable of that unknot are classified by their oriented
link type and the classical invariants in .R3; �std/.

In this section we investigate what types of spatial graphs are classified up to Legendrian
isotopy by the pair .tb; rot/. It is useful to recall that within each Legendrian isotopy
class the cyclic order of the edges around a vertex in the contact plane is not changed.
For now we consider graphs that have cut edges or cut vertices.

Remark 5.1 Let G be a graph containing a vertex v of valence at least three which
is incident to at least one cut edge, e . For different Legendrian realizations of G , the
order of edges at vertex v can differ while the classical invariants for all cycles are the
same. This is because the cut edge e does not appear in any cycle. See Figure 10(a).
That is, a Legendrian embedding of G is not determined by the pair .tb; rot/.

H

HH

H

K

K

(a) (b)

e

v

v v

v

Figure 10. (a) Two realizations of a graph with a valence three vertex v
adjacent to one cut edge e where the order of edges around vertex v is not
the same above as below. (b) Two realizations of a graph with a valence four
cut vertex v where the order of edges around vertex v is not the same above
as below.

Remark 5.2 Let G be a graph containing a cut vertex of valence at least four. For
different Legendrian realizations of G , the order of edges at this vertex can differ while
the classical invariants for all cycles are the same. An example is shown in Figure 10(b).
Note that there are no cycles containing edges from both K and H , thus tb and rot
are the same for the two embeddings. That is, a Legendrian embedding of G is not
determined by the pair .tb; rot/.
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This means that even uncomplicated graphs carry more information as a whole than
the set of knots represented by their cycles. The above remarks can be summarized
into the following:

Theorem 5.3 No graph containing at least one cycle and at least one cut edge or one
cut vertex is determined up to Legendrian isotopy by the pair .tb; rot/.

Proof Suppose G has at least one cut edge or vertex and is determined by the
pair .tb; rot/. Suppose G has a cut vertex v . By Remark 5.2, the vertex v must have
valence 3 or less. If v is a cut vertex with valence 3, then it must be adjacent to a cut
edge and Remark 5.1 implies that G is not determined by the pair (tb, rot). Therefore,
v must have valence 2 or less. However, to be a cut vertex, v must have at least valence
two. For a valence 2 cut vertex both incident edges are cut edges, so by Remark 5.1
both vertices defining these edges must have valence 2 or less. Therefore, the only
such graph with a cut vertex is a path graph. So G has no cycles.

Suppose G has a cut edge e with no cut vertices. By Remark 5.1, the valences of the
two vertices must be 2 or less. Since the two vertices cannot be cut vertices, they are
of valence one. Thus the graph G is a single edge. Therefore, there does not exist a
graph containing at least one cycle and at least one cut edge or one cut vertex that is
determined by the pair (tb, rot).

Next, we focus on Legendrian embeddings of the lollipop graph and the handcuff
graph. See Figure 11. Both these graphs have one cut edge. For any topological class
of these graphs, the Legendrian class cannot be determined by the pair .tb; rot/, by
Theorem 5.3.

(a) (b)

Figure 11. (a) The lollipop graph (b) The handcuff graph

Definition 5.4 A planar spatial graph is a spatial graph which is ambient isotopic
to an embedding in the plane. A Legendrian planar graph (or a planar Legendrian
realization) is a Legendrian realization of a planar spatial graph.

We show that, if we restrict to planar spatial graphs, a pair .tb; rot/ determines exactly
two Legendrian isotopy classes of the lollipop graph and a pair .tb; rot/ determines ex-
actly four Legendrian isotopy classes of the handcuff graph. We do this by constructing
a Legendrian isotopy between an arbitrary embedding and a standard form embedding.
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Eliashberg and Fraser [5] showed that a Legendrian unknot K is Legendrian isotopic to
a unique unknot in standard form. A Legendrian unknot is in standard form if it is the
lift of a front projection as in Figure 12(a) or (b). The front projection in Figure 12(a)
represents two distinct Legendrian classes, depending on the chosen orientation. For
the front projection shown in Figure 12(b) both orientations give the same Legendrian
class. Fix the orientation to be the one which makes the left cusp a down cusp. The
number of cusps and crossings of the unknot in standard form are uniquely determined
by tb.K/ and rot.K/ as follows:

(1) If rot.K/¤ 0 (Figure 12(a)), then

tb.K/D�.2t C 1C s/;

rot.K/D
�

s if the leftmost cusp is a down cusp;
�s if the leftmost cusp is an up cusp:

(2) If rot.K/D 0 (Figure 12(b)), then

tb.K/D�.2t C 1/:

(a) (b)

2t C 1

s

2t

Figure 12. Legendrian unknot in standard form: (a) rot.K/ > 0 (reverse
orientation gives rot.K/ < 0) (b) rot.K/D 0 .

We define the standard form embeddings for Legendrian graphs below.

Definition 5.5 (1) A planar Legendrian realization of the lollipop graph is in standard
form if it is the lift of a front projection consisting of one front projection of an unknot U

in standard form as in Figure 12 and a nonstabilized arc at the lower right cusp of the
unknot. The arc can sit in one of two ways with respect to the other edge segments
coming together at the vertex. The planar Legendrian realization of the lollipop graph
is in standard form A or B if the cut edge sits as in Figure 13(a) or (b), respectively.

(2) A planar Legendrian realization of the handcuff graph is in standard form if it is
the lift of a front projection consisting of two noncrossing front projections of unknots
U1 and U2 each in standard form as in Figure 12, one on the left and one on the right,
and a nonstabilized arc between the lower right cusp of the unknot on the left and the

Algebraic & Geometric Topology, Volume 12 (2012)



1294 Danielle O’Donnol and Elena Pavelescu

(a) (b)

U U U

Figure 13. Planar Legendrian realization of the lollipop graph in (a) standard
form A , (b) standard form B

leftmost cusp of the unknot on the right. The arc can sit in one of two ways with respect
to the other edge segments coming together at each vertex. The planar Legendrian
realization of the handcuff graph is in standard form AA, AB, BA or BB if the cut edge
sits as in Figure 14(a), (b), (c) or (d), respectively.

(a) (b)

(c) (d)

U1 U2 U1 U2

U1 U2 U1 U2

Figure 14. Planar Legendrian realization of the handcuff graph in (a) standard
form AA , (b) standard form AB , (c) standard form BA , (d) standard
form BB

Figure 15 shows an example of a handcuff graph in standard form AA with both
unknotted components with rot¤ 0.

2t1C 1
2t2C 1

s1
s2

Figure 15. Legendrian handcuff graph in standard form AA with both un-
knotted components with rot> 0

Lemma 5.6 Let G be a Legendrian graph consisting of a Legendrian knot and a cut
edge connected to it. Through Legendrian isotopy the cut edge can be moved to be
connected at any point of the knot.
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Proof We work with a front projection of the Legendrian graph G . Away from the
cusps the cut edge can be moved by planar isotopy. A cut edge can be passed through a
right cusp as in Figure 16 (below or above, depending on how it sits with respect to the
cusp). Passing from the lower strand to the upper strand of a right cusp can be obtained
by vertical reflection of the two illustrated cases. Diagrams for passing through a left
cusp can obtained by horizontal reflection of the diagrams for the right cusp.

VI IV IV retract

IV IV VI retract IV

Figure 16. Sliding the cut edge past a right cusp

Theorem 5.7 A pair .tb; rot/ determines exactly two Legendrian isotopy classes for a
planar Legendrian realization of the lollipop graph.

Proof We construct a Legendrian isotopy between L and one of the two standard
forms. We fix the notation: v1 is the valence three vertex of L, v2 is the valence one
vertex of L, U is the loop edge of L and e is the cut edge of L. We work with a
front projection of L.

Step 1 (Remove the crossings of the cut edge with itself and with U .) Starting
from v2 towards v1 , retract the edge e in a neighborhood of v1 and remove all its self
crossings in the front projection and all crossings between e and U .

Step 2 (Put U in standard form.) Change L by Legendrian isotopy in a neighborhood
of v1 such that the unknot U is everywhere smooth. Eliashberg and Fraser [5]
proved the existence a unique unknot in standard form which is Legendrian isotopic
to U . Take U to standard form through Legendrian isotopy while keeping v2 and its
neighborhood containing e away from the isotopy. We can do this by sliding the cut
edge when necessary, as in Lemma 5.6.

Step 3 (Slide the cut edge to the lower right cusp of U .) Using Lemma 5.6, slide
the cut edge so that it connects to the rest of the graph at the lower right cusp of U .
Starting from v2 towards v1 , retract the edge e in a neighborhood of v1 and remove
all self crossings in the front projection and all crossings between e and U .
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Now the graph is in one of the two standard forms. Since a standard form of the unknot
is uniquely determined by tb and rot, each of the standard forms of the lollipop graph
are also determined by tb and rot. Thus, we have two Legendrian isotopy classes for
the lollipop graph for each pair .tb; rot/.

Theorem 5.8 A pair .tb; rot/ determines exactly four Legendrian isotopy classes for
a planar Legendrian realization of the handcuff graph.

Proof We construct a Legendrian isotopy between L and one of the four standard
forms. We fix the notation: v1 and v2 are the two vertices of L, U1 and U2 are the
two loop edges of L and e is the cut edge of L. We work with a front projection of L.

Step 1 (Make U1 and U2 disjoint in the front projection.) Since the graph L is
topologically equivalent to the embedding in Figure 11(b), the two unknots U1 and U2

bound disks D1 and D2 which are disjoint from each other and disjoint from the rest
of the graph. Shrink the disks D1 and D2 in small enough neighborhoods of v1 and v2

such that there exists no crossing between U1 and U2 in the front projection.

Step 2 (Remove crossings of the cut edge with itself and with U1 and U2 .) There
exists an embedded 2–sphere S1 such that U1 is contained in the 3–ball B1 bounded

Flip again

IV IV VI

II II II

IIs II

2t C 1

2t 2t

2t � 1

2t

2t C 1
I

flip again

Figure 17. Flip of U2 undoes the stabilization in the cut edge for the case
when the cut edge connects outside the cusp at v2 .
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by S1 and S1 intersects the cut edge at one point, w1 . Shrink B1 in a small neigh-
borhood of w1 . Starting from w1 , retract the cut edge while carrying along the
neighborhood of w1 and undo its knotting outside of B1 as well as all crossings
with U2 .

There exists an embedded 2–sphere S2 disjoint from the sphere S1 such that U2 lies
in the 3–ball B2 bounded by S2 and S2 intersects the cut edge at one point, w2 .
Shrink B2 in a small neighborhood of w2 . This move may introduce a crossing
between e and U2 in the front projection. Starting from w2 , retract the cut edge while
carrying along the neighborhood of w2 and undo its knotting outside of B2 as well as
all crossings between the cut edge and U1 in the front projection.

Step 3 (Put U1 and U2 in standard form, slide one end of the cut edge to the lower
right cusp of U1 and slide the other end to the left cusp of U2 .) Take U1 into a
small neighborhood of v1 . Modify U2 through a Legendrian isotopy which takes it to
the unknot in standard form having the assigned tb and rot. By sliding the cut edge
repeatedly as in Lemma 5.6 we can keep v1 and U1 away for this isotopy. Once U2 is
in standard form, using Lemma 5.6, slide the cut edge so that it connects to U2 at the
left cusp of U2 . The cut edge can sit in two ways with respect to the other two edge
segments at this cusp.

Leaving U2 in standard form and leaving e connected to U2 at the left cusp, move U1

and e through Legendrian isotopy so that the front projection of U1 lies outside and to
the left of the bounded region in the plane determined by the front projection of U2 .

Modify U1 through a Legendrian isotopy which takes it to the unknot in standard form
having the assigned tb and rot. By sliding the cut edge repeatedly as in Lemma 5.6
without contracting it we leave U2 unchanged. Once U1 is in standard form, using
Lemma 5.6 slide the cut edge without contracting it so that it connects to U1 at the
lower right cusp of U1 .

Step 4 (Undo stabilizations of the cut edge and reach one of the standard forms.)
The cut edge can connect in two ways at v2 relative to the other two edge segments:
outside the cusp or inside the cusp.

(1) If the cut edge connects outside the cusp, then the stabilizations of the cut edge
can be removed by flipping U2 horizontally, as in Figure 17. The other type of
stabilization is solved by reflecting the diagrams. After undoing the additional
stabilizations the graph is in one of the standard forms AA or BA, depending
on how the cut edge sits at v1 relative to the other two edge segments.
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(2) If the cut edge connects inside the cusp, then the stabilizations of the cut edge
can be removed by flipping U2 horizontally, as in Figure 18. The other type of
stabilization is solved by reflecting the diagrams. After undoing the additional
stabilizations the graph is in one of the standard forms AB or BB , depending
on how the cut edge sits at v1 relative to the other two edge segments.

IV VI VI

II IV IV

II II II

I, VI, IV

2t C 1

2t

2t � 1

2t C 1

Figure 18. Flip of U2 undoes the stabilization in the cut edge for the case
when the cut edge connects inside the cusp at v2 .

Remark 5.9 If we replace the two unknotted cycles by cycles which are knots whose
Legendrian type is determined by tb and rot, the theorem still holds.
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