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Some bounds for the knot Floer �–invariant of satellite knots

LAWRENCE P ROBERTS

This paper uses four dimensional handlebody theory to compute upper and lower
bounds for the Heegaard Floer � –invariant of almost all satellite knots in terms of the
� –invariants of the pattern and the companion.

57M27; 57R58

1 Introduction

An oriented knot K � S3 induces a filtration, Fm.K/, on the Heegaard Floer chain
complex cCF.S3/ (see Oszváth and Szabó [8]), whose homology, over the rationals,
is cHF.S3/ŠQ0 . For each m there is an inclusion ImW Fm.K/ ,! cCF.S3/ of chain
complexes which induces a map Im;�W H�.Fm.K//! cHF.S3/.

Definition 1.1 Oszváth–Szabó [7] Let K � S3 be a knot. Define

�.K/Dmin
˚

m 2 Z
ˇ̌
Im;� is nontrivial

	
:

P Ozsváth and Z Szabó [7] proved that

(1) �.K/ is an invariant of the concordance class of K ,

(2) �.K/ does not depend on the orientation of K ,

(3) j�.K/j � g4.K/,

(4) �. xK/D��.K/,

(5) �.K # J /D �.K/C �.J /,

(6) �.Tp;q/D .p� 1/.q� 1/=2 where p; q > 0 and Tp;q is the .p; q/–torus knot.

In this paper, we use four dimensional surgery techniques to compute the � –invariant of
satellite knots up to a bounded error. This approach is provided by [7, Proposition 3.1],
where properties of surgeries on a knot are shown to compute the � –invariant up to
a bounded error. The resulting bounds on � for a satellite are not particularly strong
(they recover the connect sum formula for � only up to an error of ˙2, for example),
but are quite general. Furthermore, the technique could be useful in other situations,
such as string link infections. The simplest form of these inequalities is:
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Theorem 1.2 Let Sr .C;P / be the r –twisted satellite knot formed from a compan-
ion C in S3 and a pattern P in S1 �D2 (with framing fixed below). Let l be the
intersection number of P with D2 , with P oriented so that l > 0. Let nC be the
minimal number of positive intersections contributing to l . Defining

T .Sr .C;P //D

�
�.P /C l �.C /C

l.l � 1/

2
r

�
;

then
�nC.P /� l � �.Sr .C;P //�T .Sr .C;P //� nC.P /C l

whereas, if l D 0,

�nC.P /� 1� �.Sr .C;P //�T .Sr .C;P //� nC.P /C 1:

Note that P will be embedded in S1 �D2 , with a prescribed framing of S1 �D2 ,
making the r –twisted satellite well-defined.

There are stronger inequalities for certain restricted ranges of r .

Theorem 1.3 In the situation of Theorem 1.2, for r ¤ 0, we have for l > 0

�.1C l/� �.Sr .C;P //�T .Sr .C;P //� nC.P /C l when r < 2�.C /� 1;

�nC.P /� l � �.Sr .C;P //�T .Sr .C;P //� 1C l when r > 2�.C /C 1;

but for l D 0,

�1� �.Sr .C;P //�T .Sr .C;P //� nC.P /C 1 when r < 2�.C /� 1;

�nC.P /� 1� �.Sr .C;P //�T .Sr .C;P //� 1 when r > 2�.C /C 1:

Previous results on �.K/ for satellites revolve around two cases: Whitehead doubles
and cables. For cables, M Hedden proved the following estimates, based on an analysis
of specific Heegaard diagrams.

Theorem (Hedden [2]) Let Kl;lrC1 be the .l; lrC1/–cable of K . Then

l �.K/C
lr.l � 1/

2
� �.Kl;lrC1/� l �.K/C

lr.l � 1/

2
C l � 1:

Furthermore, he gave some cases in which on or other inequality is actually an equality.
Additionally, I Petkova has used bordered Heegaard Floer homology to compute the
� –invariant explicitly for cables of a knot Floer homologically thin companion C [11].

M Hedden [1] also completely described the � –invariant for the twisted Whitehead
doubles of K . This completed the work of several authors including C Livingston and
S Naik [5] and M Hedden and P Ording [3].
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Using a different technique, C Van Cott also considered cables and discovered, in a
slightly different form:

Theorem (Van Cott [13]) Let h.n/D �.Kl;n/� .l � 1/.n� 1/=2. Then for n > r ,
n; r relatively prime to l ,

�.l � 1/� h.n/� h.r/� 0:

In Section 4 we will make use of a similar result that we proved in [12].

Acknowledgements The author would like to thank the referee for numerous sug-
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part by NSF grant DMS-0353717 (RTG). The author completed the project after he
had moved to the University of Alabama, Tuscaloosa. Many thanks to the department
of mathematics at Michigan State University for the very pleasant time the author
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2 Requisite Heegaard Floer Results

Let K�S3 be a knot, and let Wn be the four dimensional manifold found by attaching
a 2–handle along K with framing n. Denote the n–framed Dehn surgery on K

by S3
n .K/; we will regard Wn as an oriented cobordism from S3 to S3

n .K/. Let †
be a surface in B4 with boundary K and y†K be the surface in Wn found by capping
off †. We can relate �.K/ to Wn through:

Lemma 2.1 [7, Proposition 3.1] For each k , when n> 0 is sufficiently large relative
to k , the cobordism map yFn;k W

cHF.S3/! cHF.S3
�n.K/; Œk�/ is nontrivial if k <�.K/

and is trivial if k > �.K/, where the map is for the Spinc structure on W�n with
hc1.sk/; Œy†K �i � nD 2 k .

Thus the triviality/nontriviality of certain cobordism maps characterizes �.K/ to
within 1. However, the lemma excludes the case when k D �.K/: the cobordism map
may or may not be trivial, depending upon K . To account for this ambiguity we define

Definition 2.2 For a knot K , the � –correction, C.K/, equals 0 if the cobordism
map yFn;k is nontrivial for k D �.K/ and equals 1 if it is not (assuming n > 0 is
sufficiently large).
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The property in this definition may, a priori, depend upon the value of n, but for n

sufficiently large, we will see that it does not.

Using the integer surgeries techniques in P Ozsváth and Z Szabó [10], we can make
the previous lemma more precise.

Lemma 2.3 Let yFuk
W cHF.S3/! cHF.S3

r .K/; Œk�/ be the cobordism map induced
from Wr and the Spinc structure, uk with hc1.uk/; Œy†K �iC r D 2 k . Then for r ¤ 0,

(1) yFuk
is nontrivial for any k in the range ��.K/C r < k < �.K/, if such exists,

(2) yFuk
D 0 if k < �j�.K/jC r or k > j�.K/j, and

(3) if r > 0, yFuk
D 0 for all k when �.K/� 0.

Note that there is no contradiction between items (1) and (3) since �.K/ < 0 and r > 0

implies ��.K/C r > 0> �.K/, so there are no k in the requisite range of item (1).

Proof We use [10, Theorem 4.2] to compute when yFui
is nontrivial for r ¤ 0. During

the proof of Theorem 4.2 in [10], several arguments are given which allow us to compute
the cobordism maps cHF.S3/! cHF.S3

r .K/; uk/. Although the main theorems of [10]
are for the HFC–version of the cobordism maps, the isomorphisms established in [10]
apply to a more general set of complexes denoted by HFı with ı � 0; the results
we use are for ı D 0. The interested reader should examine [10, Sections 4.3, 4.7
and 4.9]; the proof in Section 4.9 with ı D 0 provides the necessary result. However,
we summarize the procedure here.

The map yFui
can be described as an inclusion of chain complexes constructed from

the knot Floer homology complex CFK1.K/. This complex CFK1.K/ is a bi-
filtered complex whose chain groups decompose as

L
i;j2Z CFKi;j .K/ which are

supported on diagonals j D i C C for a finite set of C ’s. The differential is a
map @1

K
W CFKi;j .K/!

L
.i0;j 0/�.i;j/ CFKi0;j 0.K/. From this general setup we may

define several complexes as combinations of sub- and quotient complexes. Namely,
CFK� D

L
i<0;j2ZCFKi;j .K/ is a subcomplex. Following [10], we will denote this

C fi < 0g, where the terms inside the brackets denote the range of i; j –indices, and we
include the terms in @1 which map between summands in that range. The quotient by
this subcomplex is C fi � 0g, which has a subcomplex yBDC fi D 0g that is isomorphic
to cCF.S3/ (equipped with a filtration by the j –indices). B will figure prominently
below; in fact, we will require identical copies of yB , one for each s 2 Z, and will
distinguish them with a subscript, yBs , s 2 Z. In addition, let ACs be the quotient of
CFK1.K/ by the subcomplex C fi < 0; j < sg, then ACs has a subcomplex, yAs given
by C fmax.i; j � s/D 0g, whose differential comes from that on ACs .
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Given r and k , let yC r;k be the mapping cone complexM
s�k mod jr j

yAs
@AB
���!

M
s�k mod jr j

yBs;

where @AB is defined by a sum yvsCŒr �yhs on yAs with yvsW
yAs!

yBs and Œr �yhsW
yAs!

yBsCr .
Here yvs is the map in the sequence

0 C fi < 0; j D sg yAs C fi D 0; j � sg Š F.K; s/

C fi D 0g Š yBs

.......................................................................................... ............ .............................. ............
..................................................................................................................................................................... ..........

..

yvs

................................................................................ .......................
.......
......

..................................................
.....
.......
.....

........
................

and Œr �yhs is the map yD�1 ıU s ı yHsW
yAs!

yBsCr , where

0 C fi D 0; j < sg yAs

C fi � 0; j D sg C fj D 0g.

C fi D 0g Š yBsCr
............................................................................................................................................ ............ ............................................................................................................................................ ............ .................................................................................................................................. ............

Œr �yhs

...........................................................................
.....
.......
.....

........
................

yHs

.................................................................................................. ............
U s

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............

yD�1

The map U shifts both i and j down by 1, therefore U sW C fi < 0; j D sg !

C fi < �s; j D 0g � C fj D 0g. yD is an isomorphism C fi D 0g ! C fj D 0g, which
reflects changing the orientation of K , but whose precise form will not be needed in the
sequel. We will only need that F.K; s/ŠC fi D 0; j < sg considered as a subcomplex
of C fi D 0g is isomorphically mapped by D to C fi < s; j D 0g in C fj D 0g. A
main result of [10] states that there is a quasi-isomorphism cCF.S3

r .K/; Œk�/!
yC r;k

(see [10, Section 4.3]). Under this quasi-isomorphism, the cobordism map yFus
be-

comes the inclusion yBs !
yC r;k , where s � k modulo r and us is determined by

hc1.us/; Œ†K �iC r D 2s .

Lemma 2.4 When s < �.K/, yvs;� � 0. When s > �.K/, yvs;� is onto H�. yBs/Š Z.
When s > ��.K/, yhs;� � 0, but when s < ��.K/, yhs;� is onto.

Proof When s < �.K/ the image of yvs;� lies in the image of H�.F.K; s//, which
is trivial by the definition of �.K/. For s > ��.K/ the image of yhs;� lies in
the image of F.K;�s/ in homology after applying the U –shift (and D ). Since
�s < �.K/, the image of yhs;� is trivial if s > ��.K/. For s > �.K/, the inclusion
F.K; �.K// ,! C fi D 0g can be decomposed as the inclusion I W F.K; �.K// �
yAs=C fi < 0; j D sg D Q followed by the inclusion J W yAs=C fi < 0; j D sg !

C fi D 0g. On the other hand, I is � ı I 0 where I 0 is the inclusion F.K; �.K// ,!
yAs \C fi D 0g � yAs and � W yAs!Q. I and I 0 are chain maps when s > �.K/. The
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map yvs is then the composition J ı� . Therefore, yvs induces the map J ı� ıI 0DJ ıI

on F.K; �.K//. Since .J ı I/� ¤ 0 on homology, by the definition of � , so too
yvs;� ¤ 0. A similar argument verifies the claim for yhs when s < ��.K/.

At s D �.K/, I 0 may not be a chain map: there may be a nonzero component in
the differential for yA�.K / mapping C fi D 0; j D �.K/g ! C fi < 0; j D �.K/g.
This component can prevent generators of yA�.K / in C fi D 0; j � �.K/g which map
nontrivially into yC fi D 0; j � �.K/g � cCF.S3/ from being closed in yA�.K / . Thus,
yv�.K /;� can be the zero map even though the inclusion F.K; �.K// ,! cCF.S3/ is not
trivial on homology. A similar problem occurs with yhs at s D��.K/.

To finish the proof, we now consider what happens in three cases:

Case i �.K/ � 0. When �.K/ � 0, yvs D 0 when s < �.K/, and yhs D 0 when
s > ��.K/. We may think of yC r;k as the mapping cone of @AB , with all the yAs in
one level and the yBs in the other. In the first step of the induced spectral sequence,
the nontriviality of including yBs can be determined by whether its homology includes
into the remaining steps. But H�. yBk/Š Z is not in the image of any nontrivial map,
h� or v� , for ��.K/C r < k < �.K/. To be in the image of yvs we would need
k D s , and we know that yvs � 0 on homology in this range. Likewise, for H�. yBk/

to intersect the image of Œr �yhs we would need, k D s C r or s D k � r > ��.K/,
but yhs � 0 when s > ��.K/. Therefore, H�. yBk/Š Z is not in the image of @AB ,
and it nontrivially includes into the homology of the mapping cone. The map with
hc1.uk/; †K i C r D 2k is thus nontrivial. In particular, we note for the arguments
in the following sections that yFuk

¤ 0 for k D �.K/� 1 when r < 2�.K/� 1. We
give a figurative example of this case, where the ambiguity at s D �.K/ is depicted
as a dashed arrow (where we have taken �.K/; r D 3 for concreteness), and we have
replaced each yAs and yBs with their homologies (indicated by dropping the hats):

Z Z Z Z Z Z Z Z Z Z

A�5 A�4 A��.K / A�2 A�1 A0 A1 A2 A�.K / A4 A5
.............
.............
.............
.......
.....
.......
.....

......................................................................
.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................

................................................................................................................................................................................................................ .........
...

........
..........

................................................................................................................................................................................................................ .........
...

........
..........

............. ............. ............. ............. ............. ............. ............. ...................... .........
...

The solid arrows indicate maps which are definitely nonzero. As can be seen in
the diagram, there is a swath of Bs ’s into which no arrow points. This occurs until
��.K/CrD �.K/, and we are outside the range considered in the lemma. Furthermore,
if k > �.K/ then H�.Bk/ is in the image of yvk;� , but yhk;� � 0 since k > ��.K/.
Therefore, the image of H�.Bk/ into the mapping cone will be trivial. For k <

��.K/C r then H�.Bk/ is in the image of Œr �yhk�r;� but yvk;� is trivial, so again the
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inclusion will be trivial when considered into H�. yC
r;k/. This verifies items (1) and (2)

of Lemma 2.3 for these values of �.K/ and r .

Case ii �.K/ < 0; r < 0. For s > ��.K/ > �.K/, the map yvs;� is onto the image of
H�. yBs/, but Œr �yhs�r;� is trivial since s� r > ��.K/. Thus, the inclusion of H�. yBs/

into the homology of the mapping cone has trivial image so yFuk
D 0. Similarly,

when s < �.K/ C r , yvs;� D 0 since s < �.K/, but Œr �yhs�r;� is nontrivial since
�.K/C r < ��.K/C r < ��.K/. Thus, H�. yBs/ will be trivial in the mapping
cone, so yFuk

D 0. This verifies item (2) in Lemma 2.3 for this range (the remaining
range for item (2) is subsumed by case iii, below, where we verify item (3)). Assume
then, that ��.K/C r < k < �.K/. Thus, for there to be any such k we must have
r < 2�.K/ � 1. The nontrivial images of maps yvs;� occur only for s � �.K/, so
for any k in ��.K/C r < k < �.K/, H�. yBk/ is not in the image of yvk;� . The
nontrivial maps Œr �yhs�r;� only occur for s� r � ��.K/ or s � ��.K/C r , but since
r < 2�.K/C1 we have that Œr �yhs�r;�W H�. yAs/!H�. yBsCr / has its image in H�. yBs0/

for s0 � �.K/C r . Consequently, for ��.K/C r < k < �.K/, H�. yBk/ is not in the
image of @AB;� , and thus yFuk

is nontrivial, verifying item (1) of Lemma 2.3 for this
case. Our figurative depiction for this case (with �.K/D�3 and r D�2):

Z Z Z Z Z Z Z Z Z Z

A�.K / A�2 A�1 A0 A1 A2 A��.K / A4 A5
.............
.............
.............
.......
.....
.......
.....

......................................................................
.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
.............................

.............
.............

.............
.....................

....
............

.........................................................................................................................................
....
............

..................
.........................................................................................................................................

....
............

..................
.........................................................................................................................................

....
............

..................
.........................................................................................................................................

....
............

..................
.........................................................................................................................................

....
............

...............................................................................................................................................
....
............

..................

Case iii �.K/ < 0; r > 0. Now all the maps yFus
will be trivial on homology. For

s < �.K/, H�. yBs/ is the image of Œr �yhs�r since s� r < ��.K/ by Lemma 2.4, but
not in the image of any yvs . If the map yvs at sD �.K/ is trivial then the same reasoning
applies to see that yFus

is trivial. For s > ��.K/C r we see that yvs is onto since
s > �.K/, but Œr �yhs�r does not map onto H�. yBs/ since s� r >��.K/. If Œr �yhs�r is
trivial when s D��.K/C r then the same reasoning applies to see that yFus

is trivial.
We now consider the range �.K/� s���.K/Cr . We still assume that yvs is nontrivial
at s D �.K/ and Œr �yhs�r is nontrivial at s D��.K/C r since we have already dealt
with the cases when they are not. For such a �.K/ � s � ��.K/C r consider the
inclusion of H�. yBs/. The map yvs;� is onto, so there is a cycle �s 2 yAs which maps
onto a generator of H�. yBs/ under yvs . If Œr �yhs;� is trivial on Œ�� then H�. yBs/ is in the
image of @AB;� and the inclusion is trivial, so yFus

is trivial. If not, let �sCr 2
yAsCr

be a cycle mapping under yvsCr;� to the image of Œr �yhs;�.Œ�s �/. We repeat the analysis,
with Œr �yhsCr and Œ�sCr �. With each step, �� has its index incremented by r . However,
yvs;� is nontrivial for s � �.K/ (including our assumption on endpoints), and Œr �hs is
trivial once s > ��.K/, so the process eventually stops with a cycle �sCkr 2

yAsCkr
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which maps nontrivially onto a generator of yBsCkr , but upon which Œr �hsCkr is trivial
in homology. The cycle in yC r;k given by �sC�sCrC� � �C�sCkr maps under @AB;� to
a generator of H�. yBs/, yielding the conclusions that H�. yBs/ includes trivially into the
mapping cone and, consequently, yFus

is trivial. This verifies item (3) of Lemma 2.3.

Again, here is a figurative depiction of this situation with r D 2; �.K/D�3:

Z Z Z Z Z Z Z Z Z Z

A�5 A�4 A�.K / A�2 A�1 A0 A1 A2 A��.K / A4
.............
.............
.............
.......
.....
.......
.....

......................................................................
.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
................ ......................................................................

.....
.......
.....

........
.............................

.............
.............

.............
......................... ........
....

............................................................................................................................................. ........
....

........
..........

............................................................................................................................................. ........
....

........
..........

............................................................................................................................................. ........
....

........
..........

............................................................................................................................................. ........
....

........
..........

............................................................................................................................................. ........
....

........
..........

................................................................................................................................. ........
....

........
....................................................................................................................................................... ........
....

........
..........

............................................................................................................................................. ........
....

........
..........

......................................... ........
....

........
..........

As an example of the argument, for s D 0, there is an element in A0 mapping onto the
generator of the Z term. If this element does not also map nontrivially to B2 then B0

is in the image of A0 . If, however, it does map to B2 then there is an element in A2

with the same image. We repeat the process with this element. Due to the termination of
the slanted arrows at A��.K /C1 , the process stops. This can be performed for each Bs

and shows that the inclusion of each Bs will be trivial in the homology of the mapping
cone. Of course, the number of arrows involved will depend upon r , s and �.K/.

We note that in each case in the lemma, the behavior at the ends of the intervals depend
upon the knot in question. We will thus have correction terms for each endpoint, and
for each framing, but will only need the one at �.K/ below. We now record some
results on these corrections.

Let Cr .K/ be the correction at �.K/ for r surgery on K . Recall that C.K/ is the
correction for sufficiently negative surgeries.

Lemma 2.5 If r � 2�.K/� 1 then Cr .K/D C.K/.

Proof We refer to the previous diagrams. First, if �.K/> 0 then Cr .K/ is determined
by whether or not yvW H�.A�.K //! Z0 is surjective. If it is then Cr .K/ D 1 and 0

otherwise. When r � 2�.K/� 1, this map is uninfluenced by the maps yh as they will
map into factors to the left of i D �.K/. (The first nonzero such map is at ��.K/
and maps to the factor in position ��.K/C r � �.K/� 1). Thus for r � 2�.K/� 1

and �.K/ > 0 we have Cr .K/ D C.K/. In fact, if r � 2�.K/ � 1 and �.K/ � 0

then r < 0 and the map from H�.A��.K // to Br��.K / also maps into a factor to
the left of i D �.K/. It again follows, taking into account the possibilities for yh that
Cr .K/D C.K/.

Lemma 2.6 If �.K/D g.K/ then C.K/D 1. If �.K/D�g.K/ then C.K/D 0.
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Proof The reader should consult the diagrams in the proof of Lemma 2.3. If �.K/D
g.K/ then H�. yAg.K //D Z, and yvg.K /;� is an isomorphism onto H�. yBg.K // since
yAg.K /Š

yBg.K / (there cannot be any horizontal component to the differential in yAg.K / !).
However, g.K/ >��.K/, hence Œr �hg.K /� 0. Therefore inclusion of Bg.K / is trivial
in homology, thus the requisite cobordism map is trivial. If �.K/ D �g.K/, let
� be a class in cCF.K;�g.K// Š C fi D 0; j D �g.K/g which maps isomorphi-
cally to cHF.S3/ under the inclusion C fi D 0; j D �g.K/g ,! C fi D 0g. Let
@hW C fi D 0; j D �g.K/g ! C fi < 0; j D �g.K/g be the map induced from @1 ,
and suppose @h�D 0. Then � 0DU�g.K /� is closed in C fj D 0gŠ cCF.S3/. Suppose
� 0D yC@z with y 2C fi < g.K/; j D 0g, and zD

P
zi with zi ¤ 0 in C fi; j D 0g.

There is an m � g.K/ with zm ¤ 0. Take the largest such m, and call it M . Then
� 0 D y C @z implies @zM D 0 in C fi DM; j D 0g. If M > g.K/, there is a uM

with @uM D zM in C fi DM; j D 0g. By taking zC @uM in C fj D 0g we obtain a
new z0 with @z0D � 0 for which the corresponding largest filtration index is less than M .
Consequently, we may assume M D g.K/. Then @zg.K /D �

0 in C fi D g.K/; j D 0g

since the highest filtration index for any term in y is < g.K/. Applying U g.K /

produces @U g.K /zg.K / D � which contradicts that � maps nontrivially to a generator
of H�.C fi D 0g/. Therefore, � 0 is closed in C fj D 0g but is not exact and is not
homologous to any element with i < g.K/. Since �.K/D�g.K/. this is a contra-
diction, as H�.C fj D 0g/ Š Z is generated by elements in C fi D �g.K/; j D 0g.
Thus, @h� ¤ 0 in yA�g.K / . Consequently v�g.K /;� D 0.

This last lemma applies, for instance, to strongly quasi-positive knots by Livingston [4].

3 Analyzing satellites knots using the lemma

Our goal in this section will be to use the previous Heegaard Floer results to prove the
following proposition:

Proposition 3.1 Let Sr .C;P / be the r –twisted satellite knot formed from a compan-
ion, C , in S3 and a pattern, P , in S1 �D2 . Let l be the intersection number of P

with D2 and orient P so that l � 0. Let

D.Sr .C;P //D �.Sr /�

�
�.P /C l �.C /C

l.l � 1/

2
r

�
:

Then when r ¤ 0,

(1)

�
�
C.P /C l C.C /

�
�D.Sr /�D.S�.r/.U;P //C 1C l C. xC /;

when r < 2�.C /� 1;

D.S�0.r/.U;P //� 1� l C.C /�D.Sr /�
�
C. xP /C l C. xC /

�
when r > 2�.C /C 1;
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where

(a) U is the unknot,

(b) �.r/D r � 2�.C /� 1� C. xC /, and

(c) �0.r/D r � 2�.C /C 1C C.C /.

The first inequality applies to r D 2�.C /� 1 when C.C / D 0 and the second set of
inequalities applies to r D 2�.C /C 1 when C. xC /D 0. Furthermore, in all instances,

D.S�0.r/.U;P //� 1� l C.C /�D.Sr /�D.S�.r/.U;P //C 1C l C. xC /:

In the next section we address replacing D.S�.r/.U;P // and D.S�0.r/.U;P // by
more congenial representations.

Proof The proof breaks into six steps.

Step I We consider the four manifold, Wr;n , with r ¤ 0, depicted in

r

C

0
�n

P

where C and P are geometrically isolated from each other. We will consider this four
manifold as a cobordism from S3 to its boundary, by removing a small ball. There are
two different descriptions of this four dimensional cobordism, up to diffeomorphism:

(1) We may slide P and C over the 0–framed two handle and then cancel the one
handle with the 0–framed two handle. Wr;n is then seen to be diffeomorphic
to r surgery on C and �n surgery on P , where C and P are geometrically
isolated knots in S3 . Thus Wr;n ŠWr .C / # W�n.P /, where we have taken a
sum along unknotted arcs in the two four manifolds.

(2) Alternately, we may slide all the strands of P over C , leaving C linking the
one handle. Sliding the 0–framed two handle over C as well, we may cancel
C with the one handle. This results in a pair of two handles, with the one
attached along the image of P under the cancellation, being attached in S3

along Sr .C;P /. Note that this diagram specifies the framing used on S1 �D2

in constructing Sr .C;P /. Thus Wr;n can be thought of as the composition
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of two cobordisms: the attachment of a two handle with some framing along
Sr .C;P /, which results in a four dimensional cobordism we will call WS below,
and another four dimensional cobordism H which occurs when we add the other
two handle to the boundary of WS .

In the second case, we can compute the framing on Sr .C;P / using standard Kirby
calculus. Wr;n decomposes as �nC l2r surgery on the r –twisted satellite, Sr .C;P /,
and a cobordism resulting from the attachment of a two handle . The framing on the
satellite is determined by row/column operations in the linking matrix for a diagram
derived from the one above by removing the 0–framed meridional two handle and
changing the one handle into a 0–framed two handle24r 0 1

0 �n �l

1 �l 0

35 �!
24 r lr 1

lr �nC l2r 0

1 0 0

35 :
For convenience, we will also use the notation P r for Sr .U;P / where U is the unknot;
P r is just P with r full twists added to the strands passing over the 1–handle. For
instance, we may find 0–twisted satellites by the identity S0.C;P /D Si.C;P

�i/.

Step II For the first way of decomposing the manifold Wr;n as Wr .C /#W�n.P /, we
can decompose spinc structures along the sum into a spinc structure, sC for Wr .C /

and one sP for W�n.P /, and these are uniquely determined. The map yFWr;n;sC #sP

is equivalent to yFWr .C /;sC
˝ yFW�n.P/;sP

under the connect sum isomorphisms of [9].
We now explain this fact.

In [9, Section 6], an isomorphism map

cHFQ.Y1; s1/˝ cHFQ.Y2; s2/! cHFQ.Y1 # Y2; s1 # s2/

is constructed. In [9], the map is constructed on chain complexes with Z–coefficients
and results only in cHF.Y1 # Y2; s1 # s2/ŠH�.cCF.Y1; s1/˝ cCF.Y2; s2//. Over Q,
however, this isomorphism extends to the tensor product of the homologies. We call
this isomorphism yRY1#Y2;s1#s2

.

Using this isomorphism, and the associativity of Heegaard triple maps, P Ozsváth and
Z Szabó prove the following proposition:

Lemma 3.2 [6, Proposition 4.4] The map yRY #Z;s#t is independent of the Heegaard
diagrams used for Y and Z . Moreover, if W is cobordism from Y to Y 0 , equipped
with a spinc structure u, restricting to the ends appropriately, then the following
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diagram is commutative:

cHF.Y 0; s0/˝ cHF.Z; t/ cHF.Y 0 # Z; s0 # t/

cHF.Y; s/˝ cHF.Z; t/ cHF.Y # Z; s # t/

........................................................................................................................................................................ ............
yRY 0#Z;s0#t

.....................................................................................................................................
.....
.......
.....

yFW #.Z�I /;u#t

.....................................................................................................................................
.....
.......
.....

yFW ;u˝ Id

....................................................................................................................................................................................... ............
yRY #Z;s#t

Proposition 4.4 is stated for HFC–cobordism maps, but is easily altered to apply to cHF .
The order of the factors does not matter, and we can apply the lemma also to a nontrivial
cobordism Z!Z0 . To complete step II we now apply this lemma twice: once to

yFWr .C /;sC
˝ IdW S3 # S3 S3

r .C / # S3..................................................................................................................................................................................................................................................................................................... ............
Wr .C / # .S3 � I/

and the second time to

Id˝ yFW�n.P/;sP
W S3

r .C / # S3 S3
r .C / # S3

�n.P /
........................................................................................................................................................................................................................................... ............

S3
r .C /� I # W�n.P /.

Composing these maps yields yFWr .C /;sC
˝ yFW�n.P/;sP

, which is the left side of a
commutative square found from two squares as in the proposition. Composing the
cobordism maps from the right of the corresponding commutative squares yields
yFWr;n;sC #sP

(since S3
r .C / is a rational homology sphere) for the spinc structures

chosen.

Step III On the other hand @WS is a rational homology sphere for sufficiently large
n. Recall that Wr;n is the cobordism resulting from surgery on both C and P as
in Step I. Thus, we can decompose yFWr;n

D yFH ı
yFWS

where H is a particular
cobordism @WS �! @Wr;n (which will play no further role). The Spinc structures
on Wr;n likewise decompose, and are determined by how they restrict to the two parts.
We thus have that yFWr;n

¤ 0 implies that yFS ¤ 0. Using part II we can find cases
when yFWr;n

¤ 0. We now undertake to determine which Spinc structures on WS occur
for the resulting nontrivial yFS maps.

Step IV From Lemma 2.3 we know that yFC
r;k

with hc1.sC /; Œy†C �i C r D 2 k is
nontrivial for ��.C /C r < k < �.C /. By the definition on C.C / and Lemma 2.5,
if C.C /D 0 we may also use r D 2�.C /� 1 and k D �.C /. So for r < 2�.C /� 1,
we may take k D �.C / � C.C / and have a nonzero map. Suppose further that
hc1.sP /; Œy†P �i�nD 2 .�.P /�C.P //. The spinc structure sC #sP on Wr;�n restricts
to WS according to the value of

hc1.s/; Œy†Sr
�iC .�nC l2 r/;
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but due to the handleslides, Œy†Sr
�D Œy†P �C l Œy†C �, and

hc1.s/; Œy†P �C l Œy†C �i D .2 .�.P /� C.P //C n/C l .2.�.C /� C.C //� r/

D 2..�.P /� C.P //C l .�.C /� C.C ///C n� lr C l2r � l2r:

Consequently,

hc1.s/; Œy†Sr
�iC .�nC l2 r/D 2..�.P /� C.P //C l .�.C /� C.C ///C l.l � 1/ r:

We have the freedom to make n as large as we wish. We choose so that �nC l2 r

is sufficiently negative for Lemma 2.1 to apply to both P and Sr . Therefore, the
map yFsP

will also be nontrivial, so yFW will be nontrivial. Thus, yFWS
is nontrivial by

Step III. By Lemma 2.1

.�.P /� C.P //C l .�.C /� C.C ///C
l.l � 1/

2
r � �.Sr /

which simplifies to

�.P /C l �.C /C
l.l � 1/

2
r � �.Sr /C C.P /C l C.C / when r < 2�.C /� 1:

If C.C /D 0 we may include r D 2�.C /�1 as well, so the range on r may be replaced
by r � 2�.C /� 1� C.C /.

Let T .Sr /D �.P /C l �.C /C
l.l � 1/

2
r;

which is thought of as an analog of �.Sr /. Rearranging terms establishes the one-sided
bound

(2) �
�
C.P /C l C.C /

�
� �.Sr /�T .Sr / when r � 2�.C /� 1� C.C /:

Step V The crucial observation in finding bounds for the other side is

�.Sm. xC ;Sr .C;P ///D �.SrCm.U;P //D �.P
rCm/:

This follows from:

Lemma 3.3 The knot Sm. xC ;Sr .C;P // is concordant to SmCr .U;P /D PmCr .

Proof Using the specific representations of the satellites in the diagrams above, we
can conclude that Sm. xC ;Sr .C;P // is SmCr . xC # C;P /. Since xC # C is slice, this
lemma merely restates the well-known fact that the satellite of a slice knot, with a
given framing, is concordant to the satellite of the unknot with the same pattern and
framing.
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Applying inequality (2) to the satellite Sm. xC ;Sr .C;P // gives

�
�
C.Sr /C l C. xC /

�
� �.Sm. xC ;Sr .C;P ///�T .Sm. xC ;Sr .C;P ///

when m� 2�. xC /� 1� C. xC /

but T .Sm. xC ;Sr .C;P ///D �.Sr /C l �. xC /C
l.l � 1/

2
m:

Therefore since Sm. xC ;Sr .C;P // is concordant to P rCm ,

�.Sr /� �.P
rCm/�

�
l �. xC /C

l.l � 1/

2
m

�
C C.Sr /C l C. xC /

when m� �2�.C /� 1� C. xC /:

As above, if C. xC / D 0 we can extend to m D �2�.C / � 1. We choose m D

�2�.C /� 1� C. xC /. Rearranging and simplifying we obtain

�.Sr /� �.P
r�2�.C /�1�C. xC //C l �.C /

C
l.l � 1/

2
.2�.C /C 1C C. xC //C C.Sr /C l C. xC /:

Let �C .r/D r � 2�.C /� 1� C. xC /:

C does not vary until the next part so we will drop the subscript until then. With this
notation we obtain, upon subtracting T .Sr / and rearranging,

�.Sr /�T .Sr /� �.P
�.r//� �.P /�

l.l � 1/

2
�.r/C C.Sr /C l C. xC /:

Since P s D Ss.U;P / and �.U /D 0, we can replace �.P /C .l.l � 1/=2/�.r/ with
T .P�.r// to obtain

�.Sr /�T .Sr /� �.P
�.r//�T .P�.r//C 1C l C. xC /;

where we have replaced C.Sr / with 1. Note that this inequality always applies,
regardless of the value of r , since it depended only upon the choice of m, which does
not depend on r . This provides the right side of our target bounds. Let

D.Sr .C;P //D �.Sr .C;P //�T .Sr .C;P //:

Taken with the inequality (2) we obtain the two sided bounds,

(3) �
�
C.P /Cl C.C /

�
�D.Sr /�D.P�.r//C1Cl C. xC / when r�2�.C /�1�C.C /;

and the right hand inequality applies regardless of the value of r .
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Step VI Now consider the satellite knot S�r . xC ; xP / which is the mirror of Sr .C;P /.
Then �.S�r . xC ; xP //D��.Sr / and T .S�r . xC ; xP /D�T .Sr .C;P //. Thus D.SSr /D

�D.Sr /. In addition �C .r/D��
0
xC .�r/ where

�0C .r/D r � 2�.C /C 1C C.C /:

Now apply inequality (3) to �.S�r . xC ; xP //:

�
�
C. xP /Cl C. xC /

�
�D.SSr /�D. xP� xC .�r//C1Cl C.C / when �r �2�. xC /�1�C. xC /:

But �r � 2�. xC /� 1� C. xC / means r � 2�.C /C 1C C. xC /, and

xP� xC .�r/
D P�� xC .�r/ D P�0

C
.r/:

Thus, using D.SSr /D�D.Sr /, we have

D.P�0.r//�1� l C.C /�D.Sr /�
�
C. xP /C l C. xC /

�
when r � 2�.C /C1CC. xC /:

Here the left hand inequality holds regardless of the value of r . This concludes the
proof of the proposition.

4 Tidying up the inequalities

We now wish to clean up the results of the previous section. In particular, we would like
to compute D.S�.r/.U;P // in some simpler manner. The key will be the following
proposition, found in [12], whose proof mimics Van Cott’s arguments in [13].

Proposition 4.1 Let the orientation on P be such that l � 0 and let

g.r/D �.Sr .C;P //�
l.l � 1/

2
r:

Let nC , and n� be the number of strands of P intersecting the oriented copy of D2

positively and negatively, respectively. Then if s > r and nC > n� ,

�.nC� 1/� g.s/�g.r/� n�;

while when nC D n� we have

�nC � g.s/�g.r/� .n�� 1/:

With this proposition in hand, we can complete the proof of Theorem 1.2:
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Lemma 4.2 If nC > n� , then

�.nC.P /� 1/�D.S�0.r/.U;P //� n�.P / when r � 2�.C /� 1;

�n�.P /�D.S�.r/.U;P /� nC.P /� 1 when r � 2�.C /C 1;

while if nC D n� , then

�nC.P /�D.S�0.r/.U;P //� .n�.P /� 1/ when r � 2�.C /� 1;

�.n�.P /� 1/�D.S�.r/.U;P /� nC.P / when r � 2�.C /C 1:

Proof Since C is the unknot we have

D.St .U;P //D �.St .U;P //� �.P /�
l.l � 1/

2
t;

which in turn becomes g.t/� g.0/, using the notation in the previous proposition.
Now �0.r/ � 0 since we only use it when r � 2�.C / � 1. Thus, �.nC � 1/ �

g.�0.r//�g.0/� n� when r � 2�.C /�1 and nC > n� (�nC � g.�0.r//�g.0/�

.n�� 1/ when nC D n� ). Furthermore, when r � 2�.C /C 1 we have that �.r/� 0,
so �.nC � 1/ � g.0/ � g.�.r// � n� in this case (when nC D n� this becomes
�nC�g.0/�g.�.r//� .n��1/). Multiplying by �1, we can reverse the inequalities.
The case when l D 0 is identical, except that the bounds change as in the previous
proposition.

The inequality (1) then becomes:

Proposition 4.3 When r ¤ 0; l > 0, we have

�
�
C.P /C l C.C /

�
�D.Sr /� nC.P /C l C. xC / when r < 2�.C /� 1;

�nC.P /� l C.C /�D.Sr /�
�
C. xP /C l C. xC /

�
when r > 2�.C /C 1:

If C.C /D 0 then the first inequality also applies for r D 2�.C /�1, while if C. xC /D 0

then the second inequality applies at r D 2�.C /C 1. Furthermore, for all r we have

�nC.P /� l C.C /�D.Sr /� nC.P /C l C. xC /:

Proof We substitute one side of the inequalities from Lemma 4.2 into the inequalities
in Proposition 3.1. All that remains is the inequalities that hold in general. We know
that, for all r ,

D.Sr /�D.S�.r/.U;P //C 1C l C. xC /
and D.S�.r/.U;P //C 1C l C. xC / � nC.P /C l C. xC / for r � 2�.C /C 1. But for
r > 2�.C /C 1 we also have D.Sr / �

�
C. xP /C l C. xC /

�
. Since nC.P / � 1 � C. xP /,

the inequality on the right holds for all r . A similar argument establishes the result for
the inequality on the left
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To obtain the propositions in the introduction, we set C.C /; C. xC /D 1, which is the
worst case for both sides of the inequalities above. Finally, we address the case when
lD 0. The argument is an adaptation of that above to the different bounds in Lemma 4.2.
The inequality (1) then becomes:

Proposition 4.4 When r ¤ 0; l D 0, we have

�C.P /�D.Sr /� nC.P /C 1 when r < 2�.C /� 1;

�nC.P /� 1�D.Sr /� C. xP / when r > 2�.C /C 1:

If C.C /D 0 then the first inequality also applies for r D 2�.C /�1, while if C. xC /D 0

then the second inequality applies at r D 2�.C /C 1. Furthermore, for all r we have

�nC.P /� 1�D.Sr /� nC.P /C 1:

5 Special cases

Below, we assume that r ¤ 0.

5.1 When l D 0 and P is an unknot, when considered in S 3

A calculation shows that C.P /D 0 in this case. So we obtain

0�D.Sr /� nC.P /C 1 when r < 2�.C /� 1;

�nC.P /� 1�D.Sr /� 0 when r > 2�.C /C 1;

which conforms to the behavior found for Whitehead doubles in [1; 5].

5.2 When l D 1

We obtain the inequalities

�
�
C.P /C C.C /

�
� �.Sr /� �.P /� �.C /� nC.P /C C. xC / when r < 2�.C /� 1;

�nC.P /� C.C /� �.Sr /� �.P /� �.C /�
�
C. xP /C C. xC /

�
when r > 2�.C /C 1:

If l D 1 both algebraically and geometrically, then Sr Š P # C for all r . These
inequalities almost give the additivity formula under connect sum – since nC.P /D 1

– but not quite. With some effort, we could replace the correction terms, or simply
replace them by 1’s. In the latter case, we obtain

�2� �.C # P /� �.P /� �.C /� 2 when r < 2�.C /� 1;

�2� �.C # P /� �.P /� �.C /� 2 when r > 2�.C /C 1:

for the connect sum.
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5.3 When P is a specific unknot

Let P be the closure of the braid �1�2 � � � �l�1 . Then �.P / D 0, C.P / D 0, and
nC.P /D l . Consequently, we have the inequalities

l �.C /C
l.l � 1/

2
r � l � �.Sr /� l �.C /C

l.l � 1/

2
r C 2l when r < 2�.C /� 1;

l �.C /C
l.l � 1/

2
r � 2l � �.Sr /� l �.C /C

l.l � 1/

2
r C l when r > 2�.C /C 1:

Up to the final terms on each side, which are different multiples of l , these bounds are
similar to those in [2].

5.4 When C is the unknot

We write Pm D Sm.U;P /. This is just shorthand for adding full twists to a collection
of parallel strands in P . Then

�C.P /� �.P r /� �.P /�
l.l � 1/

2
r � nC.P / when r < �1;

�nC.P /� �.P
r /� �.P /�

l.l � 1/

2
r � C. xP / when r >C1:

If P is the closure of a l stranded braid then nC.P /D l and we obtain

l.l � 1/

2
r � 1� �.P r /� �.P /�

l.l � 1/

2
r C l when r < �1;

l.l � 1/

2
r � l � �.P r /� �.P /�

l.l � 1/

2
r C 1 when r >C1:

These are similar to the results in [13, Section 4].
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