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On RL Cohen’s ¢ —element

X1uGul L1u

Let p be a prime greater than three. In the p—local stable homotopy groups of
spheres, R L Cohen constructed the infinite {—element {y—1 € 7 yn+1_5 pn 45 ,—5(S)
of order p. In the stable homotopy group 7, yn+1_5 ,n 43 ,2_3(V (1)) of the Smith—
Toda spectrum V' (1), X Liu constructed an essential element @y for k > 3. Let
By = Jjoj1B* € [V(1), Sly5p2_p5-,, denote the Spanier-Whitehead dual of the
generator B¢ = B%i1io € my,2_,(V(1)), which defines the f-element B;. Let
&k = B;_,@x. In this paper, we show that the composite of RL Cohen’s {—
element {,—; with &, is nontrivial, where n > 4 and 1 <5 < p—1. As a corollary,
&s,n is also nontrivial for 1 <s < p—1.

55Q45; 55Q10

1 Introduction and statements of results

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at a prime p
greater than three. To determine the stable homotopy groups of spheres 74 (.S) is one
of the central problems in homotopy theory. One of the main tools to reach it is the
Adams spectral sequence (ASS, for short) [1]

where the E;—term is the cohomology of A. If a family of generators x; in E3*
converges nontrivially in the ASS, then we get a family of homotopy elements f;
in 4 (S) and we say that f; is represented by x; € E5'* and has filtration s in the
ASS. The main purpose of this paper is to detect a new family of homotopy elements
in 74(S) which has filtration s + 4 in the ASS.

In this paper, we need the following spectra which are all related to the sphere spectrum.
Let M be the mod p Moore spectrum given by the cofibration

(1-1) s s s

Let a: XM —> M be the Adams self-map and K be its cofibre given by the
cofibration

(1-2) s % o g 2L ety
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This spectrum which we briefly write as K is known to be the Smith—Toda spec-
trum V(1). Here ¢ =2(p — 1) as usual. Let

p: =Py (1) — v(1)
denote the v,—map.

Definition 1.1 For ¢ > 1, the known B—element §; is defined to be the composite
map

Br = jrjoB'i1io € g (1pt(1—1))—2(S),
where the maps iy, i1, jo, j1 are given in (1-1) and (1-2).

Theorem 1.2 (Smith [12]) With notation as above, for p > 5 and t > 1, B; is a
nontrivial element of order p in 7y (1p+(1—1))—2(S)-

The known results on Ext%;*(Z,Z ) are as follows. By definition, Ext%*(Z,.Z,)=Zp.
From Liulevicius [7], Extl{i’* (Zp,Zp) has Z,-bases consisting of ag € Ext}‘il (Zp,Zp),
h; € Extz’pl‘](Zp, Zp) forall i > 0 and Extil’*(Zp, Zp) has Zp,-bases consisting of
ay, aj, aohi (i >0), gi (i 20), ki (i 20),b; (i =0),and hihj (j =i+2,i>0)
whose internal degrees are 2g + 1, 2, piq + 1, p'Tlq +2piq, 2p' g + piq, pitly
and p'q + p’q, respectively. In 1980, Aikawa [2] determined Extii*(Z p>Zp) by the
lambda algebra.

The problem of understanding the stable homotopy ring has long been one of the
touchstones of algebraic topology. Low dimensional computation has proceeded slowly
and has given little insight into the general structure of 74(S). So far, not so many
families of homotopy elements in 74 (S) have been detected.

In [10], Douglas C Ravenel obtained the following:

Theorem 1.3 [10] For p >3 andi > 1, b; is not a permanent cycle. (At p = 3, b,
is not permanent but b, is; by is permanent for all odd primes.)

In [3], RL Cohen detected a new element ¢, € Tg(pnt1 +1)_3(S ) which is called the
{—element.

Theorem 1.4 [3, Theorem IV.b] Foreveryn > 1,
hoby € Ext3?" 947, 7.,)
survives to Eo in the ASS and represents a nontrivial element

é-n € Tg(pnt+14+1)—3 (S)

of order p.
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In [6], X Liu detected a new element in the stable homotopy groups of spheres and
obtained the following:

Theorem 1.5 [6, Theorem 1.4] Let p > 5, n > 3. Then
kohn # 0 € ExtP"at2rata(z, 7, )
is a permanent cycle in the ASS and converges nontrivially to an element of order p in

Tpng+2pg+q-3(S)-

On the way to proving the above theorem, X Liu detected a new element in the stable
homotopy groups of V(1) and gave the following:

Theorem 1.6 [6, Theorem 1.5] Let p>5,n>3 and h, € Ext}‘ipnq(Zp, Zp) be the
known generator in [7]. Then

(,BIIZO)*(hn) c Extiip”q+(P+1)q+l (H* V(l), Zp)
is a permanent cycle in the ASS and converges to a nontrivial element
@n € Tpng+(p+1)g—1(V(1)

of order p.

For convenience, we let

(1-3) ,3: = jOjllBs e[V, S]qu+(s—1)q—2

denote the Spanier—Whitehead dual of the generator

;, = B%iyip € ”s(p—i—l)q(V(l)),
which defines the f—element S;. Let

(1'4) és,n = ﬂ:_lwn € np”q+qu+(s—l)q—3(S)~

In this paper, we also prove that a composite map involving R L Cohen’s {—element is
nontrivial. Our main result can be stated as follows:

Theorem 1.7 Let p>5,n>4 and 2 <s < p—1. Then the composite map {,_1& »
is nontrivial in 75 prg 4 spg+sq—6(S).

From Theorem 1.7, the following consequence is immediate.

Corollary 1.8 Let p>5,n>4 and 2 <s < p—1. Then the map &, is nontrivial in
Tpng+spg+(s—1)g—3(S)-
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In the paper, we make use of the ASS and the May spectral sequence (MSS, for short)
to show our main results.

The paper is arranged as follows. In Section 2, we recall some useful results on the
MSS and, importantly, give a method for determining the May E;—term E f’t * for
specialized integers 5 and 7. By the method given in Section 2, we first determine
some May E,—terms in Section 3. At the end of Section 3, two important theorems
(Theorem 3.9 and Theorem 3.10) are given. Section 4 is devoted to showing our main
results.

2 The MSS and a method on the MSS

In this section, we first recall some knowledge on the MSS. Then we will give an
important method for detecting generators of the May E;—term Ef’t’* for some
particular integers s and ¢.

Ever since the introduction of the Adams spectral sequence in the late 1950’s, the study
of the stable homotopy groups of spheres has been split into essentially two parts. First,
there is the purely algebraic problem of computing Ext%;*(Z,, Z,). The second, and
more geometric problem is to determine which elements of Ext%*(Z,, Z,) survive
to E in this spectral sequence and represent maps between spheres. For the first
part above, we know that the most successful method for computing Ext%;*(Z,, Z )
through a range of dimensions is the MSS. From [11, Theorem 3.2.5], there is a
May spectral sequence (MSS) {ES"*, d,} which converges to Extiit (Zp,Zp) with
E{—-term

@-1) EP** = E(hmi |m>0,i >0)® Plbymyi | m>0,i >0)® Play |n>0),

where E is the exterior algebra, P is the polynomial algebra and

1,2(p"—-1)p’,2m—1 2,2(p"-1D)pit! p(2m—1 1,2p"—1,2n+1
hmi € E| (p"=1p bm,i € E? (P"=1)p' 7, p( ), an€ EL2P )

’

One has

(2-2) dy: ES'H — EStLLu—T

and if x € ES** and y € ES'>*, then

(2-3) dr(x-y) =dr(x)-y + (=1)*x-dr(y).
There exists a graded commutativity in the MSS:

(2-4) Xy = (=) F y x
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for x, ¥ = hm,i,bm,i or a,. The first May differential d; is given by

di(hij) =Y o<k <i Mi-kk+jhk,j-
(2-5) di(ai) =D o<k<i hi—k kak,
dl (bi’j) =0.
For each element x € Ef”’”, we define dimx = s, degx =1, M(x) = u. Then we
have
dimh; ; =dima; =1,
dimb; j =2,
deghi; =2(p' =1)p/ =2(p = 1)(p"H =" +--- 4 p),
deghi j =2(p' = Dp/t =2(p = D' +--- 4 piTh,
dega; =2p' —1=2(p—D(Pp'" ' +---+ ) +1,
degag =1,
M(hi,j) = M(aj—1) =2i —1,
M(bi,j) = 2i —1)p,
where i > 1, j > 0. For more details about the MSS, see May [8; 9] and Ravenel [11].

(2-6)

Now we give an important theorem on the MSS.
By the knowledge on the p—adic expression in number theory, we see that for each
integer ¢ > 0, it can be expressed uniquely as

t=q(enp" +cn1 p" -+ e1ptco) te,
where 0 <c¢i<p 0<i<n),p>c;,>0,0<e<gq.
Theorem 2.1 [4, Proposition 1.1] With notation as above, let 51 be a positive integer
with 0 < sy < p. If there exists some 0 < j < n such that s| < ¢;, then in the MSS,

we have
E{V* =0,

Now we give a method for detecting generators of the Eq—term E ff’* of the MSS for
specialized 5 and 7.

In this paper, we mainly consider the May E'—terms of the form E7 14b* where s, 1,
b are three integers with s > 0, # > 0 and b > 0 satisfying the following conditions:

(1) t=(o+cip+---+np")gwith0<g; < p (0=<i <n).
@2-7) Q) 0<bh<gq.
(3) s<b+g.
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We denote a;, h;, j and b; j by x, y and z respectively. By the graded commutativity
of ET"**, generators take the following form:

(2-8) g=(x1 - x)(1 - y)(z1 - 2p) € ESIHE*,

Under the above conditions, we claim that
u=n>s.

Otherwise, by the characteristics of dega;, degb; j, degh; j and deg g, we would get
u = b+ wgq for some integer w > 0. It would follow that dim g > b+ wg > s =dim g,
which is a contradiction. The claim is proved.

From the discussion above, we have further that g is of the following form:

(2-9) g= (1o xp) (1o po)(z1 oo 2) € EPFFO

Since degg = X degx; + X degy; + X degzy, then we have that max{degx; |
1<i<b}=<t+b,max{degy; |1 <i <v}=<t+b, max{degz; |1 <i <[} <t+b.

By (2-6), the degrees of x;, y; and z; can be expressed uniquely as:
degxi = (xi,0 + Xi1 P+ + Xinp")q + 1,

(2-10) 1 degyi = (yi0+yiip+- 4 yinp")q.

degzi = (0+ziip+---+zinp")q.

(@ (Xi,00--+sXik>Xik+1s---»Xin)is of the form (1,...,1,0,...,0),
(X300 -+ s Xi k> Xikt1s-- -5 Xin) = (0,...,0,0,...,0)if x; = ay,

2-11) 4 () (V00 Vijjs Vij+1s---s Viks Vik+1----» Vin) is of the form
,...,0,1,...,1,0,...,0),

c v Zi1s---Zin) is of the form (0,...,0,1,...,1,0,...,0).
0,z ) is of the f 0 0,1 1,0 0
By the graded commutativity of E7>**, the generator
g= (1= xp) 1o o)z oo zp) € EPEO
can be arranged in the following way:
(i) Ifi > j, we put a; on the left side of a;.
2-12) (i) If j <k, we put &; j on the left side of /1y, k.
(iii) If7 > w, we put ; ;j on the left side of /1 ;.

(iv) Apply the rules (ii) and (iii) to b; ;.
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Then by (2-11) and (2-12), the factors x; j, yi,j and z; ; in g must satisfy the following
conditions:

() x1,j=x2,j=-=xp;.

(2) XioZxi1 =z Z X

(3) If yjj—y=0and y;; =1, thenforall k < j y;x =0.
(2-13) 4) Ify;,j=1and y; j11 =0, thenforallk > j y; x =0.
(5) y1,0=y20== yyo-

(6) If yio = Yi+1,00 Vil = Vit+1,1--Vi,j = Vi+1,j, then
Vi,j+1 = Vi+1,j+1-
(7) Apply the similar rule (3) ~ (6) to z; ;.

From degg = Zf’zl degx; + Y .7_,degyi + Zle deg z;, by the properties of the
p—adic expression in number theory we get the following group of equations:

X100t +xp0+yi0t+yyot+0+--+0=cotkop,

Xp o Xp iyt ezt 4z = +ky p—ko,
X124 Xp 2ty Y2tz F iz = ko p—k,
(2-14)
Xi,j+etxp vt Yotz itz = ¢tk p—kjq,

Xttt +Xput+Vipt - FYontzZipt+zZip = Cn—kn—1,

where k; >0 for 0 <i <mn-—1.

In the above group of equations, we get two integer sequences K = (ko, kq,...,kn—1)
and S = (co+kop,.c1 +ki1p—ko,...,¢cn—ky—1) denoted by (¢, cy,...,cn) which
are determined by (ko,k1,...,ku—1) and (co, 1, ...,Cn) . Notice that the elements

Xi, yi and z; are uniquely determined by their degrees.

Each solution of (2-14) which satisfies (2-13) determines a unique generator g of
E i” +b:* because among g all the elements x;, y; and z; can be determined by their
degrees, respectively. Note that the generator g obtained above may be trivial, because
there are perhaps more than one /; ; among g.
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Thus for the Ef’“rb’*—term where t = (co+c1p+--+cnp")g with 0 <¢; < p
(0<i<n),0<cy<p,0=<b<gq,the method for determining E“I‘”er’* is as follows:

(1) List up all the possible (b, v,/) such that b +v 42/ =s.

(2) For each given (b, v, /), list all the sequences K = (ko, k1,...,kn—1)
and S = (cg,¢1,...,¢p) suchthat¢; <b+v+1[forall0<i <n.

(3) For each given (b, v, /), the sequences K = (kg, k1,...,kn—1) and
(2-15) S = (cg,--.,cn), solve the group of equations (2-14) by virtue of
(2-13). Then determine all the generators of E £ b.x by setting the
corresponding second degrees.

(4) By use of hfi j =0fork > 1, we get all the nontrivial generators of
the May E;—term ES/ 0%,

3 The determination of two Adams F,—-terms

In this section, by the method for determining the May E;—-term E f]’* we first deter-
mine some May E,—terms for » > 1 (cf Proposition 3.1). Then we give two important
theorems about Adams E,—terms which will be used in the proof of Theorem 1.7.

We first give the following important proposition about the May E;—term.

Proposition3.1 Let p>5,n>4,0<s < p—3 andr > 1. Then the May E|—term
satisfies

Es+6—r,t(s,n)+1—r,* _ G r=1lands=p—4,
! 0 r=2,orr=1ands < p—4.

Here t(s,n) =q2p" + (s +2)p+ (s +2)]+s and G is the Z,-module generated by
the following twenty-three elements:

—s

Gy =al " arhpohs,ohn—1,1hn-1,2n—22.
—s

Go =alaihpy1,0hnohn—1,1hn—2,2h12.
—s

Gz =alazhyohy ohp—1,1hn—12hn—22.

—4
Ga =al " h3 ohy ohp—1,1hn—1,2hn—22,
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Gs = al *hyoh1,0h2,1tn—12hn—22,
Ge = an+1al > hy o1 ohn—1,1hn—22h1 2,
G1 = al *hys1,0h1 0hn—1,1hn—2,2h1,2,
Gs = al *hp,oh1,0hn,1hn—2201 2,
Go = al ™y oh1,0hn—1,1hn—1,2h1 2,
Gro = al™*hyoha 0hn—12hn—22h1 2,
Gi1 = a2 ashnohs,0hn—1,2hn—22hn—33.
Gi2 = al > azhpi1,0hn,0hn—2,201 2hn—3 3.
G13 = ant1aL " hyohs 0hn—22h1 2hn—3 3,
Gra = al *hys1,0h3,0hn—2,2h1 23 3,
Gis = al ™ hyohs ohn—1,2h1 2hn—33.
Gi6 = al *hyohs ohn—22h1 22 3.
Gi7 = al > ashys1,0hn,0hn—2,2bn-2.1,
Gis = ant1a2 > hnoh3,0hn—2,2bn—2,1,
Gro = al ™ hyt1,0h3,0hn—22bn—2.1.
Gro = al*hy0h3 0hn—1,2bn—2.1.
Ga1 = al *hy 03 0hn—2,2bp—1.1,
Gao = al *hyt1,0hnoh1 2bn-2.1.

—4
Gas = al " hyq1,0hn,0hn—2,2b1,1.

Proof By (2-1) and (2-6), it is easy to show that in the MSS
+6—r,t(s,n)+1—r* __
Eiv r,t(s,n) S —
for r > s + 2. Thus in the rest of the proof, we always assume 1 <r < s+ 2.
Consider g = wywy---wj € Ef+6_”’(s’”)_’+1’* in the MSS, where w; is one of ay,
hrjorby,, 0<k=<n+1,0<r+j=<n+1,05u+z=<n,r>0,;j>0,u>0,

z > 0. Assume that

degw; = q(cinp" + Ci,n—lpn_l +-otciiptcio) e,
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where ¢; j =0 or 1, ¢; =1 if w; = ay;, or ¢; = 0. It follows that

/
(3-1) dimg =) dimw; =s+6-r,
i=1
)

degg = Zdeg w;
i=1
l

(3-2) = Q((Zcz',n)p" +oo (Z Ci,l)p + (Zci,o)) + (Z €i)

i=1 i=1 i=1 i=1

q2p"+ (s +2)p+(s+2)+(s+1—r).

Note that dim /; j =dima; =1, dimb; j =2, 1 <r <s+3 and 0 <s < p—3. Then
[<s+6—r<p+3—-r=p+2

/
from dimg:Zdimwi:s+6—r.
i=1

We claim s+1—r>0.

It is easy to get

/
Y ei<l<p+l.

i=1
However,by 1 <r <s+2 and p > 5, we would also have

i
Yei=q+(—r+1)>2p-2-1=p+2
i=1

which contradicts
i
Yei<l<p+l.
i=1

The claim is proved.

Algebraic & Geometric Topology, Volume 11 (2011)



On RL Cohen’s {—element 1719

Using 0 <s+ 2,5+ 1—r < p and the knowledge on p-—adic expression in number
theory, we have

/
Zei=s+l—r+k_1q A1 >0,
i=1
/
Zci,o+)~—1 =s+2+Aop Ao =0,
i=1
/
Y ciitho=s+24Ap A >0,
i=1
/
Y o+t =0+hsp Ay >0,
i=1

(3-3) /
ZC,',3+)\2=O+)\3P )\.320,
i=1
!
Zci,4+k3 =0+)»4p )\,420,
i=1
; :
Zci,n—l +An—2=0+Ay—1p An-12=0,
i=1
/
Zci,n +Ap—1=2.
i=1

From ¢; =0 or 1, ¢;,j =0or1,and / < p+ 1, we easily have
(A—1,%0,21) = (0,0,0).

Consider the fourth equality of (3-3), Z§=1 ci2=0+Ap. Bycipo =0o0rl, and
[ < p+1, we get that
)\2 =0orl.

Thus we divide our proof into the following two cases.
Casel A, =0.

We claim
Az =0.
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If A3 =1, we would have

! ! !
doca=s+2, Y cin=0, Y ciz=p.

i=1 i=1 i=1
l
From Zcm =542
i=1

and (2-6), there would be s+ 2 factors among g where deg x; = ¢ (higher terms on p +
p + lower terms on p) + §;, where §; may equal 0 or 1. Similarly, from

!
Z Ci3 =P,

i=1

there would be p factors among g such that deg w; = ¢ (higher terms on p + p3 +
lower terms on p)+46;. Thus, by / < p+1 and (2-6), there would be at least p+s5+2—
(p+1) =s+1 factors in g such that degw; = ¢(higher terms on p + p> + p? +
p! +lower terms on p) + §;. Thus we would have

!
ZC’FZ >s+1

i=1
!
which contradicts Zci,z =0.
i=1
The claim is proved.

By induction on j, we have that
Aj=0
for 3 < j <n—1. Then we have the following cases.

Case 1.1 If there are two factors h;, and b; ,—; in g, then up to sign g =
hy pbyp—18 with § € Ei—i—3—r,q((s+2)p+(s+2))+(s+l—r),*.

When r = 1, by Method (2-15), we easily get that

E5H2a(GH2)p(+2)tex _ Zplayhs o} =0

k _
by hi’j =0 for k > 1.
When r > 2, by Theorem 2.1 we have that
Eiv+3—r,q((s+2)p+(s+2))+(s+l—r),* -0

From the above discussion, there cannot exist two factors /sy , and by ,—; in g.
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Case 1.2 If there are two factors b; ,—; and b; ,—; in g, then up to sign g =
bin—1b1p—18 with g € Ei"‘z_”q((s+2)1’+(s+2))+(s+1_’)’*. By Theorem 2.1,

Eiv+2—r,q((s+2)p+(s+2))+(s+1_")7* =0,

showing that there cannot exist two factors by ,—; and by ,—; in g.
Case2 A, =1.

If r > 3, then we would have / <s4+6—r < p+3—r < p. Itis easy to see that A,
is impossible to equal 1 when r > 3. Thus in the rest of this case, we always assume
r<2.

From the fifth equality of (3-3), ZL] ¢i3+1=Aszp,and 0 < ZLI ci3=<I<p+1,
we can deduce
A3 = 1.
By induction on j, we get that
Aj=1
for 3 < j <n—1. Thus (3-3) turns into

/
Zei=s+1—r,

i=1

/
Zci,0=s+2,

i=1

/
Zci’l =S+2,

i=1

!
Z Ci2 =P,

(3-4) i=1

!
Zcm =p—1L

i=1

/
Zci,n—l =p-—1,

i=1

/
Zci’” =1.

i=1
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From the fourth equality of (3-4), ZLI ¢ip = p,using ¢; » =0 or 1, we have

[ > p.
Note / <s+4+5.S0s5s>p—5.By 0<s < p—3, wesee s may equal p—5 or p—4.
Case2.1 Whens=p—4, g=wwy---w; € E11’+2_”t(1’_4’”)+1_”*.

Case 2.1.1 r = 2. Then we have

=W Wy W € Ef,t(p—4,n)+1—r,* = Eﬁ)@p”q+(p—2)pq+(p—2)q+(p—5),*‘

Note that / > p. From dim g = p, we have dim w; = 1 for each i. Then up to sign
the generator ¢ must be of the form (x1x3---X,_5)(¥1Y2¥3¥4ys) as in (2-8). By
Method (2-15) and (3-4), we have that up to sign g can be one of the following:

an+1a5_7a3hr31,0h5—2,2’ a5_6a3hn+1,0hﬁ,0h;21—2,2’
al~Cash) ohn—12hn—22.  anyral=Ch; (hsohn_, .
af,’_shn+1,ohn,oh3,oh3_2,2, aylz_shioh3,0hn—l,Zhn—2,2,
an+1aﬁ_6h,3,,ohn—z,2h1,2, a{;_shn—i—l,ohi,ohn—Z,Zhl,z,
ag_shi,()hn—l,Zhl,I
By (2-1), hf.f ;=0 for k > 1. Thus all the generators above are trivial.
Case 2.1.2 r = 1. Then we have
g=wiwy---wj € E{7+1,217"q+(p—2)pq+(p—2)q+(p—4),*_
In this case, we see that / may equal p or p + 1.

If / = p, then up to sign the generator g has the form (x1x2---xp—4)(¥1y213)(21)
as in (2-8). By Method (2-15) and (3-4), we have that up to sign g may be one of the
following:

6 12 -5

antrasy ashy ohn—22bn—2,1,  al >azhni1,0Mn,0hn—2,2bn-21,
-5 12 5 2

an > aszhy ohn—1,2bn—2.1, ah > azhy ohn—22bn—1,1,

—5 —4
An1a8 " hy ohs 0hpn—2 2bp—21, ab *hyi1,0h3,0hn—2.2b0—2.1.

al™*hy ohs 0hn—1,2bn-2.1. al™*hy oh3 0hn—22bn—1.1,
an-i—la;l;_shi’ohl,an—Z,l , al * hyi1 0hnoh1,2bn—21,
615_4h,2,,0h1,2bn—1,1, an+1a£_5h,%’0hn—2,2bl,l,
al ™ hyi1,0hn0hn—2,2b11, a;l;_4h,3,0hn—l 2b11.
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k _ .
By (2-1), hi, i= 0 for k > 1. Thus among the generators above, only the following

seven generators are nontrivial:

=5
al™ashpi1,0hn,0hn—2,26n-2,1,

_s
ant1al > hyohs ohp—2,2bn—21.

—4
al ™ hpq1,0h3,0hn—2,2bn—2.1,

—4
al " hyoh3,0hn—1,2bn-2,1.

—4
al ™ hpohs 0hn—22bp—1.1,

—4
aﬁ) hn+1,0hn,oh1,2bn—2,1,

—4
al ™ hpg1,0hn,00hn—2,2b1,1,

denoted by G17, Gis, -+, Ga3, respectively.

If /] = p+ 1, then we have that dim w; = 1 for 1 <i < p + 1. Then up to sign
the generator g must be of the form (x;x5---xp_4)(y1y2Y3¥4ys) as in (2-8). By
Method (2-15) and (3-4), we have that up to sign g may be one of the following:

an+1ar1t)_7a3a0hr31,0h121—2,2’
af~Cazaoh), o hn—1,2hn—2.2,
aﬁ_saohn+1,0hn,0h3,0h5—2,2’
anyralCaoh;, ghn—z2h1 2.

af "> aoh;, ohn-1,2h1,2.

aﬁ_(jagal hn+1,0hn,0hn—l,1h}21—2,2’
a5_6a3611h2’0hn—1,1hn—l,Zhn—Z,Zv
ab 7 arhng1,0h3,0hn-1100_ 5,
al™aihyohs,0hn—1,1hn—1,2hn-22.
af "> arhny1,0hnohaihn_y 5.
a}{_salhﬁ,0h2,1hn—1,2hn—2,27
a’I;_Salhn+1,0hn,0hn—1,lhn—2,2h 1,2,
af:_salhi,ohn—1,1hn—1,2h1,2’
a5_5a3hn+1,0h1,0hn—1,1h1%—2,2’

-5
al ™ ashy,ohi,0hn—1,1hn—1,2"n—2.2,

a5_6a3a0hn+1,Ohiohﬁ_z’z,
anyral " Caohy, ohsohi_s 5.
ayllj_saoh%,th,Ohn—l,2hn—2,2’
a,f_saothr1,0h,2,,0hn—2,2h1,2,
an+1a5_7a301h,%,ohn—l,lh,%_z,z,
a5_6“3a1h;21,0hn,1hr21—2,2»
an+1a£_6a1hn,oh3,ohn—1,1h,2,_2,2,
al=3ayhyohs,ohn,1 hi—z,z’
an+1615_6a1h,zl’ohz,lh’zl_ziz,
al™a hn+1,0hn,0h2,1h5_2,2’
an+1aﬁ_6alhﬁ,ohn—l,lhn—z,zhl,z,
ayll)_salh,zl,ohn,lhn—z,2h1,2’
ang1al~Cashnohy ohn_1,1hy_s 5.
a{,’_sa3hn,oh1,0hn,1h,%_2’2,

—s 2
an+1ay " h3 ol 0hn—1,1h,_5 5,
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aﬁ_4h3,0h1,0hn,1h,2,_2,2,
an+1ar€_5hn,oh1,oh2,1h,2,_2,2,
aZ*huoh1,0h2,1hn-12hn—2.
al ™ hyi10h1 0hn—1,1n—22h1 2,
al ™ hy ohy ohn—1,1hn—1 201 2,
aﬁ_6a3azhn+1,ohn,oh,3,_2,2,
Cln+1a5_6a3hn,0h2,oh,3,_2,2,
aﬁ_sa3hn,0h2,ohn—1,2h,2,_2’2,
aﬁ_4h3,0h2,ohn—1,2h,%_2,2,
al ™ *hny1,0h2,0h_5 201 2.
an+1ap 7 2h hn 2, 2hn—3,3’
a5_6a§hn,0hn—l,Zhn—Z,Zhn—3,3a
an-l—lay‘llJ_Ga?Jhn,OhS,Ohyz,_z,zhn—3,37
a7 azhy ohs,0hn—1 2hn—22hn—3 3.
an+1a5_6a3hﬁ’0hn—2,2h1,2hn—3,37
Clp_5f13hi ohn—1,2M12hn—33,
Clp 5a3h hn 2, 2h1 ns

p 4hn ohn 12hn 22hn 3,3,
an1a8 > hyoh3,0hn—2,2h1 203 3.
al™*hy ohs ohn—1,201 2hn—3 3.
a5_4hn,0h3,0h,21_2,2h1,n+1,
ap_4hn+1,0hn,0hi2hn—3,3a

p 4hn Ohn 2, Zhl 2h1 N

Xiugui Liu

aZ *hy oht 0hn—1,1hn-12hn—2.
a5_4hn+1,oh1,oh2,1h,%_z,z,

An1a8 > hnoh1,0hn—1,1hn—22h1 2,
al™*hy o1 ohn1hn—22h1 2.
an+1a5_7a3a2hi,ohr3¢—z,z’
ab~Casazhy, ohn-12hh_5 5,

af > ashpyy1,0h2,005_5
an+1aﬁ_6h3,oh2,0h,3,_2’2,
an+laﬁ_5hn,oh2,oh5_2,2h1,2,

aZ 4 hyohz,0hn—12hn—22h1 2.
ap_GGzhn+1 Ohn,Oh%_z’zhn—3,3:
afCashy o hi_y yhn—23.

al~ d3hn+1,oh3,oh,2,_2,2hn—3,3,
a5_5a3hn,0h3,0h,21_2,2hn—2,3,

a7 azhys1,0hn,0hn—2,2h1,2hn—3.3,
ap_sa3h§ ohn—2,2M1,2hn—2 3,
an-i—lap Sh hn 2, zhn—3,3’
a5_4hrzz,0hr21 2 2hn 2,3,

aZ *hyy1,0h3,0hn—2,201 2hn—3 3.
al™*hy ohs ohn—22h1 2hn—2,3,

an-i—la hn ohlzhn 3,3,

p—4
ay hn,ohl,zhn—2,3v

Note that hf.‘ ;= 0 for kK > 1. Among the generators above, the nontrivial generators

are as follows:
-5
al™aihy,ohs,0hn—1,1hn—1,2"n—2.2,
-5
aﬁ a3hn,oh1,ohn—1,1hn—l,zhn—z,z,

—4
al ™ hpohy0ha,1hp—1,2hn—2,

—s

al 7 aihpy1,0hn0hn—1,1hn—22h1,
—4

615 h3,0ht,0hn—1,1"n-1,2"n—22,

-5
any1al " hpohy 0hn—1,1hn—22h1 2,
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al *hys1,0h1,0hn—1,1hn-2ph1 2. a8 hyoh1 ohnihn—22h1 .,
al™*hy o1 ohn—1,1hn—1,2h1 2. al *hyohz,0hn—12hn—22h1 2.
al™azhy ohs 0hn—12hn—22hn—33. ab>ashyi1,0hnohn—22h12hn-3 3.
ans1a2 > huohs ohn—22h1 2hn—33. aZ *hyy1,0h3,0hn—2,201 2hn—3 3.
aZ™* hyohs,0hn—1,2h12hn—3 3. aZ *hyohs,0hn—22h1 2hn—2 3.

denoted by G;, G, ---, Gi¢, respectively.

Case2.2 Whens=p—5, g=wjwy---wj € E11’+1_”t(1’_5’”)+1_”*.

Case 2.2.1 r = 2. Then we have

g=wiwy--- W € E{)—l,217”q+(p—3)pq+(p—3)q+(p—6),*'

Recall that / > p. Thus in this case, the generator g is impossible to exist.

Case 2.2.2 r = 1. Then we have

g=wiWy---wj € Ef,Zp”qu(p—3)pq+(p—3)q+(p—5),*_

Note that / > p. From dim g = p, we have that / must equal p. Then dim w; = 1 for
each 7. Soup to sign the generator g must be of the form (x1x2-+-xp—5)(Y1V2V3Y4)5)
as in (2-8). By Method (2-15) and (3-4), we have that up to sign g can be one of the
following:

712 13 —6 3

Ant1ay ashy ohy_s 5. ay ashpy1,0hn,0M,_5 5,
6 12 -6 3

ap=azhy ohn—12hn—22,  an1af "hnohs ohy, s 5,
—s 3 _s 2

ap > hnt1,0h3,00 5 5, ay ™ hnoh3,0hn—12h; 5 5.

an+1a,§’_6hi’0h§_2’2h1’2, a,f_shn+1,ohn,oh,3_2,2h1,2,
ag_shi,ohn—l,Zhn—2,2h1,2-
By (2-1), hf." ;= 0 for & > 1. Thus none of the generators above is nontrivial.
Combining Cases 1 and 2, we complete the proof of Proposition 3.1. a

Now we begin to consider the representative of the composite map ¢, —1&s42,, in the
ASS. We need the following theorem about the §—element.

Theorem 3.2 [5, Theorem 2.2] Let p > 5, 0 <s < p —2. Then the permanent

cocycle
K} s+2,t,%
a2h2,0h1,1 € Er
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converges to the second Greek letter element
2 2,t
Bs+2 € Ext (2, Zp)

in the MSS, where r > 1,t = (s +2)pg + (s + 1)qg + s and ,Es+2 converges to the
B —element
Bs+2 € T(s+2) pg+(s+1)g—2(S)

in the ASS, where B4, is described in Definition 1.1.

Now we consider some results on the product hobn_lhng 42 -

Lemma3.3 (1) Theproducthobn_lhngerz eExtf4+6”(S’")(Zp,Zp) is represented
by hy,0b1n—1h1na3haohy,1 € Ef+6’t(s’")’* in the MSS, where the degree

t(s,n) =q(2p" + (s +2)p + (s +2)) +5.

(2) For the twenty-three generators of E¥ +LE(p=4.m* e have
M@G)=QRn+1)p—-2n-9 (1=<i<16),
MGj)=@n—-4)p—-4n—-3 (j =17,18,19,20,22),

M(G21) = (4n—2)p —4n -5,
M(Ga3) =(2n+2)p—2n—9.
In particular,

M (hy,0b1n—1hynazhyohy 1) = p+ 55 +6.

Proof (1) Note that 1y, by,; and ajhs ohy,1 € E}>** are all permanent cocycles
in the MSS and converge nontrivially to A;, b;, Bs1» € Exty*(Zy, Zp) for 0 <5 < p
and i > 0, respectively (cf Theorem 3.2). Then

h1,0b1n—1h1 paSha ohy g € ESTOI S
is a permanent cocycle in the MSS and converges to

hobu—1hnPss2 € ExtSFO1M (7, 7,).
(2) From (2-6), we have that

M(G1) = M(aZ™>ayhyoh3 0hn—1,1hn—12hn-2.2)

= M(al™>) + M(ay) + M(hno) + M(h3,0) + M(hp—1,1)
+ M(hp—1,2) + M(hy—3,2)

=(p-5Cn+1)+3+2n—14+5+2(n—1)—1
+2mn—-1)—-14+2(n—-2)—-1

=Q2n+1Dp—-2n-9.

The other results can be obtained similarly. a
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By Proposition 3.1 and Lemma 3.3, we have the following:

Corollary 3.4 For the May E|-module G in Proposition 3.1,
_ pp+1,t(p—4,n),2n+1) p—2n—9 +1,t(p—4,n),(4n—4) p—4n—3
G=E? (p—4.n),2n+1)p—2n @ EF (p—4.n),(4n—4) p—4n

p+1,t(p—4,n),(4n—2) p—4n—>5 p+1,t(p—4,n),2n+2) p—2n—9
& EF ® EF :

where EIIJ-H,t(p—4,n),(2n+1)p—2n—9 =Z,{Gi |1 <i <16},

EIIH‘1J(P—4’")’(4n_4)p_4n_3 — Zp{gj | j =17,18,19,20,22},
E€;+1,t(p—4,n),(4n—2)l’_4”_5 = Zp{gzl}’

E11;+1,t(p—4,n),(2'l+2)l’—2”_9 = ZpiGa3}.

To show the nontriviality of the product /oby,—1hy E s+2, we need to show the following
four lemmas.

Lemma 3.5 The May E, -module Ef‘H”(P_4’”)’(2”+2)1’_2”_9 =0 forr >2.
Proof From Corollary 3.4, we have
E117+1,t(p—4,n),(2n+2)p—2n—9 = 7,{Ga3}.
By (2-3), (2-4) and (2-5), one has the first May differential of G,3 as follows:
d1(Ga23) = dy (@l hnt1,0hn,0n—2,2b1,1)
= (=DP72al ™ hyy1 0hn,0d1 (hn—2,2b1,1) + -+
= —al *hps1,0hn,0h 1 n—1hn—3,2b1,1 + -

—4
=al " hyg1,0hn,0hn—3,201 n—1b1,1 + -
#0,

showing that
p+1,t(p—4,n),2n+2)p—2n—9 __ 0
E2 = 0.

T'hus it follows that
p+1,t(p—4,n),2n+2) p—2n—9 0
Ef

for r > 2. The proof of Lemma 3.5 is finished. a
Similarly, one has the following lemmas.
Lemma 3.6 The May E,—module EP+11(p=4m.(4n=2)p=4n=5 _  for y > 2,

Lemma 3.7 The May E, —-module EPT11(p=4m.(4n=4)p=4n=3 _ for y > 2,
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Proof From Corollary 3.4,
EPFTLIp=4m),(4n=)p=4n=3 _ 7 (G, | j =17,18,19,20,22}.

By use of (2-3), (2-4) and (2-5), one has the first May differentials of the generators as
follows:
d1(Gi7) = di(al > ashu41,0hn,0hn—22bn—2.1)
= al 7 ashyi1,0hn,0hn—3201 n—1bn—2,1 g
#0,
d1(Gis) = di(ans1aE > hyoh3,0hn—2 2bn—2.1)
= ap1al " hyohs 0hn—3,201 p—1bn—2,1 s
#0,
d1(Gro) = di(al™*hys1,0h3,0hn—2,2bn—2,1)
= al ™ hyy1,0h3,0Mn—3 211 n—1bp—2.1 ot
#0,
d1(Ga0) = dy(al ™ hnoh3,0hn—1,2bn—-2,1)
= a5_4hn,oh3,0h2,2hn—3,4bn—2,120 + -
#0,
d1(G22) = d1(al™* hys1,0hn,0h1,2bp—2,1)
=al *hyi1,0h3,001 2hn—3,3bn—2,1, +

22
£0.

One can check that the first May differential of each of the five generators contains
at least a term which is not in the first May differential of the other generators. For
example, _ ;; appears only in d;(G;7) and does not appear in d;(G;) (j =18, 19,
20, 22). Thus, the five first May differentials above are linearly independent, showing

Eé)-‘rl,t(p—4,n),(4n—4)p—4n—3 —0.

Then it follows that
Ep+1,t(p—4,n),(4n—4)p—4n—3 0
H =

for r > 2. The proof of Lemma 3.7 is completed. a

Lemma 3.8 The May E, —-module EP+11(p=4m.Cn+Dp=2n=9 _ () for y > 3,
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Proof From Corollary 3.4,

E{-}—1,t(p—4,n),(2n+1)p—2n—9 — Zp{gi | 1<i< 16}
Using (2-3), (2-4) and (2-5), the first May differentials of the generators are as follows:

di(G1) = d1 (@l arhy ohs,0hn—11hn—1.2hn—22)
= (=D)Pal>a hy oh3 0hn—1.1hn—1.2d1 (hp—22) + -
= —al " arhpohs,0hn—1,1hn-101 n—1hn—3 2+
= al ™ aihyohs,0hn—1,1hn—1,2hn—32h1 n—1 LT
7& 07

d1(G2) = (—1)? 7 al 7 arhyy1,0hnohn—1,1d1(hn=z2h12) + -+
= al ™ arhyg1,0hn,00n—1,1hn—3,2h1,201 n-1 , T
#0,

d1(G3) = ()P al > ashy ohy ohn—1 1hn—1,2d1 (hy—22) + -+
= 0,1,)_5613hn,0h1,ohn—l,lhn—l,zhn—s,zh1,n—1 3 +-
#0,

d1(Ga) = (—=1)Pal™*h3 ohy ohn—1.1hn—1.2d1 (hy—22) + -
=al™*h3 o1 ohn—1,1hn—1,2hn—32h1 n—1 ST
# 0,

d1(Gs) = (=1)Pal ™ hnoh1 0h2,1hn—12d1 (hy—2) + -
= al *hyohi,0h2,1hn—12hn—32h1 n1 ST
# 07

dy(Gs) = (=) ap 10l hyohy ohn—1,1d1 (hy—2 2h12) + -
= an41a2 > hy ol 0hn—1,1hn—3 201 201 1 T
7& 07

d1(G7) = (=D)P 7 al ™ hyiy ohyohn—1,1d1 (hy—z2h12) + -+
=a? *hyi1.0h1.0hn—11n—3.201 211 01 St
#0,

d1(Gs) = (=1)P1al™* hy ohy ohn1dy (hy—z by 2) + -+
=a? *hyohy ohn1hn—32h1 201 1+

8
# 0,
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d1(Go) = (=1)? " al ™ hy ohy ohy—1,1d1 (hy—12h12) + -+
= al™*hyoh1 0hn—1,1h2,201 2hn—3.4 gt
# 0,

d1(Gro) = (1) al™*hy ohs ohp—1,2d1 (hy—2,2h1 2) + -+
= al™*hy ohy,0hn—1,2hn—32M1 211 n—1 Wt
# 0,

d1(G11) = (=D)Pal>ashy ohs,0hp—1,2hn—2,2d1 (hp—33) + -+
= al ™ ashy,ohs,0hn—12hn-22hn-a3h1 01 T
;é 07

d1(G12) = (=D)Pal > azhpi1,0hn,0hn—22h1 2d1 (hn—33) + -
= al 7 azhni1,0hn,0hn—2,2h1,2hn—a3h1 n-1 Lt
# 0,

d1(G13) = (=D)Papi1al > hyohs ohn—z 21 2di (hy—33) + -
= dp1a2 " hyohs ohn—2 201 phn—a,3h1 51 at
#0,

d1(Gra) = (=1)Pal*hyi1,0h3,0hn—2,2h1 2d1 (hy—33) + -+
= al™*hyt1,0h3,0hn—2,2h1,2hn—a,31 01 LT
# 0,

d1(Gr1s) = (=1)Pal*hy oh3,0hn—1 2h1,2d1 (hp—33) + -+
= al ™ hy oh3 0hn—1,211 2hn—a,3h1 01 s
# 0,

d1(Gr6) = (—D)Paf *hnohs,ohn—2 2k 2d1 (hy—23) + -+
= al *huoh3 0hn-22h1 201 3hn—3 4 o

£0.

One can easily check that the first May differential of each of the sixteen generators
contains at least a term which is not in the first May differential of the other generators.
Thatis, __; appears only in d;(Gx) and does not appear in d;(Gj) (j # k). Thus, the
sixteen May differentials above are linearly independent, showing that

Eé?-i—1,t(p—4,n),(2n+1)p—2n—9 —0.
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T'hen it follows that
Ep+1,t(p—4,n),(2n+1)p—2n—9 0
; =

for r > 2. The proof of this lemma is completed. |

By use of L,emmas 3.5, 3.6, 3.7 and 3.8, we can prove the nontriviality of the product
hobp—1hnBs+2 as follows:
Theorem 3.9 Let p>5,n>4,0<s < p—3. Then the product
hobu—1hnBsi2 # 0 € ExtS M (7, 7).
Here t(s,n) =2p"q+ (s +2)pg+ (s +2)q +s.

Proof From Lemma 3.3 (1), the product
hobn—1hnPss2 € ExtH (2, 7,,)

is represented in the MSS by
By ob1p—1hy naSha ohy g € ESTOISm*

Now we show that nothing hits the permanent cocycle /11,0b1,n—1/1,na5h2,0h1,1 under
the May differential d, for r > 1.

We divide the proof into the following two cases:

Case 1 When 0 <s < p —4, from Proposition 3.1 we know that in the May spectral

sequence
Ei"‘l‘sst(syn):* — 0.

Then we have
Es+5,t(s,n),* -0

for r > 1. From (2-2), one has that the permanent cocycle /1 ¢by ,— 1h1 nayhaohy ) €
E] +6:1(s:m)-* {oes not bound and converges nontrivially to hob,—1 /iy ,3 s+2 in the May
spectral sequence, then we have

hobn—1hnBys2 # 0 € ExtSF 1Mz, 7).
Case 2 When s = p —4, from Proposition 3.1 and Corollary 3.4, we have
E117+1,t(p—4,n),* — E11)+1,t(p—4,n),(2n+1)p—2n—9 ® E{-ﬁ-1,t(p—4,n),(4n—4)p—4n—3
+1,¢(p—4,n),(4n—2) p—4n—>5 +1,t(p—4,n),(2n+2) p—2n—9
@ E? 1(p—4.n),(4n—2) p—4n @ E? t(p—4.n),(2n+2) p—2n—9
Note that in this case, by Corollary 3.4,

M (hy obyperhywad " *haohy 1) = 6p — 14.
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By direct computations, we have that

M(EPTHI(p=4m.QntD)p=2n=9) _ (6) _13) = (2n+1)p—2n—9—(6p —13)
=@2n=5(p-H-1,

M (EPFTLI(p=4m),(4n=8)p=4n=3y _ (61 _13) = (4n—4)p —4n—3— (6p —13)
= (4n—10)(p—1),

M(EPTLIp=4m).(4n=2)p=4n=5) _ (6 —13) = (4n—2)p —4n—5—(6p — 13)

= (@n—=8)(p—1),
M(EPTLIp=4m).QnDp=2n=9y _ (6) _13) = (2n+2)p —2n—9— (6p —13)
=Q2n—4)(p—1D).

Using n > 4 and p > 5, we have that
2n-35(p-1)—1>0,
4n—-10)(p—1) >0,
4n—-8)(p—1)>0,
2n—4)(p—1)>0.
From (2-2), we see that the first May differential is given by
d1: Ei’t’u — E;v+1,t,u—1'

Thus by the reason of May filtration, we have

h1,0b1,n—1h1,na§_4h2,oh1,1 ¢ dy (EPT1H(p=4m).2nt1)p=2n=9)
hl,Obl,n—lhl,na§_4h2,0hl,l ¢ dy (EP T (p=4n).(4n=)p=dn=3)
1,001 n—1h1nal *hyohy,y ¢ dy (BRI (P=4m.(dn=2)p=dn=s)

hl,Obl,n—lhl,na§_4h2,0hl,l £d (EIfH’t(p_4’n)’(2"+2)p_2"_9)-

Moreover, using Lemmas 3.5, 3.6, 3.7 and 3.8, one has
Ef+1,t(p—4,n),(2n+1)p—2n—9 —0(r>2),
E’{)+1,t(p—4,n),(4n—4)p—4n—3 =0(r=>2),
E117+1,t(p—4,n),(4n—2)p—4n—5 —0(r>2),

E;}—i—1,t(p—4,n),(2n+2)p—2n—9 =0 (V > 2)'

. . —4
From the discussion above, the permanent cocycle /11 0b1 n—1 hl’naé’ h3 0hy,1 cannot

be hit by any differential in the MSS. Thus, h1,obl,n_lhl,naé’_“hz,oh],l converges
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nontrivially to ioby—1/nBp—a € Ext5F21P=4m (7, 7,,) in the MSS. Consequently,
we have _
hobu—1hnPp—2 # 0 € ExtE 2141 (7 7 ).

From Cases 1 and 2, the desired result follows. m|
Theorem 3.10 Let p>5,n>4,0<s<p—3,2=<r <s+6. Then

ExtS 6niemF=r7  7,,) =0,
where t(s,n) =2p"q+ (s +2)pg+ (s +2)g + .

Proof From Proposition 3.1, in this case

Ebl‘+6—r,t(s,n)+l—r,* —0.

By the MSS, the desired result follows. a

4 Proof of Theorem 1.7

We are now in a position to prove Theorem 1.7. The method for proving the main
theorem is by the classical ASS. To prove Theorem 1.7 is equivalent to proving the
following theorem. The proof of Theorem 4.1 depends on Theorems 3.9 and 3.10
which are obtained at the end of Section 3.

Theorem 4.1 Let p>5,n>4,0<s < p—3. Then the product
hobn—1hnPs+r € BxtSFO1EM (7, 7,,)
is a permanent cycle in the ASS, and converges nontrivially to the composite map
Es+2,n8n—1 € Tr(s,m)—s—6(S)
of order p, where t(s,n) =2p"q+ (s +2)pg+ (s +2)qg +s.
Proof From Theorem 1.4, the {—element {,_; is represented by
hobn— € Ext3P" 179(Z,, Z.,)
in the ASS. Meanwhile, from Theorem 1.6 we know that
(Biyio)s(hn) € EXt%P”q-i—(P—H)q-i—l (H*V(1).Z,)
is a permanent cycle in the ASS and converges to a nontrivial element

Wn € Tpng4(p+1)g—1 (V(l))
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of order p. Then we consider the composite map

Esr2,n8n—1 = Byy1@nln—1-

Since @, is represented by (Bi1ig)« (1) € E)(til’pii‘l‘”p"'1)‘1"'1 (H*V(1),Zp) in the
ASS, then the map

Es+2.n8n—1
is represented by
(oj1B*2irio) s (hobu—1hn)
in the ASS.

From Theorem 3.2 and the knowledge of Yoneda products we know that the composite

(i1io)«

Goj1 B T2ivio)w: ExtG*(Zp, Zp) — ExtG* (H*V (1), Z,)
Go1B2)- Ext} 246+ Dpa+GtDats (g 7 )

is a multiplication up to nonzero scalar by By € Extf4+2"1[(s+2)p+(s+1)]+s (Zp,Zp).
It follows that the composite map &4 ,$,—1 is represented by

hobn_lhngs_{_z € Extf4+6’t(s’n) (Zp, Zp)
in the ASS.

By Theorem 3.9,
hobn—1hnBst2 € BxtSF 17, 7,)

is nontrivial. Recall that the Adams differential is given by
gr L ESt _y pstrttr—l
D E; , .

Then from Theorem 3.10, we see that /ob,,—1 E s+2 can not be hit by any differential
in the ASS. Consequently, the corresponding homotopy element

é-n—lés—kz,n

is nontrivial and of order p. The proof of Theorem 4.1 is completed. a
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