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Rigidification of quasi-categories

DANIEL DUGGER

DAVID I SPIVAK

We give a new construction for rigidifying a quasi-category into a simplicial category,
and prove that it is weakly equivalent to the rigidification given by Lurie. Our
construction comes from the use of necklaces, which are simplicial sets obtained by
stringing simplices together. As an application of these methods, we use our model
to reprove some basic facts from Lurie [13] about the rigidification process.

55U40; 18G30, 18B99

1 Introduction

Quasi-categories are a certain generalization of categories, where in addition to the
usual 1–morphisms one has n–morphisms for every natural number n. They are special
among higher categories in that they have the property that for n> 1 the n–morphisms
are all invertible in an appropriate sense. Quasi-categories have been extensively studied
by Cordier and Porter [6], by Joyal [11; 12], and by Lurie [13]. If K is a quasi-category
and x and y are two objects of K , then one may associate a “mapping space” K.x;y/

which is a simplicial set. There are many different constructions for these mapping
spaces, but in [13] one particular model is given for which there are composition maps
K.y; z/ �K.x;y/ ! K.x; z/ giving rise to a simplicial category. This simplicial
category is denoted C.K/, and it may be thought of as a rigidification of the quasi-
category K . It is proven in [13] that the homotopy theories of quasi-categories and
simplicial categories are equivalent via this functor.

In this paper we introduce some new models for the mapping spaces K.x;y/, which
are particularly easy to describe and particularly easy to use—in fact they are just the
nerves of ordinary categories (ie, 1–categories). Like Lurie’s model, our models admit
composition maps giving rise to a simplicial category; so we are giving a new method
for rigidifying quasi-categories. We prove that our construction is homotopy equivalent
(as a simplicial category) to Lurie’s C.K/. Moreover, because our mapping spaces
are nerves of categories there are many standard tools available for analyzing their
homotopy types. We demonstrate the effectiveness of this by giving new proofs of
some basic facts about the functor C.�/.
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One payoff of this approach is that it is possible to give a streamlined proof of Lurie’s
Quillen equivalence between the homotopy theory of quasi-categories and simplicial
categories. This requires, however, a more detailed study of the model category
structure on quasi-categories. We will take this up in a sequel [8] and prove the Quillen
equivalence there.

1.1 Mapping spaces via simplicial categories

Now we describe our results in more detail. A quasi-category is a simplicial set that has
the right-lifting-property with respect to inner horn inclusions ƒn

i !�n , 0< i < n. It
turns out that there is a unique model structure on sSet where the cofibrations are the
monomorphisms and the fibrant objects are the quasi-categories; this will be called the
Joyal model structure and denoted sSetJ . The weak equivalences in sSetJ will here
be called Joyal equivalences (they are called “weak categorical equivalences” in [12]).
The existence of the Joyal model structure will not be needed in this paper, although it
provides some useful context. The notions of quasi-categories and Joyal equivalences,
however, will be used in several places. See Section 2.3 for additional background.

There is a functor, constructed in [13], which sends any simplicial set K to a cor-
responding simplicial category C.K/ 2 sCat . This is the left adjoint in a Quillen
pair

CW sSetJ � sCat WN;

where N is called the coherent nerve. To avoid later confusion, we note that if a
simplicial category D has discrete mapping spaces—that is, if it is just an ordinary
category—then N D coincides with the classical nerve construction. The functor N

can be described quite explicitly (see Section 2), but the functor C is in comparison
a little mysterious. In [13] each C.K/ is defined as a certain colimit in the category
sCat , but colimits in sCat are notoriously difficult to understand.

Our main goal in this paper is to give a different model for the functor C. Define a
necklace (which we picture as “unfastened”) to be a simplicial set of the form

�n0 _�n1 _ � � � _�nk

where each ni � 0 and where in each wedge the final vertex of �ni has been glued
to the initial vertex of �niC1 . Necklaces were used by Baues in his study of loop
spaces [2].

The first and last vertex in any necklace T are denoted ˛T and !T , respectively (or
just ˛ and ! if T is obvious from context). If S and T are two necklaces, then by
S _T we mean the necklace obtained in the evident way, by gluing the final vertex !S

Algebraic & Geometric Topology, Volume 11 (2011)



Rigidification of quasi-categories 227

of S to the initial vertex ˛T of T . Write Nec for the category whose objects are
necklaces and where a morphism is a map of simplicial sets which preserves the initial
and final vertices.

Let S 2 sSet and let a; b 2 S0 . If T is a necklace, we use the notation

T ! Sa;b

to indicate a morphism of simplicial sets T ! S which sends ˛T to a and !T to b .
Let .Nec # Sa;b/ denote the evident category whose objects are pairs ŒT;T ! Sa;b �

where T is a necklace. Note that for a; b; c 2 S0 there is a functor

.Nec # Sb;c/� .Nec # Sa;b/ �! .Nec # Sa;c/.1:2/

which sends the pair .ŒT2;T2! Sb;c �; ŒT1;T1! Sa;b �/ to ŒT1_T2;T1_T2! Sa;c �.

Let Cnec.S/ be the function assigning to any a; b2S0 the simplicial set Cnec.S/.a; b/D

N.Nec#Sa;b/ (the classical nerve of the 1–category .Nec#Sa;b/). The above pairings
of categories induce pairings on the nerves, which makes Cnec.S/ into a simplicial
category with object set S0 .

1.3 Theorem There is a natural zigzag of weak equivalences of simplicial categories
between Cnec.S/ and C.S/, for all simplicial sets S .

In the above result, the weak equivalences for simplicial categories are the so-called
“DK–equivalences” used by Bergner in [3] and first defined by Dwyer and Kan [9]. See
Section 2 for this notion.

In this paper we also give an explicit description of the mapping spaces in the simplicial
category C.S/. A rough statement is given below, but see Section 4 for more details.

1.4 Theorem Let S be a simplicial set and let a; b 2 S . Then the mapping space
X D C.S/.a; b/ is the simplicial set whose n–simplices are triples subject to a certain
equivalence relations. The triples consist of a necklace T , a map T ! Sa;b , and a flag
�!
T D fT 0 � � � � � T ng of vertices in T . For the equivalence relation, see Corollary 4.4.
The face maps and degeneracy maps are obtained by removing or repeating elements T i

in the flag.

The pairing C.S/.b; c/�C.S/.a; b/ �! C.S/.a; c/

sends the pair of n–simplices .ŒT ! S I
�!
T i �; ŒU ! S;

�!
U i �/ to ŒU _T ! S;

�����!
U i [T i �.
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Theorem 1.3 turns out to be very useful in the study of the functor C. There are many
tools in classical homotopy theory for understanding the homotopy types of nerves of
1–categories, and via Theorem 1.3 these tools can be applied to understand mapping
spaces in C.S/. We demonstrate this technique in Section 6 by proving, in a new way,
the following two properties of C found in [13].

1.5 Theorem Let X and Y be simplicial sets.

(a) The natural map C.X �Y /! C.X /�C.Y / is a weak equivalence of simplicial
categories.

(b) If X ! Y is a Joyal equivalence then C.X /! C.Y / is a weak equivalence.

1.6 Notation and terminology

We will sometimes use sSetK to refer to the usual model structure on simplicial
sets, which we’ll term the Kan model structure. The fibrations are the Kan fibrations,
the weak equivalences (called Kan equivalences from now on) are the maps which
induce homotopy equivalences on geometric realizations, and the cofibrations are the
monomorphisms.

We will often be working with the category sSet�;� D .@�1 # sSet/. Note that Nec is
a full subcategory of sSet�;� .

An object of sSet�;� is a simplicial set X with two distinguished points a and b . We
sometimes (but not always) write Xa;b for X , to remind us that things are taking place
in sSet�;� instead of sSet .

If C is a (simplicial) category containing objects X and Y , we write C.X;Y / for the
(simplicial) set of morphisms from X to Y .

Acknowledgements The first author was supported by NSF grant DMS-0604354.
The second author was supported by ONR grant N000140910466. We are grateful to
Emily Riehl for comments on an earlier version of this paper.

2 Background on quasi-categories

In this section we give the background on quasi-categories and simplicial categories
needed in the rest of the paper.
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2.1 Simplicial categories

A simplicial category is a category enriched over simplicial sets; it can also be thought
of as a simplicial object of Cat in which the simplicial operators are all equal to the
identity on the object sets. We use sCat to denote the category of simplicial categories.
Given a simplicial category D, let �0D denote the ordinary category having the same
object set, and where the set of morphisms from x to y is �0

�
D.x;y/

�
; as this

construction is functorial in D, we regard �0W sCat! Cat as a functor.

A cofibrantly-generated model structure on sCat was developed in [3]. In this structure
a map of simplicial categories F W C!D is a weak equivalence (sometimes called a
DK–equivalence) if

(1) For all a; b 2 ob C, the map C.a; b/! D.Fa;Fb/ is a Kan equivalence of
simplicial sets;

(2) The induced functor of ordinary categories �0F W �0C! �0D is surjective on
isomorphism classes of objects.

Likewise, the map F is a fibration if

(1) For all a; b2ob C, the map C.a; b/!D.Fa;Fb/ is a Kan fibration of simplicial
sets;

(2) For all a 2 ob C and b 2 ob D, if eW Fa! b is a map in D which becomes an
isomorphism in �0D, then there is an object b0 2 C and a map e0W a! b0 such
that F.e0/D e and e0 becomes an isomorphism in �0C.

The cofibrations are the maps which have the left lifting property with respect to the
acyclic fibrations.

2.2 Remark The second part of the fibration condition seems a little awkward at
first. In this paper we will actually have no need to think about fibrations of simplicial
categories, but have included the definition for completeness.

Bergner writes down sets of generating cofibrations and acyclic cofibrations in [3].

2.3 Quasi-categories and Joyal equivalences

As mentioned in the introduction, there is a unique model structure on sSet with the
properties that

(i) The cofibrations are the monomorphisms;

(ii) The fibrant objects are the quasi-categories.
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It is easy to see that there is at most one such structure. To do this, for any set S let
E.S/ be the groupoid with object set S having the property that for any two objects
s1; s2 2 S there is a unique map s1 ! s2 . Let E1 be the nerve of the groupoid
E.f0; 1g/. The k –simplices of E1 may be identified with .kC1/–tuples consisting of
0’s and 1’s, where the face and degeneracy maps are the usual deletion and repetition
of entries. Note that the geometric realization of E1 is essentially the standard model
for S1 . One may also describe E1 as the 0–coskeleton—see Artin and Mazur [1],
for instance—of the set f0; 1g. If X is any simplicial set then maps X !E1 are in
bijective correspondence with set maps X0! f0; 1g.

Assume that a model structure on sSet exists having properties (i) and (ii) above. The
map E1!� has the right lifting property with respect to all monomorphisms, and so it
will be an acyclic fibration in this structure. Therefore X �E1!X is also an acyclic
fibration for any X , and hence X �E1 will be a cylinder object for X . Since every
object is cofibrant, a map A! B will be a weak equivalence if and only if it induces
bijections ŒB;Z�E1 ! ŒA;Z�E1 for every quasi-category Z , where ŒA;Z�E1 means
the coequalizer of sSet.A�E1;Z/� sSet.A;Z/. Therefore the weak equivalences
are determined by properties (i)–(ii), and since the cofibrations and weak equivalences
are determined so are the fibrations. Thus, such a model category structure will be
unique.

Motivated by the above discussion, we define a map of simplicial sets A! B to
be a Joyal equivalence if it induces bijections ŒB;Z�E1 ! ŒA;Z�E1 for every quasi-
category Z .

That there actually exists a model structure satisfying (i) and (ii) is not so clear,
but it was established by Joyal. See Joyal [11; 12], Lurie [13] for another proof
(particularly Theorems 2.2.5.1 and 2.4.6.1), or the appendix of the sequel [8] for a
compact presentation of Joyal’s arguments. We will call this the Joyal model structure
and denote it by sSetJ . The weak equivalences are defined differently in both [12] and
[13], but of course turn out to be equivalent to the definition we have adopted here.

In the rest of the paper we will never use the Joyal model structure, only the notion of
Joyal equivalence.

2.4 Background on C and N

Given a simplicial category S , one can construct a simplicial set called the coherent
nerve of S ; see Cordier [5] and Lurie [13, 1.1.5]. We will now describe this construction.

Recall the adjoint functors F W Grph � Cat WU . Here Cat is the category of (small)
1–categories, and Grph is the category of directed graphs: a graph consists of a vertex
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set X0 , an edge set X1 , and two maps X1 � X0 . The functor U is the evident
forgetful functor that takes a category C to Mor.C /� ob.C /, and F is a free functor
that adds in formal compositions. See Mac Lane [14, Chapter II.7].

Given any category C we may then consider the comonad resolution .F U /�.C/ given
by Œn� 7! .F U /nC1.C/. This is a simplicial category. There is a functor of simplicial
categories .F U /�.C/!C (where the latter is considered a discrete simplicial category).
This functor induces a weak equivalence on all mapping spaces, a fact which can be
seen by applying U , at which point the comonad resolution picks up a contracting
homotopy. Note that this means that the simplicial mapping spaces in .F U /�.C/ are
all homotopy discrete.

Recall that Œn� denotes the category 0! 1! � � � ! n, where there is a unique map
from i to j whenever i � j . We let C.�n/ denote the simplicial category .F U /�.Œn�/.
The mapping spaces in this simplicial category can be analyzed completely, and are as
follows. For each i and j , let Pi;j denote the poset of all subsets of fi; i C 1; : : : ; j g

containing i and j (ordered by inclusion). Note that the nerve of Pi;j is isomorphic
to the cube .�1/j�i�1 if j > i , �0 if j D i , and the empty set if j < i . The nerves
of the Pi;j ’s naturally form the mapping spaces of a simplicial category with object
set f0; 1; : : : ; ng, using the pairings Pj ;k �Pi;j ! Pi;k given by union of sets.

2.5 Lemma There is an isomorphism of simplicial categories C.�n/ŠNP .

2.6 Remark The proof of the above lemma is a bit of an aside from the main thrust of
the paper, so it is given in Appendix A. In fact we could have defined C.�n/ to be NP ,
which is what Lurie does in [13], and avoided the lemma entirely; the construction
.F U /�.Œn�/ will never again be used in this paper. Nevertheless, the identification of
NP with .F U /�.Œn�/ demonstrates that NP arises naturally in this setting.

For any simplicial category D, the coherent nerve of D is the simplicial set N D given by

Œn� 7! sCat.C.�n/;D/:

It was proven by Lurie [13] that if every mapping space in D is a Kan complex, then
N D is a quasi-category; see also Lemma 6.5 below.

The functor N has a left adjoint. If we temporarily denote this by C0 , note that there
are canonical bijections

sCat.C0.�n/;D/Š sSet.�n;N D/D sCat.C.�n/;D/:

It follows from this that C0.�n/Š C.�n/. It therefore makes sense to denote the left
adjoint of N as just CW sSet! sCat .
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Any simplicial set K may be written as a colimit of simplices via the formula

K Š colim
�n!K

�n;

and consequently one has

C.K/Š colim
�n!K

C.�n/.2:7/

where the colimit takes place in sCat . This formula is a bit unwieldy, however, in
the sense that it does not give much concrete information about the mapping spaces
in C.K/. The point of the next three sections is to obtain such concrete information,
via the use of necklaces.

3 Necklaces

A necklace is a simplicial set obtained by stringing simplices together in succession.
In this section we establish some basic facts about them, as well as facts about the
more general category of ordered simplicial sets. When T is a necklace we are able to
give a complete description of the mapping spaces in C.T / as nerves of certain posets,
generalizing what was said for C.�n/ in the last section. See Proposition 3.8.

As briefly discussed in the introduction, a necklace is defined to be a simplicial set of
the form

�n0 _�n1 _ � � � _�nk

where each ni � 0 and where in each wedge the final vertex of �ni has been glued
to the initial vertex of �niC1 . We say that the necklace is in preferred form if either
k D 0 or each ni � 1.

Let T D�n0 _�n1 _ � � � _�nk be in preferred form. Each �ni is called a bead of
the necklace. A joint of the necklace is either an initial or a final vertex in some bead.
Thus, every necklace has at least one vertex, one bead, and one joint; �0 is not a bead
in any necklace except in the necklace �0 itself.

Given a necklace T , write VT and JT for the sets of vertices and joints of T . Note
that VT D T0 and JT � VT . Both VT and JT are totally ordered, by saying a � b

if there is a directed path in T from a to b . The initial and final vertices of T are
denoted ˛T and !T (and we sometimes drop the subscript); note that ˛T ; !T 2 JT .

Every necklace T comes with a particular map @�1! T which sends 0 to the initial
vertex of the necklace, and 1 to the final vertex. If S and T are two necklaces,
then by S _ T we mean the necklace obtained in the evident way, by gluing the
final vertex of S to the initial vertex of T . Let Nec denote the full subcategory of
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sSet�;�D .@�1 # sSet/ whose objects are necklaces @�1!T . By a map of necklaces
we mean a map in this category. We will sometimes talk about Nec as though it is a
subcategory of sSet .

A simplex is a necklace with one bead. A spine is a necklace in which every bead is
a �1 . Every necklace T has an associated simplex and spine, which we now define.
Let �ŒT � be the simplex whose vertex set is the same as the (ordered) vertex set of T .
Likewise, let SpiŒT � be the longest spine inside of T . Note that there are inclusions
SpiŒT � ,! T ,! �ŒT �. The assignment T ! �ŒT � is a functor, but T ! SpiŒT � is
not (for instance, the unique map of necklaces �1!�2 does not induce a map on
spines).

3.1 Ordered simplicial sets

If T ! T 0 is a map of necklaces, then the image of T is also a necklace. To prove
this, as well as for several other reasons scattered throughout the paper, it turns out to
be very convenient to work in somewhat greater generality.

If X is a simplicial set, define a relation on its 0–simplices by saying that x � y if
there exists a spine T and a map T ! X sending ˛T 7! x and !T 7! y . In other
words, x� y if there is a directed path from x to y inside of X . Note that this relation
is clearly reflexive and transitive, but not necessarily antisymmetric: that is, if x � y

and y � x it need not be true that x D y . In cases where we are considering different
simplicial sets X and Y , we will write �X and �Y to distinguish the relations.

3.2 Definition A simplicial set X is ordered if

(i) The relation � defined on X0 is antisymmetric;

(ii) A simplex x 2Xn is determined by its sequence of vertices x.0/� � � � � x.n/;
ie no two distinct n–simplices have identical vertex sequences.

Note the role of degenerate simplices in condition (ii). For example, notice that �1=@�1

is not an ordered simplicial set.

3.3 Lemma Let X and Y denote ordered simplicial sets and let f W X ! Y be a
map.

(1) The category of ordered simplicial sets is closed under taking finite limits.

(2) Every necklace is an ordered simplicial set.

(3) If X 0 �X is a simplicial subset, then X 0 is also ordered.
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(4) The map f is completely determined by the map f0W X0! Y0 on vertices.

(5) If f0 is injective then so is f .

(6) The image of an n–simplex xW �n ! X is of the form �k ,! X for some
k � n.

(7) If T is a necklace and yW T !X is a map, then its image is a necklace.

Proof For (1), the terminal object is a point with its unique ordering. Given a diagram
of the form

X �!Z � Y;

let ADX �Z Y . It is clear that if .x;y/�A .x
0;y0/ then both x �X x0 and y �Y y0

hold, and so antisymmetry of �A follows from that of �X and �Y . Condition (ii)
from Definition 3.2 is easy to check.

Parts (2)–(5) are easy, and left to the reader.

For (6), the sequence x.0/; : : : ;x.n/ 2 X0 may have duplicates; let d W �k ! �n

denote any face such that x ı d contains all vertices x.j / and has no duplicates.
Note that x ı d is an injection by (5). A certain degeneracy of x ı d has the same
vertex sequence as x . Since X is ordered, x is this degeneracy of x ı d . Hence,
x ı d W �k ,!X is the image of x .

Claim (7) follows from (6).

The following notion is also useful:

3.4 Definition Let A and X be ordered simplicial sets. A map A! X is called
a simple inclusion if it has the right lifting property with respect to the canonical
inclusions @�1 ,! T for all necklaces T . (Note that such a map really is an inclusion
using Lemma 3.3(5), because it has the lifting property for @�1!�0 ).

It is sometimes useful to think of a map T ! X , where T is a necklace, as being
a “generalized path” in X . The notion of simple inclusion says if there is such a
“generalized path” in X whose endpoints are both in A, then it must lie entirely
within A. As a simple exercise, the reader might check that four out of the five
inclusions �1 ,!�1 ��1 are simple inclusions.

3.5 Lemma A simple inclusion A ,!X of ordered simplicial sets has the right lifting
property with respect to the maps @�k ,!�k for all k � 1.

Algebraic & Geometric Topology, Volume 11 (2011)



Rigidification of quasi-categories 235

Proof Suppose the following square is given:

@�k //

��

A

��
�k // X:

By restricting the map @�k!A to @�1 ,! @�k (given by the initial and final vertices
of @�k ), we get a corresponding lifting square with @�1 ,! �k . Since A ! X

is a simple inclusion, this new square has a lift l W �k ! A. It is not immediately
clear that l restricted to @�k equals our original map, but the two maps are equal
after composing with A!X ; since A!X is a monomorphism, the two maps are
themselves equal.

3.6 Lemma Suppose that X  A! Y is a diagram of ordered simplicial sets, and
both A!X and A! Y are simple inclusions. Then the pushout B DX qA Y is an
ordered simplicial set, and the inclusions X ,! B and Y ,! B are both simple.

Proof We first show that the maps X ,!B and Y ,!B have the right-lifting-property
with respect to @�1 ,! T for all necklaces T . To see this, suppose that u; v 2X are
vertices, T is a necklace, and f W T !Bu;v is a map; we want to show that f factors
through X . Note that any simplex �k ! B either factors through X or through Y .
Suppose that f does not factor through X . From the set of beads of T which do not
factor through X , take any maximal subset T 0 in which all the beads are adjacent.
Then we have a necklace T 0 � T such that f .T 0/ � Y . If there exists a bead in T

prior to ˛T 0 , then it must map into X since T 0 was maximal; therefore f .˛T 0/ would
lie in X \Y DA. Likewise, if there is no bead prior to ˛T 0 then f .˛T 0/D u and so
again f .˛T 0/ lies in X \Y DA. Similar remarks apply to show that f .!T 0/ lies in A.
At this point the fact that A ,! Y is a simple inclusion implies that f .T 0/�A�X ,
which is a contradiction. So in fact f factored through X .

We have shown that X ,! B (and dually Y ,! B ) has the right-lifting-property with
respect to maps @�1 ,! T , for T a necklace. Now we show that B is ordered, and
this will complete the proof. So suppose u; v 2B are such that u� v and v� u. There
there are spines T and U and maps T ! Bu;v , U ! Bv;u . Consider the composite
spine T _U ! Bu;u . If u 2X , then by the proven right-lifting-property for X ,! B

it follows that the image of T _U maps entirely into X ; so u �X v and v �X u,
which means uD v because X is ordered. The same argument works if u 2 Y , so
this verifies antisymmetry of �B .

To verify condition (ii) of Definition 3.2, suppose p; qW �k ! B are k –simplices
with the same sequence of vertices; we wish to show p D q . We know that p factors
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through X or Y , and so does q ; if both factor through Y , then the fact that Y is ordered
implies that p D q (similarly for X ). So we may assume p factors through X and q

factors through Y . By induction on k , the restrictions of p and q to any proper face
of �k are equal; therefore pj@�k and qj@�k are equal, hence they factor through A.
By Lemma 3.5 applied to A ,! X , the map p factors through A. Therefore it also
factors through Y , and now we are done because q also factors through Y and Y is
ordered.

3.7 Rigidification of necklaces

Let T be a necklace. Our next goal is to give a complete description of the simplicial
category C.T /. The object set of this category is precisely T0 .

For vertices a; b 2 T0 , let VT .a; b/ denote the set of vertices in T between a and b ,
inclusive (with respect to the relation �). Let JT .a; b/ denote the union of fa; bg
with the set of joints between a and b . There is a unique subnecklace of T with
joints JT .a; b/ and vertices VT .a; b/; let zB0; zB1; : : : zBk denote its beads. There are
canonical inclusions of each zBi to T . Hence, there is a natural map

C. zBk/.jk ; b/�C. zBk�1/.jk�1; jk/�� � ��C. zB1/.j1; j2/�C. zB0/.a; j1/!C.T /.a; b/

obtained by first including the zBi ’s into T and then using the composition in C.T /

(where ji and jiC1 are the joints of zBi ). We will see that this map is an isomorphism.
Note that each of the sets C. zBi/.�;�/ has an easy description, as in Lemma 2.5;
from this one may extrapolate a corresponding description for C.T /.�;�/, to be
explained next.

Let CT .a; b/ denote the poset whose elements are the subsets of VT .a; b/ which
contain JT .a; b/, and whose ordering is inclusion. There is a pairing of categories

CT .b; c/�CT .a; b/! CT .a; c/

given by union of subsets.

Applying the nerve functor, we obtain a simplicial category NCT with object set T0 .
For a; b 2 T0 , an n–simplex in NCT .a; b/ can be seen as a flag of sets

�!
T D T 0 �

T 1 � � � � � T n , where JT � T 0 and T n � VT .

3.8 Proposition Let T be a necklace. There is a natural isomorphism of simplicial
categories between C.T / and NCT .

Proof Write T D B1 _B2 _ � � � _Bk , where the Bi ’s are the beads of T . Then

C.T /D C.B1/qC.�/ C.B2/qC.�/ � � �qC.�/ C.Bk/.3:9/
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since C preserves colimits. Note that C.�/D C.�0/D�, the category with one object
and a single morphism (the identity).

Note that we have isomorphisms C.Bi/ Š NCBi
by Lemma 2.5. We therefore get

maps of categories C.Bi/! NCBi
! NCT , and it is readily checked these extend

to a map f W C.T /!NCT . To see that this functor is an isomorphism, it suffices to
show that it is fully faithful (as it is clearly a bijection on objects).

For any a; b 2T0 we will construct an inverse to the map f W C.T /.a; b/!NCT .a; b/,
when b > a (the case b � a being obvious). Let Br and Bs be the beads containing a

and b , respectively (if a (resp. b ) is a joint, let Br (resp. Bs ) be the latter (resp.
former) of the two beads which contain it). Let jr ; jrC1 : : : ; jsC1 denote the ordered
elements of JT .a; b/, indexed so that ji and jiC1 lie in the bead Bi ; note that jr D a

and jsC1 D b .

Any simplex x 2NCT .a; b/n can be uniquely written as the composite of n–simplices
xs ı � � � ı xr , where xi 2 NCT .ji ; jiC1/n . Now ji and jiC1 are vertices within the
same bead Bi of T , therefore xi may be regarded as an n–simplex in C.Bi/.ji ; jiC1/.
We then get associated n–simplices in C.T /.ji ; jiC1/, and taking their composite
gives an n–simplex zx 2 C.T /.a; b/. We define a map gW NCT .a; b/! C.T /.a; b/

by sending x to zx . One readily checks that this is well-defined and compatible with
the simplicial operators, and it is also clear that f ıg D id.

To see that f is an isomorphism it suffices to now show that g is surjective. From the
expression (3.9) for C.T / as a colimit of the categories C.Bi/, it follows at once that
every map in C.T /.a; b/ can be written as a composite of maps from the C.Bi/’s. It
is an immediate consequence that g is surjective.

3.10 Corollary Let T D B0 _B1 _ � � � _Bk be a necklace. Let a; b 2 T0 be such
that a< b . Let jr ; jrC1; : : : ; jsC1 be the elements of JT .a; b/ (in order), and let Bi

denote the bead containing ji and jiC1 , for r � i � s . Then the map

C.Bs/.js; jsC1/� � � � �C.Br /.jr ; jrC1/! C.T /.a; b/

is an isomorphism. Therefore C.T /.a; b/Š .�1/N where N D jVT .a; b/�JT .a; b/j.
In particular, C.T /.a; b/ is contractible if a� b and empty otherwise.

Proof Follows at once from Proposition 3.8.

3.11 Remark Given a necklace T , there is a heuristic way to understand faces (both
codimension one and higher) in the cubes C.T /.a; b/ in terms of “paths” from a to b

in T . To choose a face in C.T /.a; b/, one chooses three subsets Y;N;M � VT .a; b/
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which cover the set VT .a; b/ and are mutually disjoint. The set Y is the set of vertices
which we require our path to go through—it must contain JT .a; b/; the set N is the
set of vertices which we require our path to not go through; and the set M is the set of
vertices for which we leave the question open. Such choices determine a unique face
in C.T /.a; b/. The dimension of this face is precisely the number of vertices in M .

4 The rigidification functor

Recall that we fully understand C.�n/ as a simplicial category, and that CW sSet! sCat
is defined for S 2 sSet by the formula

C.S/D colim
�n!S

C.�n/:

The trouble with this formula is that given a diagram X W I ! sCat of simplicial
categories, it is generally quite difficult to understand the mapping spaces in the colimit.
For the above colimit, however, something special happens because the simplicial
categories C.�n/ are “directed” in a certain sense. It turns out by making use of
necklaces one can write down a precise description of the mapping spaces for C.S/;
this is the goal of the present section.

Fix a simplicial set S and elements a; b 2S0 . For any necklace T and map T !Sa;b ,
there is an induced map C.T /.˛; !/ ! C.S/.a; b/. Let .Nec # Sa;b/ denote the
category whose objects are pairs ŒT;T ! Sa;b � and whose morphisms are maps of
necklaces T ! T 0 giving commutative triangles over S . Then we obtain a map

colim
T!S2.Nec#Sa;b/

ŒC.T /.˛; !/� �! C.S/.a; b/:.4:1/

Let us write ES .a; b/ for the domain of this map. Note that there are composition
maps

ES .b; c/�ES .a; b/ �!ES .a; c/.4:2/

induced in the following way. Given T ! Sa;b and U ! Sb;c where T and U are
necklaces, one obtains T _U ! Sa;c in the evident manner. The composite

C.U /.˛U ; !U /�C.T /.˛T ; !T / // C.T _U /.!T ; !U /�C.T _U /.˛T ; !T /

�

��
C.T _U /.˛T ; !U /

induces the pairing of (4.2), where the first map in the composite can be understood
using Proposition 3.8 and we have used !T D ˛U . One readily checks that ES is a
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simplicial category with object set S0 , and (4.1) yields a map of simplicial categories
ES ! C.S/. Moreover, the construction ES is clearly functorial in S .

Here is our first result:

4.3 Proposition For every simplicial set S , the map ES ! C.S/ is an isomorphism
of simplicial categories.

Proof First note that if S is itself a necklace then the identity map S ! S is a
terminal object in .Nec # Sa;b/. It follows at once that ES .a; b/! C.S/.a; b/ is an
isomorphism for all a and b .

Now let S be an arbitrary simplicial set, and choose vertices a; b 2 S0 . We will show
that ES .a; b/! C.S/.a; b/ is an isomorphism. Consider the commutative diagram of
simplicial sets

.colim�k!S E�k /.a; b/
t //

Š

��

ES .a; b/

��
.colim�k!S C.�k//.a; b/ C.S/.a; b/:

The bottom equality is the definition of C. The left-hand map is an isomorphism by our
remarks in the first paragraph. It follows that the top map t is injective. To complete
the proof it therefore suffices to show that t is surjective.

Choose an n–simplex x 2 ES .a; b/n ; it is represented by a necklace T , a map
f W T ! Sa;b , and an element zx 2 C.T /.˛; !/. We have a commutative diagram

.colim�k!T C.�k//.˛; !/ // C.T /.˛; !/

.colim�k!T E�k / .˛; !/ //

OO

f

��

ET .˛; !/

OO

Ef

��
.colim�k!S E�k / .a; b/

t // ES .a; b/:

The n–simplex in ET .˛; !/ represented by ŒT; idT W T !T I zx� is sent to x under Ef .
It suffices to show that the middle horizontal map is surjective, for then x will be in
the image of t . But the top map is an isomorphism, and the vertical arrows in the top
row are isomorphisms by the remarks from the first paragraph. Thus, we are done.
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4.4 Corollary For any simplicial set S and elements a; b 2 S0 , the simplicial set
C.S/.a; b/ admits the following description. An n–simplex in C.S/.a; b/ consists of
an equivalence class of triples ŒT;T ! S;

�!
T �, where

� T is a necklace;

� T ! S is a map of simplicial sets which sends ˛T to a and !T to b ;

�
�!
T is a flag of sets T 0 � T 1 � � � � � T n such that T 0 contains the joints of T

and T n is contained in the set of vertices of T .

The equivalence relation is generated by considering ŒT;T!S I
�!
T � and ŒU;U!S I

�!
U �

to be equivalent if there exists a map of necklaces f W T !U over S with
�!
U D f�.

�!
T /.

The i –th face (resp. degeneracy) map omits (resp. repeats) the set T i in the flag. That
is, if x D ŒT;T ! S IT 0 � � � � � T n� represents an n–simplex of C.S/.a; b/ and
0� i � n, then

si.x/D ŒT;T ! S IT 0
� � � � � T i

� T i
� � � � � T n�

di.x/D ŒT ! S IT 0
� � � � � T i�1

� T iC1
� � � � � T n�:and

Proof This is a straightforward interpretation of the colimit appearing in the definition
of ES from (4.1). Recall that every colimit can be written as a coequalizer

colim
T!S2.Nec#Sa;b/

ŒC.T /.˛; !/�Š coeq
� a

T1!T2!S

C.T1/.˛; !/�
a

T!S

C.T /.˛; !/

�
;

and that simplices of C.T /.˛; !/ are identified with flags of subsets of VT , containing
JT , by Proposition 3.8. The simplices of

`
T!S C.T /.˛; !/ therefore correspond to

triples ŒT;T ! S;
�!
T �, and the simplices of the coequalizer correspond to equivalence

classes of such triples. The relation given in the statement of the corollary is precisely
the one coming from the above coequalizer.

Our next goal is to simplify the equivalence relation appearing in Corollary 4.4
somewhat. This analysis is somewhat cumbersome, but culminates in the important
Proposition 4.10.

Let us begin by introducing some terminology. A flagged necklace is a pair ŒT;
�!
T �

where T is a necklace and
�!
T is a flag of subsets of VT which all contain JT . The

length of the flag is the number of subset symbols, or one less than the number of
subsets. A morphism of flagged necklaces ŒT;

�!
T �! ŒU;

�!
U � exists only if the flags

have the same length, in which case it is a map of necklaces f W T ! U such that
f .T i/ D U i for all i . Finally, a flag

�!
T D .T 0 � � � � � T n/ is called flanked if

Algebraic & Geometric Topology, Volume 11 (2011)



Rigidification of quasi-categories 241

T 0 D JT and T n D VT . Note that if ŒT;
�!
T � and ŒU;

�!
U � are both flanked, then every

morphism ŒT;
�!
T �! ŒU;

�!
U � is surjective (because its image will be a subnecklace of U

having the same joints and vertices as U , hence it must be all of U ).

4.5 Lemma Under the equivalence relation of Corollary 4.4, each of the triples
ŒT;T ! S;

�!
T � is equivalent to one in which the flag is flanked. Moreover, two flanked

triples are equivalent (in the sense of Corollary 4.4) if and only if they can be connected
by a zigzag of morphisms of flagged necklaces in which every triple of the zigzag is
flanked.

Proof Suppose given a flagged necklace ŒT;T 0 � � � � � T n�. There is a unique
subnecklace T 0 ,! T whose set of joints is T 0 and whose vertex set is T n . Then the
pair .T 0;T 0 � � � � � T n/ is flanked. This assignment, which we call flankification, is
actually functorial: a morphism of flagged necklaces f W ŒT;

�!
T �! ŒU;

�!
U � must map

T 0 into U 0 and therefore gives a morphism ŒT 0;
�!
T �! ŒU 0;

�!
U �.

Using the equivalence relation of Corollary 4.4, each triple ŒT;T ! S;
�!
T � will be

equivalent to the flanked triple ŒT 0;T 0 ! T ! S;
�!
T � via the map T 0 ! T . If the

flanked triple ŒU;U ! S;
�!
U � is equivalent to the flanked triple ŒV;V ! S;

�!
V � then

there is a zigzag of maps between triples which starts at the first and ends at the second,
by Corollary 4.4. Applying the flankification functor gives a corresponding zigzag in
which every object is flanked.

4.6 Remark By the previous lemma, we can alter our model for C.S/.a; b/ so
that the n–simplices are equivalence classes of triples ŒT;T ! S;

�!
T � in which the

flag is flanked, and the equivalence relation is given by maps (which are necessarily
surjections) of flanked triples. Under this model the degeneracies and inner faces are
given by the same description as before: repeating or omitting one of the subsets in the
flag. The outer faces d0 and dn are now more complicated, however, because omitting
the first or last subset in the flag may produce one which is no longer flanked; one must
first remove the subset and then apply the flankification functor from Lemma 4.5. This
model for C.S/.a; b/ was originally shown to us by Jacob Lurie; it will play only a
very minor role in what follows.

Our next task will be to analyze surjections of flagged triples. Let T be a necklace and
S a simplicial set. Say that a map T !S is totally nondegenerate if the image of each
bead of T is a nondegenerate simplex of S . Note a totally nondegenerate map need
not be an injection: for example, let S D �1=@�1 and consider the nondegenerate
1–simplex �1! S .
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As a prelude to what we are about to do, recall that the n–simplices of a simplicial set S

correspond to maps �n! S in sSet . Every map � W �k!�n represents a simplicial
operator, in the sense that if sW �n ! S is an n–simplex of S then � ı s gives a
k –simplex of S . Said differently, there is an evident map of categories �! sSet (the
Yoneda embedding) and the image is the full subcategory of sSet whose objects are
the �n ’s: so every map �k!�n corresponds to a map in �, ie, a simplicial operator.
Under this correspondence, surjections �k !�n correspond to degeneracy operators
and injections correspond to face operators.

In a simplicial set S , if z 2S is a degenerate simplex then there is a unique nondegener-
ate simplex z0 and a unique degeneracy operator s� D si1

si2
� � � sik

such that zD s� .z
0/;

see Hirschhorn [10, Lemma 15.8.4]. In other words, if �n! S is degenerate then
there is a nondegenerate simplex �k ! S and a unique surjection �n!�k making
the evident triangle commute. Applying this one bead at a time, one finds that for any
map T ! S there is a necklace xT , a map xT ! S which is totally nondegenerate,
and a surjection of necklaces T ! xT making the evident triangle commute; moreover,
these three things are unique up to isomorphism.

4.7 Proposition Let S be a simplicial set and let a; b 2 S0 .

(a) Suppose that T and U are necklaces, uW U ! S and t W T ! S are two
maps, and that t is totally nondegenerate. Then there is at most one surjection
f W U � T such that uD t ıf .

(b) Suppose that one has a diagram

U

g
����

f // // T

��
V // S

where T , U , and V are flagged necklaces, T !S is totally nondegenerate, and
f and g are surjections. Then there exists a unique map of flagged necklaces
V ! T making the diagram commute.

Proof It is easy to see that if A! B is a map of necklaces then every joint of B is
the image of some joint of A. Moreover, if A!B is surjective then one checks using
the ordering of A and B that every joint of A must map to a joint of B . It follows
readily that if A! B is a surjection of necklaces and B ¤ � then every bead of B is
surjected on by a unique bead of A. Also, each bead of A is either collapsed onto a
joint of B or else mapped surjectively onto a bead of B .
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For (a), note that we may assume T ¤ � (or else the claim is trivial). Assume there
are two distinct surjections f; f 0W U ! T such that tf D tf 0 D u. Let B be the first
bead of U on which f and f 0 disagree. Let j denote the initial vertex of B , and let
C be the bead of T whose initial vertex is f .j /D f 0.j /.

Suppose that f collapses B to a point, in which case u must also map B to a point.
Then f 0 cannot surject B onto C , for otherwise C ! S would factor through the
point u.B/ and this would contradict T ! S being totally nondegenerate. So f 0

also collapses B to point, contradicting the assumption that f and f 0 disagree on B .
Therefore f (and by symmetry f 0 ) cannot collapse B to a point, and hence must
surject B onto C . This identifies the simplex B! U ! S with a degeneracy of the
nondegenerate simplex C ! S . Then by uniqueness of degeneracies we have that f
and f 0 must coincide on B , which is a contradiction.

Next we turn to part (b). Note that the map V ! T will necessarily be surjective, so
the uniqueness part is guaranteed by (a); we need only show existence.

Observe that if B is a bead in U which maps to a point in V then it maps to a point
in T , by the reasoning above. It now follows that there exists a necklace U 0 , obtained
by collapsing every bead of U that maps to a point in V , and a commutative diagram:

U
f // //

!! !!
g

����

T

��

U 0

f 0 >> >>

g0

~~~~
V // S

Replacing U; f; and g by U 0; f 0; and g0 , and dropping the primes, we can now assume
that g induces a one-to-one correspondence between beads of U and beads of V . Let
B1; : : : ;Bm denote the beads of U , and let C1; : : : ;Cm denote the beads of V .

Assume that we have constructed the lift l W V ! T on the beads C1; : : : ;Ci�1 . If the
bead Bi is mapped by f to a point, then evidently we can define l to map Ci to this
same point and the diagram will commute. Otherwise f maps Bi surjectively onto
a certain bead D inside of T . We have the diagram

Bi

f // //

g
����

D

t
��

Ci v
// S

where here f and g are surjections between simplices and therefore represent degen-
eracy operators sf and sg . We have that sf .t/ D sg.v/. But the simplex t of S is
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nondegenerate by assumption, therefore by [10, Lemma 15.8.4] we must have vD sh.t/

for some degeneracy operator sh such that sf D sgsh . The operator sh corresponds
(as explained prior to Proposition 4.7) to a surjection of simplices Ci!D making the
above square commute, and we define l on Ci to coincide with this map. Continuing
by induction, this produces the desired lift l . It is easy to see that l is a map of flagged
necklaces, as l.V i/D l.g.U i//D f .U i/D T i .

4.8 Corollary Let S be a simplicial set and a; b 2S0 . Under the equivalence relation
from Corollary 4.4, every triple ŒT;T ! Sa;b;

�!
T � is equivalent to a unique triple

ŒU;U ! Sa;b;
�!
U � which is both flanked and totally nondegenerate.

Proof Let t D ŒT;T ! Sa;b;
�!
T �. Then t is clearly equivalent to at least one flanked,

totally nondegenerate triple because we can replace t with ŒT 0;T 0! Sa;b;
�!
T � (flanki-

fication) and then with ŒST 0; ST 0! Sa;b;
�!
T 0� (defined above Proposition 4.7).

Now suppose that ŒU;U ! Sa;b;
�!
U � and ŒV;V ! Sa;b;

�!
V � are both flanked, totally

nondegenerate, and equivalent in C.S/.a; b/n . Then by Lemma 4.5 there is a zigzag
of maps between flanked necklaces (over S ) connecting U to V :

W1

|||| �� ��

W2

���� �� ��

� � �

���� �� ��

Wk

���� $$ $$
U D U1 U2 U3 � � � Uk UkC1 D V

Using Proposition 4.7, we inductively construct surjections of flanked necklaces Ui!U

over S . This produces a surjection V ! U over S . Similarly, we obtain a surjection
U ! V over S . By Proposition 4.7(a) these maps must be inverses of each other; that
is, they are isomorphisms.

4.9 Remark Again, as in Remark 4.6 the above corollary shows that we can describe
C.S/.a; b/ as the simplicial set whose n–simplices are triples ŒT;T ! S;

�!
T � which

are both flanked and totally nondegenerate. The degeneracies and inner faces are again
easy to describe—they are repetition or omission of a set in the flag—but for the outer
faces one must first omit a set and then modify the triple appropriately. The usefulness
of this description is limited because of these complications with the outer faces, but it
does make a brief appearance in Corollary 4.13 below.

The following result is the culmination of our work in this section, and will turn out to
be a key step in the proof of our main theorems. Fix a simplicial set S and vertices
a; b 2S0 , and let Fn denote the category of flagged triples over Sa;b that have length n.
That is, the objects of Fn are triples ŒT;T ! Sa;b;T

0 � � � � � T n� and morphisms
are maps of necklaces f W T ! T 0 over S such that f .T i/D .T 0/i for all i .

Algebraic & Geometric Topology, Volume 11 (2011)



Rigidification of quasi-categories 245

4.10 Proposition For each n� 0, the nerve of Fn is homotopy discrete in sSetK .

Proof Recall from Lemma 4.5 that there is a functor �W Fn! Fn which sends any
triple to its “flankification”. The flankification is a subnecklace of the original necklace,
and therefore the inclusion gives a natural transformation from � to the identity. If F 0n
denotes the full subcategory of Fn consisting of flanked triples, we thus find that
F 0n ,! Fn induces a Kan equivalence upon taking nerves. To prove the proposition it
will therefore suffice to prove that the nerve of F 0n is homotopy discrete.

Recall from Corollary 4.8 that every component of F 0n contains a unique triple t

which is both flanked and totally nondegenerate. Moreover, following the proof of
that corollary one sees that every triple in the same component as t admits a unique
map to t —uniqueness follows from Proposition 4.7(a), using that a map of flanked
triples is necessarily surjective. We have therefore shown that t is a final object for its
component, hence its component is contractible. This completes the proof.

4.11 The functor C applied to ordered simplicial sets

Note that even if a simplicial set S is small—say, in the sense that it has finitely many
nondegenerate simplices—the space C.S/.a; b/ may be quite large. This is due to
the fact that there are infinitely many necklaces mapping to S (if S is nonempty).
For certain simplicial sets S , however, it is possible to restrict to necklaces which
map injectively into S ; this cuts down the possibilities. The following results and
subsequent example demonstrate this. Recall the definition of ordered simplicial sets
from Definition 3.2.

4.12 Lemma Let D be an ordered simplicial set and let a; b 2 D0 . Then every
n–simplex in C.D/.a; b/ is represented by a unique triple ŒT;T !D;

�!
T � in which T

is a necklace,
�!
T is a flanked flag of length n, and the map T !D is injective.

Proof By Corollary 4.8, every n–simplex in C.D/.a; b/ is represented by a unique
triple ŒT;T !D;

�!
T � which is both flanked and totally nondegenerate. It suffices to

show that if D is ordered, then any totally nondegenerate map T ! D is injective.
This follows from Lemma 3.3(6).

4.13 Corollary Let D be an ordered simplicial set, and a; b 2 D0 . Let MD.a; b/

denote the simplicial set for which MD.a; b/n is the set of triples ŒT; f W T !Da;b;
�!
T �,

where f is injective and
�!
T is a flanked flag of length n; face and boundary maps are

as in Remark 4.6. Then there is a natural isomorphism

C.D/.a; b/
Š
�!MD.a; b/:

Proof This follows immediately from Lemma 4.12.
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4.14 Example Consider the simplicial set S D�2q�1 �2 depicted as follows:

1 3

0 2

� �

� �

-? ?

-

�
���

We will describe the mapping space X D C.S/.0; 3/ by giving its nondegenerate
simplices and face maps. Note that S is ordered.

By Lemma 4.12, it suffices to consider flanked necklaces that inject into S . There are
only five such injections that have endpoints 0 and 3. These are T D�1_�1 , which
maps to S in two different ways f;g ; and U D�1 _�1 _�1 , V D�1 _�2 , and
W D�2 _�1 , each of which maps uniquely into S0;3 . The image of T0 under f is
f0; 1; 3g and under g is f0; 2; 3g. The images of U0;V0; and W0 are all f0; 1; 2; 3g.

We find that the set X0 consists of three elements ŒT I f0; 1; 3g�, ŒT I f0; 2; 3g� and
ŒU I f0; 1; 2; 3g�. There are two nondegenerate 1–simplices, ŒV I f0; 1; 3g � f0; 1; 2; 3g�
and ŒW I f0; 2; 3g � f0; 1; 2; 3g�. These connect the three 0–simplices in the obvious
way, resulting in two 1–simplices with a common final vertex. There are no higher
nondegenerate simplices. Thus C.S/.0; 3/ looks like

� //� �oo :

5 Homotopical models for rigidification

In the last section we gave a very explicit description of the mapping spaces C.S/.a; b/,
for arbitrary simplicial sets S and a; b 2 S0 . While this description was explicit, in
some ways it is not very useful from a homotopical standpoint—in practice it is hard
to use this description to identify the homotopy type of C.S/.a; b/.

In this section we will discuss a functor CnecW sSet! sCat that has a simpler description
than C and which is more homotopical. We prove that for any simplicial set S there
is a natural zigzag of weak equivalences between C.S/ and Cnec.S/. Variants of this
construction are also introduced, leading to a collection of functors sSet! sCat all of
which are weakly equivalent to C.

Let S 2 sSet . A choice of a; b 2 S0 will be regarded as a map @�1 ! S . Let
.Nec # Sa;b/ be the overcategory for the inclusion functor Nec ,! .@�1 # S/. Finally,
define

Cnec.S/.a; b/DN.Nec # Sa;b/:

Then C.S/ is a simplicial category in an evident way; see (1.2).
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5.1 Remark Both the functor C and the functor Cnec have distinct advantages and
disadvantages. The main advantage to C is that it is left adjoint to the coherent nerve
functor N (in fact it is a left Quillen functor sSetJ ! sCat); as such, it preserves
colimits. However, as mentioned above, the functor C can be difficult to use in practice
because the mapping spaces have an awkward description.

It is at this point that our functor Cnec becomes useful, because the mapping spaces
are given as nerves of 1–categories. Many tools are available for determining when a
morphism between nerves is a Kan equivalence. This will be an important point in [8],
where we show the C functor gives a Quillen equivalence between sSetJ and sCat .
See also Section 6 below.

Our main theorem is that there is a simple zigzag of weak equivalences between
C.S/ and Cnec.S/; that is, there is a functor ChocW sSet ! sCat and natural weak
equivalences C Choc! Cnec . We begin by describing the functor Choc .

Fix a simplicial set S . Define Choc.S/ to have object set S0 , and for every a; b 2 S0 ,

Choc.S/.a; b/D hocolim
T2.Nec#Sa;b/

C.T /.˛; !/:

Note the similarities to Proposition 4.3, where it was shown that C.S/.a; b/ has a
similar description in which the hocolim is replaced by the colim. In our definition of
Choc.S/.a; b/ we mean to use a particular model for the homotopy colimit: namely,
recall that if X W I! sSet then the Bousfield–Kan model [4, XII.5.2] for hocolimI X is
the diagonal of the bisimplicial set (the simplicial replacement of X ) which in level k isa

i0!���!ik

Xi0
:

Applying this in our case, Choc.S/.a; b/ is the diagonal of the bisimplicial set whose
.k; l/–simplices are pairs

.F W Œk�! .Nec # Sa;b/; x 2 C.F.0//.˛; !/l/;.5:2/

where F.0/ denotes the necklace obtained by applying F to 0 2 Œk� and then applying
the forgetful functor .Nec # Sa;b/! Nec. The composition law for Choc is defined
just as for the ES construction from Section 4.

If one pictures the bisimplicial set of (5.2) with the index k varying horizontally and l

varying vertically, note that the l –th horizontal row is the nerve NFl of the category
of flagged necklaces mapping to S (where the flags have length l ).

We proceed to establish natural transformations Choc ! Cnec and Choc ! C. Note
that the simplicial set Cnec.S/.a; b/ is the homotopy colimit of the constant functor
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f�gW .Nec # Sa;b/! sSet which sends everything to a point (using [10, Proposition
18.1.6], for example). The map Choc.S/.a; b/!Cnec.S/.a; b/ is the map of homotopy
colimits induced by the evident map of diagrams. Since the spaces C.T /.˛; !/ are
all contractible simplicial sets (see Corollary 3.10), the induced map Choc.S/.a; b/!

Cnec.S/.a; b/ is a Kan equivalence. We thus obtain a natural weak equivalence of
simplicial categories Choc.S/! Cnec.S/.

For any diagram in a model category there is a canonical natural transformation from
the homotopy colimit to the colimit of that diagram. Hence there is a morphism

Choc.S/.a; b/! colim
T2.Nec#Sa;b/

C.T /.˛; !/Š C.S/.a; b/:

(For the isomorphism we are using Proposition 4.3.) As this is natural in a; b 2 S0 and
natural in S , we have a natural transformation Choc! C.

5.3 Theorem For every simplicial set S , the maps C.S/  Choc.S/ ! Cnec.S/

are weak equivalences of simplicial categories. Equivalently, the maps induce Kan
equivalences on all mapping spaces.

Proof We have already established the result for Choc! Cnec , so it suffices to show
that for each simplicial set S and objects a; b 2 S0 the natural map Choc.S/.a; b/!

C.S/.a; b/ is a Kan equivalence.

Recall that Choc.S/.a; b/ is the diagonal of the bisimplicial set (5.2), and that the l –th
“horizontal” row is the nerve NFl of the category of flagged necklaces mapping to S ,
where the flags have length l . Also recall from Corollary 4.4 that C.S/.a; b/ is the
simplicial set which in level l is �0.NFl/. But Proposition 4.10 says that NFl !

�0.NFl/ is a Kan equivalence, for every l . It follows that Choc.S/.a; b/!C.S/.a; b/

is also a Kan equivalence.

5.4 Other models for rigidification

One can imagine variations of our basic construction in which one replaces necklaces
with other convenient simplicial sets—which we might term “gadgets,” for lack of a
better word. We will see in Section 6, for instance, that using products of necklaces
leads to a nice theorem about the rigidification of a product. In [8] several key arguments
will hinge on a clever choice of what gadgets to use. In the material below we give some
basic requirements of the “gadgets” which will ensure they give a model equivalent to
that of necklaces.

Suppose P is a subcategory of sSet�;� D .@�1 # sSet/ containing the terminal object.
For any simplicial set S and vertices a; b 2 S0 , let .P # Sa;b/ denote the overcategory
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whose objects are pairs ŒP;P! S �, where P 2P and the map P! S sends ˛P 7! a

and !P 7! b . Define
CP.S/.a; b/DN.P # Sa;b/:

The object CP is simply an assignment which takes a simplicial set S with two
distinguished vertices and produces a “P–mapping space.” However, if P is closed
under the wedge operation (ie for any P1;P2 2P one has P1_P2 2P), then CP may
be given the structure of a functor sSet! sCat in the evident way.

5.5 Definition We call a subcategory G � sSet�;� a category of gadgets if it satisfies
the following properties:

(1) G contains the category Nec.
(2) For every object X 2 G and every necklace T , all maps T !X are contained

in G .
(3) For any X 2 G , the simplicial set C.X /.˛; !/ is contractible.

The category G is said to be closed under wedges if the following also true:

(4) For any X;Y 2 G , the wedge X _Y also belongs to G .

5.6 Proposition Let G be a category of gadgets. Then for any simplicial set S and
any a; b 2 S0 , the natural map

Cnec.S/.a; b/ �! CG.S/.a; b/

(induced by the inclusion Nec ,! G ) is a Kan equivalence. If G is closed under wedges
then the map of simplicial categories Cnec.S/! CG.S/ is a weak equivalence.

Proof Let j W .Nec # Sa;b/! .G # Sa;b/ be the functor induced by the inclusion
map Nec ,! G . The map in the statement of the proposition is just the nerve of j .
To verify that it is a Kan equivalence, it is enough by Quillen’s Theorem A [15] to
verify that all the overcategories of j are contractible. So fix an object ŒX;X ! S � in
.G #Sa;b/. The overcategory .j # ŒX;X!S �/ is precisely the category .Nec#X˛;!/,
the nerve of which is Cnec.X /.˛; !/. By Theorem 5.3 this nerve is weakly equivalent
to C.X /.˛; !/, which is contractible by our assumptions about G .

The second statement of the result is a direct consequence of the first.

6 Properties of rigidification

In this section we establish two main properties of the rigidification functor C. First,
we prove that there is a natural weak equivalence C.X �Y /' C.X /�C.Y /. Second,
we prove that whenever S ! S 0 is a Joyal equivalence it follows that C.S/! C.S 0/
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is a weak equivalence in sCat . These properties are also proven in [13], but the proofs
we give here are of a different nature and make central use of the Cnec functor.

If T1; : : : ;Tn are necklaces then they are, in particular, ordered simplicial sets in the
sense of Definition 3.2. So T1 � � � � �Tn is also ordered, by Lemma 3.3. Let G be the
full subcategory of sSet�;� D .@�1 # sSet/ whose objects are products of necklaces
with a map f W @�1! T1 � � � � �Tn that has f .0/� f .1/.

6.1 Proposition The category G is a category of gadgets in the sense of Definition 5.5.

For the proof of this one needs to verify that C.T1 � � � � �Tn/.˛; !/' �. This is not
difficult, but is a bit of a distraction; we prove it later as Proposition A.6.

6.2 Proposition For any simplicial sets X and Y , both C.X �Y / and C.X /�C.Y /

are simplicial categories with object set X0 �Y0 . For any a0; b0 2X and a1; b1 2 Y ,
the natural map

C.X �Y /.a0a1; b0b1/! C.X /.a0; b0/�C.Y /.a1; b1/

induced by C.X �Y /! C.X / and C.X �Y /! C.Y / is a Kan equivalence. Conse-
quently, the map of simplicial categories

C.X �Y /! C.X /�C.Y /

is a weak equivalence in sCat .

Proof Let G denote the above category of gadgets, in which the objects are products
of necklaces. By Theorem 5.3 and Proposition 5.6 it suffices to prove the result for CG

in place of C.

Consider the functors

.G # .X �Y /a0a1;b0b1
/

� //.G #Xa0;b0
/� .G # Ya1;b1

/
�

oo

�W ŒG;G!X �Y � 7!
�
ŒG;G!X �Y !X �; ŒG;G!X �Y ! Y �

�
given by

� W
�
ŒG;G!X �; ŒH;H ! Y �

�
7! ŒG �H;G �H !X �Y �:

Note that we are using that the subcategory G is closed under finite products.

It is very easy to see that there is a natural transformation id! �� , obtained by using
diagonal maps, and a natural transformation �� ! id, obtained by using projections.
As a consequence, the maps � and � induce inverse homotopy equivalences on the
nerves. This completes the proof.
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Recall from Section 2 that if S is a set then E.S/ is the groupoid with object set S

having a unique map between any two objects. Let EW Set! sSet be given by E.S/D

N.E.S//. The k –simplices of E.S/ may be identified with .kC1/–tuples of elements
of S , and the face and degeneracy operators are given by deletion or repetition of entries.
One may check that for any simplicial set X we have sSet.X;E.S//D Set.X0;S/.
In particular, taking X D�1 note that any two 0–simplices in E.S/ have a unique
1–simplex from the first to the second.

The functor E is commonly called the 0–coskeleton functor (see [1]). For any n 2N
we denote En DE.f0; 1; : : : ; ng/.

Recall also from Section 2 the notion of weak equivalence for simplicial categories.
In particular, note that if C is simplicial category then the map C ! � is a weak
equivalence if and only if for all a; b 2 ob C the mapping space C.a; b/ is contractible.

6.3 Lemma For any n� 0, the simplicial category C.En/ is contractible in sCat .

Proof By Theorem 5.3 it is sufficient to prove that the mapping space Cnec.En/.i; j /

is contractible, for every i; j 2 f0; 1; : : : ; ng. This mapping space is the nerve of the
overcategory .Nec #En

i;j /.

Observe that if T is a necklace then any map T !En extends uniquely over �ŒT �.
This is because maps into En are determined by what they do on the 0–skeleton, and
T ,!�ŒT � is an isomorphism on 0–skeleta.

Consider two functors

f;gW .Nec #En
i;j /! .Nec #En

i;j /

f W ŒT;T
x
�!En� 7! Œ�ŒT �; �ŒT �

xx
�!En�given by

gW ŒT;T
x
�!En� 7! Œ�1; �1 z

�!En�:

Here xx is the unique extension of x to �ŒT �, and z is the unique 1–simplex of En

connecting i to j . Observe that g is a constant functor.

It is easy to see that there are natural transformations id! f  g . The functor g

factors through the terminal category f�g, so after taking nerves the identity map is
null homotopic. Hence .Nec #En

i;j / is contractible.

For completeness (and because it is short) we include the following lemma, established
in [13, Proof of 2.2.5.1]:
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6.4 Lemma The functor CW sSet! sCat takes monomorphism to cofibrations.

Proof Every monomorphism in sSet is obtained by compositions and cobase changes
from boundary inclusions of simplices. It therefore suffices to show that for each n� 0

the map C.@�n/!C.�n/ is a cofibration in sCat . Let 0� i; j � n. If i > 0 or j < n

then every map T !�n
i;j , where T is a necklace, actually factors through @�n

i;j . It
follows that .Nec #�n

i;j /Š .Nec # @�n
i;j /, and therefore

C.@�n/.i; j /! C.�n/.i; j /

is an isomorphism by Proposition 4.3. When i D 0 and j D n, the simplicial set
C.�n/.i; j / is identified with the cube .�1/n�1 by Lemma 2.5, and it is easy to see
that C.@�n/.i; j / is precisely the boundary of this cube.

To summarize the above paragraph, the mapping spaces in C.@�n/ and C.�n/ are
identical except for the mapping space from 0 to n, and in that case the inclusion of
mapping spaces is the boundary inclusion for the cube .�1/n�1 . Let b denote this
boundary inclusion.

Let U W sSet!sCat denote the functor which sends a simplicial set S to the unique sim-
plicial category U.S/ with two objects x;y and morphisms Hom.x;x/DHom.y;y/D
f�g, Hom.y;x/D∅, and Hom.x;y/DS . There is an evident map U.@..�1/n�1//!

C.@�n/ sending x to 0 and y to n, and pushing out U.b/ along this map precisely
gives C.�n/.

In view of the generating cofibrations for sCat (see [3]), it is easy to show that U

takes monomorphisms to cofibrations. Hence U.b/ is a cofibration. Since our map
C.@�n/! C.�n/ is a pushout of U.b/, it too is a cofibration.

Recall that a simplicial category is fibrant in sCat if all its mapping spaces are Kan
fibrant.

6.5 Lemma If D is a fibrant simplicial category then N D is a quasi-category.

Proof By adjointness it suffices to show that each C.j n;k/ is an acyclic cofibration in
sCat , where j n;k W ƒn

k
,!�n is an inner horn inclusion (0< k < n). It is a cofibration

by Lemma 6.4, so we must only verify that it is a weak equivalence. Just as in the
proof of 6.4 above, C.ƒn

k
/.i; j /! C.�n/.i; j / is an isomorphism unless i D 0 and

j D n. It only remains to show that C.ƒn
k
/.0; n/! C.�n/.0; n/ is a Kan equivalence..

An analysis as in Example 4.14 identifies C.ƒn
k
/.0; n/ with the result of removing one

face from the boundary of .�1/n�1 , which clearly has the same homotopy type as the
cube .�1/n�1 .
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6.6 Proposition If S ! S 0 is a map of simplicial sets which is a Joyal equivalence
then C.S/! C.S 0/ is a weak equivalence of simplicial categories.

Proof For any simplicial set X , the map C.X �En/! C.X / induced by projection
is a weak equivalence in sCat . This follows by combining Proposition 6.2 with
Lemma 6.3:

C.X �En/
�
�! C.X /�C.En/

�
�! C.X /:

Since X qX ,! X �E1 is a cofibration in sSet , C.X /q C.X / D C.X qX /!

C.X �E1/ is a cofibration in sCat , by Lemma 6.4. It follows that C.X �E1/ is a
cylinder object for C.X / in sCat . So if D is a fibrant simplicial category we may
compute homotopy classes of maps ŒC.X /;D� as the coequalizer

coeq
�
sCat.C.X �E1/;D/� sCat.C.X /;D/

�
:

But using the adjunction, this is isomorphic to

coeq
�
sSet.X �E1;N D/� sSet.X;N D/

�
:

The above coequalizer is ŒX;N D�E1 , and we have identified

ŒC.X /;D�Š ŒX;N D�E1 :.6:7/

Now let S ! S 0 be a Joyal equivalence. Then C.S/ ! C.S 0/ is a map between
cofibrant objects of sCat . To prove that it is a weak equivalence in sCat it is sufficient
to prove that the induced map on homotopy classes

ŒC.S 0/;D�! ŒC.S/;D�

is a bijection, for every fibrant object D 2 sCat . Since N D is a quasi-category by
Lemma 6.5 and S!S 0 is a Joyal equivalence, we have that ŒS 0;N D�E1! ŒS;N D�E1

is a bijection; the result then follows by (6.7).

6.8 Remark In fact it turns out that a map of simplicial sets S ! S 0 is a Joyal
equivalence if and only if C.S/!C.S 0/ is a weak equivalence of simplicial categories.
This was proven in [13], and will be reproven in [8] using an extension of the methods
from the present paper.

Appendix A Leftover proofs

In this section we give two proofs which were postponed in the body of the paper.
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A.1 Products of necklaces

Our first goal is to prove Proposition 6.1. Let T1; : : : ;Tn be necklaces, and consider
the product X D T1 � � � � � Tn . The main thing we need to prove is that whenever
a�X b in X the mapping space C.X /.a; b/' � is contractible. For this we use two
lemmas.

Let Z be an ordered simplicial set, and let u; v 2Z . Suppose there is a finite set of
0–simplices AD fa1; : : : ; ang of Z , and we know that every inclusion T ,! Zu;v ,
where T is a necklace, has at least one joint lying in A. It is useful to think of
T ,!Zu;v as a “generalized path” from u to v , and of the vertices in A as “gates”.
Our assumption is that every generalized path must pass through at least one gate.
One can then stratify all such paths, according to which gates they pass through. We
will explain a way to understand the homotopy type of C.Z/.u; v/ by writing it as a
homotopy colimit of “smaller” spaces associated to this stratification.

To this end, consider the poset A0 of vertices of A under the relation � (this is a
poset because A is an ordered simplicial set). Let P denote the collection of linearly
ordered subsets S of A0 having the property that u � s � v for all s 2 S . That is,
each element of P is a chain u� s1 � � � � � sn � v where each si 2A. We regard P

as a category, where the maps are inclusions. Also let P0 denote the subcategory of P

consisting of all subsets except ∅.

Define a functor Hu;vW P
op! sSet by

Hu;v.S/D C.Z/.u; s1/�C.Z/.s1; s2/� � � � �C.Z/.sn�1; sn/�C.Z/.sn; v/;

where by convention we have Hu;v.∅/D C.Z/.u; v/.

A.2 Lemma Let Z be an ordered simplicial set, and let A �Z0 be a finite subset.
Let u; v 2 Z and assume that every map T ! Zu;v , where T is a necklace, has at
least one joint mapping into A. Then the composite map

hocolim
S2P

op
0

Hu;v.S/! colim
S2P

op
0

Hu;v.S/!Hu;v.∅/D C.Z/.u; v/

is a Kan equivalence.

Proof Define a functor F W P op! Cat by sending S 2 P to

fŒT;T ,!Zu;v � j S � JT g;
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the full subcategory of .Nec #Zu;v/ spanned by objects T
m
�!Zu;v for which m is

an injection and S � JT . Let us adopt the notation

MS .u; v/D colim
T2F.S/

C.T /.˛; !/:

This gives a functor M.�/.u; v/W P
op! sSet . Note that there is a natural map

M∅.u; v/ �! colim
T2.Nec#Su;v/

C.T /.˛; !/Š C.Z/.u; v/:

The first map is not a priori an isomorphism because in the definition of F.∅/ we
require that the map T !Z be an injection. However, using Lemma 4.12 (or Corollary
4.13) it follows at once that the map actually is an isomorphism.

From here the argument proceeds as follows. We will show:

(i) The natural map hocolimS2P
op
0

MS .u; v/ ! colimS2P
op
0

MS .u; v/ is a Kan
equivalence.

(ii) The map colimS2P0
MS .u; v/!M∅.u; v/ is an isomorphism.

(iii) The functor M.�/.u; v/ is naturally isomorphic to Hu;v .

These three items will clearly complete the proof.

For (i) we refer to [7, Section 13] and use the fact that P
op
0

has the structure of a
directed Reedy category. Indeed, we can assign a degree function to P that sends a set
S �A0 to the nonnegative integer jA0�S j; all nonidentity morphisms in P

op
0

strictly
increase this degree. By [7, Proposition 13.3] (but with Top replaced by sSet) it is
enough to show that all the latching maps LS are cofibrations, where LS is the map

LS W colim
S 0�S

MS 0.u; v/!MS .u; v/

and the colimit is over sets S 0 2 P which strictly contain S . To see that LS is a
cofibration, suppose that one has a triple ŒT;T ,!Zu;v; t 2 C.T /.˛; !/n� representing
an n–simplex of MS 0.u; v/ and another triple ŒT 0;T 0 ,! Bu;v; t

0 2 C.U /.˛; !/n�

representing an n–simplex of MS 00.u; v/. If these become identical in MS .u; v/ then
it must be that they have the same flankification xT D xU and t D t 0 . Note that every
joint of T is a joint of xT , so the joints of xT include both S 0 and S 00 . Because the
joints of any necklace are linearly ordered, it follows that S 0[S 00 is linearly ordered.
Since T ! xT is an injection, we may consider the triple Œ xT ; xT ,! Zu;v; t � as an
n–simplex in MS 0[S 00.u; v/, which maps to the two original triples in the colimit; this
proves injectivity.
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Assertion (ii) is the claim that the latching map L∅W colimS2P
op
0

MS .u; v/!M∅.u; v/

is an isomorphism. Injectivity was established above. For surjectivity, one needs to
know that if T is a necklace and T ,!Zu;v is an inclusion, then T must contain at
least one vertex of A as a joint. But this is precisely our assumption on A.

Finally, for (iii) fix some S 2 P0 and let uD a0 � a1 � : : :� an � anC1 D v denote
the complete set of elements of S[fu; vg. A necklace T ,!Zu;v whose joints include
the elements of S can be split along the joints, and thus uniquely written as the wedge
of necklaces Ti ,!Zai ;aiC1

, one for each 0� i � n. Under this identification, one has

C.T /.˛; !/Š C.T0/.˛0; !0/� � � � �C.Tn/.˛n; !n/:

Thus F.S/ is isomorphic to the category

.Nec #m Zu;a1
/� .Nec #m Za1;a2

/� � � � � .Nec #m Zan�1;an
/� .Nec #m Zan;v/;

where .Nec #m Zs;t / denotes the category whose objects are ŒT;T !Zs;t � where the
map T !Z is a monomorphism.

Now, it is a general fact about colimits taken in the category of (simplicial) sets, that if
Ki is a category and Qi W Ki ! sSet is a functor, for each i 2 f1; : : : ; ng, then there
is an isomorphism of simplicial sets

colim
K1�����Kn

.Q1 � � � � �Qn/
Š
�!

�
colim

K1

Q1

�
� � � � �

�
colim

Kn

Qn

�
:.A:2:2/

Applying this in our case, we find that

MS .u; v/Š C.Z/.u; a1/�C.Z/.a1; a2/� � � � �C.Z/.an�1; an/�C.Z/.an; v/

DHu;v.S/:

This isomorphism is readily checked to be natural in S , so this proves (iii) and completes
the argument.

A.3 Definition An ordered simplicial set .X;�/ is called strongly ordered if, for all
a� b in X , the mapping space C.X /.a; b/ is contractible.

Note that in any ordered simplicial set X with a; b 2X0 , we have a� b if and only if
C.X /.a; b/¤∅. Thus if X is strongly ordered then its structure as a simplicial category,
up to weak equivalence, is completely determined by the ordering on its vertices. We
also point out that every necklace T 2 Nec is strongly ordered by Corollary 3.10.
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A.4 Lemma Suppose given a diagram

X
f
 �A

g
�! Y

where X;Y; and A are strongly ordered simplicial sets and both f and g are simple
inclusions. Let B DX qA Y and assume the following conditions hold:

(1) A has finitely many vertices.

(2) Given any x 2 X , the set Ax� D fa 2 A jx �B ag has an initial element (an
element which is smaller than every other element).

(3) For any y 2 Y and a 2A, if y �Y a then y 2A.

Then B is strongly ordered.

Proof By Lemma 3.6, B is an ordered simplicial set and the maps X ,! B and
Y ,! B are simple inclusions. We must show that for u; v 2 B0 with u � v , the
mapping space C.B/.u; v/ is contractible. Suppose that u and v are both in X ; then
since X ,! B is simple, any necklace T ! Bu;v must factor through X . It follows
from Proposition 4.3 that C.B/.u; v/D C.X /.u; v/, which is contractible since X is
strongly ordered. The case u; v 2 Y is analogous. We claim we cannot have u 2 Y nA

and v 2XnA. For if this is so and if T !B is a spine connecting u to v , then there is
a last vertex j of T that maps into Y . The 1–simplex leaving that vertex then cannot
belong entirely to Y , hence it belongs entirely to X . So j is in both X and Y , and
hence it is in A. Then we have u � j and j 2 A, which by assumption (3) implies
u 2A, a contradiction.

It remains to show that if u2X , v 2Y nA, and u�B v then C.B/.u; v/ is contractible.
We claim that any map T !Bu;v , where T is a necklace, must send at least one joint
of T into A. To see this, recall that every simplex of B either lies entirely in X or
entirely in Y . Since v … X , there is a last joint j1 of T which maps into X . If C

denotes the bead whose initial vertex is j1 , then the image of C cannot lie entirely
in X ; so it lies entirely in Y , which means that j1 belongs to both X and Y —hence
it belongs to A.

The preceding paragraph shows that we may apply Lemma A.2 to write

C.B/.u; v/' hocolim
S2P

op
0

Hu;v.S/.A:5/

where P0 and Hu;v.S/ are defined prior to that lemma.

For each S in P0 we write S Dfs1; : : : ; sng for si 2A with u� s1� s2� � � �� sn� v .
Then

Hu;v.S/D C.B/.u; s1/�C.B/.s1; s2/� � � � �C.B/.sn�1; sn/�C.B/.sn; v/:
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Because X ,! B is a simple inclusion, C.X /.u; s1/! C.B/.u; s1/ is a Kan equiva-
lence. For the same reason, the maps C.X /.si ; siC1/ ! C.B/.si ; siC1/ and
C.Y /.sn; v/! C.B/.sn; v/ are Kan equivalences (in the latter case using that Y ,!B

is also a simple inclusion). From the assumption that X and Y are strongly ordered we
now have that all these mapping spaces are contractible. Hence Hu;v.S/ is contractible
(this uses a special property of sSet , namely that a finite product of contractible
spaces is contractible; this is an easy consequence of the fact that geometric realization
preserves finite products).

At this point we know that the homotopy colimit on the right side of (A.5) is Kan
equivalent to the nerve of P

op
0

. It thus suffices to prove that the nerve of P0 (and hence
also the nerve of P

op
0

) is contractible. For this, write � for the initial vertex of Au� .
Define a functor F W P0! P0 by F.S/D S [f�g; note that S [f�g will be linearly
ordered, so this makes sense. Clearly there is a natural transformation from the identity
functor to F , and also from the constant f�g functor to F . It readily follows that the
identity map on NP0 is homotopic to a constant map, hence NP0 is contractible.

A.6 Proposition Let T1; : : : ;Tm be necklaces. Then their product T1� � � ��Tm is a
strongly ordered simplicial set.

Proof We begin with the case P D�n1�� � ���nm , where each necklace is a simplex,
and show that P is strongly ordered. It is ordered by Lemma 3.3, so choose vertices
a; b 2P0 with a� b . If T is a necklace, any map T !�j extends uniquely to a map
�ŒT �! �j . It follows that any map T ! Pa;b extends uniquely to �ŒT �! Pa;b .
Consider the two functors

f;gW .Nec # Pa;b/! .Nec # Pa;b/

where f sends ŒT;T !P � to Œ�ŒT �; �ŒT �!P � and g is the constant functor sending
everything to Œ�1;xW �1! P � where x is the unique edge of P connecting a and b .
Then clearly there are natural transformations id! f and g! f , showing that the
three maps id, f , and g induce homotopic maps on the nerves. So the identity induces
the null map, hence Cnec.P /.a; b/DN.Nec # Pa;b/ is contractible. The result for P

now follows by Theorem 5.3.

For the general case, assume by induction that we know the result for all products of
necklaces in which at most k � 1 of them are not equal to beads. The case k D 1 was
handled by the previous paragraph. Consider a product

Y D T1 � � � � �Tk �D
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where each Ti is a necklace and D is a product of beads. Write TkDB1_B2_� � �_Br

where each Bi is a bead, and let

Pj D .T1 � � � � �Tk�1/� .B1 _ � � � _Bj /�D:

We know by induction that P1 is strongly ordered, and we will prove by a second
induction that the same is true for each Pj . So assume that Pj is strongly ordered for
some 1� j < r .

Let us denote AD .T1 � � � � �Tk�1/��
0 �D and

QD .T1 � � � � �Tk�1/�BjC1 �D:

Then we have PjC1DPjqA Q, and we know that Pj ;A, and Q are strongly ordered.
Note that the maps A! Pj and A!Q are simple inclusions: they are the products
of the last-vertex-map �0! B1 _ � � � _Bj (resp. the initial-vertex-map �0! BjC1 )
with identity maps, and any map �0! V , where V is a necklace, is clearly simple. It
is easy to check that hypotheses (1)–(3) of Lemma A.4 are satisfied, with Pj playing
the role of X and Q playing the role of Y . This finishes the proof.

Proof of Proposition 6.1 This follows immediately from Proposition A.6.

A.7 The category C.�n/

Our final goal is to give the proof of Lemma 2.5. We must construct isomorphisms

C.�n/.i; j /!N.Pi;j /

for n 2N and 0� i; j � n, where Pi;j is the poset of subsets of fi; iC1; : : : ; j g con-
taining i and j . Moreover, we must verify that these isomorphisms are compatible with
composition, thereby giving an isomorphism of simplicial categories C.�n/!NP .

Proof of Lemma 2.5 The result is obvious when n D 0, so we assume n > 0. Let
mi denote the unique map in Œn� from i to i C 1. One understands F U.Œn�/.i; j / as
the set of free compositions of sequences of morphisms in Œn� which start at i and end
at j . Such free compositions are in one-to-one correspondence with the set of ways to
“parenthesize” the word mj mj�1 � � �miC1 in such a way that each mk is contained in
exactly one parenthesis. For example, when nD 3 the maps in F U.Œ3�/.0; 3/ are

.m3m2/.m1/; .m3/.m2m1/; .m3m2m1/; .m3/.m2/.m1/:

To such a parenthesization we associate the subset of fi; i C 1; : : : ; j g consisting of
i together with all indices that occur directly after a left parenthesis. The subsets of
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f0; 1; 2; 3g corresponding to the parenthesizations listed above, in order, are

f0; 1; 3g; f0; 2; 3g; f0; 3g; f0; 1; 2; 3g:

It is easy to see that this gives a bijection between the maps in F U.Œn�/.i; j / and
subsets of fi; i C 1; : : : ; j g containing i and j .

Now let X D .F U /�.Œn�/.i; j / and Y D Pi;j . For each ` 2 N , we will provide an
isomorphism X` Š Y` , and these will be compatible with face and degeneracy maps.
We have already done this when `D 0.

For ` > 0 one has that X` is the set of free compositions of sequences of morphisms
in X`�1 . It is readily seen that X` is in one-to-one correspondence with the set of
ways to parenthesize the word mj mj�1 : : :miC1 in such a way that every element
is contained in exactly .`C1/–many parentheses (and no closed parenthesis directly
follows an open parenthesis). For example, the nine elements of .F U /2.Œ3�/.0; 3/ are�
.m3m2m1/

�
;

�
.m3m2/

��
.m1/

�
;

�
.m3//..m2m1/

�
;

�
.m3/

��
.m2/

��
.m1/

�
;�

.m3/.m2/
��
.m1/

�
;

�
.m1/.m2/.m3/

�
;

�
.m3/

��
.m2/.m1/

�
;

�
.m3/.m2m1/

�
;�

.m3m2/.m1/
�
:

Given such a parenthesized sequence, one can rank the parentheses by “interiority”
(so that interior parentheses have higher rank). The face and degeneracy maps on X

are given by deleting or repeating all the parentheses of a fixed rank. Under this
description, a vertex in an `–simplex of X is given by choosing a rank and then
ignoring all parentheses except those of that rank. Such a vertex determines a subset of
fi; i C 1; : : : ; j g containing i and j , as in the first paragraph of this proof. And given
two ranks, the subset of fi C 1; : : : ; j g corresponding to the higher rank will contain
the subset corresponding to the lower rank (due to the nested nature of the parentheses).

One can check that an `–simplex in X is determined by its set of vertices, and so
we can identify X` with the set of sequences S0 � S1 � � � � � S` � fi; i C 1; : : : ; j g

containing i and j . This is precisely the set of `–simplices of Y , so we have our
isomorphism Xl Š Yl . It is clearly compatible with face and degeneracy maps.

Finally, we point out that the composition in the category C.�n/ corresponds to
concatenation of parenthesized words. From this one readily checks that the above
isomorphisms give a map (thus, an isomorphism) of categories C.�n/!NP .
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