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Positive quandle homology and
its applications in knot theory

ZHIYUN CHENG
HONGZHU GAO

Algebraic homology and cohomology theories for quandles have been studied exten-
sively in recent years. With a given quandle 2—cocycle (3—cocycle) one can define a
state-sum invariant for knotted curves (surfaces). In this paper we introduce another
version of quandle (co)homology theory, called positive quandle (co)homology. Some
properties of positive quandle (co)homology groups are given and some applications
of positive quandle cohomology in knot theory are discussed.

5TM25, 57TM27; 57Q45

1 Introduction

In knot theory, by considering representations from the knot group onto the dihedral
group of order 2n one obtains a family of elementary knot invariants, known as Fox
n—colorings; see Fox [14]. Quandles, sets with certain self-distributive operations satis-
fying axioms analogous to the Reidemeister moves, were first proposed by D Joyce [20]
and S V Matveev [25] independently. For a given quandle X', one can define a quandle
coloring invariant by counting the quandle homomorphisms from the fundamental
quandle of a knot to X . For the fundamental quandle and its presentations the reader is
referred to [20] and Fenn and Rourke [11]. Equivalently speaking, one can label each
arc of a knot diagram by an element of a fixed quandle, subject to certain constraints.
The quandle coloring invariant can be computed by counting the number of these
labellings. It is natural to consider how to improve this integer-valued knot invariant.
Since the quandle coloring invariant equals the number of different proper colorings,
it is natural to associate a weight function to each colored knot diagram which does
not depend on the choice of the knot diagram. In this way, instead of several colored
knot diagrams one will obtain several weight functions and the number of these weight
functions is exactly the quandle coloring invariant. Carter, Jelsovsky, Kamada, Langford
and Saito [3] associated a Boltzmann weight to each crossing and then considered the
signed product of Boltzmann weights for all crossing points. In fact, based on R Fenn,
C Rourke and B Sanderson’s framework of rack and quandle homology [12; 13], Carter
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et al described a homology theory for quandles such that each 2—cocycle and 3—cocycle
can be used to define a state-sum invariant for knots and knotted surfaces respectively.
Many applications of quandle cocycle invariants have been investigated in the past
decade. For example, with a suitable choice of 3—cocycle from the dihedral quandle
R3, one can prove the chirality of the trefoil; see Kamada [21]. For knotted surfaces,
by using cocycle invariants it was proved that the 2—twist spun trefoil is noninvertible
and has triple point number 4; see [3] and Satoh and Shima [35].

In this paper we introduce another quandle homology and cohomology theory, called
positive quandle homology and positive quandle cohomology. The definition of positive
quandle (co)homology is similar to that of the original quandle (co)homology. It is not
surprising that positive quandle homology shares many common properties with quandle
homology, which will be discussed in Section 4. The most interesting part of this new
quandle (co)homology theory is that it also can be used to define cocycle invariants
for knots and knotted surfaces. Some properties of quandle homology and quandle
cocycle invariants have their corresponding versions in positive quandle homology
theory. This phenomenon suggests that quandle homology theory and positive quandle
homology theory are parallel to each other, and in some special cases (Proposition 3.3)
they coincide with each other. However the positive quandle cocycle invariants reflect
quite different information compared with that of the quandle cocycle invariants. In a
sense, the quandle cocycle invariants concern the signed crossings of a knot diagram
but the positive quandle cocycle invariants concern the alternating information of a
knot diagram. Our hope is that these new knot invariants can offer some hints to the
study of crossing numbers via quandle homology theory.

The rest of this paper is arranged as follows. In Section 2, a brief review of quandle
structure and quandle coloring invariant is given. Some applications of quandle coloring
invariants in knot theory will also be discussed. In Section 3, we give the definition of
positive quandle homology and cohomology. The relation between positive quandle
(co)homology and quandle (co)homology will also be studied. Section 4 is devoted
to the calculation of positive quandle homology and cohomology. We will calculate
the positive quandle homology for some simple quandles. In Section 5, we show how
to use positive quandle 2—cocycle and 3—cocycle to define invariants for knots and
knotted surfaces respectively. We end this paper with two examples which study the
trivially colored crossing points of a knot diagram, from which the motivation of this
study arises.

2 Quandle and quandle coloring invariants

First we give a short review of the definition of quandle.
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Definition 2.1 A quandle (X, %), is a set X with a binary operation (a,b) — a * b
satisfying the following axioms:

(1) Foranyae X,axa=a.
(2) Forany b, c € X, there exists a unique a € X such that a b = c.
(3) Forany a,b,ce X, (axb)xc=(axc)*x(bxc).

Usually we simply denote a quandle (X, %) by X . If a nonempty set X with a binary
operation (a, b) — a * b satisfies the second and the third axioms, then we call it a rack.
In particular if a quandle X satisfies a modified version of the second axiom “for any
b,ce X, (c*b)*b=c, ie the unique element @ = ¢ * b, we call such a quandle an
involutory quandle [20] or kei; see Takasaki [36]. The relation below follows directly
from the definitions above:

{keis} C {quandles} C {racks}.

In the second axiom we usually denote the element a by a = ¢ *~! b. It is not difficult
to observe that (X, *~!) also defines a quandle structure, which is usually called the
dual quandle of (X, ). We denote the dual of X by X ™*. Note that a quandle is an

involutory quandle if and only if * = %~ 1.

Next we list some common examples of quandles (see [11; 20], Ho and Nelson [17]
and Vendramin [37] for more examples):

e The trivial quandle of order n: T, ={a;,...,an} with a; xa; = a;.
e The dihedral quandle of order n: R, ={0,...,n—1} withi*j=2j—i (modn).
e The conjugation quandle: a conjugacy class X of a group G with axb =b"ab.

o The Alexander quandle: a Z[t, ¢~ ']-module M with a xb =ta+ (1 —t)b.

From now on all the quandles mentioned throughout are assumed to be finite quandles.
To a given finite quandle X we can define an associated integer-valued knot invariant
Coly (K), the quandle coloring invariant. Let K be a knot diagram. We will often
abuse our notation, letting K refer both to a knot diagram and the knot itself. It is not
difficult to determine the meaning that is intended from the context. A coloring of K
by a given quandle X is a map from the set of arcs of K to the elements of X'. We
say a coloring is proper if at each crossing the images of the map satisfy the relation
given in Figure 1.

Now we define the quandle coloring invariant Coly (K) to be the number of proper
colorings of K by the quandle X . Since X is finite, this definition makes sense. It
is well known that although the definition of Coly (K) depends on the choice of a
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a c=axbh

Figure 1: The proper coloring rule

knot diagram, however the integer Coly (K) is independent of the knot diagram. In
fact the three axioms from the definition of quandle structure correspond to the three
Reidemeister moves. In particular, Coly (K) > n if X contains n elements, since there
always exist n trivial colorings. When X = R, we have Colg,(K) = Col,(K), the
number of distinct Fox n—colorings of K [14]. It is well known that Col, (K) equals
the number of distinct representations from the knot group 7;(R*\ K) to the dihedral
group of order 2n. As a generalization of Fox n—coloring, Coly (K) is equivalent to
the number of quandle homomorphisms from the fundamental quandle of K to X .
Here the fundamental quandle of K is defined by assigning generators to arcs, and
certain relations to crossings, which is quite similar to the presentation of the knot
group. See [20; 25] for more details.

Before ending this section we list some properties of the quandle coloring invariant.

e We have Coly(K) = Coly(K*). Here K* denotes the mirror image of K
with the reversed orientation. This follows from the fact that the fundamental
quandles of K and K* are isomorphic [20; 25].

» We have log| y|(Coly(K)) = b(K) and log|x (Coly (K)) < u(K) + 1; see
Przytycki [29]. Here |X| denotes the order of X, b(K) and u(K) denote
the bridge number and unknotting number respectively. The reader is referred
to Clark, Elhamdadi, Saito and Yeatman [9] for some recent progress on the
applications of quandle coloring invariants.

e Coly(K) is not a Vassiliev invariant if Coly (K) is not constant. This can be
proved with the similar idea of [10], in which M Eisermann proved that Col,, (K)
is not a Vassiliev invariant. Briefly speaking, in [10] it was proved that if a
Vassiliev invariant F' is bounded on any given vertical twist sequence, then F' is
constant. On the other hand, for any fixed vertical twist sequence the braid index
is bounded by some integer, say b. It is not difficult to show that the fundamental
quandle of each knot of this vertical twist sequence can be generated by at most b
elements. Assume X contains 7 elements. Then we deduce that Coly (K) < nt.

Because Coly (K) is not constant, Coly (K) is not a Vassiliev invariant.
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3 Homology and cohomology theory for quandles

Rack (co)homology theory was first defined by Fenn, Rourke and Sanderson in [13]. Itis
similar to group (co)homology theory. Quandle (co)homology was proposed by Carter,
Jelsovsky, Kamada, Langford and Saito [3] as a modification of the rack (co)homology.
As an application, they defined state-sum invariants for knots and knotted surfaces
by using quandle cocycles. Some calculations of quandle homology groups and the
associated state-sum invariants can be found in Carter, Jelsovsky, Kamada and Saito [4;
5], Mochizuki [26] and Niebrzydowski and Przytycki [27], or see Carter [1] for a good
survey. Recently, the (co)homology theory of sets with distributive operations was
systematically studied by Przytycki; the readers are referred to Przytycki [30] and
Przytycki and Sikora [31] for more details. We give a short review of the construction
of the quandle (co)homology group, then we will give the definition of positive quandle
(co)homology group.

Assume X is a finite quandle. Let CnR (X) denote the free abelian group generated by n—
tuples (ay,...,an), where a; € X . In order to make CnR (X) into a chain complex, let
us consider the following two homomorphisms from CnR (X) to CnR_ (X); here a;
denotes the omission of the element a; :

dl(al,...,an)=Z(—l)i(al,...,c_li,...,an) (n>2),

i=1

n
dy(ay, ... ay) = Z(—l)’(al Kdj,...,Aj—1 *%dj,djy1,...,dn) [@>2),

i=1

di(ay,...,an) =0 m=<1,i=12).
For the two homomorphisms d;, d, defined above, we have the following lemma.
Lemma 3.1 We have d12 = d22 =didy, +drdy =0.

Proof One computes

d?(ay, ... an) =dl(Z(—l)i(al,...,ﬁi,...,an))
i=1
= Z(_l)"(Z(—l)f(al,...,a,-,...,a,-,...,a,,)

i=1 j<i i1 _ _
+Z(—1)J_ (al,...,ai,...,aj,...,an))

j>i

=0,
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dj(ay,. ... an)

n
= dz(Z(—l)’(al Xdj,...,di_1 *a,-,a,-+1,...,an))

i=1

=Z(—l)i(2(—l)j ((ayxai)*(aj*a;), ..., (aj—1*a;)*(aj*a;),aj4q *aj, ...,

i=1 j<i
i1 *Aj,Ajg1s--.,0p)
—i—Z(—l)J_l((al kap)xdj,...,(Qj—1 *a;)*aj,aj+1 %aj,. ..,
j>i
aj_l*aj,aj+1,...,an))
=0,

dldz(al,...,an)+-d2d1(a1,...,an)

=d, (Z(—l)i(al Kdj, ..., i1 *ai,a,-+1,...,an))
i=1
+d2(Z( Di(ay,... a a,,))

i=1
i+
—ZE (=) (ay *ai, ... LA KA. .. Ai—] ¥ Aj,djy], ..., dy)
i=1j<i
n
i+j—1 —
+ZZ(—1) I™Nay *a;,....ai—1 *a;,aj41,....4d}, ... .dp)
i=1j>i

n
+ZZ(—1)’+J(a1 kdj, ... 0j—1 %Aj,djy1,...,dj,...,dp)

i=1j<i

+ZZ( 1)t l(al*aj,.. Ai % dj, ..., Aj—1 *dj,dj11, ..., dy)

i=1j>i

=0,

thus completing the proof. a

Lemma 3.1 suggests we should investigate the four chain complexes {CnR (X),dq},
{CR(X),ds}, {CR(X),d| +dyp} and {CR(X),d; —d>}. Note that {CR(X),d,} is
acyclic. A Inoue and Y Kabaya [19] regarded {C,,R (X), d;} as aright Z[Gx]—module,
where Gy denotes the associated group of X, ie Gy is generated by the elements of X
and satisfies the relation a b = b~ !ab. With this viewpoint they defined the simplicial
quandle homology to be the homology group of the chain complex {CnR (X) ®z[6x]
Z, d}; see [19] for more details. On the other hand, we remark that {CnR (X),d,} is
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also acyclic [31]. In fact let us consider the map f(x) = x *xx9: X — X, where xg is
a fixed element of X . Then f induces a chain map CR(X) — CR(X) which is chain
homotopic to the zero map by the homotopy map (xi,...,X,) = (X1,..., Xz, Xg). It
follows that id = fi(f~')s = 0, then one concludes that {CnR (X),d,} is acyclic.

Assume X is a fixed finite quandle. Let CnD (X) (n = 2) denote the free abelian
group generated by n—tuples (ay,...,a,) with a; = a;; forsome 1 <i <n-—1,
and CnD (X) =0 if n < 1. The following lemma tells us that {CnD (X),dy £dy}isa
subcomplex of {CR(X),d; +d,}.

Lemma 3.2 We have that {CnD (X),d;} is a subcomplex of {CnR (X),d;} (i=1,2).

Proof Choose an n-tuple (ai,...,ai,d;j4+1,...,dn) € CnD(X), where a; = a;4.
One computes
dl(alv---vaivai-i-l’---’an)
:Z(—I)J(al,...,ﬁj,...,ai,ai+1,...,an)
— . 3
I= + Z (=D’ (ay,....ai,ai41,....4j,...,an)

j>i+1
+(_1)l(a177alval+1»»an)+(_1)l+1(a199alaal+1"al’l)
:Z(—l)f(al,...,5j,...,ai,ai+1,...,an)
j<i j — D
g + Y (=Di(ar.....aiai41.....T5.....an) € G2 (X),
J>i+1
dyay,...,ai,ajy1,...,0n)
=Z(—1)J(a1*aj,...,aj_l*aj,aj+1,...,ai,ai+1,...,an)
— )
=t 4 Z (—l)f(al*aj,...,ai*aj,ai_,_l*aj,...,aj_l*aj,aj+1,...,a,,)
j>i+1
+(=D¥(ay *aj,...,ai—1 *a;j,ajy1,...,dn)
(=" Nay * a1, ... ai % aip1,ai2, ... an)
=Z(—1)/(a1*aj,...,aj_l*aj,aj+1,...,ai,ai+1,...,an)
j<i )
+ Z (=) (ai *aj,....,ai%aj,ajq1%aj,...,aj_1 ¥aj,aj41,...,a,)
i>i+1 D
JZit eCP (X)),
thus completing the proof. |

Defining CnQ (X)=CnR(X)/CnD (X), we have two chain complexes {C,,Q (X)), d1%d,},
where d; & d, denotes the induced homomorphisms. For simplicity, we use 7 and 9~
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to denote dy +d» and dy —d, respectively, and use C/'*(X) to denote {C}' (X), dF}
(W €{R, D, Q}). For an abelian group G, define the the chain complex C/ (X ; G)
and cochain complex Cpj,, (X; G) as below (W € {R, D, Q}):

o CVEX:G)=C*X)QG, 0F =0f ®id.
« Cjy(X:G) =Hom(C/*(X),G), 84 = Hom(35,id).

The positive quandle (co)homology groups of X with coefficient G are defined to
be the (co)homology groups of the (co)chain complex C*QJF(X :G) (Cé L (X:G)),
and the negative quandle (co)homology groups of a quandle X with coefficient G
are defined to be the (co)homology groups of the (co)chain complex C*Q_ (X;G6)
(Cé_ (X; G)). In other words,

H2*(X:G) = Hy(C2F(X:G)) and Hp . (X:G)=H"(CH.(X:G)).

Similarly we define the £ rack (co)homology groups and £ degeneration (co)homology
groups by

HRE(X;G) = Hy(CRE(X;G)) and HEL(X;G) = H"(C;o(X:G)),

HP*(X;G) = Hy(CP(X:G)) and  Hp(X;G) = H"(Cp(X:G)).
The reader has recognized that the negative quandle (co)homology groups are nothing
but the quandle (co)homology groups introduced by Carter et al in [3]. Therefore we
will still use the name quandle (co)homology instead of nagative quandle (co)homology,
and write H (X:;G6) (H (X G'))instead of HQ (X;G) (H” (X;@G)). In the rest
of this paper we will focus on the positive quandle homology groups H; 2+ (X;G) and

cohomology groups H +(X ; G). In particular, when G = Z,, the following result is
obvious.

Proposition 3.3 We have that

HEN(X:Zy) = H2(X:Zy) and Hp,(X:Zs) = HY(X:Zy).
We end this section by listing the positive quandle 2—cocycle condition and positive
quandle 3—cocycle condition. Later it will be shown that they are related to the third
Reidemeister move of knots and the tetrahedral move of knotted surfaces. The readers

are suggested to compare these with the quandle 2—cocycle condition and quandle
3—cocycle condition given in [3].

e A positive quandle 2—cocycle ¢ satisfies the condition

—p(b,c)—p(b,c)+pla,c)+plaxb,c)—¢(a,b)—¢p(axc,b*c)=0.
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* A positive quandle 3—cocycle 6 satisfies the condition

—0(b,c,d)—0(b,c,d)+06(a,c,d)+0(axb,c.d)
—0(a,b,d)—0(axc,bxc,d)+0(a,b,c)+0(axd,bxd,c*d)=0.

4 Computing positive quandle homology and cohomology

This section is devoted to the calculation of positive quandle homology and cohomology
for some simple examples. Before this, we need to discuss some basic properties of
the positive quandle homology and cohomology. Most of these results have their
corresponding versions in quandle homology theory.

First it was pointed out that since {C,,Q (X)} is a chain complex of free abelian groups,
there is a universal coefficient theorem for quandle homology and quandle cohomol-
ogy [5]. For the same reason, there also exists a universal coefficient theorem for
positive quandle homology and cohomology.

Theorem 4.1 (Universal coefficient theorem) For a given quandle X , there is a pair
of split exact sequences

0> HT(X;Z)®G — H2T (X;G) - Tor(H2 (X; Z), G) — 0,
+
0— Ext(HnQ_1 (X:Z),G) —> Hp (X;:G) — Hom(H2T(X:Z).G) — 0.
The universal coefficient theorem tells us that it suffices to study the positive quandle
homology and cohomology groups with integer coefficients. As usual we will omit

the coefficient group G if G = Z. The following lemma gives an example of the
computation of the simplest nontrivial quandle R3 in detail.

Lemma 4.2 We have Hé+(R3) >~ Zs.

Proof Recall we have that R; = {0, 1,2} with quandle operations i % j = 2j —
i (mod 3). Choose a positive quandle 2—cocycle ¢ € Z 2Q +(R3). We assume that
¢ = Zi,je{o,l,z} CG,j)X@,j)» where x(, j) denotes the characteristic function

Lif @@, j) = (k.D),

Xk ) = {0 if (i, j) # (k. D).

Recall that ¢(i,i) =0, ie ¢(; ;) = 0.
Next we need to investigate the positive quandle 2—cocycle conditions

—9(J. k) =d(j. k) + (. k) + ¢+ j. k) —p@.j) =gl *k.j*k)=0
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for all triples (i, j, k) from {0, 1,2}. There are 12 equations in total on c(; j):

—2¢@1,0) +¢2,00 = €0,1) ~€0,2) = 0. —2¢(2,0) + ¢(1,0) ~ €(0,2) ~¢(0,1) =0,
—2¢0,1) T ¢@2,1) —C,00 ~€,2) = 0. —2e@,n 0,1 — ¢, — €0 =0,
—2¢(0,2) T C1,2) ~€,0 ~C@1) =0, =2¢(1,2) +¢0,2) ~¢@.1) ~€@2,0 =0,
—2¢(1,2) +¢(0,2) —¢0,1) —€(1,00 =0, —2¢2,1) +¢(0,1) —€(0,2) —€(2,0) =0,
—2¢(0,2) +¢(1,2) —¢(1,0) —¢0,1) =0, —2¢2,0) +¢(1,0) —¢(1,2) —€(2,1) =0,
—2¢(0,1) T ¢2,1) = €2,0) —€0,2) = 0. —2¢q,0) +¢2,00 ~C2,1) ~€1,2) = 0.
After simplifying the equations above we obtain
€,1) = %, €(1,00 =—V—Z, C,2 =)
€, =—V—Z, cu2)=J) C2,1) = Z.
Here we put ¢(1,5) = y and c¢(3,1) = z. Hence we have the following equation for the
positive quandle 2—cocycle:
¢ = y(X0,2) T X(1,2 — X1,0) — X(2,0) T 2(X(0,1) T X(2,1) — X(1,0) — X(2,0))-
On the other hand, we have
§x0 = (X(0.2) + X(1,2 — X(1,00 — X(2.,0)) + (X(0.1) + X(2.1) — X(1,0) — X(2,0))>
§x1=(Xa,00 + X2.00 — X0.,1) — X2.1)) + (X0,2) T X(1.,2) — X(0,1) — X(2.1))>
Sx2 = (x,1) + X@.,1) — X0,2) — X(1,2)) + (X(1,0) T X(2,0) — X(0,2) — X(1,2))-
Since
¢ = y(xo0) + (z—¥)(X0,1) + X2,1) = X(1,0) — X(2,0))>
then
Hp (R3) = {X(0,1) + X2.,1) = X(1,0) — X(2,0) | §x0.8X1}-
From 6 xo = 8 x1 = 0 one can easily deduce that 3()(o,1) + X(2,1) — X(1,0) — X(2,0)) = 0.

It follows that Hé+(R3) ~73. a

Note that the second quandle cohomology group of Rj is trivial, H, (22 (R3;7Z) =0 [3].

According to the definition CnQ (X)= CnR (X)/ CnD (X), there is a short exact sequence
0—>CP(xX)—> CRx)—CclXx)—0

of chain complexes. It follows that there is a long exact sequence of homology groups

> HP(X) - HR(X) - H2(X) - HP [(X) - ---.
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In [5], it was conjectured that the short exact sequence of chain complexes above is
split. Later R A Litherland and S Nelson gave an affirmative answer to this conjecture
in [23]. The following theorem says that the splitting map defined by R A Litherland
and S Nelson still works in positive quandle homology theory.

Theorem 4.3 For a given quandle X , there exists a short exact sequence

0— HP*(X) > HRT(x) > H2*(X) — 0.

Proof According to the definition of positive homology groups there exists a short
exact sequence

0—CPT(x) L cRt(x) 2 c2(x) —o.

It suffices to find a chain map wy,: C,,RJr (X)— CnD+(X) such that w;ou, =1id. We use
the splitting map wy(c¢) = ¢ —ay(c) introduced by R A Litherland and S Nelson in [23];
here ¢ € CRT(X), and @y, is defined by oy (ay, ..., an) = (ay,az—ay,...,an—an—1)
on n-tuples and extending linearly to CnR+(X ). The following two relationships will
be frequently used during the proof; note that the notation we use here is a bit different
from that in [23].

e We have
0t (ay,....ans1) = 0% (ay.....an).ans1)
+ (D" (@, an) + (a1, .. an) * anyg);
here the notation (ay,...,da) * ay+1 denotes (a; * dy+1,...,an * dpt1).
e Wehave apq1(ay,....ant1) = (@ulay,....an), apt1)—(@ulay, ... an), an).

Generally, we write

p+1(C, an+1) = (@n(c), apt1) — (an(c), 1(c));
here ¢ € CnR"'(X) and /(c) € CIRJF(X). In particular /(ay,...,dn) = an.
First we show that ¢ —a,(c) € CnD+(X) and wyouy, =1id. In order to prove c—ay,(c) €
CP*(X) it is sufficient to consider the case ¢ = (ay,...,a,) € CXF(X). Note that
ay—ai(a))=a;—a;=0¢€ C1D+(X)v

(a1,a2) —aa(ay, az) = (ar,az) — (@i, az) + (ay,a1) = (ar, a;) € CLH(X).
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Suppose ¢ —ay(c) € CnD T (X) for some 1, and consider

(ar,....an+1) —opt1(as, ..., an+1)
=(ar,....ant1) — (@u(ay,....an), apny1) + (@n(ay, ..., an), an)
=(a1,....an+1)—(an(ay,....an), apy1)—(a,....an, an)+@nlas, ..., an), an)
+(ai,....an.an)
= ((ay,....an) —ap(ay,...,an), any1) — (@, ..., an) —ay(ay, ..., an),an)
+(ar, ..., an, an) € CPH(X).
In order to show that wy, ou, =1id, choose ¢ = (ay,...,a;,0j+1,...,dn) € CnD"'(X),

where a; = a;41. It suffices to prove that o, (c) = 0. In fact,
an(c)=(ar,ap—ay,...,aj41—ai,...,an —du—1) =0.
Next we show that wy: CnR"'(X) — CnD"'(X) is a chain map. We need the two
equalities below (n > 2):
an(di(an,....an),an) = an(—(az,....an,an) +---+(=1)"(a1, ..., an))

= (—=D"an(ai,...,an),

n
an(dy(ay, ... an),an) = ay (Z(—l)’(al Kdj, ... ,Aj—1 ¥dj,djt1,... ,an,an))

i=1

=(=D"a,((ay,...,an) *ay).
Now we show that 8;;_10{,,“ —ay 8:[4_1 = 0. First note that

03 az(ay.az) = —(a2) — (az) + (a1) + (a1 x az) = a1 95 (a1, az).

Assuming 8:+1an+1 —anajﬂ = 0 holds for some n > 2, one computes
O ant1(@r, ... ang1) —andi (@, ... 1)
=3, (@n(ar.....an). any1) = (@u(ay, ... an), an))
— (@ (@1.....an). ang1) + (=) (ay. ... an)
+ (D" (ay.....an) * any1)
= @y an(ar.....an).an1) + (1" an(ar.....an)
+ ()" ag(ay. ... an) *any1 — @ anay.. ... an). an)
— (D" au(ay,....an) — (=D)"Nay(ay, ... an) xay
— (@10 (@1, an). Ang1) — (@10 (a1, .. an) 10 (ay, ..., an)))
— ()" ag(ar, . oan) = (D" ag((ay. ... an) % anty)
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= —(n—10; (a1.....an).an) — (=1)"ap(ay.....an)
—(=D)" oy (ay, ... an) ¥ an—(au—10, (ay,...,an), 1} (ay,...,an)))
=—a, (3 (a1, ....an),an) — (=" May(ay, ... an)
—(=D)" N, (ay, ... an) *ap
= —an((dy + dr)(ay.....an).an) — (=1)"au(ay,....an)
—(=D)" N, (ay,....an) *ap
=—(=D"ay(ay,...,ay) — (=D "ay(ay, ..., ay) *ay
—(=D)"ay(ay,...,an) — (D" ay(ay,...,an) *ay

=0.

This completes the proof. a

Now we investigate H 1Q T(X) and H2Q+(X ) for a general quandle X . Similar results
for quandle homology groups can be found in [5; 21]. Assume X = {ay,...,a,}.
According to the definitions of d; and d, we have Z2¥(X) =C2T(X)=CE(X),
ie the free abelian group generated by {ay,...,a;,}. Since 8;_(61, b)y=—-b—b+a+axb,
we conclude that

H1Q+(X) ={ay,....ay|ai xaj =2a; —a;}.
. o+ - o+ N
Proposition 4.4 We have H°" (T,,) = Z & (P,_1 Z2) and H=" (Ry) = Z & Zy.

Proof According to the analysis above, we have

H1Q+(Tn);{al7---7an | 2a; =2a;} ={ay,ay—ay,...,an—ay | 2(a; —ay) = 0}
~7 @ (@Zz).
n—1

For the dihedral quandle R, = {ay,...,a,—1} with quandle operations a; * a; =
a2j—i (modn)> We have
H1Q+(Rn) = {dg,....ap—1 | A2j—i (modn) = 2aj —a;i}
~{ag,a; —ag | n(ay—ag) =0} =Z & Zy.
This completes the proof. a
Next we study the second positive degeneration homology HZD *(X). Given a quan-

dle X and {a,b} € X, we define a ~ b if there exists some elements aq,...,d,
of X suchthat b = (--- ((a %' ay) **2 ay) ---) *°" a,, where ¢; € {x1}. The orbits
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of X are defined to be the set of equivalence classes of X' by ~. We denote it by
Orb(X), and as usual the number of elements in Orb(X) is denoted by | Orb(X)]|.
Since 0T (a,a) = —a—a+a+a=0,
0t (a,a,b) = —=2(a,b) + (a,b) + (a.b) — (a,a) — (a x b, a x b)
=—(a,a)—(axb,axb),
and

9t (a,b,b) = —2(b,b) + (a,b) + (a * b,b) — (a,b) — (a ¥ b, b) = —2(b, b),

so combining this with Theorem 4.3, it follows that:

Proposition 4.5 We have isomorphisms

HP T (X)= @ 2, and H2R+(X);H2Q+(X)@( D Zz).

[ Orb(X))| [ Orb(X))|

In the end of this section let us turn to the trivial quandle 73 . In quandle homology the-
ory, the boundary operators of 7}, are trivial, therefore HnQ(T n) = CnQ(T n). However
in positive quandle homology theory, the boundary operators are not trivial in general.
In fact we have the following proposition.

Proposition 4.6 We have

zo@z: i=1 s i
HEC(T,) =~ -l HL (T,) = >
f "= @Zz i>2, o+ = EBZ2 iz2.

(n—1)i (n=1)!~1

Proof It suffices to compute Hl.Q+(T,,) as then H IQ 4 (T5) can be deduced from the

universal coefficient theorem. For the case i = 1, the result follows from Proposition 4.4.

Now we show that H2Q+(Tn) ~ @(n_l)z Z,. Recall that T,, = {ay,...,a,} with
quandle operations a; * aj = a;. Notice that

a;_(ai,aj) = —261j +ai+a;xaj = 2(a; —aj),

therefore any element ¢ € ZZQ+(Tn) can be written as ¥ = Y i_, ¢;¥;, where
Vi = (ai,, aiy) + -+ (ai,_, . ai, ) + (aj, , a;,). 1t follows that ZZQ+(T,,) is generated
by

{(ai,aj) + (aj.ai), (ar,ai) + (ai,a;) + (@j,a1)} (1=i<j=n),
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which is equivalent to

{(ar,ai) + (ai,aj) + (aj.a1)} (2=i=j=n).
On the other hand, since

0 (ai,aj,ar) = 2(—(a;,ax) + (a;i,ar) — (a;, aj)),

0" (ai.aj.a;) = 2(—(aj, a;) — (a;, aj)),
we have
H2Q+(Tn) =~ {(a1,a;i) + (ai,aj) + (aj.a1) | 2((ai. aj) + (aj. ai)).

2((ai, aj) + (aj, ag) — (ai, ax))}
= {(a1,a;) + (ai,aj) + (aj,a1) | 2((a1, ;) + (ai, aj) + (aj,a1))}

%@Zz

(n—1)2
Similarly since 8l.+ = 2d, for CZ.Q (T3), it is not difficult to observe that

HPH(T) = (107, (ar.ajy.....aj)) |0, (@r.ajy.....a)) = €D Za:
(n—1)!
here 2 < j, <n. a

5 Khnot invariants derived from positive quandle cocycles

5.1 Positive quandle cocycle invariants for knots

One of the most important applications of quandle cohomology groups is that one
can define knot invariants via quandle 2—cocycles and knotted surface invariants via
quandle 3—cocycles. In this section we will show that positive quandle 2—cocycles
can also be used to define knot invariants, which is similar to the definition of quandle
cocycle invariants introduced in [3].

Let K be an oriented knot diagram and X a finite quandle. Assume G is an abelian
group and ¢ € Z ZQ 4+ (X: @) is a positive quandle 2—cocycle. It is well known that
all regions of R?> — K can be colored with white and black in checkerboard fashion
such that the unbounded region gets the white color. For each crossing point t we can
associate a sign €(7) as in the figure below.

Let p be a proper coloring of K by X, ie a homomorphism from the fundamental
quandle of K to X . In other words, each arc of the diagram is labelled with an element
of X . For each crossing point 7, assume the over-arc and under-arcs at t are colored
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/ ’ _ \
Figure 2: The signs of crossings

by b and a, a * b respectively; see Figure 1. We consider a weight which is an element
of G as

Wy(t, p) = p(a, b)<®,

where €(t) = %1 according to Figure 2. Then we define the positive quandle 2—cocycle
invariant of K to be

@y (K)=> [ [Ws(r.p0) € ZG.
p T

where p runs all proper colorings of K by X and t runs all crossing points of the
diagram. Note that if the sign of the crossing €(t) is replaced by the writhe of 7, one
obtains the state-sum (associated with a quandle 2—cocycle ¢) knot invariants defined
by J S Carter et al in [3].

Theorem 5.1 The positive quandle 2—cocycle invariant ®4(K) is preserved under
Reidemeister moves. If a pair of positive quandle 2—cocycles ¢, and ¢, are coho-
mologous, then @y (K) = ®4,(K). In particular if ¢ is a coboundary, we have

CI>¢(K) = ZCle(K) L.

Proof First we prove that ®4(K) is invariant under Reidemeister moves. In [28],
M Polyak proved that all the classical Reidemeister moves can be realized by a gener-
ating set of four Reidemeister moves: {214, Q1p, 224, 234}; see Figure 3. Hence it
suffices to show that ®4(K) is invariant under 214, 215,22, and Q3,.

7 N /’
< /x
1o gl et /\\%QK/
~ /TN
Figure 3: Reidemeister moves

21, and 215 The weight assigned to the crossing point in 21, or Q5 is of the
form ¢ (a,a)*!. According to the definition of positive quandle cocycle we have
d(a,a)*! =1.
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2,, Assume the two arcs on the left side are colored by a, b respectively. Then the
sum of the weights of the two crossing points on the right side is ¢ (b, a)¢ (b, a) ' =1.

23, Without loss of generality, we assume the top region on both sides is colored
white. Under this assumption the signs of each crossing are shown in the figure below.

X _White 2 x_ White z
_\\ /'L z *_l X >SS +/
VAN YN

T e Y

Gry)stxxy) Y Extyxy Y

Figure 4: Proper colorings under 23,

In order to show that ®4(K) is invariant under €23, it is sufficient to prove that

(. ) Pz, )P ((zxp)x (xkp), xxy) = (27 x, p) T Pz X, x)P(x, p).

Note that (z* p) %! (x x y) = (z* ' x) % y. Put (a,b,c) = (z+ ' x,x, y) and
compare the equation with the positive quandle 2—cocycle condition (note that the
equation is written in multiplicative notation here); the result follows.

In order to finish the proof it suffices to show that ®4(K) = ZCO]X k)l if ¢ isa
coboundary. Assume ¢ = 5#(,0 for some ¢ € C é +(X:G). Then

¢(a,b) =8, p(a.b) = 933 (a,b)) = p(=2(b) + (@) + (a x b))
= p(b) 2p(a)p(axb) €G.

First let us consider the simplest case: we assume the knot diagram is alternating.
Therefore all crossings have the same sign. Without loss of generality all the crossings
are assumed to be positive. In this case for a given arc A of the knot diagram, there
exists only one crossing such that A is the over-arc at this crossing. On the other hand,
this arc is the under-arc at two crossings. For a fixed proper coloring p, suppose the
labelled element of A is a € X'. Then the contribution of A to [, Wy(z, p) comes from
the three crossing points that A involved, which equals ¢(a) ™ 2¢(a)¢@(a) = 1. It follows
that [, Wy (7, p) = 1, hence ®4(K) = > 1, (k) |- The proof of the nonalternating
case is analogous to the alternating case. In fact it suffices to notice that if an arc A is
the over-arc at several crossings, then the signs of these crossings are alternating. It is
not difficult to find that the contribution of A to [, Wy(z, p) is still trivial. The proof
is finished. O

Recall that in quandle cohomology theory H, é (R3) = 0, it means quandle 2—cocycle
invariant of R3 cannot offer any more information than the Fox 3—colorings. In fact it
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was pointed out in [3] that all knots have trivial quandle 2—cocycle invariants with any
dihedral quandle R, and any quandle 2—cocycle. We remark that although quandle
2—cocycle invariants of R, are trivial, some quandle 3—cocycle of H é(R3; Z3) can
be used to distinguish the trefoil and its mirror image; see Rourke and Sanderson [34].

Proposition 5.2 All knots have trivial positive quandle 2—cocycle invariants with any
dihedral quandle R, , associated with any positive quandle 2—cocycle ¢ € Z ZQ +(Rn).

Proof If n is even, according to the coloring rule at each crossing point, for each
colored knot diagram all the assigned elements have the same parity. If all assigned
elements are even, then by replacing the assigned element i with i/2 we obtain a
proper coloring of R, /,. Consider the element ¢’ of Z2 0+ (R /2) defined by ¢'(i, j)=
¢(2i,2)). Then @4 (K) with R, /5 is nontrivial if @ (K) with R;, is nontrivial. If all
assigned elements are odd, then one obtains a proper coloring with R/, by replacing
each labelled element i with (i —1)/2. Similarly if ®4(K) with R is nontrivial
then @4/ (K) with R, /5 is also nontrivial, where ¢”(i, j) = ¢(2i + 1,25 + 1).
Therefore it is sufficient to consider the case of odd 7.

If n is odd, it suffices to prove that the free part of H, é +(Ry) is 0. This follows from
a general fact: ®4(K) is trivial if ¢ has finite order in Hé +(X). In fact assume
k¢p=0¢ Hé+(X); then [ [, Wiy (7, p) = 0. In other words,

[[ro(a.b)s@ = k(l_[ b(a, b)e(f)) =0

Since we are working with coefficients in Z, it follows that [ ], ¢ (a, b)Y =0.

Assume the free part of H} 0+ (Ry) is not equal to 0. It follows that the free part of
H Q+(Rn) # 0. Replacing the coefficient Z by Z, one concludes that H. Q+(Rn, Z5)
contains Z, as a summand By Proposition 3. 3 we have H (Ryn; Zy) = Z, & other.
However since H (Ry; Z) =0 by [5] and H (Rn:;Z) = Z the universal coefficient
theorem tells us that H Q(R,,, Z3)=0. The proof is finished. a

Now we give a nontrivial example of positive quandle 2—cocycle invariant. With the
matrix of a finite quandle introduced in [17], the quandle S4 contains four elements
{0, 1,2, 3} with quandle operations

NN - W O
S W = N
—_— N O W
w O o=
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where the entry in row i column j denotes (i — 1) *(j —1) (1 <i, j <4). Choose a
positive quandle 2—cocycle

¢ = X(@.1) + X(1,0) T X2.0) + X(0.2) + X(1,2) + X2.1) € H 4 (Sa3 Z2);
it was proved in [3] that ®4(31) = Py(41) =) 4,0+ ;5 1.

We end this subsection with some remarks on the positive quandle 2—cocycle invariants
with trivial quandles. First note that for 7, and for any knot diagram there exist
exactly n trivial proper colorings. By the definition of £ quandle homology groups we
cannot obtain any new information from the + quandle cocycle invariants. However
it was pointed out in [3] that for any ¢ € H, é(Tn) and any link L, the quandle 2—
cocycle invariant ®4(L) is a function of pairwise linking numbers. For example
® = X, ,a) € Hé(Tz) can be used to distinguish the Hopf link from the trivial
link. Since we have Hé+(T2) =~ Z, with generator ¢ = X(4,,a5) — X(az,a;)> ON€
obtains that ®y(L) is trivial for any link L. In order to obtain some information
from the link, we can work with Z, coefficients. In this way we can obtain parity
information of the pairwise linking numbers. For example, alink L = K; U---U Ky,
is a proper link, ie Zj# Ik(K;, Kj) =0 (mod 2) for any 1 <i <m if and only if
pIp— B Wo=x,.ap (T PLm—1) = > m 0. Here Z ={0,1} and py ,—; denotes
the set of proper colorings which assign one component with a; and the rest with a,.
This result mainly follows from the fact that H, é L(X5Zy)=H é (X;Z,). From this
viewpoint, for 7}, it seems that the positive quandle 2—cocycle invariant is a sort of
Z,—version of the quandle 2—cocycle invariant. Later, in the final section, we will
show that this is not the case.

5.2 Positive quandle cocycle invariants for knotted surfaces

In this subsection, given a positive quandle 3—cocycle we will define a state-sum
invariant for knotted surfaces in R*. First we will give a short review of the background
of knotted surfaces in R*. The readers are referred to Carter and Saito [7] and Carter,
Kamada and Saito [8] for more details.

By a knotted surface we mean an embedding f of a closed oriented surface F into R*.
Sometimes we also call the image f(F) a knotted surface and denote it by F for
convenience. In particular when F = S? we name it a 2—knot. Two knotted surfaces
are equivalent if there exists an orientation preserving automorphism of R* which
takes one knotted surface to the other. Similar to the knot diagram in knot theory, we
usually study knotted surfaces via the knotted surface diagrams. Let p: R* — R3 be
the orthogonal projection from R* onto R3. We may deform f(F) slightly such that
po f(F) isin a general position. Then p o f(F) is called a knotted surface diagram.
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We must notice that a knotted surface diagram does not just mean an immersed surface
in R3. First there exist double points, triple points and branch points in p o f(F).
However it is well known that f(F) can be isotoped into a new position such that
the projection contains no branch points; see Carter and Saito [6] and Giller [15].
Second, a knot diagram can be regarded as a 4—valent planar graph with some over-
under information on each vertex. Hence a knotted surface diagram also contains the
information of the over-sheet and under-sheet along the double curves. In other words,
a knotted surface diagram is obtained from the projection by removing small open
neighborhoods of the under-sheets along double curves.

Similar to the definition of the knot invariant Coly (K), we can define an integer-valued
knotted surface invariant with a given quandle X . The main idea is to use the elements
of X to color the regions of the broken surface diagram according to some rules at
double curves. See the figure below, where 7 denotes the normal vector of the knotted

surface diagram.
a :\b \ =ax \

—

i

Figure 5: Coloring rules at a double curve

It is not difficult to check that the rule above is well defined at each triple point [3].
Recall that different knotted surface diagrams represent the same knotted surface if and
only if one of them can be achieved from the other by a finite sequence of Roseman
moves; see Roseman [33]. Similar to the proper coloring of knot diagrams, the number
of the coloring satisfying the condition above is invariant under the Roseman moves,
hence is a knotted surface invariant. We use Coly (F) to denote it.

The main idea of defining a knotted surface invariant with a positive quandle 3—cocycle
is analogous to the definition of the quandle 3—cocycle invariant proposed in [3]. As a
generalization of the counting invariant Coly (F), we need to assign an invariant to
each colored knotted surface diagram and then take the sum of them. The position of
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the triple point in a knotted surface diagram is analogous to that of the crossing point
in a knot diagram. Therefore this invariant can be obtained by assigning a weight to
each triple point of the colored diagram.

Let F be a knotted surface diagram and X a finite quandle. Assume G is an abelian
group and 0 € Z 3Q 4+ (X:G) is a positive quandle 3—cocycle. Consider the shadow of
the diagram F, which is the immersed surface in R* without removing a neighborhood
along double curves. The shadow separates R> into several regions. It is not difficult
to observe that we can use white and black to color these regions in 3—dimensional
checkerboard fashion, ie adjacent regions are colored with different colors. As before
we assume that the unique unbounded region is colored white. For each triple point t
we can associate a sign €(t) according to the figure below (W =white, B=Dblack).

@y //I Ay //I
< Bl > |: w P I I B
c. W H A B B .o oA

¥ | ¥ |
5 B B ; w

B Y W 1"

e(r) =+1 e(r) =-1

Figure 6: Signs of triple points

Let p denote a coloring of F by X. Assume 7 is a triple point of F and the bottom,
middle, top sheets around the octant from which all normal vectors point outwards are
colored by a, b, ¢ respectively; see the figure above. Note that the sign of the triple
point used here does not depend on the orientation of the surface. We associate a weight
at the triple point t as

Wy(z, p) = 60(a,b,c)® € G.

Now we can define the positive quandle 3—cocycle invariant of the knotted surface F
associated with 6 to be

Op(F) =) [ [We(r.p) € ZG.
p T

where p runs all colorings of F by X and t runs all triple points of the diagram.

We remark that the sign of a triple point has another definition. Consider the normal

vectors of the top, middle and bottom sheets. If the orientation in this order matches
the orientation of R3, we say this triple point is positive. Otherwise it is negative.
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Replace €(7) with the sign of triple point defined in this way one obtains the state-sum
invariants introduced in [3].

Theorem 5.3 The positive quandle 3—cocycle invariant ®g(F) is preserved under
Roseman moves. If a pair of positive quandle 3—cocycles 6, and 8, are cohomologous,
then ®g, (F) = Oy, (F). In particular if 6 is a coboundary, we have Oqy(F) =

> Coly (F) 1-

Proof We summarize the proof. There are only three types of Roseman moves that
involve triple points; see [3]. The first one creates or cancels a pair of triple points
with oppositive signs, and the second one moves a branch point through a sheet. The
contribution of the two triple points in the first case will cancel out, and the contribution
of the triple point in the second case is trivial according to the definition of positive
quandle cohomology groups. Thus it suffices to prove that ®y(F) is invariant under
tetrahedral move. See the figures below.

a b ¢ d a b ¢ d ab cd a b ¢ d a b ¢ d

N
(\
white
N\

0(a.b.c) Oaxc.bxc.d)™ 6, c, d) (b, c,d)”!

Figure 7: Left-hand side of the tetrahedral move

a\bcd a\bcd a\bch ach\d ach\d
axb
(\1 (WA &S
\L ) \L\L N Jexd 7\,
N W \\ N \] N \] \\

0(b,c.d) Oaxb,c,d)! O(a,b.d) Oaxd,bxd,cxd)”!
Figure 8: Right-hand side of the tetrahedral move

Here we use the movie description of knotted surface; see [7] for more detail. For
example Figure 7 contains five slices of a knotted surface according to a fixed height
function. Each slice consists of four sheets which are cross sections of four planes,

Algebraic & Geometric Topology, Volume 15 (2015)



Positive quandle homology and its applications in knot theory 955

and a pair of adjacent slices depict a triple point. Figures 7 and 8 correspond to the
left-hand side and the right-hand side of the tetrahedral move. Without loss of generality,
suppose the leftmost region of each slice has the white color, and other regions can be
colored in checkerboard fashion. The left-hand side of the tetrahedral move contributes
O(a,b,c)0(axc,bxc,d)"'0(a,c,d)0(b,c,d)™" to Og(F), and the right side has
the contribution 0(b,c,d)8(a*b,c,d)"'0(a,b,d)0(a*d,bxd,cxd)~!. In order
to prove that ®g(F') is invariant under the tetrahedral move, it suffices to show that

O(a,b,c)0(axc,bxc,d) ' 0(a,c,d)0(b,c,d) 0, c,d) '0(ax*b,c,d)
0(a,b,d) "0(axd,bxd,cxd)=1.

Comparing the equation above with the positive quandle 3—cocycle condition (note that
the equation is written in multiplicative notation at present), we find that the condition
eZ 3Q +(X: G) guarantees the invariance of ®¢(F). Here we only list one case of
the tetrahedral move; for other possible tetrahedral moves the invariance of ®g(F) can
be proved in the same way.

Next we show that Oy (F) = ZCO]X( py 1 if 0 is a coboundary. As we mentioned
before, we can choose a knotted surface diagram such that the shadow of it contains
no branch points. The double point set of it is a 6—valent graph and each vertex
corresponds to a triple point. Fix a coloring p. According to the assumption that 6 is
a coboundary, ie 6 = Siqﬁ for some ¢ € Cé+(X; G), we have

0(a.b,c)=83¢(a.b.c) = (35 (a.b.c))
=¢(b.c) 2p(a,c)plaxb,c)p(a,b) 'p(axc,bxc) leq.

Consider the triple point T on the left side of Figure 6, which has a weight Wy (zt, p) =
O(a,b,c)=¢(b,c)2¢p(a,c)p(axb,c)p(a,b) '¢(axc,bxc)~!. There are six edges
adjacent to the triple point t: two of them come from the intersection of the top sheet
and the middle sheet, two of them come from the intersection of the middle sheet and the
bottom sheet and the rest come from the intersection of the bottom sheet and the top sheet.
We use tm (), tmy (1), mby(t), mby (1), bt (), bto(7) to denote these edges, where
tm;(t) (i =1,2) denotes the two edges belonging to the intersection of the top sheet and
the middle sheet, mb;(t) (i =1,2) denotes the two edges belonging to the intersection
of the middle sheet and the bottom sheet and b#;(t) (i = 1,2) denotes the two edges
belonging to the intersection of the bottom sheet and the top sheet. The order of the two
edges belonging to the intersection of two sheets matches the orientation of the normal
vector of the third sheet. Then the contribution of t to ®¢(F) can be separated into
six parts: ¢(b,c)" L, (b, c) L p(a, b)), plaxc,bxc) L p(a,c), plaxb,c). We
assign these six parts to tm (1), tmy (1), mbi (), mby(7), bt (1), bty (T) respectively.
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Therefore the contribution of 7 can be regarded as the product of the contribution of
the six edges adjacent to . We remark that the contribution of each edge can be read
directly from Figure 5; the double line in Figure 5 has contribution ¢ (a, b)*!. Here
the sign of %1 is decided by the position of the two sheets. The sign is positive if the
two sheets are the top sheet and the bottom sheet; for other cases the sign is negative.
If the sign of the triple point is negative then all the contributions will take the inverse.

In order to show that @y (F) is trivial, it is sufficient to prove that each edge obtains
opposite contributions from the two endpoints of it. We continue our discussion in two
cases depending on whether the two endpoints have the same sign or not.

d* (ax*b) d
|
Black| , ‘1/ Black‘ b _f@axb)*xd
a axb A a axb ¥
71 T2 T1 T2
. d c |” cxd
e(r)) =+1, €(rn)=+1 e(r) =+1, e(rr) =+1

Figure 9: Two possibilities of adjacent triple points with the same sign

€(t1) =+1 and €(t2) = +1 There are two possibilities in this case. First consider
the left side of Figure 9. There are two triple points t; and 7, with the same sign.
Without loss of generality we assume the sign is positive. The frame with color ¢
denotes the top sheet of 7y and 7,, and the straight lines are cross sections between
the middle sheet or bottom sheet with the top sheet. Since Wy(ty, p) = 0(a, b, c) and
Wy (12, p) = 6(d,a * b, c), the contribution from t; to the edge with color a * b is
¢(a*b,c) and that from 7, is ¢(a * b, c)~!. The negative sign comes from the fact
that for the triple point 7,, the edge with color a x b belongs to the intersection of the
top sheet and the middle sheet. Hence the contributions from 7; and t, to the edge
between them cancel out. Considering the 6—valent graph consisting of the double point
set, it follows that the product of the contribution from each vertex to ®g(F) vanishes.

For the right side of Figure 9, we still have €(7;) = +1 and €(7;) = +1. Note that
in this case the sheet with color d is the top sheet of the triple point 7,. We have
Wy (t1, p) = 0(a,b,c) and Wy(tp, p) = 0(a xb,c,d). Therefore the contribution
from t; to the edge with color a x b is ¢(a * b, ¢) and the contribution from t, to
the edge with color a * b is ¢(a % b,c)~!, since the edge with color @ % b belongs to
the intersection of the middle sheet and the bottom sheet of 7, . Thus the contributions
from 7; and 7, to the edge between them still cancel out.

Algebraic & Geometric Topology, Volume 15 (2015)



Positive quandle homology and its applications in knot theory 957

Black d _} b)xd
: b axb , (axb)*

71 T2

C

e(r)) =41, €(rn)=-1

Figure 10: Adjacent triple points with different signs

€(t1) = +1 and e(r3) = —1 See Figure 10. We can read from the figure that
We(t1, p) = 6(a,b,c) and Wy(ty, p) =0(axb,d,c)~!. As before the contribution

from 77 to the edge with color a * b is ¢(a * b, c). Meanwhile, due to €(1;) = —1,
the contribution from 7, to the edge with color a * b equals ¢(a * b,c)~'. Hence in
this case we still have [ [, Wy(t, p) = 1. The proof is finished. a

Remark In quandle cohomology theory, a quandle 3—cocycle € also can be used to
define a state-sum invariant for knots via the shadow coloring. Given a knot diagram K
and a quandle X, a shadow coloring of K by X is a function from the set of arcs
of K and the regions separated by the shadow of K to the quandle X', satisfying the
coloring condition depicted below.

cxa |(cxa)*xb c cxb
a axb a axb
b L
c cxb cxa \(cxa)xb

Figure 11: Shadow coloring at a crossing

It is not difficult to observe that shadow colorings are completely decided by the proper
colorings on arcs and the color of one fixed region. Hence the number of shadow
colorings does not offer any new information other than Coly (K). Given a quandle
3—cocycle 0 € Z3Q(X; G) one can associate a weight Wy (z, p) = 6(c.a, b)*@ to
the crossing point in Figure 11, where w(t) means the writhe of the crossing and
p denotes a shadow coloring. Then the element Wy (K) = > 5[], Wy(z, p) of ZG
defines a knot invariant, where p runs all shadow colorings and t runs all crossing
points. It was pointed out in [34] that this state-sum invariant can be used to detect the
chirality of the trefoil knot. An interesting question is how to define a knot invariant
given a positive quandle 3—cocycle.

Remark In [2]JS Carter et al generalized the quandle homology theory when the co-
efficient groups admit an Alexander quandle structure, for example when the coefficient
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group is Z[T, T™']. A generalized version of cocycle invariants for knots and knotted
surfaces, called the twisted quandle cocycle invaraints, were introduced with the use of
the Alexander numbering of regions. Very recently the relation between the positive
quandle homology and the twisted quandle homology was discussed by S Kamada,
V Lebed and K Tanaka via shadow quandle cocycle invaraints [22]. By investigating the
relation between the Alexander numbering and €(7) S Kamada, V Lebed and K Tanaka
proved that the cocycle invariants we introduced here are essentially equivalent to
the invariants introduced in [2] when 7" = —1. On the other hand, we remark that
S Kamada, V Lebed and K Tanaka’s paper also offers an answer to the question above.
The readers are referred to [22] for more details.

6 On trivially colored crossing points

We end this paper with two elementary examples which concern trivially colored
crossing points. Given a knot diagram K and a quandle X', choose a crossing point ©
of the knot diagram. We say t is a trivially colored crossing point if for any proper
coloring of K by X, the over-arc and the two under-arcs of 7 are labelled with the
same color. For example the crossing point involved in the first Reidemeister move is a
trivially colored crossing point for any given quandle. As another instance, consider
the crossing 7 of the knot diagram below. If we take X = R3, then the crossing 7 is a
trivially colored crossing point.

AN
XX

Figure 12: A trivially colored crossing point

There are two reasons for us to study trivially colored crossing points. The first comes
from the Kauffman—Harary conjecture. L. Kauffman and F Harary [16] conjectured
that the minimum number of distinct colors that are needed to produce a nontrivial Fox
n—coloring of a reduced alternating knot diagram K with prime determinate n equals
the crossing number of K. In other words for any nontrivial Fox n—coloring of K,
different arcs are assigned to different colors. In 2009 this conjecture was settled by
T W Mattman and P Solis [24]. It means that for a given reduced alternating diagram
with prime determinate » and the quandle R, no crossing point of the knot diagram
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is trivially colored. However this conjecture does not hold if we ignore the condition
of prime determinate. Consider for example the standard diagram of the connected
sum of two reduced alternating knot diagrams which have prime determinate m and n
respectively. Choose the quandle R,,;,. Now there exists no Fox mn—coloring such
that different arcs have different colors, but for each crossing point there exists a proper
coloring such that this cross point is nontrivially colored. It is possible to extend the
range of knots in the Kauffman—Harary conjecture by replacing the heterogeneity of
the coloring with the nonexistence of trivially colored crossing points.

The second motivation of investigating trivially colored crossing points arises from
the + quandle 2—cocycle invariants. Recall the definition of + quandle cohomology
groups: in order for the 2—cocycle invariant to be preserved under the first Reidemeister
move we put ¢(a,a) = 1. In this way the first Reidemeister move has no effect on the
2—cocycle invariant, but the disadvantage is the information on trivially colored crossing
points is also lost. For instance if a crossing point t of a knot diagram K is a trivially
colored crossing point (associated with X), then W (z, p) = 1 for any 2—cocycle ¢
and proper coloring p. Hence it has no contribution to the cocycle invariant.

The first example we want to discuss are the Borromean rings. The Borromean rings
are a nontrivial 3—component link with trivial proper sublinks. That the Borromean
rings form a nontrivial link follows from the fact that one component of the Borromean
rings represents a commutator of the fundamental group of the complement of the
other two components; see Rolfsen [32]. Let X = T,,. As we mentioned before, the
quandle 2—cocycle of a link is a function of pairwise linking numbers [3]. Since the
pairwise linking numbers of the Borromean rings are all trivial, it follows that the
quandle 2—cocycle invariant cannot distinguish the Borromean rings from the trivial
link. However we can use a refinement of the positive quandle 2—cocycle invariant to
show that the Borromean rings arises nontrivial.

Figure 13: The Borromean rings

Let Ky, K, K3 denote the three components of the Borromean rings and t; (1 <
i < 6) denote the crossing points of it. See the figure above. According to the
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definition of €(7;) we used in Section 5, we have €(7;) = +1 (1 <i < 6). Take
¢ = X(ay.as) + X(araay) € 22Q+(T2; Z4), and consider the element

EISd, (BL) = Z(Z‘IVV({)('UI;P)+W¢(TZ’P)ZZVV¢('53ap)‘l‘W¢(t4,p)Z3I/V¢(-[5’p)+W¢(t6,p))
’ EZ[t17t2’[3]/(tf:t;:t§: 1)’

where Wy (7;, p) is the weight associated to the crossing 7; and p runs all proper
colorings of the diagram in Figure 13 by 75 . In general for a diagram of a 3—component
link L = K U K, U K3, we define

&34, (L) = Z(;lz:reklmkz Wd)(l’,P)ZzZ:reI(zmIQ Wé(f,p)t;remmkl W¢(‘E,p))
’ €Zlt, 3]/} =15 =13 = 1),

where K; N K; denotes the set of crossing points between K; and K; and p runs all
proper colorings of the diagram by 7.

Proposition 6.1 We have that CB¢ (L) is invariant under Reidemeister moves.
Proof This follows from the fact that ¢ = x(4,.a5) + X(a2,a;) € 22Q+(T2; Z4). O

Direct calculation shows that &Jd, (BL)=2+ 2t12t22 + 2t22t32 + 2t3%1f12 and &Dq) (TL) =38,
where BL denotes the Borromean rings and TL denotes the 3—component trivial link.
Therefore 2134, (L) can be used to distinguish the Borromean rings from the trivial
link. Further, since we are working with 75, it follows that ®4 (L) is invariant under
self-crossing changes. Hence the result above shows that the Borromean rings are
not link-homotopic to the 3—component trivial link. Essentially speaking, the reason
why &)(p (L) can tell the difference between the Borromean rings and the trivial link
is that the Borromean rings are alternating. The writhe of a crossing between two
components does not depend on the position of the third component, hence if the
linking number of two components is zero then the third component has no effect on the
quandle 2—cocycle invariant (associated with 7). However the sign €(7) we used here
contains some information of the position of the third component. This is the reason
why positive quandle 2—cocycle can be used to distinguish the Borromean rings and the
trivial link. We remark that although for any quandle 2—cocycle of T, the state-sum
invariant cannot distinguish the Borromean rings and the trivial link, A Inoue [18]
used a 2—cocycle of a quasitrivial quandle to show that the Borromean rings are not
link-homotopic to the 3—component trivial link. Note that the link-homotopy invariants
defined by A Inoue in [18] have the same value on the Borromean rings and the
3—component trivial link if we work with the trivial quandles.
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The second example concerns the Fox 3—coloring. As we mentioned before, the diagram
of knot 74 in Figure 12 contains a trivially colored crossing point if we consider the
Fox 3—colorings. A natural question is which kind of knot diagram contains a trivially
colored crossing point (associated with R3). For example if the determinate of the knot
is not divisible by 3 then there exists no nontrivial Fox 3—coloring, hence each crossing
point is a trivially colored crossing point. We end this paper by a simple sufficient
condition to this question, which shows that the knot diagram in Figure 12 contains a
trivially colored crossing point without needing to list all the proper colorings.

Proposition 6.2 Let K be a knot diagram and consider the Fox 3—colorings. If
> . €(7) is not divisible by 3, then K contains a trivially colored crossing point.

Proof Recall that R; = {0, 1,2} with quandle operations i * j = 2j —i (mod 3).
Consider the coboundary

é = X0, T X1,00 T X(1,2) T X2,1) T X(2,0) T X(0,2) € H2+(R3; Z3).
0

Since ¢ = Jxo it follows that ®y(K) = ZColg(K) 0 (here we write Z3 ={0,1,2}).
On the other hand, for each nontrivially colored crossing point 7, the contribution of ¢
to ®4(K) is €(z). Therefore if K contains no trivially colored crossing points we
have ) _e(r) =0 (mod 3). The result follows. O
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