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A type A structure in Khovanov homology

LAWRENCE P ROBERTS

Inspired by bordered Floer homology, we describe a type A structure in Khovanov
homology, which complements the type D structure previously defined by the author.
The type A structure is a differential module over a certain algebra. This can be paired
with the type D structure to recover the Khovanov chain complex. The homotopy
type of the type A structure is a tangle invariant, and homotopy equivalences of
the type A structure result in chain homotopy equivalences on the Khovanov chain
complex found from a pairing. We use this to simplify computations and introduce a
modular approach to the computation of Khovanov homologies. Several examples
are included, showing in particular how this approach computes the correct torsion
summands for the Khovanov homology of connect sums. A lengthy appendix is
devoted to establishing the theory of these structures over a characteristic-zero ring.

57M27; 55N35

1 Introduction
In a previous paper, we described an algebra B�n for a set of 2n points P2n ordered
along a line (summarized in the next section) and a type D structure ŒŒ

!

T ii for an outside
tangle

!

T whose endpoints are these 2n points, where an outside tangle is one with
a diagram in an oriented half-plane whose boundary contains P2n but provides P2n

with the opposite linear ordering when inherited from the boundary orientation; see
Roberts [9]. In this paper, we consider inside tangles: tangles where the orientation on
the boundary equips P2n with the same ordering. We will picture these as lying on the
left side of the y–axis in R2 . For example, the following is an inside tangle

 

T over
P4 when the plane has its usual orientation:

1

2

3

4

These tangles will be taken with an orientation, although we suppress that data for
the introduction. To such a tangle we will associate a bigraded module hh

 

T �� and a
differential dAPS , which is a modified version of the differential defined by M Asaeda,
J Przytycki, and A Sikora in [1], [2]. It is modified to have more generators, in a manner
similar to Khovanov’s invariant for tangles by [7].

Published: 15 December 2016 DOI: 10.2140/agt.2016.16.3653

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M27, 55N35
http://dx.doi.org/10.2140/agt.2016.16.3653


3654 Lawrence P Roberts

From there we define a bigrading preserving right action hh
!

T ��˝ B�n! hh
!

T �� which
is compatible with dAPS by a certain Leibniz identity. This will make hh

!

T �� into a
differential right module over B�n . If we consider this within a suitable category of
right A1–modules we have a notion of homotopy equivalence of right modules. We
will then show that Reidemeister moves on the diagram

 

T will produce homotopy
equivalent A1–modules. We do this over Z with a somewhat different sign convention
than usual, and a good bit of this paper is devoted to ensuring that the sign choices
will work (the reader should consider that there are different sign conventions that can
be followed in the Khovanov construction, and that these will produce distinct even
and odd versions; we only consider the original, even, version here). Following the
conventions of bordered Floer homology as used in Lipshitz, Ozsváth and Thurston
[8], we will call this a type A structure.

We arrange these constructions so that the following argument will work. Consider the
following knot K cleaved transversely in half by the y –axis:

1

2

3

4

On the left side of the y–axis we recognize the inside tangle
 

T . On the right side,
there is an outside tangle

!

T :

1

2

3

4

The Khovanov complex hhKii is generated by states consisting of a smoothing at each
crossing of a diagram for K and a decoration of fC;�g attached to each planar circle
resulting from the smoothing. Such a state � might look like this:

1

2

3

4
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We can similarly divide this resolution along the y –axis; however, we do this in a less
obvious way. The left side will be the diagram obtained by forgetting the circles on the
right which do not intersect the y –axis. We similarly describe the right side:

1

2

3

4

1

2

3

4

These are states,
 

� and
!

� , generating summands in hh
 

T �� and ŒŒ
!

T ii, respectively. To
obtain the resolution of K we will consider these to be glued along their common
cleaved link:

1

2

3

4

The latter diagram corresponds to an idempotent in B�n which acts on the two states
as the identity. These idempotents will be orthogonal in B�n , and if we let I be the
idempotent subalgebra, then hh

 

T ��˝I ŒŒ
!

T ii will be isomorphic to hhKii, and
 

� ˝
!

� will
represent � in this decomposition. The Khovanov differential can then be decomposed
into the contribution of the crossings on the right and left. However, these contributions
can change the cleaved link, and the corresponding idempotent. We record the changed
in the cleaved link with the algebra B�n . For the crossings on the right we obtain a
map

!

ı W ŒŒ
!

T ii ! B�n˝I ŒŒ
!

T ii which satisfies the requirements of a type D structure
described by Lipshitz, Ozsváth and Thurston [8]. The crossings on the left give rise to
the type A structure.

Following the constructions in [8] we can combine the type A structure on hh
 

T �� and
the type D structure on ŒŒ

!

T ii into a chain complex hh
 

T ��� ŒŒ
!

T ii with underlying module
hh
 

T ��˝I ŒŒ
!

T ii and differential

@�.x˝y/D dAPS.x/˝jyjC .m2˝ I/.x˝
!

ı.y//;

where m2 is the action on hh
 

T ��. We then show that hhT ii Š hh
 

T ��� ŒŒ
!

T ii.

Furthermore, changing either hh
 

T �� by a homotopy equivalence (of type A structures)
or ŒŒ

!

T ii (of type D structures) changes hh
 

T ��� ŒŒ
!

T ii by a chain homotopy equivalence.
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Thus, we can construct and simplify the two factors independently of each other, and
then combine them using the �–construction from [8].

This provides a fully modular approach to constructing Khovanov homology at the
level of bigraded homotopy types. In particular we can simplify the structures for
a tangle by homotopy equivalences before combining them with each other or any
other tangle. For example, in Section 6 we will compute the type A structures for
tangles underlying the three Reidemeister moves, and simplify them, to see that they
are homotopy equivalent to the type A structure after applying the move. The pairing
through � immediately implies the Reidemeister invariance of Khovanov homology.
In short, we obtain a convenient means for understanding local modifications of link
diagrams and their effects on the global Khovanov homology.

Ours is not the only approach to defining a Khovanov homology for tangles and their
pairings. Khovanov defined a tangle homology in [7] for .m; n/–tangles which can be
paired at the level of chain complexes to reflect the composition of tangles. However,
our approach records the information needed for gluing differently, and this necessitates
the use of the algebraic techniques of bordered Floer homology rather than those
employed in [7].

Example Consider the following connected sum:

We showed in [9] that B�1 is the quiver algebra for this:

!
eCC

 
eCC

CC

C�

In [9] we showed that, for this example, ŒŒ
!

T ii is homotopy equivalent to

(1)

!

ı
�
sC
.�3;�15=2/

�
D 2

!
eC ˝ s�.�2;�13=2/C

 
eC ˝ s�.�3;�17=2/;

!

ı
�
sC
.�2;�11=2/

�
D�

 
eC ˝ s�.�2;�13=2/;

!

ı
�
sC
.0;�3=2/

�
D�

 
eC ˝ s�.0;�5=2/;

where the C and � superscripts identify which idempotent acts as the identity on the

Algebraic & Geometric Topology, Volume 16 (2016)



A type A structure in Khovanov homology 3657

generator. Furthermore, the type A structure hh
 

T �� is homotopy equivalent to one which
also has six generators:

tC
.0;5=2/

; tC
.2;13=2/

; tC
.3;17=2/

; t�.0;3=2/; t�.2;11=2/; t�.3;15=2/:

For these generators dAPS � 0, the action of !eC is given by

tC
.0;5=2/

! t�.0;3=2/; tC
.2;13=2/

! t�.2;11=2/; tC
.3;17=2/

! t�.3;15=2/;

and the action of  eC is given by tC.2;13=2/ ! 2 � t�.3;15=2/ . The complex hh
 

T ��� ŒŒ
!

T ii

can be computed exactly (see Section 8 for the details). It has homology with free part

Z.�3;7/˚Z.�2;�3/˚Z.�1;�3/˚Z2
.0;�1/˚Z2

.0;1/˚Z.1;3/˚Z.2;3/˚Z.3;7/

and torsion part

.Z=2/.�2;�5/˚ .Z=2Z/.0;�1/˚ .Z=2Z/.1;1/˚ .Z=2Z/.3;5/;

which is the Khovanov homology of this knot.

Outline of the paper We construct the algebras B�n and their differentials in Section 2.
This includes a fuller description of cleaved links. In Section 3 we follow with a
description of the bigraded module hhT �� we will associate to an inside tangle diagram,
and equip this module with a differential modified from that found in Asaeda, Przytycki,
and Sikora [2]. We then define the action of B�n on hhT �� in Section 4, and prove that
the differential and action turn hhT �� into a bigraded differential module over B�n . In
Section 5 we recall the algebra of type A structures (A1–modules) from [8] and how
they can be simplified through homotopy equivalences. We put this knowledge to work
in Section 6, where we show that the model tangles before and after a Reidemeister
move have type A structures that are homotopy equivalent as type A structures and
provide other example computations. In Section 7 we prove that we can pair the type A

structure for an inside tangle with the type D structure for an outside tangle, using a
pairing technique from [8], and recover the chain complex for Khovanov homology.
The construction respects the homotopy equivalences of type A and type D structures,
so we can simplify these structures using homotopy equivalences first, and then pair to
get a chain complex homotopy equivalent to the Khovanov chain complex. Finally, in
Section 8 we give examples of the pairing theorem in action, including the details of the
previous example. The pairing theorem rest upon an edifice of algebra described in [8]
for characteristic-two coefficients. In this paper we need to lift to integer coefficients in
a manner respecting the Khovanov sign conventions. The Appendix details the choices
of signs which are both compatible with Khovanov’s choices and allow us to replicate
the algebraic results of [8]. See the beginning of the Appendix for a more detailed
summary.
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Degree shift convention If M is a Z–graded module, M Œn� is the graded module
with .M Œn�/i DMi�n , ie the module found by shifting the homogeneous elements
of M up n levels. If m2M , the corresponding element in M Œn� will be denoted mŒn�.
Thus gr.mŒn�/D gr.m/C n.

Acknowledgements After posting this paper to the arXiv, the author was informed
by Cotton Seed that he had independently discovered a similar construction of a type A

structure in Khovanov homology. The author would like to thank Andy Manion for
finding an error in the original version of this paper, and the referee for many helpful
comments. This research was supported by a research grant from Research Grants
Committee of the University of Alabama, Tuscaloosa.

2 The algebra from cleaved links

We summarize the construction of the algebra B�n from [9].

2.1 Cleaved planar links

Let Pn be the set of points p1 D .0; 1/; : : : ;p2n D .0; 2n/ on the y–axis of R2 ,
ordered by the second coordinate. We denote the closed half-plane .�1; 0��R�R2

by
 

H while
!

HD Œ0;1/�R.

Definition 2.1 A n–cleaved link L is an embedding of circles in R2 such that

(1) the circles of L are disjoint and transverse to the y –axis,

(2) each point in Pn is on a circle in L,

(3) each circle in L contains at least two points in Pn .

The set of circle components of L will be denoted CIR.L/.

We take two n–cleaved links to be equivalent if they are related by an isotopy of R2

which pointwise fixes the y –axis. We will denote the equivalence classes by cCLn .

Definition 2.2 The constituents of an n–cleaved link L are the planar matchings

(2)
 

LD
 

H\L and
!

LD
!

H\L:

Definition 2.3 A bridge for a cleaved link L is an embedding 
 W Œ0; 1�!R2n.f0g�R/
such that

(1) 
 .0/ and 
 .1/ are on distinct arcs of
 

L or
!

L,

(2) the image under 
 of .0; 1/ is disjoint from L.
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By definition, a bridge 
 has image in either
!

H or
 

H . We call this half-plane the
location of the bridge. Bridges are also considered up to isotopy fixing the y –axis.

Definition 2.4 The equivalence classes of bridges for a cleaved link L will be de-
noted BRIDGE.L/. BRIDGE.L/ D

 

BR.L/[
!

BR.L/, where
 

BR.L/ consists of those
equivalence classes in

 

H and
!

BR.L/ consists of those classes in
!

H .

For each class of bridges 
 2 BRIDGE.L/ we can construct a new cleaved planar link.

Definition 2.5 Let L be an equivalence class of cleaved links and let 
 2 BRIDGE.L/.
L
 is the equivalence class of cleaved links found by surgery along 
 .

L
 has a special bridge 
| introduced by the surgery. More specifically, there is
a neighborhood of 
 homeomorphic to Œ�1; 1� � Œ�1; 1� which intersects L along
f˙1g � Œ�1; 1�, and for which 
 is the core Œ�1; 1�� f0g. L
 results from removing
these two arcs from L and replacing them with Œ�1; 1�� f˙1g. The bridge 
| is then
the bridge for L
 defined by the cocore f0g � Œ�1; 1�.

Definition 2.6 (1) The support of 
 2 BRIDGE.L/ is the set of three circles in L

and L
 which contain the feet of 
 and 
| .

(2) MERGE.L/ is the subset of 
 2 BRIDGE.L/, where surgery on 
 merges two
circles fCa.
 /;Cb.
 /g. In this case, C
 is the circle in CIR.L
 / which contains
both feet of 
| .

(3) DIVIDE.L/ is the subset of 
 2 BRIDGE.L/, where surgery on 
 divides a circle
C of L. In this case, C a


 and C b

 are the circles in CIR.L
 / which contain the

feet of 
| .

Proposition 2.7 Given any bridge 
 for L, BRIDGE.L/nf
 g can be decomposed as
a disjoint union Bt.L; 
 /[Bj j.L; 
 /, where

(1) Bt.T; 
 / consists of the classes of bridges whose representatives all intersect 
 ,

(2) Bj j.L; 
 / consists of the classes of bridges containing a representative which
does not intersect 
 .

Furthermore, we can divide Bj j.L; 
 / into the disjoint union Bd .L; 
 /[Bs.L; 
 /[

Bo.L; 
 /, where

(1) Bd .L; 
 / consists of those bridges neither of whose ends is on an arc with 
 ,

(2) Bs.L; 
 / consists of those bridges with a single end on the same arc as 
 and
lying on the same side of the arc as 
 ,

(3) Bo.L; 
 / consists of those bridges with a single end on the same arc as 
 and
lying on the opposite side of the arc as 
 .
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If � is in B�.L; 
 /, where � represents a specific choice of one of the above, then

 2 B�.L; �/. Furthermore, if ı has a different location than 
 then ı 2 Bd .L; 
 /.
We consider how these sets change under surgery on 
 .

Proposition 2.8 Surgery on 
 induces an identification Bd .L; 
 / with Bd .L
 ; 

|/

and a 2 W 1 map Bs.L; 
 /! Bo.L
 ; 

|/. Dually, there is a 2 W 1 map Bs.L
 ; 


|/!

Bo.L; 
 /.

Proof Let � 2 Bj j.L; 
 /. Pick a representative arc for � which does not intersect
the representative arc for 
 . Then � also represents a bridge in Bj j.L
 ; 


|/, and vice
versa. If � 2Bd .L; 
 /, any isotopy of the representative arc occurs in a region disjoint
from 
 and its endpoints, since the isotopy will occur along arcs disjoint from those
intersecting 
 . This isotopy also survives into .L
 ; 
|/. Reversing this construction for
Bd .L
 ; 


|/ proves the identification. Note that an isotopy of � 2Bs.L; 
 / missing 

can likewise be pushed forward. However, for each � we can slide � over 
 to get
another bridge �0 2 Bs.L; 
 /. In L
 , �' �0 , and both are on the opposite side of 
| .
By looking at a local model, this is the only type of collision, so the map is 2 W 1 on
Bs.L; 
 /. We can apply the same argument to .L
 ; 
|/ to obtain the 2 W 1 map in the
other direction.

A decoration for an n–cleaved link L is a map � W CIR.L/! fC;�g.

Definition 2.9 CLn is the set of decorated, n–cleaved links:

(3) CLn D f.L; �/ jL 2 cCLn; � is a decoration for Lg:

We will often restrict a decoration � of L to give decorations on the arcs of its
constituents

 

L and
!

L. In addition, we will need to following statistic for a decorated,
cleaved link:

(4) �.L; �/D #fC 2 CIR.L/ j �.C /DCg� #fC 2 CIR.L/ j �.C /D�g:

2.2 The algebra B�n

We will describe B�n by generators and relations. First, there is an idempotent for
each decorated, cleaved link in CLn . We will denote the idempotent corresponding to
.L; �/ by I.L;�/ . The idempotents will be orthogonal to each other.

Definition 2.10 In is the sub-algebra generated by the idempotents I.L;�/ .
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For each .L; �/ 2 CLn we specify certain elements in I.L;�/B�n . B�n will be freely
generated by the idempotents and these elements, subject to the relations described
below:

(1) For each circle C 2 CIR.L/ with �.C /DC there are two elements !eC and  
eC

in I.L;�/B�n . Furthermore, !eC I.L;sC /D
!
eC for the decoration with sC .C /D�

and sC .D/D s.D/ for each D 2 CIR.L/nfC g, while !
eC I.L0;s0/ D 0 for every

other idempotent. The same relations hold for  eC . These types of elements
are called decoration elements, while the C above is called the support of the
element.

(2) Let 
 2 BRIDGE.L/. There is a bridge element e.
 I�;�
 / with I.L;�/e.
 I�;�
 /D

e.
 I�;�
 /I.L
 ;�
 / D e.
 I�;�
 / in each of the following cases, based on the deco-
rations:

(a) 
 2MERGE.L/, � and �
 restrict to the support of 
 as one of the following
three configurations:

�.Ca.
 //DC; �.Cb.
 //DC; �
 .C
 /DCI

�.Ca.
 //D�; �.Cb.
 //DC; �
 .C
 /D�I

�.Ca.
 //DC; �.Cb.
 //D�; �
 .C
 /D�I

and s.D/D s
 .D/ on every circle not in the support of 
 .
(b) 
 2 DIVIDE.L/, C 2 CIR.L/ is the circle containing both feet of 
 , one of

the following two conditions holds:
(i) �.C /DC, �
 restricts to the support of 
 as either of the configurations

�
 .C
a

 /DC; �
 .C

b

 /D�I

�
 .C
a

 /D�; �
 .C

b

 /DCI

(ii) �.C /D�, �
 restricts to the support of 
 as

��
 .C
a

 /D�; ��
 .C

b

 /D�I

and s.D/D s
 .D/ on every circle not in the support of 
 .

In [9], we note that with these generators and idempotents, B�n is finite-dimensional.

Proposition 2.11 B�n is finite-dimensional.

Furthermore, B�n can be given a bigrading [9]. On the generating elements the
bigrading is specified by setting

I.L;�/! .0; 0/;
!
eC ! .0;�1/;

 
eC ! .1; 1/;

!
e
 !

�
0;�1

2

�
;

 
e
 !

�
1; 1

2

�
:
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On every other element it is computed by extending the above homomorphically. The
first entry of this bigrading will be denoted

 

l .˛/, while the second element will be
denoted q.˛/.

We now turn to describing the relations between these generators. Each of the relations
is homogeneous with respect to the bigrading. First, there are a number of graded
commutativity relations, based on the first entry in the bigrading:

(5) e˛eˇ0 D .�1/
 

l .e˛/
 

l .eˇ/eˇe˛0 :

This graded commutativity occurs in the following cases, assuming that I.L;�/e˛ ¤ 0

and I.L;�/eˇ ¤ 0:

(1) e˛ and eˇ are decoration elements for distinct circles C and D in .L; �/ with
�.C /D �.D/DC, and e˛0 is the decoration element for D in .L; �C /, while
eˇ0 is the decoration element for C in .L; �D/.

(2) e˛ D e.
;�;� 0/ for a bridge 
 in .L; �/ and eˇ is a decoration element for
C 2 CIR.L/, with C not in the support of 
 , while e˛0 D e.
;�C ;�

0
C
/ and eˇ0 is

the decoration element for C in .L
 ; s0/. Due to the disjoint support, there will
always be a pair of such elements.

(3) e˛ D e.
;�;� 0/ and eˇ D e.�;�;� 00/ are bridge elements for distinct bridges 

and � in .L; �/, with � 2Bd .L; 
 /, eˇ0 D e.�;� 0;� 000/ and e˛0 D e.
;� 00;� 000/ for
some decoration � 000 on L
;� .

(4) e˛De.!
 ;�;� 0/ and eˇDe.!� ;�;� 00/ are bridge elements for distinct right bridges 

and � in .L; �/, and eˇ0 D e.

!
ı ;� 0;� 000/ and e˛0 D e.!! ;� 00;� 000/ , such that L
;ı D

L�;! , and some compatible decoration � 000 .

(5) e˛ D e. 
 ;�;� 0/ and eˇ D e. � ;�;� 00/ are bridge elements for distinct left bridges
in .L; �/, with  � 2 Bo.L;

 

 /, and eˇ0 D e.

 
ı ;� 0;� 000/ , e˛0 D e. ! ;� 00;� 000/ with

L
;ı DL�;! , and some compatible decoration � 000 .

We also note that the type (decoration vs bridge) and the location are the same for e˛
and e˛0 as well as for the pair eˇ and eˇ0 . In fact, in all these relations elements of the
algebra from

!

H will act like even elements for the Z=2Z–grading from
 

l .˛/, while
elements from

 

H act like odd elements.

Other bridge relations Suppose 
 2
 

BR.L/ and � 2 Bt.L
 ; 

|/. Then

e.
;�;� 0/e.�;� 0;� 00/ D 0

whenever � 0 and � 00 are compatible decorations.
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Furthermore, suppose that there is a circle C 2 CIR.L/ with �.C /DC, and there are
elements !e .
;�;� 0/ and !e .
|;� 0;�C / for a bridge 
 2

!

BR.L/. Then

(6) !
e .
;�;� 0/

!
e .
|;� 0;�C / D

!
eC :

Such a circle C is unique for the choice of 
 and � 0 and is called the active circle
for 
 .

Finally, suppose that  ˛ 2Bs.L;
 

 /. Let

 

ˇ be the bridge obtained by sliding  ˛ over  
 ,
 

ı be the image of  ˛ and
 

ˇ in L 
 ,
 

� be the image of  ˛ and  
 in L
 
ˇ and  � be the

image of
 

ˇ and  
 in L ˛ . Then
 
e˛
 
e�C

 
eˇ
 
e� C

 
e

 
eı D 0

whenever there are compatible decorations on L˛ , Lˇ , L
 , and L˛;� DLˇ;� DL
;ı ,
for the paired edges to exist.

Relations for decoration edges When the support of eC is not disjoint from that
of !e .
;�;�
 / the relations are different depending upon the location of eC .

The relations for !
eC Suppose that 
 2 MERGE.L/ merges C1 and C2 to get C 2

CIR.L
 /, and �.C1/D �.C2/DC. Then

(7) !
eC1

m.
;�C1
;�C / D

!
eC2

m.
;�C2
;�C / Dm.
;�;�
 /

!
eC :

Note that if �.Ci/D� for either i D 1 or 2, then there is no relation imposed.

Dually, if surgery on 
 2 DIVIDE.L/ divides circle C 2 CIR.L/ into C1 and C2 in
CIR.L
 /, and � assigns C to C , then

(8) !
eCf.
;�C ;�C;
 / D f.
;�;�1


 /

!
eC1
D f.
;�;�2


 /

!
eC2

;

where � i

 assigns C to Ci and � to C3�i .

The relations for  
eC Suppose that 
 2

�!
MERGE.L/ merges C1 and C2 to get C 2

CIR.L
 /, and �.C1/D �.C2/DC. Then

(9)  
eC1

m.
;�C1
;�C /C

 
eC2

m.
;�C2
;�C /�m.
;�;�
 /

 
eC D 0;

and when �.C /DC and 
 2
�!

DIVIDE.L/ divides C into C1 and C2 ,

(10)  
eCf.
;�C ;�C;
 /Cf.
;�;�1


 /

 
eC1
�f.
;�;�2


 /

 
eC2
D 0;

whereas if 
 2
 �

MERGE.L/ merges C1 and C2 to get C 2 CIR.L
 /, and �.C1/ D

�.C2/DC, then

(11)  
eC1

m.
;�C1
;�C /C

 
eC2

m.
;�C2
;�C /Cm.
;�;�
 /

 
eC D 0;
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and when �.C /DC and 
 2
 �

DIVIDE.L/ divides C into C1 and C2 ,

(12)  
eCf.
;�C ;�C;
 /Cf.
;�;�1


 /

 
eC1
Cf.
;�;�2


 /

 
eC2
D 0:

2.3 A differential on B�n

Surgery along a bridge 
 2
 

BR.L/ followed by surgery on 
| does not correspond to a
relation (compare relation (6)). Instead these products occur in a differential on B�n .

Proposition 2.12 [9] Let .L; �/ 2 CLn such that there is a circle C 2 CIR.L/ with
�.C /DC. Let  eC be the decoration element corresponding to C . Let

(13) d�n
.
 
eC /D�

X
e.
;�;�
 /e.
|;�
 ;�C /;

where the sum is over all 
 2
 

BR.L/ with C as active circle, and all decorations �

which define compatible elements. Let d�n

.e/ D 0 for every other generator e (in-
cluding idempotents). Then d�n

can be extended to a .1; 0/–differential on bigraded
algebra B�n which satisfies the following Leibniz identity:

(14) d�n
.˛ˇ/D .�1/

 
l .ˇ/.d�n

.˛//ˇC˛.d�n
.ˇ//:

We denote this differential bigraded Z–algebra by .B�n; d�n
/.

Example Consider .B�1; d�1
/. P1 consists of two points, and there is only one

planar matching in
 

H and
!

H . Consequently, the only 1–cleaved link is a circle
intersecting the y–axis in two points. Thus, there are two vertices in �1 : when this
circle is decorated with a C and when it is decorated with a �. We will call these C˙ .
There are no bridges in either

 

H or
!

H , so the only edges are  e C W C
C ! C� and

!
e C W C

C! C� . Thus �1 looks like this:

!
eCC

 
eCC

CC

C�

Thus, B�1 consists of four elements: ICC ; IC� in grading .0; 0/,  e C in grading
.1; 1/, and !e C in grading

�
0;�1

2

�
. The product of any two of these is trivial except for

the actions of the idempotents: ICC
 
e C D

 
e C D

 
e C IC� , and similarly for !e C . The

differential d�1
� 0 since its image is in the set generated by paths of bridge edges.

For more detail about .B�2; d�2
/ see the examples in [9, Section 2].

Algebraic & Geometric Topology, Volume 16 (2016)



A type A structure in Khovanov homology 3665

3 Tangles and resolutions

In this section we recall the notions of tangles and resolutions used in [9], adapting
them to the case at hand. More details are provided there.

Let
 

R3 D
 

H � R be the half space corresponding to
 

H � R2 under the standard
projection � to the xy –plane.

Definition 3.1 An (inside) tangle
 

T is a smooth, proper embedding of
(i) n copies of the interval Œ0; 1�, and

(ii) k copies of S1

in
 

R3 , whose boundary is the set of 2n points Pn in @
 

H .
 

T1 and
 

T2 are equivalent
if there is an isotopy of

 

R3 taking
 

T1 to
 

T2 and pointwise fixing the boundary @
 

R3 .

As usual, we will study
 

T through its tangle diagrams in
 

H . Different diagrams for
!

T
are related by sequences of Reidemeister moves, and planar isotopies, in the interior
of
 

H . We will denote a tangle diagram for a tangle by the corresponding roman letter:
 

T will be a diagram for
 

T .

The crossings of
 

T form a set CR.
 

T /. We will orient
 

T and use the usual convention
for positive and negative crossings:

positive crossing negative crossing

The number of positive/negative crossings will be denoted n˙.
 

T /.

3.1 Resolutions

Definition 3.2 A resolution r of
 

T is a pair .�; m/, where �W CR.
 

T /!f0; 1g and !m
is a planar matching of P2n embedded in

!

H . The resolution diagram, r.
 

T / is the
crossingless, planar link in

 

H obtained by gluing
 

T �
 

H to !
m �

!

H , and locally
replacing (disjoint) neighborhoods of each crossing c 2 CR.

 

T / using the following
rule:

�.c/D 0 �.c/D 1

The set of resolutions will be denoted RES.
 

T /.
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The local arcs introduced by
 

T  �.
 

T / are called resolution bridges. The resolution
bridge for a crossing c 2 CR.

 

T / will be denoted 
r;c (or just 
c when the resolution is
understood). If �.c/D 0 we will call 
c an active bridge for r , while if �.c/D 1 it will
be called inactive. The active bridges for r are the elements of the set ACTIVE.r/. We
will denote by 
c.r/ the resolution obtained by surgering the diagram for r along 
c .
The resolution bridges at c for 
c.r/ will be denoted by 
 |

c when considered from r .

A resolution diagram r.
 

T / consists of a planar diagram of circles, which we divide into
two groups: (1) the free circles which are contained in int

 

H and are the elements of a
set FREE.r/, and (2) the cleaved circles which cross the y –axis, and which determine
an element cl.r/ 2 cCLn .

Definition 3.3 A state for
 

T is a pair .r; s/, where

(1) r is a resolution of
 

T ,

(2) s is an assignment of an element of fC;�g to each circle of r.
 

T /. This
assignment will be called a decoration on r.

 

T /.

The states for
 

T will be denoted STATE.
 

T /.

Definition 3.4 The boundary of a state .r; s/ for
 

T is the element @.r; s/D .cl.r/; �/2
CLn , where � D sjcl.r/ .

3.2 A bigraded module spanned by the states

Definition 3.5 For a state .r; s/ 2 STATE.
 

T / with r D .�;
!
m/, let

(1) h.r/D
P

c2CR.
 

T / �.c/,

(2) q.r; s/D
P

C2FREE.r/ s.C /,

(3) �.r; s/D �.L; �/, where .L; �/D @.r; s/.

Let
 �

CK.
 

T ;L; �/Š
M

@.r;s/D.L;�/

Z � .r; s/;

where .r; s/ occurs in bigrading
�
h.r/� n�; h.r/C q.r; s/C 1

2
�.r; s/C nC � 2n�

�
.

The first entry will be called the homological grading of the state, while the second is
its quantum grading.

Definition 3.6 The type A module for an inside tangle
 

T is

hh
 

T ��D
M

.L;�/2CLn

 �

CK.
 

T ;L; �/:
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There is a right action of the idempotent algebra In � B�n on hh
 

T ��:

.r; s/ � I.L;�/ D

�
.r; s/ if @.r; s/D .L; �/;
0 otherwise.

Thus I.L;�/ acts non-trivially only on the summand
 �

CK.
 

T ;L; �/.

In addition the construction of Asaeda, Przytycki, and Sikora [1], in [2] hh
 

T �� is en-
dowed with a .1; 0/–differential, dAPS , described presently. With this differential,
hh
 

T �� becomes a chain complex, and the main result of [2] implies that the (bigraded)
homology of hh

 

T �� is an isotopy invariant of
 

T , up to (bigraded) isomorphism.

3.3 The differential from [2]

To define the differential we first order the crossings of
 

T . Then for .r; s/2 STATE.
 

T /,
we define

dAPS.r; s/D
X


2ACTIVE.r/

.�1/I.�;
 /D
;�.r; s/;

where r D .�;
!
m/, I.�; 
 / D

P
c
<c0 �.c

0/ is the number of �–inactive crossings
which occur after the crossing c corresponding to 
 , and D
;� is a map defined at
each active arc. This map is prescribed by the following recipe:

(1) Khovanov case (i) Suppose surgery on 
 merges the free circles C1 and C2

in � to get a free circle C in 
 .�/.
(a) If s.C1/D s.C2/DC, then D
;�.r; s/D .
 .r/; s

0/, where s0.C /DC and
s0.D/D s.D/ for every circle D ¤ C1;C2;C , free or cleaved.

(b) If either s.C1/ D � and s.C2/ D C or s.C1/ D � and s.C2/ D C, then
D
;�.r; s/ D .
 .r/; s

00/, where s00.C / D � and s00.D/ D s.D/ for every
circle D ¤ C1;C2;C , free or cleaved.

(c) If s.C1/D s.C2/D�, then D
;�.r; s/D 0.

(2) Khovanov case (ii) Suppose 
 has both feet on the same free circle C in r , so
that surgering C along 
 produces two new free circles C1 and C2 in 
 .r/.
(a) If s.C /DC, then D
;�.r; s/D .
 .r/; sC�/C.
 .r/; s�C/, where we define

sC�.C1/ D C, s�.C2/ D � and sC�.D/ D s.D/ for every other circle
in CIR.r/. We similarly define s�C , with the roles of C1 and C2 reversed.

(b) If s.C /D�, then D
;�.r; s/D .
 .r/; s��/, where s��.C1/Ds��.C2/D�

and s��.D/D s.D/ for every other circle in CIR.r/.

(3) Suppose 
 has both feet on the same arc A in
 

H \ r . Then 
 .r/ will have a
new free circle component C . Then D
;�.r; s/D .
 .r/; s

0/, where s0.C /D�

and s0.D/D s.D/ for every other circle in CIR.
 .r//.
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(4) If 
 has one foot on a cleaved circle C and the other foot on a free circle D ,
then surgery on 
 will merge D into C , leaving the other circles unchanged.
If s.D/DC, then D
;�.r; s/D .
 .r/; s

0/ with s0.C 0/D s.C 0/ for every other
circle in CIR.r/, including C , while if s.D/D� then D
;�.r; s/D 0.

(5) In every case not covered on this list, D
;�.r; s/D 0.

3.4 Some classes of active bridges

For a state .r; s/, we can use s to group the bridges in ACTIVE.r/ into (overlapping)
classes:

(1) INTERIOR.r; s/ is the subset ACTIVE.r/ consisting of all 
 for which D
;�.r; s/

is nonzero. That is,
(a) both feet of 
 are on elements of FREE.r/, or
(b) one foot of 
 is on C 2 cl.r/ and the other foot is on C 0 2 FREE.r/ with

s.C 0/DC, or
(c) both feet are on the same arc of C \

 

H for some C 2 cl.r/.

(2) DEC.r; s/ is the subset ACTIVE.r/ consisting of those 
 where
(a) both feet are on the same arc of C\

 

H for some C 2 cl.r/ with s.C /DC, or
(b) one foot of 
 is on C 2 cl.r/ with s.C / D C and the other foot is on

C 0 2 FREE.r/ with s.C 0/D�.

(3)
 

BR.r/ is the subset ACTIVE.r/ consisting of those 
 such that either
(a) 
 has one foot on C1 2 cl.r/ and the other on a distinct circle C2 2 cl.r/, or
(b) 
 has both feet on some C 2 cl.r/, but they are on different arcs of C \

 

H .

If r D .�;
!
m/ we will let BRIDGE.r/D

 

BR.r/[
!

BR.
!
m/ and

!

BR.r/D
!

BR.
!
m/. There

is a natural map BRIDGE.r/! BRIDGE.cl.r//.

4 The type A structure for an inside tangle

Given a diagram
 

T for an inside tangle
 

T , we describe a type A structure on hh
 

T ��

over B�n . This structure is specified by two bigrading preserving maps

m1W hh
 

T ��! hh
 

T �� Œ.�1; 0/�;(15)

m2W hh
 

T ��˝I B�n! hh
 

T ��:(16)

Let � D .r; s/ be a generator of hh
 

T �� with @� D .L; �/, and let e 2 B�n be a generator.

For m1 we let m1.�/DdAPS.�/, the differential on hh
 

T ��. dAPS maps .r; s/ in bigrading
.h; q/ to an element in .hC 1; q/. This is bigrading preserving into hh

 

T ��Œ.�1; 0/�.
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To define the action m2 we start by describing the action of the generators of B�n .
Let � D .r; s/ be a generator of hh

 

T ��. Then m2.�˝I e/ is computed as follows:

(1) When e is an idempotent, m2.�˝ I.L;�//D � � I.L;�/ : the idempotent action
defined above.

(2) When eD
!
eC for some C 2 @� with �.C /DC, m2.�˝I

!
eC /D .r; sC /, where

sC .C /D� but equals s on all other circles in CIR.r/.

(3) When e D
 
eC for some C 2 @� with �.C /DC,

m2.�˝I
 
eC /D

X

2DEC..r;s/;C /

.�1/I.r;CR.
 //.r
 ; s
 /;

where DEC..r; s/;C / are those active arcs which can change the decoration
on C , r
 is the result of surgery on 
 , and s
 is the new decoration with
s0.C /D� (and s0.D/DC if a new circle is created).

(4) When e D e�;�;� 0 for some � 2
 

BR.L/,

m2.�˝I e�;�;� 0/D
X


2ACTIVE.r/
cl.
 /D�

.�1/I.r;CR.
 //.r
 ; s
 /;

where r
 is surgery along 
 and s
 is the decoration on r
 which equals s on
FREE.r/ and � 0 on cl.r/.

(5) When eD e�;�;� 0 for some � 2
!

BR.L/ and r D .�;
!
m/, let r 0 D .�;

!
m�/ and s0

equal � 0 on the cleaved circles and s on FREE.r 0/, m2.�˝I e�;�;� 0/D .r
0; s0/.

(6) In all other cases m2.�˝I e/D 0. Note that .r; s/˝I e1 D 0 unless @.r; s/ is
the source of e1 since otherwise I@.r;s/ � e1 D 0.

Proposition 4.1 The map m2 constructed above is bigrading preserving.

Proof (1) This is immediate since the bigrading of I.L;�/ is .0; 0/.

(2) When e D
!
eC , if � is in bigrading .h; q/, then �˝I

!
eC is in bigrading .h; q/C

.0;�1/D .h; q�1/, whereas m2.�˝I
!
eC / is in bigrading .h; q�1/ since we changed

a
�
0;C1

2

�
cleaved circle to a

�
0;�1

2

�
cleaved circle.

(3) When e D
 
eC , the bigrading of �˝I

 
eC is .h; q/C .1; 1/. For m2.�˝I

 
eC / we

consider the bigrading in two cases. If we merge a � free circle, then qD qC 1
2
�1 and

the bigrading of .r
 ; s
 / is
�
h; q� 1

2

�
C .1; 1/D .hC 1; qC 1/, where the additional

.1; 1/ comes from the grading shifts associated with 1–resolving a crossing. If we divide
a C cleaved circle then the bigrading change is from

�
h; qC 1

2

�
C.1; 1/D

�
hC1; qC 3

2

�
to
�
h; qC 1� 1

2

�
C .1; 1/D

�
hC 1; qC 3

2

�
. In either case, there is a .0; 0/ change in

bigrading.
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(4) When eDe�;�;� 0 for some �2
 

BR.L/, if � merges two plus circles then �˝Ie�;�;� 0

has bigrading
�
h; qC 1

2
C

1
2

�
C
�
1; 1

2

�
D
�
hC 1; qC 3

2

�
, while m2.�˝I e�;�;� 0/ has�

h; qC 1
2

�
C .1; 1/, since we change the resolution at a crossing. If � merges a C and

a � we have
�
h; qC 1

2
�

1
2

�
C
�
1; 1

2

�
D
�
hC 1; qC 1

2

�
before and

�
h; q� 1

2

�
C .1; 1/

after. If � divides a C circle then we start with
�
h; q C 1

2

�
C
�
1; 1

2

�
and end with�

h; qC 1
2
�

1
2

�
C .1; 1/, while if � divides a � circle we start with

�
h; q� 1

2

�
C
�
1; 1

2

�
and end with

�
h; q� 1

2
�

1
2

�
C .1; 1/. Each of these is a .0; 0/ change.

(5) When e D e�;�;� 0 for some � 2
!

BR.L/ and r D .�;
!
m/, if surgery on � merges

two C cleaved circles, then the bigrading of �˝I e�;�;� 0 is
�
h; qC 1

2
C

1
2

�
C
�
0;�1

2

�
,

while that of m2.�˝I e�;�;� 0/ is
�
h; qC 1

2

�
(as there is no crossing change). Likewise

for a C and � circle:
�
h; q C 1

2
�

1
2

�
C
�
0;�1

2

�
!
�
h; q � 1

2

�
, while for a divide

of a C circle:
�
h; q C 1

2

�
C
�
0;�1

2

�
!
�
h; q C 1

2
�

1
2

�
, and a divide of a � circle:�

h; q� 1
2

�
C
�
0;�1

2

�
!
�
h; q� 1

2
�

1
2

�
. In all cases there is a .0; 0/ change in bigrading.

(6) This is true by definition true since the image of m2 is 0.

This specifies m2 on the generators of B�n . To define m2 on all elements, we impose
the following relation: if p1;p2 2 B�n , we define

m2.�˝p1p2/Dm2.m2.�˝p1/˝p2/:

Proposition 4.2 If two products of the generators p1 and p2 define equal elements
in B�n , then m2.�˝p1/Dm2.�˝p2/ for every � 2 hh

 

T ��.

Thus the rules above fully specify m2W hh
 

T ��˝I B�n! hh
 

T ��.

Proof It suffices to show that m2.�˝ �/D 0 whenever � is a relation defining B�n .
We start with the relations from disjoint supports. Suppose C and D are distinct
cleaved circles with �.C /D �.D/DC. Then

(17) m2.�˝ .
!
eC
!
eD �

!
eD
!
eC //Dm2.m2.�˝

!
eC /˝

!
eD/�m2.m2.�˝

!
eD/˝

!
eC /

D .r; sC;D/� .r; sC;D/D 0:

On the other hand,

(18) m2.�˝ .
 
eC
!
eD �

!
eD
 
eC //

Dm2.m2.�˝
 
eC /˝

!
eD/�m2.m2.�˝

!
eD/˝

 
eC /

D

X

2DEC..r;s/;C /

.�1/I.r;CR.
 //.r
 ; s
;D/ �
X


2DEC..r;s/;C /

.�1/I.r;CR.
 //.r
 ; sD;
 /

D 0:
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To compute m2.� ˝ .
 
eC
 
eD C

 
eD
 
eC // note that each m2.m2.� ˝

 
eC / ˝

 
eD/ and

m2.m2.� ˝
 
eD/ ˝

 
eC / are sums over pairs of edges 
 2 DEC.r; s;C / and 
 0 2

DEC.r; s;D/. In one case we sum over .
; 
 0/ pairs and in the other .
 0; 
 / pairs. In
each case we obtain .r
;
 0 ; s
;
 0/ with s
;
 0 uniquely determined by the requirement
that C and D are decorated with �. Thus we need only look at the signs: for .
; 
 0/ we
have .�1/I.r;CR.
 //CI.r
 ;CR.
 0// which is �.�1/I.r;CR.
 0//CI.r
 0 ;CR.
 // . Consequently,
they cancel in the sum.

Now suppose that C1 and C2 are cleaved circles in r with s.C1/D s.C2/DC. Let ˇ
be an active arc which merges C1 and C2 to get C and maps to 
 2

 

BR.L/. We
can partition the active arcs ˛ which contribute to DEC.rˇ; sˇ;C / into the three sets:
DEC.r; s;C1/, DEC.r; s;C2/, and ˛ which also map to 
 . To obtain m2.�˝m


 
eC /

we sum over all such ˇ and ˛ arcs:
P
.ˇ;˛/.�1/I.ˇ/CI.rˇ;˛/.rˇ;˛; sˇ˛/. For ˛ isotopic

as a bridge to ˇ the term for .˛; ˇ/ occurs in this sum, with sign .�1/I.˛/CI.r˛;ˇ/ .
This cancels the term from .ˇ; ˛/. Thus

(19) m2.�˝m

 
eC /D

X
ˇ;˛2DEC.r;s;C1/

.�1/I.ˇ/CI.rˇ;˛/.rˇ;˛; sˇ˛/

C

X
ˇ;˛ DEC.r;s;C2/

.�1/I.ˇ/CI.rˇ;˛/.rˇ;˛; sˇ˛/

D�

X
˛2DEC.r;s;C1/;ˇ

.�1/I.˛/CI.r˛;ˇ/.r˛;ˇ; s˛ˇ/

�

X
˛2DEC.r;s;C2/;ˇ

.�1/I.˛/CI.r˛;ˇ/.r˛;ˇ; s˛ˇ/

D�m2.�˝
 

eC1
m
 /�m2.�˝

 
eC2

m
 /;

which verifies that m2 is compatible with relation (11). Exactly the same argument
applies to for 
 2

!

BR.L/, although we no longer need to sum over the representatives
of 
 since there is only one such bridge. More significantly, all the terms occur with
sign .�1/I.˛/ since surgery on 
 does not affect the signs. The conclusion becomes

m2.�˝m

 
eC /Dm2.�˝

 
eC1

m
 /Cm2.�˝
 

eC2
m
 /;

which is compatible with relation (9). The case where surgery on 
 is divisive follows
from the same line of reasoning.

For !eC and 
 merging C1 and C2 the situation is easier. First, suppose 
 2
!

BR.L/.
Then

m2.�˝m

!
eC /D .r; s
;C /;

while
m2.�˝

!
eC1

m
 /Dm2..r; sC1
/˝m
 /D .r; sC;
 /:
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As these are equal, and as C2 plays a symmetric role, m2 is compatible with this type
of relation. Again, the case for dividing is similar. For !eC and 
 2

 

BR.L/, we have

m2.�˝m

!
eC /D

X
˛

.�1/I.˛/.r˛; s˛;C /;

where the sum is over active arcs which map to 
 . On the other hand, while

m2.�˝
!

eC1
m
 /Dm2..r; sC1

/˝m
 /D
X
˛

.�1/I.˛/.r˛; sC;˛/:

Thus m2 is compatible with m

!
eC D

!
eC1

m
 for all 
 2 BRIDGE.L/.

Suppose that 
 and 
 0 are in BRIDGE.L/ and that there is a commuting square:

.L; �/
e.
;�;�01/

������! .L
 ; �01/

e.
 0;�;�10/

??y ??ye.
 0;�01;�
00/

.L
 0 ; �10/
e.
;�01;�

00/

�������! .L
;
 0 ; �
00/

Then we have the following cases:

(1) Both 
 and 
 0 are in
!

BR.L/ we need to see m2.� ˝ .e
 e
 0 � e
 0e
 // D 0.
However, both terms resulting from expanding m will equal .r

 0 ; s00/, where r
;
 0 is
identical to r in

 

H but equals L

 0 in
!

H , and s00 is s on FREE.r/ but � 00 on cl.r/.
Since both terms are identical, the difference will be zero and m2 is compatible with
this case.

(2) If 
 in
 

BR.L/ but 
 0 2
!

BR.L/, then we need m2.�˝ .e
 e
 0 � e
 0e
 //D 0. The
action of e
 followed by e
 0 (or vice versa) will give

P
˛.�1/I.r;˛/.r˛;
 0 ; s

00/, where
the sum is over all active arcs for r which have image 
 in cl.r/. Since surgery on 
 0

does not affect the sign, we see that the two terms will cancel, and m2 is compatible
with this case.

(3) Suppose both 
 and 
 0 are in
 

BR.L/, then m2.�˝ e
 e
 0/ is the sum over pairs
of active arcs .˛; ˛0/ for r which map to 
 and 
 0 when considered as bridges.
Each pair also contributes to m2.� ˝ e
 0e
 / but in the reversed order .˛0; ˛/. The
decorations of the result are determined by � 00 , so we need only check the signs of
each term. The sign for .˛; ˛0/ is .�1/I.r;CR.˛//CI.r˛;CR.˛0// while that for .˛0; ˛/ is
.�1/I.r;CR.˛0//CI.r˛0 ;CR.˛// . Due to the ordering of the crossings, one of these will
be C1 and the other �1. Consequently, m2.�˝ e
 e
 0/D�m2.�˝ e
 0e
 / which is
compatible with the relation for

 

BR.L/.
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Note that a similar argument to that in (1) works for all pairs of right bridge edges that
form commutative squares, so it will be omitted. For left bridge elements, there are
two further cases to consider:

(a) Suppose ı 2
 

Bo.L; 
 / and ı1; ı2 2Bs.L
 ; 

|/ map to ı under surgery along 
| .

Likewise, suppose 
1 and 
2 map to 
 under surgery along ı| . If we orient the mutual
arc for ı and 
 , then ı1 corresponds to the version of ı before 
 along the mutual
arc, and ı2 corresponds to that after 
 . Likewise for 
i ; i D 1; 2 and ı . There can
then be (anti-)commutative squares

.L; �/
e.
;�;�01/

����! .L
 ; �01/

e.ı;�;�10/

??y ??ye.ı1;�01;�
00/

.Lı; �10/
e.
2;�01;�

00/

�����! .L
;ı1
; � 00/

.L; �/
e.
;�;�01/

����! .L
 ; �01/

e.ı;�;�10/

??y ??ye.ı2;�01;�
00/

.Lı; �10/
e.
1;�01;�

00/

�����! .L
;ı2
; � 00/

where L
;ı2
and L
;ı1

have different left matchings. Two resolution arcs a1 and a2

for � , one corresponding to 
 and one corresponding to ı , will be counted in the action
of either 
 followed by ı1 , or 
 followed by ı2 (but not both). Reversing the order
means contributing to ı followed by 
2 , or ı followed by 
1 . As these contribute
with the usual sign conventions, the contributions of the pair will cancel in either the
action of e
 eı1

C eıe
2
or e
 eı2

C eıe
1
, which verifies that the action respects the

anti-commutativity in this case.

(b) Now suppose that  ˛ is in Bs.L;
 

 / and that

 

ˇ is the bridge obtained by sliding
 
˛ over  
 . Let

 

ı be the image of  ˛ and
 

ˇ in L 
 ,
 

� be the image of  ˛ and  
 in L
 

ˇ

and  � be the image of
 

ˇ and  
 in L ˛ . The action of  e˛
 
e� is the sum over active

resolution arcs a1 and a2 for � with a1 representing  ˛ and a2 representing  � in L˛ .
Thus, a2 represents one of ˇ or 
 in L. Reversing the order thus gives a contribution
to either  eˇ

 
e� or  e


 
eı . However, pairs representing ˇ and 
 also contribute to  eˇ

 
e� ,

while their reverse contributes to  
e

 
eı . Thus, if we consider all ordered pairs .a1; a2/

of resolution arcs which represent pairs of ˛ , ˇ , or 
 , in either order, we will count
both .a1; a2/ and .a2; a1/ for each such pair, and they will contribute with opposite
signs (due to the Khovanov sign conventions) in the action of  e˛

 
e�C

 
eˇ
 
e�C

 
e

 
eı on � .

Consequently, all the terms in this action will cancel, verifying that it acts as 0.

For the additional bridge relations, suppose 
 2
!

BR.L/. Then there is a relation
e
;�;� 0e
|� 0;�C

D
!
eC . In this case

(20) m2.�˝.e
;�;� 0e
|� 0;�C
�
!
eC //D ..�;

!
m

|/;sC /�.r;sC /

D ..�;
!
m/;sC /�.r;sC /D .r;sC /�.r;sC /D 0;
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where !m

| D
!
m follows from the result that surgery on a bridge 
 for L, followed

by surgery on 
| , recovers L.

Now suppose that 
 2
 

BR.L/ and � 2
 

BR.L
 / intersects 
| non-trivially. We need to
see that m2.� ˝ e
 e�/D 0 since e
 e� D 0. However, in m2.m2.� ˝ e
 /˝ e�/ the
action of e� will result in a sum over active arcs in r
 which map to � in cl.r/. Each
active arc comes from a crossing, and thus must already be present in r for it to be
present in r
 . This excludes there being any active arc for � in r
 . Consequently the
sum is 0 and we have verified that m2 is compatible with this relation.

Since m2.�˝R/D 0 whenever R is a relation for B�n , we have shown that m2 is
well defined.

Proposition 4.3 For � D .r; s/ a generator of hh
 

T �� and �1; �2 2 B�n , the maps m1

and m2 above satisfy the following properties:

0Dm1.m1.�//;(21)

0D .�1/
 
l .�1/m2.m1.�/˝ �1/Cm2.�˝ d�.�1//�m1.m2.�˝ �1//;(22)

0Dm2.m2.�˝ �1/˝ �2/�m2.�˝ �1�2/:(23)

Note These are the relations for hh
 

T �� to be an A1–module over the differential graded
algebra B�n , as in [8], with mn D 0 for n� 3.

Proof That m1.m1.�//D 0 is a byproduct of m1Dd being a differential (see also the
proof that

!

ı is a D structure for an outside tangle). Furthermore, that m2 defines a
right action follows from how we bootstrapped m2 from the definition on generators.
Thus, we need only verify that d and m2 are compatible with �� through the equation

d.m2.�˝ �1//D .�1/
 
l .�1/m2.d.�/˝ �1/Cm2.�˝ d�.�1//:

It suffices to prove this for �1 of length 0 or 1 since we can bootstrap the relation for
longer words using

(24) d.� �.˛ˇ//D d..� �˛/ �ˇ/

D .�1/
 
l .ˇ/d.� �˛/ �ˇC.� �˛/ �d�.ˇ/

D .�1/
 
l .ˇ/C

 
l .˛/.d.�/ �˛/ �ˇC.�1/

 
l .ˇ/.� �d�.˛// �ˇC� �.˛d�.ˇ//

D .�1/
 
l .ˇ/C

 
l .˛/

�
d.�/ �.˛ˇ/

�
C� �

�
.�1/

 
l .ˇ/d�.˛/ˇC˛d�.ˇ/

�
D .�1/

 
l .ˇ/C

 
l .˛/

�
d.�/ �.˛ˇ/C� �d�.˛ˇ/

�
:

For length 0, we have �1 D I.L;�/ for some idempotent. If @� ¤ .L; �/ then both
sides are zero since m2.�˝ I.L;�//Dm2.0/D 0, d.�/ has the same boundary as �
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so d.�/˝ I.L;�/ D 0, and d�.I.L;�//D 0 for every idempotent. On the other hand, if
@� D .L; �/ the last term still vanishes, and

d
�
m2.�˝ I.L;�//

�
D d.�/Dm2

�
d.�/˝ I.L;�/

�
:

For length-one words, we need to check when �1D
!
eC ;

 
eC , or e
 for 
 2 BRIDGE.L/,

where @� D .L; �/. We know d�.
!
eC /D 0 and

 

l .
!
eC /D 0, so for !eC we need only

verify that d.m2.� ˝
!
eC // D m2.d.�/˝

!
eC /. If � has �.C / D � then both are 0,

whereas if �.C /DC then both equal †˛.�1/I.˛/.r˛; s˛;C /, where the sum is over
all active, non-bridging arcs ˛ and s˛;C is any decoration compatible with d , r˛ ,
and assigning C a �. For e
 with 
 2

!

BR.L/, the only difference is that the sum is
over terms .r˛;
 ; s˛;
 /.

For e
 with 
 2
 

BR.L/, d� still vanishes but
 

l D 1. We then have

(25) d.m2.�˝ e
 //D
X
˛;ˇ

.�1/I.r;˛/CI.r˛;ˇ/.r˛;ˇ; s˛;ˇ/;

where the sum is over all active arcs ˛ which map to 
 and all active arcs ˇ which
contribute to d (as well as all compatible decorations on r˛;ˇ . On the other hand,

m2.d.�/˝ e
 /D
X
ˇ;˛

.�1/I.r;ˇ/CI.rˇ;˛/.rˇ;˛; sˇ;˛/

due to the ordering of the crossings the signs will be different for each .˛; ˇ/ term, so

d.m2.�˝ e
 //D�m2.d.�/˝ e
 /D .�1/
 
l .e
 /m2.d.�/˝ e
 /:

We are left with verifying the formula for  eC . We start with

d.m2.�˝
 
eC //D

X
˛;ˇ

.�1/I.r;˛/CI.r˛;ˇ/.r˛;ˇ; s˛;ˇ/;

where the sum is over all active arcs ˛ 2 DEC.r; s;C / and ˇ contributing to d on r˛ .
Furthermore,

m2.d.�/˝
 
eC /D

X
ˇ0;˛0

.�1/I.r;ˇ
0/CI.rˇ0 ;˛

0/.rˇ0;˛0 ; sˇ0;˛0/;

where the sum is over all ˇ0 contributing to d on r and over all ˛0 contributing to
DEC.rˇ0 ; sˇ0 ;C /.

Some ordered pairs .˛; ˇ/ contribute a term to d.m2.�˝
 
eC // while the pair .ˇ; ˛/

contributes to m2.d.�/˝
 
eC /. The corresponding terms in the sum occur with co-

efficients that are equal but have opposite signs, and thus cancel. We let R be the
sum over the pairs .˛; ˇ/ in d.m2.� ˝

 
eC //, and define ‰1 D d.m2.� ˝

 
eC //�R.
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Then m2.d.�/ ˝
 
eC / D �R C ‰2 for some ‰2 . We can characterize the terms

which contribute to ‰1 and ‰2 . These terms correspond to pairs .˛; ˇ/ coming
from bridges 
; 
| with C as their active circle. A sign check, however, shows that
‰1C‰2 Dm2.�˝

P

 e
 e
|/, where the sum is over all 
 with active circle C . As

this sum is just the action of �d�.
 
eC / we obtain the relation

(26) d.m2.�˝
 
eC //DRC‰1

D�.�RC‰2/C‰2C‰1

D�m2.d.�/˝
 
eC /C .‰1C‰2/

D�m2.d.�/˝
 
eC /�m2.�˝�d�.

 
eC //

D .�1/
 
l .
 
eC /
�
m2.d.�/˝

 
eC /

�
Cm2.�˝ d�.

 
eC //

as required.

We have now verified that the action of the length one words is compatible with the
(right) Leibniz relation, and thus using the bootstrap, that d is a (right) differential on
the module hh

 

T ��.

5 Background on type A structures and their simplification

5.1 Algebra

In this section we redefine A1–algebras and module to be consistent with our sign
conventions. We begin with some notation for handling signs and gradings

Definition 5.1 Let W DW0˚W1 be a Z=2Z–graded module. jIW jW W !W is
the signed identity defined by linearly extending

jIW j.w/D .�1/gr.w/w

for homogeneous w 2A.

Note By jIjj we mean the composition of jIj with itself j times. Furthermore, by
jIjj˝n we will mean the function jIjj ˝ � � �˝ jIjj , where there are n factors. For an
element ˛ , jIjj .˛/ will be shortened to j˛jj . Thus, on a homogeneous element ˛ ,
j˛jj D .�1/j gr.˛/˛ , and

ˇ̌
j˛jj

ˇ̌k
D j˛jjCk .

Definition 5.2 An A1–algebra A over a ring R is a graded module A equipped
with maps �nW A

˝n!AŒn� 2� for each n 2N which satisfy the relation

0D
X

iCjDnC1
k2f1;:::;n�jC1g

.�1/j.iC1/C.kC1/.jC1/�i

�
I˝.k�1/

˝�j ˝jIj
j˝.n�k�jC1/

�
:
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Definition 5.3 A right module over a Z=2Z–graded differential R–algebra .A;�1;�2/

is an R–module M together with maps m1W M !M Œ�1� and m2W M ˝R A!M

such that

0Dm1 ım1;(27)

0Dm2.m1˝jIj/Cm2.I˝�1/�m1.m2/;(28)

0Dm2.m2˝ I/�m2.I˝�2/:(29)

A right module as above is a special case of the A1–modules found in [8] (when using
the sign conventions in this paper).

Definition 5.4 [8] A right A1–module M over an A1–algebra A is a set of maps
fmigi2N with mi W M ˝A˝.i�1/!M Œi � 2�, and satisfying the following relations
for each n� 1:

(30) 0D
X

iCjDnC1

.�1/j.iC1/mi

�
mj ˝jIj

j˝.i�1/
�

C

X
iCjDnC1;k>0

.�1/k.jC1/Cj.iC1/mi

�
I˝k
˝�j ˝jIj

j˝.i�k�1/
�
:

M is said to be strictly unital if for any � 2 M , m2.� ˝ 1A/ D � , but for n > 1,
mn.�˝ a1˝ a2˝ � � �˝ an�1/D 0 if any ai D 1A .

Our right modules correspond to mi D 0 for i � 2. Nevertheless, we will think of
these as objects in the category of right A1–modules. The morphisms in this category
are the following.

Definition 5.5 [8] An A1–morphism ‰ of right A–modules M and M 0 is a set
of maps  i W M ˝A˝.i�1/!M 0Œi � 1� for i 2N , satisfying

(31)
X

iCjDnC1

.�1/.iC1/.jC1/m0i
�
 j ˝jIj

.jC1/˝.i�1/
�

D

X
iCjDnC1

.�1/j.iC1/ i

�
mj ˝jIj

j˝.i�1/
�

C

X
iCjDnC1;k>0

.�1/j.iC1/Ck.jC1/ i

�
I˝k
˝�j ˝jIj

j˝.i�k�1/
�
:

‰ is strictly unital if  i.�˝a1˝� � �˝ai�1/D 0 when aj D 1A for some j and i > 1.
The identity morphism IM is the collection of maps i1.�/D � , ij D 0 for j > 1.
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Definition 5.6 [8] Let ‰ be an A1–morphism from M to M 0 , and let ˆ be an
A1–morphism from M 0 to M 00 . The composition ˆ �‰ is the morphism whose
component maps for n� 1 are

.ˆ�‰/n D
X

iCjDnC1

.�1/.iC1/.jC1/�i

�
 j ˝jIj

.jC1/˝.i�1/
�
:

Definition 5.7 [8] Let ‰;ˆ be A1–morphisms from M to M 0 . ‰ and ˆ are
homotopic if there is a set of maps fhig with hi W M ˝A˝.i�1/!M 0Œi � such that

(32)  i ��i D

X
iCjDnC1

.�1/.iC1/j m0i
�
hj ˝jIj

j˝.i�1/
�

C

X
iCjDnC1

.�1/.iC1/j hi

�
mj ˝jIj

j˝.i�1/
�

C

X
iCjDnC1;k>0

.�1/k.jC1/Cj.iC1/hi

�
I˝k
˝�j ˝jIj

j˝.i�k�1/
�

and for i > 1, hi.�˝ a1˝ � � �˝ ai�1/D 0 when aj D 1A for some j .

The sign convention used in the previous definitions is that of Keller [5] with the Koszul
sign rule

.f ˝g/.x˝y/D .�1/jf jjyj.f .x/˝g.y//:

Thus, as can be checked directly, the composition of morphisms is a morphism for this
sign convention, and homotopy of morphisms is an equivalence relation (or see the
Appendix). With these definitions, we are equipped to consider right A1–modules up
to homotopy equivalence. The following is our version of a standard result in the study
of A1–modules.

Proposition 5.8 Let .M; fmig/ be a strictly unital, right A1–module over .A; f�ig/,
and let .M ;m1/ be a chain complex. Suppose there exist chain maps �W .M ;m1/!

.M;m1/ and � W .M;m1/ ! .M ;m1/, and a map H W M ! M Œ1� satisfying the
following relations:

� ı �D IM ;(33)

� ı� � IM Dm1 ıH CH ım1;(34)

H ı �D 0;(35)

� ıH D 0;(36)

H 2
D 0:(37)
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Then there are maps mi W M ˝A˝.i�1/!M for i � 2 such that fmig
1
iD1

defines a
strictly unital right A1–module structure on M . This structure is homotopy equivalent
to .M; fmig/ through strictly unital morphisms which extend � and �.

The proof supplies an explicit formula for computing mi and the morphisms in the
homotopy equivalence. First, we introduce some notation to simplify the formulas.

Definition 5.9 For positive integers i1; : : : ; ik , let

N.i1; : : : ; ik/D
X

j

.ij � 1/ and ˛.i1; : : : ; ik/D
X

1�r<s�k

.ir � 1/.is � 1/:

Definition 5.10 Let ij � 2 be integers for j D 1; : : : ; k . By Œi1; : : : ; ik � we will mean
the composition

.mi1
/
�
H ˝jIj˝.i1�1/

��
mi2
˝jIji2˝.i1�1/

�
� � �
�
H ˝jIj˝.I�ik/

��
mik
˝jIjik˝.I�ik/

�
;

where we alternate between applying mij to the first ij entries in the tensor product
and applying H to the first factor in the tensor product.

Using this notation, we can define the action, morphisms, and homotopy. First, for
n� 2 define a map M ˝A˝.n�1/!M Œn� 2� by

†n D

X
N.i1;i2;:::;ik/Dn�1

ij�2

.�1/˛.i1;:::;ik/Œi1; : : : ; ik �:

We use †n to define mn for n� 1:

mn WD � ı†n ı
�
�˝ I˝.n�1/

�
:

For nD 1 we use the boundary map m1 . Then fmig
1
iD1

equips M with the structure
of a right A1–module.

The morphisms which induce the homotopy equivalence are similarly defined. For
nD 1 we will use �1 D � and !1 D �, while for n> 1 we use

�n WD .�1/n
�
� ı†n ı

�
H ˝jIj˝.n�1/

��
;

!n WDH ı†n ı
�
�˝ I˝.n�1/

�
:

The additional H means that these are maps �nW M ˝ I˝.n�1/ ! M Œn � 1� and
!nW M ˝ I˝.n�1/ ! M Œn � 1�. As defined, these morphisms satisfy the relations
…��D IM and ��…'ƒ IM , where �1 DH ,

�n WD .�1/n
�
H ı†n ı

�
H ˝jIj˝.n�1/

��
;

and all homotopy equivalences occur in the category of (right) A1–modules.
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We note that even when mi � 0 for i > 2, a homotopy equivalence as described in
Proposition 5.8 can have higher order action terms. Indeed, the new module structure
is given by

mn D .�1/��Œ2; 2; : : : ; 2�.�˝ In/;

where there are exactly n�1 2s inside the square brackets and � D 0 if n � 1; 2

modulo 4, and � D 1 if n� 3; 4 modulo 4. Thus, in all cases

m2 D � ım2 ı .�˝ I/;

which comes from appropriately adjusting m2 . The effect of � , however, is substantial
when doing calculations. With this observation and Proposition 5.8, we can, by directly
analyzing the diagrams before and after a Reidemeister move, see that the A1–module
structure is preserved up to homotopy equivalence. This affords us the difficult part of
the next theorem.

Theorem 5.11 Let
 

T be an inside tangle with boundary P2n .

(1) Let
 

T be a diagram for
 

T in
 

H . If o1 and o2 are two orderings of CR.
 

T /, then
hhT; o1�� and hhT; o2�� are isomorphic type A structures.

(2) If
 

T1 and
 

T2 are two diagrams for
 

T , then hh
 

T1�� and hh
 

T 2�� are homotopy
equivalent type A structure.

Corollary 5.12 The homotopy type of the type A structure hh
 

T ��, for any diagram T

of an inside tangle
 

T , is a tangle invariant.

We will not prove these theorems here, as the proofs are modifications of those for the
type D structure for an outside tangle found in [9]. In addition, there are easier ways
to prove these results once we have generalized the gluing theory in Section 7. Instead
we content ourselves with computing some examples using Proposition 5.8 which will
illustrate the argument.

How we will use this Suppose we have a chain complex fCi j i 2 Zg with explicit
generators for each free chain group Ci . If the generators of Ci are fx1; : : : ;xng and
those for Ci�1 are fy1; : : : ;ymg we can find a homotopy H as in Proposition 5.8
by searching through the images @xi D

P
a

j
i yj to find one where ai

j D u is a unit,
for some j . We will reorder the generators so that this occurs for i D j D 1. We
can then construct a new chain complex where the other chain groups and boundary
maps are taken to be the same, but C 0i is spanned by x0

2
; : : : ;x0n and C 0

i�1
is spanned

by y0
2
; : : : ;y0m . We let �.xi/ D x0i for i > 1 and �.x1/ D 0, and likewise for

the yj . Otherwise � is the identity. The new boundary @0i W Ci0 ! C 0
i�1

is given by
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@0x0i D .� ı@/.xi�a1
i u�1x1/. If we let �.x0i/D xi�a1

i u�1x1 and H.y1/D�u�1x1

(H.ˇ/ D 0 otherwise), then we are in the situation envisioned in Proposition 5.8.
The map � is the quotient map found by quotienting out the subcomplex generated
by fx1; @x1g. The formulas involving � are a specific presentation of this quotient
complex for the specific basis. @0 is computed by calculating � ı @ in this presentation.

We now compute m2.x
0
i ˝ e/. Since m2 D � ım2 ı .�˝ I/ we first compute

m2..xi � a1
i u�1x1/˝ e/Dm2.xi ˝ e/� a1

i u�1m2.x1˝ e/;

then compute � . In particular, suppose h@xj ;y1iD a1
j D 0 but m2.xj˝e/D ay1CY .

Then m2.x
0
j ˝e/D �.ay1CY / D a.u�1

P
j>1 a

j
1
yj /CY . This is the same process

as for adjusting the boundary maps above.

However, suppose h@xj ;y1iDa1
j ¤ 0, but m2.xj˝e1/Day1CY and m2.x1˝e2/D

W . Then m3.x
0
j ˝e1˝e2/D �.m3.xj ˝e1˝e2//��.m2.H ım2.xj ˝e1/˝e2//.

We concentrate upon �.m2.H ım2.xj ˝ e1/˝ e2// D �.m2.H.ay1 C Y /˝ e2//

D �.m2.�u�1ax1˝ e2//D�u�1a �W . We can thus pick up a higher order action.

6 Examples of the type A structure

Example I (Reidemeister tangles) The three tangles below appear in the local de-
scription of the Reidemeister moves; we will analyze each in turn:

c

c1

c2

c1

c2

e

(a) First move For the RI move we have a tangle diagram RI , over P2 with one
crossing. There are two resolutions, corresponding to �D 0 and �D 1, and the unique
matching on P2 . Since the crossing is right handed, the 0 resolution has a single free
circle. Writing the decoration on the cleaved circle first, we can think of the decorated
resolutions as zCC , zC� , z�C , and z�� which occur in bigrading

�
0; 5

2

�
,
�
0; 1

2

�
,�

0; 1
2

�
and

�
0;�1

2

�
. For the 1–resolution there is only the cleaved circle, so we get two

state tC in grading
�
1; 5

2

�
and t� in

�
1; 3

2

�
. We can compute dAPS as dAPS.zCC/D tC

and dAPS.z�C/D t� . B�1 has two non-idempotent elements  eC and !
eC . The actions

of these elements are zC�
!
eC D z�� and tC

!
eC D t� , since !e C only changes the sign

on the cleaved circle. On the other hand, zC�
 
eC D t� is the only non-trivial action for

 
e C . Since tC is not in the image of the action, or dAPS except for zCC we can cancel
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both to result in the homotopy equivalent structure with generators z�C; zC�; z��
and t� .

We now cancel t� through the image of z�C . To compute the new action on zC�
and z�� we consider �, which in this case is just inclusion, followed by m2.z��˝ e/

followed by projection. For zC� there is the non-trivial action m2.zC�˝
!
eC /D z�� ,

which projects to an action as well. However, while m2.zC�˝
 
eC /D t� , the projection

will kill this image. Furthermore, all the higher actions vanish since m2 acts trivially
on z�� , and any computation of mn for n> 2 starts with H ım2.zC�˝

 
eC /D z�C ,

but the action on z�C is trivial for all non-idempotents. The idempotent will fix z�C ,
but this will be killed under � , or H , and the computation cannot proceed. Thus,
hhRI �� is isomorphic to ˛C D zC� in grading

�
0; 1

2

�
and ˛� D z�� in

�
0;�1

2

�
with

dAPS � 0 and the only non-trivial action term being ˛C �
!
eC D ˛� . This is isomorphic

to hhU2��, where U2 is the planar matching on P2 found from untwisting the crossing.

(b) Second move For the RII move we analyze the tangle below, RII over P4 , with
two opposite crossings:

c1

c2

Thus nC D 1 and n� D 1 for every choice of orientation. We label the crossings from
top to bottom. Now consider the states corresponding to the 01–resolution. There is a
free circle in this resolution, and we can divide the states into SC

01
and S�

01
based on

the decoration of the circle (we do this regardless of the matching !m used to construct
the state). dAPS maps SC

01
isomorphically to S11 and S00 isomorphically to S�

01
. The

action m2.�˝e/ for � in SC
01

has image in SC
01

since it will not change the decoration
on the C free circle, and merging the C free circle does not change the boundary
of the state. Consequently if we cancel along the isomorphism from SC

01
to S11 the

image of H is in SC
01

and the image of � on � 2 S10 is a sum �C �0 , where �0 2 SC
01

.
Thus � ım2 ı .�˝ I/ will have image equal to the part of m2.�˝ e/ in S10 , since �
will kill SC

01
. The only element e for which the image may not be in S10 is  e
 for

the unique class of bridges 
 in the boundary of any element in S10 . Its action would
have image in S11 , but does not contribute to mn for n> 1 since H W S11! SC

01
, and

thus any additional actions stay in SC
01

, which will be killed by � .

The effect of the cancellation, therefore, is to reduce our module to S10˚S00˚S�
01

with action defined by restricting the image of m2 to the remaining summands. Now a
similar argument applies to the isomorphism found by the image dAPSjS00 in S�

01
. Now,

however, no element from S10 can have a term in its action or boundary within S01 , so
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these will be unchanged. After the cancellation we obtain all the states in S10 having
trivialized the  
 action, but otherwise left the action unchanged. This is the same
type A structure as for the matching of the top point in P4 with the bottom, and the
second with the third. Thus it is isomorphic to the structure obtained after removing
the crossings with the RII move. Being in S10 means the states have no free circle,
and just receive grading based on the cleaved circles. Furthermore, they are shifted by
.1; 1/C .�1; 1� 2 � 1/D .0; 0/ when we account for the resolution and the crossings.
Thus, as a bigraded type A structure the RII tangle is homotopy equivalent to the planar
matching obtained from the RII move.

(c) Third move (sketch) Let Rb be the diagram before the move and Ra be the
diagram after:

c1

c2

e

c1

c2

d

In each, if we 0–resolve the second crossing from the top we obtain a diagram with an
RII move. As usual the states with a 1–resolution here give rise to the same type A

structure. It is enough then to see what happens in the 0–resolved sub-module. As with
the RII move we can use dAPS to leave S100 with its action intact, including the action
of  

e
1
which has image in S110 . However, dAPS now maps SC

001
to S101˚ S011 ,

isomorphically to each factor, given by minus the Khovanov maps. We let � be the state
in S101 then � 0 is the corresponding state, found by planar isotopy, in S011 . The effect
of � is to identify � with �� 0 . Now, let � be a state in S100 and let �0DH ıdAPS.�/

in SC
001

. Then �.�/ D �C �0 . The action m2..�C �
0/˝

 
e
2
/ D m2.�˝

 
e
2
/ since

the action of  
e
2

on SC
001

is trivial (
2 is used in the calculation of dAPS for these
states). If m2.�˝

 
e
2
/ is non-zero in S101 , then the effect of � is to identify it with

�m2.�˝
 

e
2
/0 .

If we repeat this argument with Ra , with the same crossing ordering, we get S001

being the planar matching diagram and SC
100

being used in the cancellation process.
For � in S001 the effect of  

e
2
is the same as before, but as it takes image in S011

it occurs with a minus sign. On the other hand, the image of  
e
1

will be in S101 ,
occurring with a minus sign, due to the crossing ordering, and thus will be identified
with �.��/, where � is the image m2.�˝

 
e
1
/ from Rb in the previous paragraph.

As such the actions of the bridges will be the same, and the APS-complexes will be the
same. It is straightforward to see that the higher actions all vanish.
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Example II (Hopf tangle) For the Hopf tangle over P2

1

2

 

H

we will enumerate the crossings from the top of the page to the bottom, and write states
with the decoration of the cleaved circle first. For the moment we will ignore orientations.
There are four states s00

˙;˙ in homological grading 0 and quantum gradings ˙1
2
˙ 1.

There are two states s10
˙ for the 10–resolution, and two states s01

˙
for the 01. These

occur in the bigradings
�
1; 1˙ 1

2

�
. Finally, there are four states s11

˙˙
with bigrading�

2; 2˙ 1˙ 1
2

�
. For these states:

(1) dAPS is computed as

s00
CC! s10

C C s01
C ; s00

�C! s10
� C s01

� ; s10
C ! s11

C�;

s10
� ! s10

��; s01
C !�s11

C�; s01
� !�s11

��:

(2) The action of !eC simply takes s�C�! s��� , where � matches anything in those
spots.

(3) The action of  eC is given by

s00
C�! s10

� C s01
� ; s10

C ! s11
�C; s01

C !�s11
�C:

If we cancel s00
CC with s10

C we will have no effect except to remove these generators,
as s10
C does not occur in the image of dAPS or the action for any other state. Once we

have done that, we can cancel s01
C with �s11

C� with no other effect, since s11
C� only

occurs in the image of a previously canceled state. s11
�� will then appear only in the

image dAPS.s
01
� / and dAPS.s

10
� / (since s11

C� has been canceled, otherwise we would
also need to include it in the image of !eC ). As dAPS.s

01
� / D �s11

�� , we can cancel
these without affecting the rest of the maps. Finally we can cancel s00

�C with s10
� . Now,

s10
� occurs as s00

C�

 
eC , but there are no other terms to consider, so the effect of the

cancellation (through the projection �) is to cancel this portion of the action of  e C .

Following these steps results in s00
C� and s00

�� in bigrading
�
0;�1

2

�
and

�
0;�3

2

�
, and

s11
CC in bigrading

�
2; 7

2

�
and s�C in bigrading

�
2; 5

2

�
. The residual action is that of

!
eC , which takes s00

C� to s00
�� and s11

CC to s11
�C .

Algebraic & Geometric Topology, Volume 16 (2016)



A type A structure in Khovanov homology 3685

The Hopf tangle will either have two positive or two negative crossings, depending
upon the orientation of the components. If there are two positive crossings we will
shift the bigrading up .0; 2/. Otherwise, for negative crossings, we add .�2;�4/ to
each bigrading.

Consequently, for the positive Hopf tangles we will have

F.0;3=2/

!
eC
�! F.0;1=2/ and F.2;11=2/

!
eC
�! F.2;9=2/:

For negative Hopf tangles we will have

F.�2;�9=2/

!
eC
�! F.�2;�11=2/ and F.0;�1=2/

!
eC
�! F.0;�3=2/:

7 Gluing inside and outside tangles

Let
 

T1 be an inside tangle for P2n and
!

T2 be an outside tangle. We let T D
 

T1 #
!

T2 be
the link in R3 obtained by gluing

 

R3 to
!

R3 and thereby gluing
 

T1 to
!

T2 along P2n .
Likewise, if

 

T1 is a diagram for
 

T1 in
 

H and
!

T2 is a diagram for
!

T2 in
!

H , we can
glue these diagrams along P2n to obtain a diagram T for T .

In [9], we showed how to associate a bigraded type D structure to
!

T2 whose homotopy
type is an isotopy invariant of

!

T2 . In particular, we constructed a bigrading preserving
map

!

ı T W ŒŒ
!

T ii ! B�n˝I ŒŒ
!

T iiŒ.�1; 0/�

which satisfies the type D structure equation

.�B�n
˝ I/.I˝

!

ı T /
!

ı T C .d�n
˝jIj/

!

ı T D 0;

where �B�n
W B�n˝ B�n! B�n is the multiplication map on B�n .

Definition 7.1 By hhT1��� ŒŒT2ii we mean the bigraded module

hhT1��˝In
ŒŒT2ii

equipped with the map

@�.x˝y/D dAPS.x/˝jyjC .m2;T1
˝ I/.x˝

!

ı T2
.y//:

Proposition 7.2 @� is a .1; 0/–differential map on hhT1��� ŒŒT2ii.
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Proof First, we rewrite @� as an operator:

@� D dAPS˝jIjC .m2;T1
˝ I/.I˝

!

ı T2
/:

We note that I˝
!

ı T2
is a .1; 0/–map hhT1��˝I ŒŒT2ii! hhT1��˝I B�n˝I ŒŒT2ii, while

m2;T1
˝ I preserves the bigrading as a map hhT1��˝I B�n˝I ŒŒT2ii ! hhT1��˝I ŒŒT2ii.

In addition, dAPS is a .1; 0/–map. Hence @� is a .1; 0/–map. We need to verify that
@� is a differential. This result follows from Section A.9 in the Appendix, and that
when mi;T1

D 0 for i > 2, m1;T1
D dAPS , implies that @� above coincides with the

definition in the Appendix.

By hhT ii we will mean the usual bigraded Khovanov complex over Z, equipped with
its invariant bigrading.

Proposition 7.3 hhT ii Š .hhT1��� ŒŒT2ii; @
�/.

Important comment We have not required that the orientations on T1 and T2 match
along Pn . If they do, hhT ii is exactly the Khovanov complex from [6], as described
in [3]. However, the statement still holds even if the orientations do not match. The
Khovanov complex in the latter case is for a link with a finite number of orientation
changes, constructed in the same manner as before. Now, however, it has an invariant
bigrading only as long as isotopies do not take a strand across a point where the
orientation changes. In the latter case there is a bigrading shift of ˙.1; 3/ due to the
conversion of a negative crossing to a positive crossing, or vice versa.

Proof We start by identifying the generators of hhT1��˝I ŒŒT2ii with the generators of
hhT ii. For .r1; s1/˝I .r2; s2/¤ 0 we need that I@.r1;s1/ � .r2; s2/¤ 0 since .r1; s1/ �

I@.r1;s1/ D .r1; s1/. However, only I@.r2;s2/ � .r2; s2/¤ 0, so @.r1; s1/D @.s2; r2/D

.L; �/. If r1 D .�1;
!

m1/ and r2 D .
 

m2; �2/, we use !m1 D
!

L to identify !
m1 with

the arcs in �2.T2/, and likewise we can identify  
m2 D

 

L with the arcs in �1.T1/.
Since s1 and s2 restrict to � , we can decorate �1.T1/ # �2.T2/ by s1 # s2 to get a
resolution diagram for T where every circle is unambiguously decorated with ˙.

Furthermore, we can reverse the construction. If � is a resolution of T , we let �1 be �
restricted to those crossings in

 

H\T D T1 and �2 be � restricted to
!

H\T D T2 .
Furthermore, the arcs in �2.T2/ form an (outside) planar matching !

m1 , and we define
r1 D .�1;

!
m1/. Likewise the arcs of �1.T1/ define an (inside) planar matching  

m2

and we let r2D .
 

m2; �2/. A generator of hhT ii is a pair .�; s/, where s is a decoration
of CIR.�.T //. By restriction s defines decorations, s1 , s2 on r1.T1/ and r2.T2/ with
@.r1; s1/D @.r2; s2/. It is straightforward to see that .r1; s1/˝I .r2; s2/D .�; s/, so
this is the inverse of the previous map.
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Furthermore, the bigrading of .r1; s1/˝I .r2; s2/ coming from the tensor product is
identical to that of .�; s/ from the construction of hhT ii. The bigrading of .r1; s1/˝I
.r2; s2/ is the sum

h.r1/� n�.T1/; h.r1/C q.r1; s1/C
1
2
�.@.r1; s1//C nC.T1/� 2n�.T1/

C h.r2/� n�.T2/; h.r2/C q.r2; s2/C
1
2
�.@.r2; s2//C nC.T2/� 2n�.T2/:

However h.r1/Ch.r2/ is the number of 1–resolutions in �1.T1/ added to the number
in �2.T2/, which equals the total number in �.T /. Likewise, since they are counts
over crossings, nC.T1/CnC.T2/D nC.T / and n�.T1/Cn�.T2/D n�.T /. Finally,
�.@.r1; s1//C �.@.r2; s2//D 2�.L; �/ so the second entry in the bigrading equals the
sum of the decorations on the free circles in r1.T1/ plus the sum of the decorations
on the circles in .L; �/ plus the sum of the decorations on the free circles in r2.T2/.
In �.T / this is just the quantum grading for the usual Khovanov generator. Thus the
bigrading of .r1; s1/˝I .r2; s2/ is .h.�/�n�.T /; h.�/Cq.�; s/CnC.T /�2n�.T //

which is the bigrading of .r; s/ in hhT ii. The tensor product identifies hhT ii with
hhT1��˝I ŒŒT2ii as bigraded modules over Z.

To see that @� is the .1; 0/–Khovanov differential @KH under this isomorphism, we
must first specify the order of the crossings to be used in calculating the signs in @KH .
The chain isomorphism type of hhT ii is unaffected by this choice of ordering [6]. If oi

is the ordering of the crossings in Ti and, then o1jjo2 is an ordering of the crossings
for T , which we now fix. In short, all the crossings of the inside tangle T1 come
before all the crossings of T2 , and in the same order as in T1 .

We compute @� in stages. First .dAPS˝ jIj/Œ.r1; s1/˝I .r2; s2/� is a sum over the
crossings of T1 . For each crossing c we get either 0 or .�1/m.�1/h.r2/.r 0; s0/˝I
.r2; s2/, where m is the number of 1–resolutions in .r1; s1/ following c , h.r2/ is the
total number of 1–resolutions in r2 , and .r 0; s0/ is as specified previously, which has
@.r 0; s0/D @.r1; s1/. Consequently, mC h.r2/ is the number of 1–resolutions of T

following c in our fixed order, and .r 0; s0/˝I .r2; s2/ is a generator of hhT ii. Following
the definition of dAPS this is precisely a term in @KH.r; s/. In fact, the sum of these
is precisely the terms in @KH.r; s/ which have the same decorated cleaved link, and
occur from a crossing change in T \

 

H . Those terms in @KH.r; s/ which have the same
decorated cleaved link, and occur from a crossing change in

!

H\T correspond to terms
in .m2;T1

˝I/.I˝
!

ı T2
/ applied to .r1; s1/˝I .r2; s2/. In the definition of

!

ı T2
.r2; s2/

there is a term I@.r2;s2/˝ dAPS.r2; s2/. Since @.r2; s2/D @.r1; s1/ we conclude that
.m2;T1

˝ I/..r1; s1/˝ I@.r2;s2/˝ dAPS.r2; s2// D .r1; s1˝I dAPS.r2; s2/. Note that
the signs are also correct for @KH since the sign of a term in I@.r2;s2/˝ dAPS.r2; s2/

is .�1/m , where m is the number of 1–resolutions in r2 following the crossing that
yields the term. As this crossing follows all those of T1 , the same sign is used in @KH .
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This leaves the terms of @KHŒ.r1; s1/˝I .r2; s2/� which change the decorated, cleaved
link. We divide them into two groups, based on whether the crossing change giving the
term occurs in

 

H or
!

H . We start with those in
!

H . Each such crossing gives an active
arc which is either in

!

BR.r2/ or DEC.r2; s2/. In the first case,
!

ı T2
.r2; s2/ will have a

term, or two terms, .�1/m.
!
e 
 ˝ .r

0; s0// which corresponds to the crossing change.
As before, m is the number of 1–resolved crossings following the crossing. This is the
same sign as in @KH , and the decorations on the decorated, cleaved link also follow the
pattern for Khovanov homology.

In .m2;T1
˝ I/.I˝

!

ı T2
/ we get the term .�1/m.m2;T1

˝ I/Œ.r1; s1/˝
!
e 
 ˝ .r

0; s0/�.
From the definition of m2;T1

the action of !e 
 on hhT1�� is just to change the decorated,
cleaved link to have the same boundary as .r 0; s0/ (which occurs purely in !

m1 ). Con-
sequently, we obtain the tensor product of compatible pairs, and we replicate the term
in @KH . The case of an arc in DEC.r2; s2/ is similar, except only the decoration on one
circle changes, and not the underlying cleaved link. This is the effect of !eC , for that
circle, on hhT1��.

This leaves the terms of @KH which come from crossing changes in
 

H that change the
decorated, cleaved link. Let c be such a crossing, and 
 be the active arc. Suppose 

has image in

 

BR.@.r1; s1//, which we will denote by 
 0 . There is then a term in
!

ı T2
.r2; s2/ of the form .�1/h.r2/.

 
e
 0 ˝ .r

0
2
; s0

2
//, where .r 0

2
; s0

2
/ is the result of 
 0

surgery on r.T2/\
 

H which reflects the decoration changes necessary for the Khovanov
differential. In .�1/h.r2/.m2;T1

˝ I/..r1; s1/˝
 
e
 0 ˝ .r

0
2
; s0

2
// we get a sum over all

the terms in @KH which correspond to 
 0 and the decoration changes for  e
 0 , but with
sign .�1/h.r2/.�1/m , where m is the number of 1–resolved crossings following that
for 
 (not 
 0 ) in ordering on the crossings of T1 . However, h.r2/Cm is the number
of 1–resolved crossings following that for 
 in the ordering on T . Thus, the sign is
the same as that for @KH . If 
 2 DEC.r1; s1/ then the argument is the same except
that the term in @KH comes from the action of .�1/h.r2/.

 
eC ˝ .r2; s2;C //, where C is

the cleaved circle whose decoration changes. Note that a crossing change can occur
in multiple terms, but that with the decoration changes included, each crossing and
decoration change occurs in precisely one way above. Thus we recover all the terms of
@KH.r; s/ with the correct signs from the ordering of crossings.

The advantage of using hhT1��� ŒŒT2ii arises from the ability to separately simplify hhT1��

and ŒŒT2ii without changing the homotopy type of hhT1��� ŒŒT2ii. We show this in the
Appendix through a series of propositions which replicate, for our sign conventions,
results from [8]. In particular, Proposition A.43 and the corollary to A.45 imply the
following result.
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Proposition 7.4 Suppose .N; ı/ is homotopy equivalent, as a type D structure over
B�n , to ŒŒT2ii, and .M; fmig/ is homotopy equivalent to hhT1��, as a type A structure.
Then .M; fmig/� .N; ı/' hhT1��� ŒŒT2ii ' hhT1 # T2ii.

In the preceding proposition, we assume that the homotopy equivalences preserve the
quantum grading.

We have seen in Section 5 how to affect such a homotopy equivalence by simplifying
the chain complex .hhT1��; dAPS/. A similar result holds for the type D structure
on hhT2��: simplifications of the chain complex with differential dAPS results in a
homotopy equivalent type D structure on the simplified complex. Over a field, F ,
such simplifications show that .hhT1��˝F ; dAPS/'H�;F .hhT1��/, where the homology
is taken with respect to d1 and similarly for .ŒŒT2ii˝F ; dAPS/. These homologies are
determined by the tangle homology of Asaeda, Przytycki, and Sikora. The following
corollary is a consequence.

Corollary 7.5 There is a type A structure on H�;F .hhT1��/ and a type D structure on
H�;F .ŒŒT2ii/ for which

hhT ii 'H�;F .hhT1��/� H�;F .ŒŒT2ii/:

For example, this result applies to the rational coefficient theory and the theory over
Z=2Z.

8 Examples of pairing type A and type D structures

Example I (Reidemeister invariance of Khovanov homology) Suppose that L and L0

are two link diagrams for an oriented link in S3 . Furthermore, suppose they differ
by a Reidemeister move. If D2 � R2 is the local region in which the move occurs,
we can use @D2 and the orientation on R2 to think of R D L\D2 as the inside
tangle, and

!

LDL\ .R2nD/ as the outside tangle. Then hhLii Š hhR��� ŒŒ
!

Lii. If we
let R0 D L0 \D2 then hhL0ii Š hhR0��� ŒŒ

!

Lii. In Section 6 we computed the type A

structure for three of the tangles involved in the Reidemeister moves. In each, we saw
that the type A structure was homotopy equivalent to the structure obtained for the
tangle after applying the Reidemeister move. Due to the results in Section A.9, this
implies that

hhLii Š hhR ��� ŒŒ
!

Lii ' hhR0 ��� ŒŒ
!

Lii Š hhL0ii:

This gives a new perspective on the locality arguments for invariance in various forms
of Khovanov homology.
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Example II In [9] we computed the type D structure ŒŒ
!

TLii for the following tan-
gle

!

TL , based on the left handed trefoil TL :

 

TL

This structure is the map
!

ı , where

(38)

!

ı
�
sC
.�3;�15=2/

�
D 2

!
eC ˝ s�.�2;�13=2/C

 
eC ˝ s�.�3;�17=2/;

!

ı
�
sC
.�2;�11=2/

�
D�

 
eC ˝ s�.�2;�13=2/;

!

ı
�
sC
.0;�3=2/

�
D�

 
eC ˝ s�.0;�5=2/;

where the superscript indicates the decoration on the cleaved circle C in the corre-
sponding resolutions, and the subscript is the bigrading. We use the pairing theorem to
compute several connected sums.

(i) With the unknot We can think of the unknot U as a cleaved circle on P2 , where
 

U D U \
 

H and
!

U D U \
!

H are the unique planar matchings. Then the left handed
trefoil is the connected sum U # TL which we can think of as gluing

 

U with the
tangle above. The type A structure hh

 

U �� is isomorphic to Zf.0;1=2/ ˚Zf.0;�1=2/ ,
which is the idempotent decomposition for ICC and IC� (see the example in Section 2).
The action of  eC is trivial since there are no crossings in the standard diagram. On
the other hand !

eC takes f.0;1=2/ to f.0;�1=2/ . Since dAPS � 0 for
 

U , we need
only compute .m2 ˝ I/.I ˝

!

ı /. Using the idempotents we see that there are six
generators. Furthermore, the only terms in .m2 ˝ I/.I˝

!

ı / come from !
eC . This

gives the following chain complex for hh
 

U ��� ŒŒ
!

TLii:

f.0;1=2/˝ sC
.�3;�15=2/

�2
�! f.0;�1=2/˝ s�.�2;�13=2/;

f.0;1=2/˝ sC
.�2;�11=2/

! 0;

f.0;1=2/˝ sC
.0;�3=2/

! 0;

f.0;�1=2/˝ s�.0;�5=2/ ! 0;

f.0;�1=2/˝ s�.�3;�17=2/! 0;
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whose homology consists of a Z–summand in bigradings .�2;�5/, .0;�1/, .0;�3/,
.�3;�9/ and a Z=2Z summand in bigrading .�2;�7/. This is the Khovanov homol-
ogy of the left handed trefoil.

(ii) With the positive Hopf tangle in Section 6 To compute the Khovanov homology
of the connected sum of the left handed trefoil with the Hopf link with C1 linking
number, recall that the Hopf tangle with positive crossings has hhH �� with the following
action:

r.0;3=2/

!
eC
�! r.0;1=2/ and r.2;11=2/

!
eC
�! r.2;9=2/;

where the first entry in each corresponds to the C decoration. As a consequence,
hhH ��˝I ŒŒTLii has the following generators:

r.0;3=2/˝ sC
.�3;�15=2/

; r.2;11=2/˝ sC
.�3;�15=2/

; r.0;3=2/˝ sC
.�2;�11=2/

;

r.2;11=2/˝ sC
.�2;�11=2/

; r.0;3=2/˝ sC
.0;�3=2/

; r.2;11=2/˝ sC
.0;�3=2/

;

r.0;1=2/˝ s�.�2;�13=2/; r.2;9=2/˝ s�.�2;�13=2/; r.0;1=2/˝ s�.�3;�17=2/;

r.2;9=2/˝ s�.�3;�17=2/; r.0;1=2/˝ s�.0;�5=2/; r.2;9=2/˝ s�.0;�5=2/:

Since dAPS � 0 after the simplification, we need only compute .m2˝ I/.I˝
!

ı / on
these twelve generators. Since the action m2 is trivial except for on !

eC , we can ignore
all the terms in

!

ı except for those with !
eC . This leaves the following as the only

non-trivial maps in @� :

r.0;3=2/˝ sC
.�3;�15=2/

! 2
�
r.0;1=2/˝ s�.�2;�13=2/

�
;

r.2;11=2/˝ sC
.�3;�15=2/

! 2
�
r.2;9=2/˝ s�.�2;�13=2/

�
:

Taking the homology of this new complex gives two Z=2Z summands in bigradings
.�2;�6/ and .0;�2/, and eight Z summands for the remaining generators in the
corresponding bigrading:

r.0;3=2/˝ sC
.�2;�11=2/

! .�2;�4/; r.2;11=2/˝ sC
.�2;�11=2/

! .0; 0/;

r.0;3=2/˝ sC
. 0 ; �3=2/

! .0; 0/; r.2;11=2/˝ sC
. 0 ; �3=2/

! .2; 4/;

r.0;1=2/˝ s�.�3;�17=2/! .�3;�8/; r.2 ; 9=2/˝ s�.�3;�17=2/! .�1;�4/;

r.0;1=2/˝ s�. 0 ; �5=2/ ! .0;�2/; r.2 ; 9=2/˝ s�. 0;�5=2/ ! .2; 2/;

which is isomorphic to the Khovanov homology of the connected sum of the positive
Hopf link with the left handed trefoil.

(iii) With a right-handed trefoil We give some details on the computation in the
introduction. We consider the tangle

 

T R found by removing an arc from the right-
handed trefoil. We can compute hh

 

T R �� directly. The result is a bigraded module spanned
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by tC.0;5=2/ , tC.2;13=2/ , tC.3;17=2/ , t�.0;3=2/ , t�.2;11=2/ , t�.3;15=2/ , where the superscript iden-
tifies the corresponding idempotent. The action of !e C is given by tC.0;5=2/! t�.0;3=2/ ,
tC.2;13=2/! t�.2;11=2/ , tC.3;17=2/! t�.3;15=2/ . The action of  e C is tC.2;13=2/! 2t�.3;15=2/ .

Consequently, the module hh
 

TR ��˝I ŒŒ
!

TLii has eighteen generators. Those, along with
their images under @� are shown in the following list:

tC
.0;5=2/

˝ sC
.�3;�15=2/

! 2t�.0;3=2/˝ s�.�2;�13=2/;

tC
.0;5=2/

˝ sC
.�2;�11=2/

! 0;

tC
.0;5=2/

˝ sC
. 0; �3=2/

! 0;

tC
.2;13=2/

˝ sC
.�3;�15=2/

! 2t�.2;11=2/˝ s�.�2;�13=2/C 2t�.3;15=2/˝ s�.�3;�17=2/;

tC
.2;13=2/

˝ sC
.�2;�11=2/

!�2t�.3;15=2/˝ s�.�2;�13=2/;

tC
.2;13=2/

˝ sC
. 0; �3=2/

!�2t�.3;15=2/˝ s�.0;�5=2/;

tC
.3;17=2/

˝ sC
.�3;�15=2/

! 2t�.3;15=2/˝ s�.�2;�13=2/;

tC
.3;17=2/

˝ sC
.�2;�11=2/

! 0; tC
.3;17=2/

˝ sC
. 0; �3=2/

! 0;

t�.0;3=2/˝ s�.�3;�17=2/! 0; t�.0;3=2/˝ s�.�2;�13=2/! 0; t�.0;3=2/˝ s�.0;�5=2/! 0;

t�.2;11=2/˝ s�.�3;�17=2/! 0; t�.2;11=2/˝ s�.�2;�13=2/! 0; t�.2;11=2/˝ s�.0;�5=2/! 0;

t�.3;15=2/˝ s�.�3;�17=2/! 0; t�.3;15=2/˝ s�.�2;�13=2/! 0; t�.3;15=2/˝ s�.0;�5=2/! 0:

From this we see immediately that there are Z summands for each of

� tC.0;5=2/˝ sC.�2;�11=2/ in bigrading .�2;�3/,

� tC.0;5=2/˝ sC.0;�3=2/ in .0; 1/,

� tC.3;17=2/˝ sC.�2;�11=2/ in .1; 3/,

� tC.3;17=2/˝ sC.0;�3=2/ in .3; 7/,

� t�.0;3=2/˝ s�.�3;�17=2/ in .�3;�7/,

� t�.0;3=2/˝ s�.0;�5=2/ in .0;�1/,

� t�.2;11=2/˝ s�.�3;�17=2/ in .�1;�3/, and

� t�.2;11=2/˝ s�.0;�5=2/ in .2; 3/.

The remaining generators occur in the non-zero rows for @� . We will have a Z=2Z–
summand for t�.3;15=2/˝ s�.0;�5=2/ in .3; 5/ and for t�.0;3=2/˝ s�.�2;�13=2/ in .�2;�5/.
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The equality

@�
�
tC.2;13=2/˝ sC.�3;�15=2/

�
D 2t�.2;11=2/˝ s�.�2;�13=2/C 2t�.3;15=2/˝ s�.�3;�17=2/

gives a Z˚Z=2Z in .0;�1/. In addition, that

@�
�
tC.2;13=2/˝ sC.�2;�11=2/

�
D�2t�.3;15=2/˝ s�.�2;�13=2/ and

@�
�
tC.3;17=2/˝ sC.�3;�15=2/

�
D 2t�.3;15=2/˝ s�.�2;�13=2/

means that tC.2;13=2/˝ sC.�2;�11=2/C tC.3;17=2/˝ sC.�3;�15=2/ generates a Z summand
in homology in bigrading .0; 1/, while t�.3;15=2/ ˝ s�.�2;�13=2/ generates a Z=2Z
summand in .1; 1/.

Consequently, the Khovanov homology of this connected sum has free part

Z.�3;7/˚Z.�2;�3/˚Z.�1;�3/˚Z2
.0;�1/˚Z2

.0;1/˚Z.1;3/˚Z.2;3/˚Z.3;7/

while the torsion part is

.Z=2/.�2;�5/˚ .Z=2/.0;�1/˚ .Z=2/.1;1/˚ .Z=2/.3;5/:

This agrees with the Khovanov homology of the knot as computed by Bar-Natan and
Green’s JavaKh program [4]. Note that we have correctly computed the torsion terms.
Furthermore, we provide a modular approach: we can simplify ŒŒ

!

T ii using homotopy
equivalences before knowing with which type D structure it will pair.

Appendix: Graded modules, type A structures, conventions

Summary of the appendix In this appendix, we record the sign conventions used for
type A (A1 ) algebras and modules, review type D structures, and prove the algebraic
results about the pairing of these structures. This gives a characteristic-zero account of
the algebra in bordered Floer homology [8], where it is stated only in characteristic
two. We start by reviewing basics about graded modules and tensor algebras. We
then define a category which will allow us to show that the sign conventions we need
for this paper will also work with the algebra from [8]. The approach is already
present in [8], although not with signs and not as explicitly as we will use it. An
object of this category, equipped with a certain differential captures the structural
equations for type A structures with the correct sign conventions for this paper. We
then describe type D structures in the same language, and show that this description
captures the sign conventions use in [9]. We also show that type D structures with
these conventions still form an A1–category. Finally, we define the pairing of our
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type A and type D structures, and prove that the pairing is appropriately functorial for
homotopy equivalences in the two factors.

Let M be a Z–graded module over a ring R and let Mi be the module of elements
in grading i 2 Z. For a homogeneous element m 2M , jmj will denote the grading
of m: if m 2Mi then jmj D i .

A module map f W M !M 0 has order r if the composition Mi ,!M
f
�!M 0 has

image in MiCr for each i 2 Z.

Degree shift convention If M is a Z–graded module, M Œn� is the graded module
with .M Œn�/i DMi�n , ie the module found by shifting the homogeneous elements
of M up n levels. If m 2M , the corresponding element in M Œn� will be denoted
mŒn�. Thus jmŒn�j D jmjC n.

An order r map f W M !M 0 induces order 0 maps M !M 0Œ�r � and M Œr �!M 0 ,
along with maps of different orders M Œn�!M Œs�. These will also be denoted by f ,
except where confusion could arise.

The identity on M will be denoted IM . We will also have need of a graded version of
the identity.

Definition A.1 jIM jW M !M is the 0–order map defined by setting

jIM j.m/D .�1/jmjm

for homogeneous m 2M and linearly extending to M . jIM j
j is the j –fold composi-

tion of jIM j.

If m2Mi then jIM j
j .m/D .�1/ij m. Consequently, jIM j

j ıjIM j
k DjIM j

jCk while
.jIM j

j /k D jIM j
jk .

In addition, shifting changes the sign:

jIM Œn�j D .�1/njIM j and jIM Œn�j
j
D .�1/jn

jIM j:

A.1 Tensor algebras

We fix a Z–graded R–module A. As usual,

T �.A/D
1M

iD0

A˝n;

where A˝0 DR and for n> 0, A˝n DA˝R A˝R � � �˝R A using exactly n factors.
A˝n is graded using the standard rule ja1˝ � � �˝ anj D

P
jai j.
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Furthermore, T �.A/ has a filtration

R� T 1.A/� � � � � T k.A/� � � � ;

where T k.A/D
Lk

iD0 A˝n .

By I˝n
A

we will mean the identity on A˝n thought of as the map IA˝ IA˝ � � �˝ IA .
In general, we will only use the subscript when we need to distinguish A; by default,
I˝n will be the identity on A˝n . Furthermore, by jIjj˝n we will mean the map
jIjj ˝ � � �˝ jIjj on A˝n .

Definition A.2 For any Z–graded module, T �A .M / is the Z–graded R–module
M ˝R T �.A/ filtered by the submodules M ˝ T k.A/ for k D 0; 1; 2; : : :.

Definition A.3 Let TA be the category whose objects are the R–modules T �A .M / for
each Z–graded module M , and whose morphisms, TA.M;M 0/, are filtered R–module
maps ˆW T �A .M /! T �A .M 0/.

Definition A.4 Let ˆ 2 TA.M;M 0/. For i; j 2N , the ij th component of ˆ is the
map

ˆij W M ˝A˝.i�1/ ,! T �A .M /
ˆ�

�! T �.M 0/!M 0
˝A˝.j�1/:

Since ˆ is filtered, ˆij D 0 unless j � i .

A.2 The INF–subcategory of T *
A

Proposition A.5 Let CA.M;M 0/�TA.M;M 0/ be those module maps ˆW T �A .M /!

T �A .M 0/ such that ˆ has order r for some r 2 Z, and

(39) ˆnm Dˆn�mC1;1˝jIj
.nCmCr/˝.m�1/

for every n;m 2N with 1�m� n. Then CA.M;M 0/ are the sets of morphisms for a
subcategory CA of TA whose objects are all the objects of TA .

Proof First, we verify that IT �A .M / 2 CA.M;M /. Inm is non-zero only if n D m.
When nDm the right side of (39) equals I11˝jIj

.nCnC0/˝.n�1/ . However, I11D IM ,
and jIj.nCnC0/˝.n�1/ D I˝.l�1/ since an even entry in the first factor in the exponent
of jIj will not change the sign. Thus, Inn D IM ˝ I˝.n�1/ , which is the identity on
M ˝A˝.n�1/ . On the other hand, if n>m, then Inm� 0 and In�mC1;1� 0 as well.
Thus, IT �A .M / 2 CA.M;M / for every M .

We now need to verify that composition of morphisms with the property in (39) will
still have this property. Suppose ˆ 2 CA.M;M 0/ has order r and ‰ 2 CA.M

0;M 00/
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has order s , and components of each satisfy (39). Then the order .rCs/ morphism
‰ ıˆ has components

(40) .‰ıˆ/nm

D

X
m�k�n

‰kmıˆnk

D

X
m�k�n

�
‰k�mC1;1˝jIj

.kCmCs/˝.m�1/
�
ı
�
ˆn�kC1;1˝jIj

.nCkCr/˝.k�1/
�

D

X
m�k�n

‰k�mC1;1

�
ˆn�kC1;1˝jIj

.nCkCr/˝.k�m/
�
˝jIj.nCmCrCs/˝.m�1/:

If we let i D k�mC1 and j D n�kC1, then nCk� jC1 modulo 2, as k changes
from m to n, i changes from 1 to n�mC1, so we can rewrite the previous result as

(41) .‰ ıˆ/nm

D

� X
iCjDn�mC2

‰i;1

�
ĵ ;1˝jIj

.jCrC1/˝.i�1/
��
˝jIj.nCmC.rCs//˝.m�1/:

On the other hand,

(42) .‰ ıˆ/n�mC1;1 D

X
1�i�n�mC1

‰i;1 ıˆn�mC1;i

D

X
1�i�n�mC1

‰i;1

�
ˆn�m�iC2;1˝jIj

.nCmC1CiCr/˝.i�1/
�

D

X
iCjDn�mC2

‰i;1

�
ĵ ;1˝jIj

.jCrC1/˝.i�1/
�

when we let j D n�mC 2� i . Thus ‰ ıˆ satisfies (39).

Definition A.6 For ˆ 2 C.M;M 0/ of order r , the core of ˆ is the set of order r

module maps ˆ� D f�k j n 2Ng, where �k Dˆk1W M ˝Ak�1!M 0 . Given a set
of order r module maps RD f�k j n 2Ng with �k W M ˝Ak�1!M 0 , the extension
of R is the map R 2 C.M;M 0/ with components

(43) Rnm D �n�mC1˝jIj
.nCmCr/˝.m�1/:

The argument in Proposition A.5 shows that these are inverses: for ˆ 2 C.M;M 0/,
ˆ� D ˆ, while for R D f�k j n 2 Ng, .R/� equals R. Consequently, we can
describe CA completely in terms of a composition on the cores ˆ� which directly
reflects the usual module map composition for filtered maps on T �A .M /. This allows
us to pull the operations of CA back to the category of R–modules.
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Definition A.7 C�A is the category whose objects are Z–graded R–modules, and
whose morphisms ˆ�W M �!M 0 are sets ˆ� D f�i j i 2 Ng of R–module maps
�i W M ˝A˝.i�1/!M 0 such that every �j has order r for some r 2Z. The identity
I�
M
W M �!M is the set of 0–order module maps with .I�

M
/1 D IM and .I�

Mi
D 0

for i > 1. The composition of an order r morphism ˆ�W M �!M 0 with an order s

morphism ‰�W M 0 �!M 00 is the set of order rCs module maps given by

.‰� �ˆ�/k D
X

iCjDkC1

 i

�
�j ˝jIj

.jCrC1/˝.i�1/
�

for k D 1; 2; : : : .

Proposition A.8 There is a functor F W C�A ! CA which takes M ! T �A .M / and
ˆ�W M �!M 0 to its extension ˆW T �A .M /! T �A .M 0/.

Proof This result is implied directly by Proposition A.5.

We will generally work in CA , and then pull back our results to C�A .

A.3 INF–structures

Since A is a Z–graded R–module, we may take M D A above. Then T �A .A/ D
A˝T �.A/Š

L1
nD1 A˝n . Let P W TA.A/! T �A .A/ be an order r map in TA.A;A/.

Then we can form a new map PC.IA˝P / in TA.A;A/. This is evidently still filtered.

Definition A.9 An INF–algebra structure on A is an order 1 map D 2 T .A;A/ such
that

(1) D ıD D 0, and

(2) DC .I˝D/ is in C.A;A/.

For an INF–algebra structure D , we will let �DDC I˝D . Then the core of � is
a collection of maps �� D f�i W A˝A˝.i�1/! Ag in C�A.A;A/. When we have a
prescribed � in mind, we will write D� for the corresponding structure.

Definition A.10 A right INF–module M over .A;D�/ is a Z–graded module and
an order 1 morphism DM 2 T .M;M / such that

(1) DM ıDM D 0, and

(2) DM C I˝D� is in C.M;M /.
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Notice that A with the map D� is a right module over .A;D�/. A right INF–module
over .A;D�/ is a chain complex with an additional requirement placed on its boundary
map. We can similarly adapt the notion of chain map and chain homotopy to this
context.

Definition A.11 An INF–module map between right INF–modules .M;DM / and
.M 0;DM 0/ (over .A;D�/) is an order 0 morphism ‰2C.M;M 0/ such that ‰ ıDM D

DM 0 ı‰ .

Definition A.12 An INF–homotopy between INF–module maps ˆ and ‰ , each
mapping .M;DM / to .M 0;DM 0/, is an order �1 map H 2 C.M;M 0/ such that
ˆ�‰ DH ıDM CDM 0 ıH .

Since chain complexes form a category, and the maps are drawn from the morphisms of
C.M;M 0/, we obtain a category of right INF–modules. Furthermore, we can quotient
by chain homotopies to obtain a notion of chain homotopy equivalence.

A.4 INF–structures in terms of the core category

Let .A;D�/ be an INF–algebra. The following identity is an immediate consequence
of the definition

D� D �� .I˝D�/:

From this identity we obtain

D� D �� I˝�C I˝ I˝�C � � � D
1X

lD0

.�1/l.I˝l
˝�/:

Note that the sum is actually finite on any summand A˝n .

If we wish to write out the relations for INF–algebras, modules, morphisms, etc, in
terms of their cores, we encounter the difficulty that D� is not itself in CA.A;A/.
Furthermore, composing with it is not likely to be in CA.A;A/, either. However, a
graded commutator with I ˝D� will be an extension. Before we prove this, we must
understand commutators with jIjj .

Proposition A.13 If R 2 CA.A;A/ has order r , then

jIAj
j
ıRk;1 D .�1/rj Rk;1 ı jIj

j˝k :
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Proposition A.14 If ˆ 2 CA.M;M 0/ has order r , then ˆ.I˝D/� .�1/r .I˝D/ˆ

is in CA.M;M 0/ and has core f.ˆ.I˝D//n;1 j n 2Ng.

Proof We compute the components of .I˝D/ˆ:

..I˝D/ˆ/lm

D

X
m�k�l

.I˝D/km ıˆlk

D

X
m�k�l

� 1X
sD0

.�1/sI˝ Is
˝�k�s�1;m�s�1

�
ı
�
ˆl�kC1;1˝jIj

.lCkCr/˝.k�1/
�

D

X
m�k�l

�� 1X
sD0

.�1/sI˝ Is
˝�k�mC1;1˝jIj

.kCmC1/˝.m�s�2/

�
�
ˆl�kC1;1˝jIj

.lCkCr/˝.k�1/
��

D

X
m�k�l

� 1X
sD0

.�1/sClCkCr
�
ˆl�kC1;1˝jIj

.lCkCr/˝.m�1/
�

�
I˝ Il�kCs

˝�k�mC1;1˝jIj
.kCmC1/˝.m�s�2/

��
D

X
m�k�l

� 1X
s0Dl�k

.�1/s
0Cr
�
ˆl�kC1;1˝jIj

.lCkCr/˝.m�1/
�

�
I˝ Is0

˝�k�mC1;1˝jIj
.kCmC1/˝.mCl�s0�k�2/

��
D .�1/r

X
m�k�l

�
ˆl�kC1;1˝jIj

.lCkCr/˝.m�1/
�

� 1X
s0Dl�k

.�1/s
0

I˝ Is0
˝�k�mC1;1˝jIj

.kCmC1/˝.mCl�s0�k�2/

�

D�.�1/r
X

m�k�l

�
ˆl�kC1;1˝jIj

.lCkCr/˝.m�1/
�

� l�k�1X
s0D0

.�1/s
0

I˝ Is0
˝�k�mC1;1˝jIj

.kCmC1/˝.mCl�s0�k�2/

�
C.�1/r

X
m�k�l

ˆlCm�k;m.I˝D/l;lCm�k

D�.�1/r
� X

m�k�l

ˆl�kC1;1

� l�k�1X
s0D0

.�1/s
0

.I˝ Is0
˝�k�mC1;1˝jIj

.kCmC1/˝.l�s0�k�1//

�
˝jIj.lCmCrC1/˝.m�1/

�
C .�1/r .ˆ.I˝D//l;m

However, ˆl�kC1;1 will consume the M factor as well as the first l � k factors
of A. Since s0 only has range up to l � k � 1,the � term must feed into an argument
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of ˆl�kC1;1 . By the identity (43), .�1/r .I˝D/ˆ�ˆ.I˝D/ is the extension of
f�ng, where

�n D�

X
1�k�n

ˆn�kC1;1

� n�k�1X
sD0

.�1/s
�
I˝ Is

˝�k;1˝jIj
k˝.n�s�k�1/

��

D

X
1�k�n

ˆn�kC1;1

� n�k�1X
sD0

.�1/s
�
I˝ Is

˝�n�s�1;n�s�k

��
:

Thus �n D .�ˆ.I˝D//n;1 .

To write out the requirement that .A;D�/ be an INF–algebra in terms of the �i , we
first note that 0DD� ıD� D � ı�� .I˝D�/���.I˝D�/. Using the preceding
proposition, 0D � ı�� f.�.I˝D�//n1g. However, � ı�D �� ��� , so for each
n 2N , .���/n� .�.I˝D�//n;1D 0. Unpacking the definitions above produces the
following:X
iCjDnC1

1�l�i

�i

�
�j ˝jIj

j˝.i�l/
�
�

X
iCjDnC1
0�l�i�2

.�1/l�i

�
I˝ I˝l

˝�j ˝jIj
j˝.i�l�2/

�
D 0;

which is equivalent toX
iCjDnC1

1�l�i

.�1/lC1�i

�
I˝.l�1/

˝�j ˝jIj
j˝.i�l/

�
D 0:

Definition A.15 An A1–algebra structure on a Z–graded R–module A is an INF–
algebra structure D� on AŒ�1�.

If ��Df�ig, then �i W .AŒ�1�/˝i!AŒ�1� being order 1 means �i W ..AŒ�1�/˝i/k!

.AŒ�1�/kC1 or .A˝i/kCi!AkC2 . If we let k 0D kC i then �i W A
˝i
k0
!Ak0�iC2D

AŒi � 2�k0 . Thus, �n is a grading preserving map A˝n ! AŒn� 2�. Alternatively,
in terms of A with its original grading, each �n needs to be an order 2 � n map
A˝n!A.

The preceding relation for an INF–structure on AŒ�1� isX
iCjDnC1

1�l�i

.�1/lC1�i

�
I˝.l�1/

˝�j ˝jIj
j˝.i�l/

AŒ�1�

�
D 0:

Since jIjAŒ�1� D�jIjA in terms of the grading on A we obtainX
iCjDnC1

1�l�i

.�1/j.i�l/ClC1�i

�
I˝.l�1/

˝�j ˝jIj
j˝.i�l/
A

�
D 0:
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However, j .i � l/C l C 1� j i C lj C l C 1� j .i C 1/C .l C 1/.j C 1/ soX
iCjDnC1

1�l�i

.�1/j.iC1/C.jC1/.lC1/�i

�
I˝.l�1/

˝�j ˝jIj
j˝.i�l/
A

�
D 0:

We therefore see that our definition of an A1–algebra is equivalent to the standard one.

Definition A.16 An A1–algebra A over a ring R is a Z–graded R–module A

equipped with maps �nW A
˝n!AŒn� 2� for each n 2N , which satisfy the relation

0D
X

iCjDnC1
l2f1;:::;ig

.�1/j.iC1/C.jC1/.lC1/�i

�
I˝.l�1/

˝�j ˝jIj
j˝.i�l/

�
:

Definition A.17 A (right) A1–module structure on a Z–graded R–module M , over
a A1–algebra .A; �/, is a (right) INF–module structure DM Œ�1� on M Œ�1� over
.AŒ�1�;D�/.

Following the argument above, suppose the core of DC .I˝D/ is a set of order 1

maps mi W M Œ�1�˝ .AŒ�1�/˝.i�1/!M Œ�1� with extension m. Then D ıD � 0 is
equivalent to m ım� .IAŒ�1�˝D�/m�m.IAŒ�1�˝D�/� 0. Pushing this identity
back to one involving the maps mi W M ˝A˝.i�1/!M Œi � 2� yields the following.

Definition A.18 [8] A right A1–module M over an A1–algebra A is a set of
maps fmigi2N with mi W M ˝ A˝.i�1/ ! M Œi � 2�, and satisfying the following
relations for each n� 1:

(44) 0D
X

iCjDnC1

.�1/j.iC1/mi

�
mj ˝jIj

j˝.i�1/
�

C

X
iCjDnC1;k>0

.�1/k.jC1/Cj.iC1/mi

�
I˝k
˝�j ˝jIj

j˝.i�k�1/
�
:

M is said to be strictly unital if for any � 2 M , m2.� ˝ IA/ D � , but for n > 1,
mn.�˝ a1˝ a2˝ � � �˝ an�1/D 0 if any ai D IA .

The definition for an INF–morphism unpacks similarly.

Definition A.19 An A1–morphism ‰ from M to M 0 over .A; �/ is an INF–
morphism from .M Œ�1�;DM Œ�1�/ to .M 0Œ�1�;DM 0Œ�1�/ over .AŒ�1�;D�/.

The same argument as above allows us to write this requirement in terms of the core
maps for ‰ , conceived of as order 0 module maps  i W M Œ�1�˝ .AŒ�1�/˝.i�1/!

M 0Œ�1�. The requirement that ‰ ıDM Œ�1�DDM 0Œ�1� ı‰ becomes ‰ ım�m0 ı‰D

‰ ı .I˝D�/� .I˝D�/ı‰ . By our proposition, ‰ ı .I˝D�/� .I˝D�/ı‰ is the
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extension of f.‰.I˝D�//n1g, since ‰ is order 0. Writing out his relation in terms
of the cores, and adjusting jIjAŒ�1� D�jIjA as above yields the standard definition.

Definition A.20 [8] An A1–morphism ‰ of right A–modules M and M 0 is a set
of maps  i W M ˝A˝.i�1/!M 0Œi � 1� for i 2N , satisfying

(45)
X

iCjDnC1

.�1/.iC1/.jC1/m0i
�
 j ˝jIj

.jC1/˝.i�1/
�

D

X
iCjDnC1

.�1/j.iC1/ i

�
mj ˝jIj

j˝.i�1/
�

C

X
iCjDnC1;k>0

.�1/j.iC1/Ck.jC1/ i

�
I˝k
˝�j ˝jIj

j˝.i�k�1/
�
:

‰ is strictly unital if  i.�˝a1˝� � �˝ai�1/D 0 when aj D IA for some j and i > 1.
The identity morphism IM is the collection of maps i1.�/D � , ij D 0 for j > 1.

Likewise, if we have two morphisms of A1–modules ˆW .M 0Œ�1�;DM 0Œ�1�/ !

.M 00Œ�1�;DM 00Œ�1�/ and ‰W .M Œ�1�;DM Œ�1�/ ! .M 0Œ�1�;DM 0Œ�1�/ over .A; �/,
when we take their composition ˆ ı‰ , we can write it in terms of the cores of ˆ
and ‰ , and then adjust the signed identities to be on A. This process gives the
following.

Definition A.21 [8] Let ‰ be an A1–morphism from M to M 0 , and let ˆ be an
A1–morphism from M 0 to M 00 . The composition ˆ �‰ is the morphism whose
component maps for n� 1 are

.ˆ�‰/1n D
X

iCjDnC1

.�1/.iC1/.jC1/�i

�
 j ˝jIj

.jC1/˝.i�1/
�
:

This is almost the same composition defined in C�AŒ�1� , but in transferring to A, we use
jIj.jC1/˝.i�1/

AŒ�1�
D .�1/.jC1/.i�1/jIj.jC1/˝.i�1/

A
. This accounts for the additional sign.

Definition A.22 Two A1–morphisms ‰;ˆ from M to M 0 over .A; �/ are homo-
topic if they are homotopic as INF–morphisms from

�
M Œ�1�;DM Œ�1�

�
to
�
M 0Œ�1�;

DM 0Œ�1�

�
over .AŒ�1�;D�/.

If H is a homotopy, it is order 1. Writing out the conditions in terms of its core, using
the commutator proposition, and adjusting the signs in using jIjA instead of jIjAŒ�1�

produces an equivalent definition.
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Definition A.23 [8] Let ‰;ˆ be A1–morphisms from M to M 0 . ‰ and ˆ are
homotopic if there is a set of maps fhig with hi W M ˝A˝.i�1/!M 0Œi � such that

(46)  i ��i D

X
iCjDnC1

.�1/.iC1/j m0i
�
hj ˝jIj

j˝.i�1/
�

C

X
iCjDnC1

.�1/.iC1/j hi

�
mj ˝jIj

j˝.i�1/
�

C

X
iCjDnC1;k>0

.�1/k.jC1/Cj.iC1/hi

�
I˝k
˝�j ˝jIj

j˝.i�k�1/
�
;

and for i > 1, hi.�˝ a1˝ � � �˝ ai�1/D 0 when aj D IA for some j .

In short, all the notions of an A1–object O come from the same notion for an INF–
object applied to O Œ�1�, and then adjusting the signs on jIjOŒ�1� to get a formula
without grading shifts.

A.5 Incorporating a factor on the right

Let A and N be Z–graded R–modules (as above). We can lift maps T �.A/! T �.A/
to maps which take account of N .

Definition A.24 Let ‰W T �.A/! T �.A/ be an order r module map. ‰N is the map
T �.A/˝N ! T �.A/˝N with component maps A˝n˝N !A˝m˝N given by

.‰N /n;m D‰n;m˝jIj
n�mCr
N

:

We can also extend maps with domain N .

Definition A.25 Let �W N ! T �.A/ ˝ N 0 be a degree r map with projections
�i W N ! A˝i ˝N 0 . The extension of � is the degree r map �W T �.A/˝N !

T �.A/˝N 0 with component �nmW A
˝n˝N !A˝m˝N 0 given by

�nm D .�1/nr .In
A˝�m�n/

for n�m and 0 otherwise.

Proposition A.26 � is the extension of � if and only if �D�˚.�1/r .IA˝�/ under
the isomorphism T �.A/˝N ŠN ˚A˝ T �.A/˝N .

Proof For m� n> 0 we have

.IA˝�/nm D .IA˝�n�1;m�1/D .�1/.n�1/r .IA˝ In�1
A ˝�m�n/D .�1/r�nm:

If nD 0 then .IA˝�/nm D 0 but �0m D �m .
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Example (1) We think of  W N !A˝N as a map N ! T �.A/˝N by setting
 i D 0 except for  1D . In this case,  only has non-zero entries  n;nC1D

.�1/nr .I˝n
A
˝ /.

(2) IN W N ! N can be considered as a degree 0 map �W N ! T �.A/˝N by
setting �i D 0 except for �0 D IN . In this case, �nn D In

A
˝ IN while �nm D 0

for n¤m. Thus �D IT �.A/˝N .

We now fix an INF–structure D� on A. Let � be the corresponding map on T �.A/
with core maps �� D f�ig and extension �N W T �.A/˝ N ! T �.A/˝ N . The
core of �N is the map ��

N
W T �.A/˝N ! A˝N found by extending each �i to

A˝n˝N !A˝N :
1M

nD1

�
�n˝jIN j

n
�
:

A similar set of identities obtain for these maps, and the extension of D� .

Proposition A.27 Let D�;N W T �.A/˝N ! T �.A/˝N be the extension of D� .
Then D�;N C I˝D�;N D �N , and D�;N ıD�;N D 0.

Proof We know that .D�/n;m D �n;m � .I ˝ D�/n;m , while on the other hand,
.I˝D�/n;mD I˝ .D�/n�1;m�1 . Thus we have the equation .D�/n;m˝jIj

n�mC1
N

D

�n;m ˝ jIj
n�mC1
N

� I ˝ .D�/n�1;m�1 ˝ jIj
n�mC1
N

. Consequently, .D�;N /n;m D

�n;m˝jIj
n�mC1
N

� I˝ .D�;N /n�1;m�1 . Thus D�;N C I˝D�;N D �N .

As a consequence of the proposition,

D�;N D

1X
lD0

.�1/l
�
I˝l
˝�N

�
:

A.6 Type D structures

Definition A.28 A type D structure on N over .A;D�/ is an order 0 map �W N !
T �.A/˝N such that

(1) �0 D IN ,

(2) .I˝n
A
˝�m/�n D�mCn , and

(3) D�;N ı�D 0.

Definition A.29 A type D structure � on N (over .A;D�/) is bounded if there is
an N 2N such that �n � 0 whenever n�N .
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From now on all type D structures in this paper will be bounded, unless otherwise
stated.

If we let ı D�1 then .I˝n
A
˝�m/�n D�mCn implies that

(47) �0 D IN ; �1 D ı; �n D .I
˝.n�1/

˝ ı/�n�1:

We will denote type D structures by this core map: .N; ı/, where ıW N !A˝N .

Note that we may also extend ıW N !A˝N as the map ıW T �.A/˝N !T �.A/˝N

with ın;nC1 D I˝n
A
˝ ı , and that we can similarly extend �.

Proposition A.30 Let � be the map for ı , then � satisfies the following identities:

(1) .��/n D .nC 1/�n ,

(2) �D IN ˚ .IA˝�/ı , and

(3) �D IN ˚ ı�.

Proof Item (1) follows by noting that .Ik˝�l/ is �k;kCl and .Ik˝�l/�k D�lCk .
In the composition, l and k are independent, so we obtain �n in each of the .nC 1/

ways we can write nC 1D l C k with l; k � 0. For item (2), note that

.IA˝�/nıD .IA˝�n�1/ıD .I
˝.n�1/

˝ı/.I˝�n�2/ıD .I
˝.n�1/

˝ı/.IA˝�/n�1ı:

Thus the components of .IA˝�/ı follow the same definition as �. Furthermore,
.IA˝�/1ı D .IA˝ IN /ı D ı , but .IA˝�/0 D 0 since there must be at least one
A–factor. Item (2) follows after adjusting the 0th level to compensate. For item (3),
we compute .ı�/0m D ım�1;m ı�m�1 for m � 1. Thus, this component equals
.I˝.m�1/˝ ı/�m�1 D�m for m� 1. However, �00 D IN .

The definition above uses the map D�;N , but we can use the identities to replace this
condition with one depending solely on the core map ��

N
.

Proposition A.31 .N; ı/ being a type D structure for .A;D�/ is equivalent to either
�N�D 0 or

��N�D

1X
nD1

�
�n˝jIN j

n
�
�n � 0:

Proof First, note that D�;N�D�N��.IA˝D�;N /�. If we replace the second � on
the right with �DINC.IA˝�/ı we will get D�;N�D�N��.IA˝D�;N /.IA˝�/ı
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since .IA ˝�/ is zero on N � T �.A/˝N . However, .IA ˝D�;N /.IA ˝�/ D

.IA˝D�;N�//. So

�N�DD�;N�C .IA˝D�;N�/ı:

Thus, when D�;N� D 0, then �N� D 0. On the other hand, if �N� D 0 then
D�;N�D�.IA˝D�;N�/ı . Iterating this yields D�;N�D .IA˝.IA˝D�;N�/ı/ı

D .I˝2
A
˝D�;N�/.IA˝ ı/ı D .I

˝2
A
˝D�;N�/�2 . By induction, we can show that

D�;N� D .�1/n.I˝n
A
˝D�;N�/�n . Since ı is assumed to be bounded, �n � 0

for n large enough. Thus D�;N�D 0 when ��D 0.

To complete the argument, we show that the identity in the proposition is equivalent to
�N�D 0 or, more simply, ��

N
�D 0. It follows from the definition of � that

.��/0n D

X
j�iDn�1

�
�i ˝jIAj

i˝.j�i/
˝jIN j

i
�
�j

for n� 1. But �j D ı
j�i�i for j � 1. Since ı is order 0, we then have

.��/0n D ı
n�1

X
j�iDn�1

�
�i ˝jIN j

i
�
�i

since the later application of ı produces factors on the right of the tensor products
of A. Rewriting the sum to be in terms of i D j �nC 1, and noting that any j � n is
possible, we get

.��/0n D ı
n�1

1X
iD0

�
�i ˝jIN j

i
�
�i ;

from which the statement in the proposition follows directly.

We now consider maps between type D structures and their compositions.

Definition A.32 Let .N; ı/ and .N 0; ı0/ be bounded type D structures for .A;D�/.
An order r type D map  W .N; ı/ ı! .N 0; ı0/ is an order r map of graded modules
 W N !A˝N 0 .

Definition A.33 Let  i W .Ni ; ıi/ ı! .NiC1; ıiC1/, i D 1; : : : ; n be order ri type D

maps. Define Mn. n; : : : ;  1/ to be the order 1C
P

ri map given by

Mn. n; : : : ;  1/D �
�
NnC1

�nC1 n�n � � ��2 1�1:

Here is the basic proposition relating the Mn compositions to the INF–algebra .A; �/.
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Proposition A.34 Let �i , i D 1; : : : ; nC1 be type D structures for .A;D�/ and let
 i be a degree ri map from .Ni ; �i/ to .NiC1; �iC1/. Then

(48) D�;NnC1
�nC1 n�n � � ��2 1�1

D

X
1�i�n

0�l�n�i

.�1/
Pn

pDn�LC2 deg p�nC1 n�n � � ��n�lC1M i�n�l�iC1 � � ��2 1�1;

where M i DMi. n�l ; : : : ;  n�l�iC1/.

Proof We consider the image of � 2N1 under the map found by alternating the  i

and the �i :
�nC1 n�n � � ��2 1�1:

The image of � is then a sum of terms of the form

(49) �k1;k2;:::;knC1
a1

1˝ � � �˝ a1
k1
˝ 
1˝ a2

1˝ � � � a
n
kn
˝ 
n˝ anC1

1
˝ � � � anC1

knC1
˝ � 0;

where ai
j 2A, each 
i 2A marks the factor coming from a  i , and � 0 is some element

of NnC1 . The sign in front equals

�k1;k2;:::;kn
D .�1/k1r1C.k1C1Ck2/r2C���C.k1C1C���C1Ckn/rn :

These signs come from the signs in  i for each of iD1; : : : ; n: .k1C1C� � �C1Cki/ri ,
comes from the number of factors preceding  i , including the i � 1 factors arising
from  j with j < i , times the degree of  i .

To this we will apply the map

D�;NnC1
D

X
1�i�M

0�l�M�i

.�1/l
�
I˝l
˝�i ˝jIj

i˝.M�l�i/
˝jINnC1

j
i
�
D 0

with M D k1C 1C � � �C 1C knC 1C knC1 . To simplify the computation let L be
the number of 
k –factors which are after the closing parenthesis for �i and I be the
number of such factors inside �i . Finally, let �s1;:::;sn

D s1C 1C s2C � � �C 1C sn .
We will fix the value of I for a minute. After applying D�;NnC1

we obtain terms of
the form

(50) �k1;k2;:::;kn
�.�1/�k1;:::;kn�L�I ;s a1

1˝�� �˝an�L�IC1
s

˝�i

�
an�L�IC1

sC1
˝�� �˝
n�L�IC1˝�� �˝
n�L˝an�LC1

1
˝�� �˝an�LC1

s0

�
˝jan�LC1

s0 j
i
˝�� �˝j
nj

i
˝janC1

1
j
i
˝�� � janC1

knC1
j
i
˝j� 0ji ;

where the additional sign comes from .�1/l in the definition of D�;N .
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We now do some sign accounting. First, �k1;k2;:::;kn
D
QnC1

tD1 .�1/�k1;:::;kt
�rt . Conse-

quently, we can use this sign to replace each 
u with .�1/�k1;:::;ku ru
u . Note that this
is the sign which would be used in an application of  u in the product above. For

n�L; : : : ; 
n�L�IC1 , however, we rewrite �k1;:::;ku

ru as �k1;:::;kn�L�I ;sruCpuru .
Then pu is the number of factors inside �i which precede 
u . We can then bring the
�–sign from the front into the factors, and rewrite the portion which uses �i as

.�1/.1C
PI

sD1 rn�L�ICs/�k1;:::;kn�L�I ;s

�i

�
an�L�IC1

sC1
˝ � � �˝ .�1/pn�L�IC1rn�L�IC1
n�L�IC1˝ � � �

˝.�1/pn�Lrn�L
n�L˝ an�LC1
1

˝ � � �˝ an�LC1
s0

�
:

The sign in front is the same as the sign introduced in extending to get M I . n�L; : : : ;

 n�L�IC1/, a degree 1C
PI

sD1 rn�L�ICs map, after skipping �k1;:::;kn�L�I ;s pre-
ceding A–factors. Each pu is the number of factors preceding the application of  u

in MI . n�L�IC1; : : : ;  n�L/ before extending. There is another sign which is also
added when we change to M I : in M I we use ��

N
not �� . The action on N –factor

introduces another sign: that in j� 0ji versus � 0 , where � 0 is the term in the N –factor
coming right after the application of �i . This sign is .�1/i deg.Q�/ .

Last we consider the terms on the third line. We note that the sign introduced
is �1 raised to i.

P
deg al

j C
P

deg 
t C deg.� 0// from the signed identity terms,
times .�1/ raised to the sum of �k1;:::;kp

rp for n � p � n � LC 1. In the INF–
relation for  j we apply  r after we have used �i to contract i factors to 1

factor. Thus the exponent we need differs from �k1;:::;kp
rp by .i � 1/rp . This

occurs for each of the n � .n � LC 1/C 1 D L factors after �i . Thus, the sign
is different by .�1/

Pn
pDn�LC2.i�1/rp . In addition,

P
deg al

j C
P

deg 
t C deg.� 0/
is deg. Q�/C

Pn
pDn�LC2 rp , where Q� is the result in the N –factor immediately after

applying M i . This introduces another i
Pn

pDn�LC2 rp in the exponent. As a conse-
quence, the sign remaining after combining is .�1/i deg.Q�/C

Pn
pDn�LC2 rp . Combining

with the sign above, we are left with .�1/
Pn

pDn�LC2 rp .

Thus .�1/l
�
I˝l ˝�j ˝jIjj˝.i�l/

�
applied to each term in

.�nC1 n�n � � ��2 1�1/.�/

is the same as a term in

.�1/
Pn

pDn�LC2 rp .�nC1 n�n � � ��n�LC2M J�n�L�JC2 � � ��2 1�1/.�/;

where MJ DMJ . n�LC1; : : : ;  n�L�JC2/. If we add over all the terms we obtain
the desired identity.
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Note that we are interpreting I D 0 as the case where �i is applied solely to A–factors
which come from �s. In the final summation these will all cancel since �i is a type D

structure.

We note that for type D morphisms,
Pn

pDn�LC2 rp DL�1 and the signs will mimic
the INF–relations used above.

Proposition A.35 The compositions Mn; n 2N , satisfy the following INF–relations:X
iCjDnC1

1�l�i

.�1/
Pn

pDn�LC2 deg p Mi. n; : : : ;  n�lC2;Mj ;  n�l�jC1; : : : ;  1/D 0;

where Mj DMj . n�lC1; : : : ;  n�l�jC2/.

Proof We compose ��
NnC1

to D�;NnC1
�nC1 n�n � � ��2 1�1 . Since .A; �/ is an

INF–algebra, ��
NnC1

D�;NnC1
D 0. On the other hand, using Proposition A.34, we see

that this implies

��NnC1

� X
1�i�n

0�l�n�i

.�1/
Pn

pDn�LC2 deg p�nC1 n�n ����n�lC1M i�n�l�iC1 ����2 1�1

�
D 0;

where M i DMi. n�l ; : : : ;  n�l�iC1/.

Moving ��
NnC1

inside the summation, and then using the definition of Mn , we obtain
the INF–relations we desire.

We now concentrate on M1 and M2 . Note that M2. 2;  1/ has degree 1Cr1Cr2 . If
we limit  i to have degree �1, then M2. 2;  1/ will also have degree �1. Thus M2

defines a product on the degree �1 maps. Indeed, the INF–relation on �1 maps has
the simpler formX
iCjDnC1

1�l�i

.�1/l�1Mi. n; : : : ; n�lC2;Mj . n�lC1; : : : ; n�l�jC2/; n�l�jC1; : : : ; 1/

D 0:

From the INF–relations we see that M1 is a boundary map. We will call a map  with
M1. /D 0 a closed map.

Definition A.36 A type D morphism  W .N; ı/ ı! .N 0; ı0/ is a closed order �1

module map  W N !A˝N 0 .
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Proposition A.37 A degree �1 map  W N !A˝N 0 is closed if and only if

D�;N 0 ı�
0
ı ı�� 0:

Proof By Proposition A.34, we know

D�;N 0 ı�
0
ı ı�D�0M1. /�:

If M1. /D 0, then D�;N 0 ı�
0ı ı�D 0 since M1. /D 0. On the other hand, if the

left hand side is 0, we get that �0M1. /�D 0. This map has image in T �.A/˝N 0 .
If we look at the image in A˝N 0 , we see that it equals �0

11
M1. /01�00 DM1. /.

Thus, when D�;N 0 ı�
0 ı ı�D 0 we have M1. /D 0.

We will now restrict ourselves to degree �1 maps of type D structures. The INF–
identity for nD 3 reduces to

M1.M2. 2;  1//CM2.M1. 2/;  1/�M2. 2;M1. 1//D 0:

We see from this identity that M2 will take closed maps to closed maps, thereby defining
a product on the kernel of M1 . Furthermore, M1 is a (signed, right) differential for
the composition �M2 . We formalize this as follows.

Proposition A.38 If  W .N; ı/ ı! .N 0; ı0/ and �W .N 0; ı0/ ı! .N 00; ı00/ are two
type D morphisms, then M2.�;  /W .N; ı/ ı! .N 00; ı00/ is a type D morphism. The
composition � � is the type D morphism �M2.�;  /.

We require that A be (strictly) unital with identity 1A 2 A�1
1. The identity is a

two-sided identity for �2 (which will map A�1˝A�1!A�2C1 ), but its presence as
any argument in the application of another core map �i will mean the image is 0.

Proposition A.39 Let I.N;ı/W .N; ı/ ı! .N; ı/ be the map N ! A˝N defined
by x! 1A˝ x . Then I.N;ı/ is a type D morphism with M2.I.N 0;ı0/;  / D  and
M2

�
�; I.N;ı/

�
D� . Furthermore, the presence of I.Ni ;ıi / as an argument in Mn , n� 3

results in 0.

Proof First, I.N;ı/ has degree �1 since 1A is in A�1 . Second, we show that I.N;ı/
is a morphism, ie it is closed for M1 :

��N�I .N;ı/�D 0:

Note that the image in A˝n˝N will be non-zero only for n � 1. If it is non-zero,
then its image will be linear combinations of terms with a 1A in some factor of A˝n ,

1Recall that we will let A be A0Œ�1� for some A0 , thus .A0Œ�1�/�1 DA0
�1C1

DA0
0

.
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due to the presence of I.N;ı/ . This factor will be fed into a core map �i in ��
N

. When
i D 1 or i > 2, the image will then be zero. The only potentially non-zero terms of the
composition applied to � are those with �2 . If ı.�/D

P
ci ˝xi we have

(51) .�2˝ IN /.�IA˝ I.N;ı//ı.�/C .�2˝ IN /.IA˝ ı/I.N;ı/.�/

D .�2˝ IN /.�IA˝ I.N;ı//
�X

ci ˝xi

�
C .�2˝ IN /.IA˝ ı/.1A˝ �/

D .�2˝ IN /
�
�

X
ci ˝ 1A˝xi

�
C .�2˝ IN /

�
1A˝

�X
ci ˝xi

��
D .�2˝ IN /

�X
.1A˝ ci � ci ˝ 1A/˝xi

�
D 0:

To verify that I.N;ı/ composes as the identity on both sides, we compute

��N 0 ı�
0
ı I.N;ı/ ı�

0
ı ı�:

As above, the strict unitality of the maps �i mean that the only terms in this composition
which are non-zero will be those which feed two factors of A into �N 0 . These must
come from I.N;ı/ and  . Thus the entire composition collapses to a sum of terms
.�2˝IN /.�ci˝1A˝x0i/D��2.ci ; 1A/˝x0i D�ci˝x0i , where  .�/D

P
ci˝x0i .

So  � I.N;ı/ D�M2.I.N;ı/;  /D  . A similar argument shows that I.N;ı/ acts as
an identity on the left (recalling the order reversal in the product).

To see that I.N;ı/ in an argument of Mn for n > 2 we note that since there are n

morphisms the �i map applied will have i � n> 2. Furthermore, at least one argument
in that �i will come from I.N;ı/ and thus be 1A . Since the �i form a strictly unital
INF–algebra, this means that the result must be 0.

However, the product �M2 is not associative. Instead, again from the INF–relations,
M2 satisfies the generalized associativity relation

(52) M2.M2. 3;  2/;  1/�M2. 3;M2. 2;  1//

D�M1.M3. 3;  2;  1//�M3.M1. 3/;  2;  1/

CM3. 3;M1. 2/;  1/�M3. 3;  2;M1. 1//:

We can simplify this relation by quotienting by the image of M1 . To this end we
declare equivalent any two �1–morphisms  and � if there is a degree �2 map
H W N !A˝N 0 with

 �� DM1.H /D ��N 0�
0H�:

We call such morphisms homotopic, following the terminology in [8]. However,
equivalent maps represent the same homology class under M1 .
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That M1 is a differential for M2 implies that M2 defines a composition on the
equivalence classes under homotopy. The generalized associativity relation implies
that the composition M2 is associative once restricted to equivalence classes. As usual,
once we have the INF–structure above, we obtain an INF–structure on the homology:
the set of closed morphisms after modding out by homotopy. From the arguments
above, and the INF–relations we obtain the following.

Proposition A.40 Let D be the collection of type D structures .N; ı/ over .A;D�/.
Let MOR..N; ı/; .N 0; ı0// be the homotopy equivalence classes of the set of closed
degree �1 type D maps. Then D , with these morphism sets, forms a category if we
take

(1) the composition

MOR..N; ı/; .N 0; ı0//˝R MOR..N 0; ı0/; .N 00; ı00//! MOR..N; ı/; .N 00; ı00//

to be induced from .�;  /!�M2. ; �/, and

(2) the identity morphism at .N; ı/ to be I.N;ı/ .

A.7 For A a DGA

We are interested in the following case: A0 is such that ADA0Œ�1� has an INF–structure
with �i D 0 for i � 3. This makes A0 into a differential graded algebra. In this case
Mi � 0 for i � 3 since these require the use of �n for n � i due to the number
of A0Œ�1�–factors involved. Examining the INF–relation we see that M2 defines
an associative composition on type D morphisms, before quotienting by homotopy.
Furthermore, I.N;ı/ is still the identity map. Thus, in this case, type D structures
with type D morphisms form a category before quotienting by the homotopy relation.
Modding out by homotopy is then quotienting this category by an ideal.

We can write out the conditions for being a type D structure, a type D morphism,
and composition of type D structure in this setting. We note that these only require
grading shifts and not changes in sign. First, a type D structure is an order 0 map
ıW N !A0Œ�1�˝N Š .A0˝N /Œ�1� satisfying

��N�D

1X
nD1

.�n˝jIN j
n/�n � 0:

Since �n D 0 for n> 2 we can simplify this to

.�2˝ IN /�2C .�1˝jIN j/�1 D 0:
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Since �2 D .IA0Œ�1�˝ ı/ı and �1 D ı we obtain the relation

.�2˝ IN /.IA0 ˝ ı/ıC .�1˝jIN j/ı D 0:

By a similar argument, we see that a morphism of type D structure will be an order �1

map  W N ! .A0Œ�1�˝N 0/. Thus,  maps Nk to .A0˝N /Œ�1�k�1 Š .A
0˝N /k .

Thus we can take a type D morphism to be an order 0 map N ! A0˝N 0 which
satisfies ��

N 0
�0 �D 0. This simplifies to

.�2˝ IN /.�
0 �/02C .�1˝jIN j/.�

0 �/01 D 0:

 will increase the number of A0–factors by one, so .�0 �/01 D .IA0 ˝ IN 0/ IN

since we must use �0
0

and �0 or else have too many factors. On the other hand, in
the first term we may use either �1 or �0

1
, but not both. Then

.�0 �/02 D .IA0Œ�1�˝ ı
0/ � .IA0Œ�1�˝ /ı:

Under our isomorphisms, this becomes

.�2˝ IN /.IA0Œ�1�˝ ı
0/ � .�2˝ IN /.IA0Œ�1�˝ /ıC .�1˝jIN j/ D 0:

The composition of two morphisms  W .N; ı/ı! .N 0; ı0/ and �W .N 0; ı0/ı! .N 00; ı00/

can be computed from �M2.�;  / D ��
�
N 00�

00��0 �. Both  and � introduce
A0Œ�1�–factors. Hence, the contributions of �00 , �0 and � must either be the identity
on the respective modules, or introduce A0Œ�1�–factors which force ��

N 00
to evaluate

to 0, as �i D 0 for i > 2. Thus,

�M2.�;  /D�.�2˝ IN 00/.�IA0 ˝�/ D .�2˝ IN 00/.IA0 ˝�/ :

Furthermore, a homotopy H W N ! .A0Œ�1�˝ N 0/ is a degree �2 map, and thus
can be thought of as a map Nk ! .A0˝N 0Œ�1�/k�2 Š .A

0˝N 0ŒC1�/k . It is thus
an order 0 map N ! .A0 ˝ N 0/ŒC1�. Furthermore, as above, we can compute
M1.H /D .�2˝ IN /.�

0H�/02C .�1˝jIN j/.�
0H�/01 which simplifies using

.�0H�/02 D .IA0Œ�1�˝ ı
0/H C .IA0Œ�1�˝H /ı;

since H has even order. Thus if  and � are homotopic type D morphisms, with
homotopy H , then

 �� D .�2˝ IN /.IA0Œ�1�˝ ı
0/H C .�2˝ IN /.IA0Œ�1�˝H /ıC .�1˝jIN j/H;

or, after applying the shift isomorphisms

 �� D .�2˝ IN /.IA0 ˝ ı
0/H C .�2˝ IN /.IA0 ˝H /ıC .�1˝jIN j/H:
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A.8 Pairing

Since DM;N ıDM;N D 0 and DM;N D mN � IM ˝D�;N we see that mN mN D

mN .IM ˝D�;N /C .IM ˝D�;N /mN . .IM ˝D�;N /mN has image in
L

n>0 M ˝

An˝N since there is always an A–factor remaining in the codomain of D�;N . Thus,
after restricting to have domain and codomain M ˝R N ,

m�N ımN Dm�N .IM ˝D�;N /:

This works for any right INF–module M .

Now suppose that we have type D structures .Ni ; �i/ for i D 1; : : : ; nC 1. Let
 i W .Ni ; ıi/ ı! .NiC1; ıiC1/, i D 1; : : : ; n be order ri type D maps. We will now
apply both sides of m�

NnC1
ımNnC1

Dm�
NnC1

.IM ˝D�;NnC1
/ to

� D IM ˝ .�nC1 n�n � � ��2 1�1/:

We let

�n. n; : : : ; 1/

Dm�NnC1
.IM ˝�nC1/.IM ˝ n/.IM ˝�n/ � � �.IM ˝�2/.IM ˝ 1/.IM ˝�1/

for n� 1, and �0 Dm�
N1
�1 .

By Proposition A.34,

(53) m�N .IM ˝D�;N /.�/DX
iCjDnC1

1�l�i

.�1/
Pn

pDn�lC2 deg p�i. n; : : : ;  n�lC2;Mj ;  n�l�jC1; : : : ;  1/;

where Mj DMj . n�lC1; : : : ;  n�l�jC2/.

Similar to the proof of Proposition A.34 we can analyze .m�
N
ımN /.�/. There are two

differences between this argument and that in the proof of Proposition A.34. The first
occurs in the signs: there we removed j factors of A by applying �j and replaced it
with a new factor (the image) which resulted in a difference of sign of .j � 1/rk for
each  k occurring after the application of �j . Here, however, applying mj removes
j �1 factors and merges them into the M factor out front. This also results in a change
of .j � 1/rk . The second difference is that m�

N
�D�0 D @

� and not zero as before.
Furthermore, when we apply mj followed by mi we obtain a composition of �i and
�j since each has image in M ˝N . Putting these observations together with the
proof of Proposition A.34 we get

.m�N ımN /.�/D
X

iCjDn

.�1/
Pn

pDjC1 deg p�i. n; : : : ;  jC1/�j . j ; : : : ;  1/;
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where both i and j on the left side can equal 0. Consequently,

(54)
X

iCjDn

.�1/
Pn

pDjC1 deg p�i. n; : : : ;  jC1/�j . j ; : : : ;  1/

D

X
iCjDnC1

1�l�i

.�1/
Pn

pDn�lC2 deg p�i. n; : : : ;  n�lC2;Mj ;  n�l�jC1; : : : ;  1/;

where Mj DMj . n�lC1; : : : ;  n�l�jC2/.

A.9 Pairing a left INF–module and a type D structure

Let .A;D�/ be an INF–algebra with �� D f�ig, and let M be a right INF–module
over .A;D�/ with differential DM . We let mDDM C IM ˝D� , and m� D fmig

be the corresponding core maps mnW M ˝A˝.n�1/!M . In addition, we let .N; ı/
be a type D structure over .A;D�/.

Definition A.41 Define M �N to be the graded module M R̋N , and @�W M �N!

.M � N /Œ�1� to be the map

@� Dm�N .IM ˝�/D

1X
kD0

.mkC1˝jIN j
kC1/ ı .IM ˝�k/:

Theorem A.42 [8] .M � N; @�/ is a chain complex.

Proof We note that @� D �0 for N1 D N . Taking the relation for i D j D 0 we
obtain �0�0 D 0, since the right hand side contains no terms. This shows that @� is
a boundary map.

Proposition A.43 For each type D structure .N; ı/ over .A;D�/ there is a functor
F.N;ı/ from the category of right INF–modules over .A;D�/ to the category of chain
complexes. F.N;ı/ is defined by

(55) F.N;ı/.M;DM /D .M � N; @�/; F.N;ı/.ˆ/Dˆ�N .IM ˝�/;

where ˆ 2 C.M;M 0/ is a morphism of right INF–modules over .A;D�/. We will
denote F.N;ı/ˆ by ˆ� IN . Furthermore, if ˆ and ‰ are homotopic then ˆ� IN

is chain homotopic to ‰� IN . Thus, F.N;ı/ induces a functor from the homotopy
category of right INF–modules to the homotopy category of chain complexes.

Before proving this proposition, we introduce a useful lemma.

Lemma A.44 Let ˆ 2 C.M;M 0/ have order r . Then

.IM 0 ˝�/ ı .ˆ
�
N / ı .IM ˝�/DˆN ı .IM ˝�/:
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Proof The image of .IM 0 ˝�/ ı .ˆ
�
N
/ ı .IM ˝�/ in M ˝A˝n˝N has the formX

l

.IM 0 ˝�n/.ˆ
�
lC1˝jIN j

lCr /.IM ˝�l/:

Since .IM ˝�n/ does not change the M factor, and .ˆ�
lC1
˝jIN j

lCr / only affects
the M factor and the l available A–factors, we can rewrite

.IM 0 ˝�n/.ˆ
�
lC1˝jIN j

lCr /

D .ˆ�lC1˝ I˝n
A
˝ IN /.IM ˝ I˝l

A
˝�n/.IM ˝ I˝l

A
˝jIN j

lCr /:

Furthermore, as �n preserves grading, so

�n.jIN j
lCr /D .jIAj

.lCr/˝n
˝jIN j

lCr /�n:

Therefore,

.IM 0 ˝�n/.ˆ
�
lC1˝jIN j

lCr /

D .ˆ�lC1˝ I˝n
A
˝ IN /.IM ˝ I˝l

A
˝jIAj

.lCr/˝n
˝jIN j

lC1/.IM ˝ I˝l
A
˝�n/:

However,

.ˆ�lC1˝ I˝n
A
˝ IN /.IM ˝ I˝l

A
˝jIAj

.lCr/˝n
˝jIN j

lCr /DˆnClC1;nC1˝jIN j
lC1;

which is an entry in ˆN . If we precompose with IM ˝ �l we can then replace
.IM ˝ I˝l

A
˝ �n/.IM ˝ �l/ with IM ˝ �lCn . As a consequence, the image in

M ˝A˝n˝N is the sum
P

l.ˆnClC1;nC1˝jIN j
lCr /.IM ˝�lCn/, which is also

the entry in ˆN .IM ��/ which maps M ˝N to M ˝A˝n˝N .

Proof of Proposition A.43 Let ˆ 2 C.M;M 0/ be an order 0 morphism from M

to M 0 with core ˆ� D f�kg. We define

�� IN Dˆ
�
N .IM ˝�/:

To see that this is a chain map, we compute .ˆ�IN /@
�Dˆ�

N
.IM˝�/.m

�
N
/.IM˝�/.

Using the previous lemma we can simplify this to ˆ�
N
.mN /.IM ˝�/. Since ˆ is a

morphism of right INF–modules, we have ˆN DM;N DDM 0;NˆN , or

ˆN .mN � .IM ˝D�;N //D .m
0
N � .IM ˝D�;N //ˆN :

If we look at those terms with image in M˝N we obtain ˆ�
N

mN�ˆ
�
N
.IM˝D�;N /D

.m0
N
/�ˆN . Thus

.ˆ� IN /@
�
D
�
ˆ�N .IM ˝D�;N /C .m

0
N /
�ˆN

�
.IM ˝�/D .m

0
N /
�ˆN .IM ˝�/:

On the other hand, @�.ˆ� IN /D .m
�
N
/.IM ˝�/.ˆ

�
N
/.IM ˝�/, which reduces to

.m�
N
/ˆN .IM ˝�/, using the lemma above. Thus, .ˆ� IN / is a chain map.
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Let ‰W M ! M 0 and ˆW M 0 ! M 00 be morphisms of right INF–modules. Then
.ˆ�‰/�IN is the map .ˆ�‰/�

N
.IM˝�/Dˆ

�
N
‰N .IM˝�/. Since ‰N .IM˝�/D

.IM ˝�/‰
�
N
.IM ˝�/, we see that .ˆ�‰/� IN Dˆ

�
N
.IM ˝�/‰

�
N
.IM ˝�/D

.ˆ� IN /.‰� IN / as required. Furthermore, I1
M

� IN D .I
1
M;N

/�.IM ˝�/. Since
.I1

M;N
/�
k

will be non-zero only for k D 1, we see that the only non-zero term is
.I1

M
/�
1
˝jIN j

0/.IM ˝�0/D .IM ˝ IN /.IM ˝ IN /D IM˝RN . Our map preserves
the identity morphisms.

Finally, we verify that the functor preserves homotopy relations. Suppose ˆN �‰N D

DM 0;N HN CHN DM;N for some homotopy map: an order �1 map in C.M;M 0/.
Since DM 0;N HNCHN DM;N D .m

0
N
C.IM 0˝D�;N /HNCHN .mNC.IM˝D�;N /,

the only terms with image in M ˝N will be those without a D�;N term. Thus,
ˆ�

N
�‰�

N
D .m0/�

N
HN CH�

N
mN .

Now, let HDH�
N
.IM ˝�/. Then, using Lemma A.44 above,

(56) @�HCH@�

D .m0/�N /.IM ˝�/H
�
N .IM ˝�/CH�N .IM ˝�/.m

�
N /.IM ˝�/

D ..m0/�N /HN .IM ˝�/CH�N mN .IM ˝�/

D .ˆ�N �‰
�
N /.IM ˝�/

D .ˆ� IN /� .‰� IN /:

Consequently, homotopy equivalent INF–modules will result in chain equivalences of
the chain complexes.

Proposition A.45 For each right INF–module .M;DM / over .A;D�/ there is a
functor G.M;DM / from the category D of homotopy classes of type D structures over
.A;D�/ to the homotopy category of chain complexes. G.M;DM / is defined by

(57)
G.M;DM /.N; ı/D .M � N; @�/;

G.M;DM /. /D Œm
�
N .IM ˝�

0/.IM ˝ /.IM ˝�/�;

where  represents a homotopy class of morphisms of type D structure over .A;D�/,
and the image G.M;DM /. / is the homotopy class of the chain map inside the brackets.
We will denote G.M;DM /. / by IM � .

Corollary A.46 When .A;D�/ has �iD0 for i�2 then the functor G.M;DM / can be
extended to a functor on the category whose objects are type D structures over .A;D�/

and whose morphisms are all the type D morphisms between two type D structures.
Homotopic morphisms will be taken by G.M;DM / to chain homotopy equivalent chain
maps.
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Proof Let  W N ! A˝N 0 be an order �1 morphism of type D structures. We
define IM � W M � N !M � N 0 to be �1. /, or

IM � Dm�N .IM ˝�
0/.IM ˝ /.IM ˝�/:

By taking nD 1 in the pairing relation we obtain

.�1/1�1. /�0C .�1/0�0�1. /D�1.M1. //;

so if  is a type D morphism, we obtain .IM � /@�D@�.IM � /. Thus, .IM � /
is a chain map.

Suppose that H is homotopy of type D morphisms  and � :  �� DM1.H /. If
we apply the same identity to H we obtain

.�1/2�1.H /�0C .�1/0�0�1.H /D�1.M1.H //;

or
�1.H /@�C @��1.H /D�1. ��/:

If we let

IM � H D�1.H /Dm�N .IM ˝�
0/.IM ˝H /.IM ˝�/;

then
.IN � /� .IN ��/D .IM � H /@�C @�.IM � H /;

so homotopic type D morphisms will be taken to chain homotopic chain maps. Thus the
functor takes morphisms in the homotopy category of type D morphisms to morphisms
in the homotopy category of chain complexes.

We have seen that the map  7! IM � takes homotopy classes to homotopy classes.
We now verify that it maps the identity correctly, and preserves compositions. The
image of I.N;ı/ is the map m�

N
.IM ˝�

0/.IM ˝ I.N;ı//.IM ˝�/. This introduces
a 1A into each term. Since M is strictly unital, the only term remaining will be that
employing m2 . We are thus able to add only one A–factor, so m�

N;2
.IM ˝ I.N;ı//D

m�
N;2
.IM ˝ 1A˝ IN / or IM ˝ IN .

To verify that the functor preserves compositions in the homotopy categories, recall
that the composition of two type D morphisms  and � is given by

M2.�;  /D �
�
N 00�

00��0 �:

As a consequence, we may use the pairing relations, when � and  are type D

morphisms and nD 2, to get

(58) .�1/0@��2.�;  /C .�1/1�1.�/�1. /C .�1/2�2.�;  /@
�

D .�1/0�1.M2.�;  //C .�1/0�2.M1.�/;  /C .�1/1�2.�;M1. //:
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Since M1.�/DM1. /D 0, this identity becomes

@��2.�;  /C�2.�;  /@
�
D�1.�/�1. /C�1.M2.�;  //:

Thus the map �1.�/�1. / is chain homotopic to �1.�M2.�;  //. Consequently,
after modding out by homotopies,

.I ��/.I � /' .I � .� � //;

and we have verified that the map preserves compositions and thus is a functor.
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