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The length of a 3—cocycle of the S—dihedral quandle

SHIN SATOH

We determine the length of the Mochizuki 3—cocycle of the 5—dihedral quandle. This
induces that the 2—twist-spun figure-eight knot and the 2—twist-spun (2, 5)—torus
knot have the triple point number eight.

57Q45; 57Q35

Dedicated to Professor Taizo Kanenobu on the occasion of his 60" birthday

1 Introduction

The triple point number is one of the elementary invariants of a surface-knot analogous
to the crossing number of a classical knot. It is defined to be the minimal number of triple
points for all possible diagrams of the surface-knot. An S2—knot has the triple point
number zero if and only if it is of ribbon type (see Yajima [21]), and the author showed
[15; 17] that there is no S2—knot whose triple point number is equal to one, two or
three. The author also showed [16] that some nonorientable surface-links have positive
triple point numbers determined by using the knot group and normal Euler number.

In 2004, Shima and the author [18] gave a lower bound of the triple point number
in terms of the cocycle invariant with respect to the 3—dihedral quandle, and proved
that the 2—twist-spun trefoil knot has the triple point number four. We introduced the
notion of the length of a cocycle of a quandle, and proved that the 3—twist-spun trefoil
knot has the triple point number six [19]. Oshiro [14] used a symmetric quandle to
determine the triple point numbers of some nonorientable surface-links.

This paper is motivated by the study of Hatakenaka [8]. She proves that the length of
the Mochizuki 3—cocycle of 5—dihedral quandle [13] is greater than or equal to six.
The aim of this paper is to prove the following.

Theorem 1.1 The length of the Mochizuki 3—cocycle of the 5—dihedral quandle is

equal to eight. As a consequence, the 2—twist-spun figure-eight knot and the 2 —twist-
spun (2, 5)—torus knot have the triple point number eight.
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This paper is organized as follows. In Section 2, we define the length of a 3-(co)cycle,
and prove Theorem 1.1 by assuming the theorem on the length of the Mochizuki 3—
cocycle with an additional structure (Theorem 2.3). In Section 3, we introduce graphs
which visualize 3—cycles. In Section 4, the reverse and reflection of a 3—chain are
defined. By using these notions, we can reduce the number of cases to consider. In fact,
we divide the 3—cycles with length at most seven into eight cases I-VIII in Section 5.
Sections 6, 7 and 8 are devoted to studying the cases I-IV, V and VI, and VII and VIII,
respectively. In Section 9, we give a complete list of 3—cycles with length at most
seven up to sign, reverse and reflection, and prove Theorem 2.3. In Section 10, we give
an example of surface-link whose triple point number is equal to eight.

2 Preliminaries

A nonempty set X with a binary operation (@, b) — a? is called a quandle [2; 5; 10;
12] if it satisfies the following:

e g?=qforanyacX.
e Forany a,b € X, there is a unique element x € X such that x* = b.

o (a®)¢ = (a“)® forany a,b,c € X.

We use the notations (¢?)¢ = a®¢, ((a?)¢)? = a4, and so on.

The associated group G(X) of a quandle X is a group generated by the elements of X
with the relations x” = y~!xy forany x, y € X. A set S is called an X—ser [11] if
G(X) acts on S from the right. We denote the action by (s, g) > s8 for s € S and
g € G(X). It holds that

588 = (s8)¢ and € =3

for any elements g, g’ € G(X) and the identity element ¢ € G(X). For any X—sets S
and S’, the product S x S’ is also an X—set naturally.

Let C,(X)s be the free abelian group generated by the (n41)—tuples of the set
U, = {(S;xl,...,xn)|s€S and x; € X with x; # x;41 (1 <i En—l)}.

Any nonzero element y € Cy,(X) s has a unique reduced presentation y = Zle y; such
that y; €U, (i =1,2,...,¢) and y; #—y; forany i # j, where £U, = U,U(-=U,).
The number £ of terms is called the length of y and denoted by £ = £(y). Throughout
this paper, we may assume that a presentation of y is reduced.
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The homology group H,(X)s of apair (X, S) is defined from the chain group C,(X) s
and the boundary operation d,: C,(X)s — C,—1(X)s defined by

n

0n(S:X1,...,Xp) = Z(—l)’(s;xl, e X1 X1y e ey Xp)

i=1 n
+ Z(—I)HI(S’C";X;C", e X X Xn).

i=1

Here, if an (n—1)—-term *(¢; y1,..., yy—1) in the right hand side satisfies y; = p;4
for some i (1 <i <n—2), then we remove it from the sum; see [6; 7; 11]. The
cohomology theory H"(X; A)g with an abelian group A is developed from the
cochain group C"(X; A)s = Hom(C,(X)g, A) in a standard manner. If S consists
of a single element s with the trivial action s& = s for any g € G(X), we omit s in
(s:X1,X2,...,Xxp) and S in the subscripts of the groups. We denote by Z,(X; A)s
and Z"(X; A)s the n—cycle and n—cocycle groups, respectively.
Let (, ): Co(X)xC"(X; A)— A be the Kronecker product, and ¢: Cp,(X)g — Cp(X)
the chain homomorphism defined by

O X1, .- xn) = (X1, ..., Xn).
For an n—cocycle 6 € Z"(X; A), we put
£(0,S) =min{l(y) | y € Zu(X)s with (@(y), 0) # 0;.
If the set in the right hand side is empty, then we put £(6, S) = 0.
Definition 2.1 The length of an n—cocycle 6 € Z"(X; A) is defined by
£(0) = max{£(6,S) | S an X-set}.
If the maximum does not exist, then we put £(6) = oco.

Let F be an oriented surface-knot, and D a diagram of F. An (X, S)-coloring
(see [11]) is a usual X—coloring for D together with a shadow S —coloring for the
complementary regions in R3. See Figure 1. In particular, the X—set S = Z with the
action s* =s+1 forany s € Z and x € X corresponds to an Alexander numbering [4],
S =7, with s* =5+ 1 (mod 2) corresponds to a checkerboard coloring, and S = X
corresponds to the original shadow coloring; see [3]. Let Coly, s (D) denote the set
of (X, S)—colorings for D. Every (X, S)—coloring defines a 3—cycle y¢c € Z3(X)gs.
The cocycle invariant of F associated with a 3—cocycle 6 € Z3(X; A) is given by

Pg(F) = {{p(rc).0) € 4] C € Coly,5(D)}

as a multiset [11].
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Figure 1

We denote by 7(D) the number of triple points of a diagram D, and t(F) the minimal
number of #(D) for all possible diagrams D of a surface-knot F, which is called the
triple point number of F . The following is a generalization of the lower bound of t(F)
for S = Z, given in [19]. Since the proof is almost the same as the original one, we
omit and leave it to the reader.

Theorem 2.2 Let F be an oriented surface-knot, and 6 a 3—cocycle in Z3(X; A). If
the cocycle invariant ®g(F) of F associated with 6 contains a nonzero element, then
we have t(F) > £(0). O

The 5-dihedral quandle X = Rs is the set Zs = {0,1,...,4} equipped with the
binary operation a® =2b—a (mod 5). The map Oy: C3(Rs) — Zs defined by

»>+Qz-y)° 227
5

is a 3—cocycle in Z3(Rs;Zs) and is called the Mochizuki 3—cocycle of Rs [13]. Let
S =7 x Rs be the Rs—set whose action is given by (n, w)* = (n 4+ 1,2x — w) for
ne€Z and w,x € Rs. In Section 3 and after, we prove the following.

Om(x,y,2) = (x—y)

Theorem 2.3 £(Om,Z x Rs) > 8.
By using this theorem, we have Theorem 1.1 as follows.

Proof of Theorem 1.1 Let F be the 2—twist-spun trefoil knot or the 2—twist-spun
(2, 5)—torus knot. Since F is presented by a diagram with eight triple points [16; 22],
we have t(F) < 8. On the other hand, by the calculations in [1; 9], the cocycle invariant
Dy, (F) is
{0,...,0,1,...,1,4,...,4} or {0,...,0,2,...,2,3,...,3},
—_—— —— —— SN——

—— ——
5 10 10 5 10 10

respectively. Since the invariant contains a nonzero element, it follows by Theorems 2.2
and 2.3 that t(F) > £(6y) = £(6p, Z x Rs) > 8. Therefore, we have t(F) = £(0y) =
£(6m,Z x Rs) = 8. o
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3 Graphs of 3—cycles

To prove Theorem 2.3, we will construct the complete list of nonzero 3—cycles
Y € Z3(Rs5)zxrs With £(y) <7 (Theorem 9.1). We put Cy = Cx(Rs5)zxgrs (k=2,3)
and Z3 = Z3(Rs)zxRs -

Recall that the third chain group Cj is generated by
Us={(n,w;x,y,z)|n€Zand w, x, y,z € Rs with x # y # z},
and the second chain group Cj is generated by
U, ={(n,w;x,y)|neZand w,x,y € Rs with x # y}.

An element in £Uj, is called a k—term (k = 2,3). Fora 3—term y = e(n, w; x, y, z)
with ¢ = 4+, we call ¢, n, w and (x, y, z) the sign, degree, index and color of y,
respectively. We use the same terminologies for a 2—term &(n, w; x, y), where the
color is (x, y). The type of a 3—term e(n, w; x, y, z) is defined to be

e type lif x =z,

e type 2 if x¥ =z, and

e type 3if x #z and x” # z.
We consider two kinds of homomorphisms f, g: C3 — C, such that a generator
y = +(n, w;Xx, y,z) is mapped to

Sy)=—(nw;y,z)+n w:x,z)—(n w;x,y), and
gy)=4+m+ 1L w5y, z)—(n+ 1L w;x”, z) + (n+ 1, w?; x%, y?),

where the underlined or doubly underlined 2—term is removed if y is of type 1 or
type 2, respectively. It follows by definition that the boundary map d3: C3 — C;
coincides with f 4 g. We remark that f* does not change the degree, and g increases
the degree by one. We describe the maps f and g schematically as shown in Figure 2,
where the degrees are omitted in each term, and the orientations of edges are defined
by the signs of 2—terms. In the figure, we color a 3—term of type 1, 2 or 3 red, blue
or yellow, respectively.

As mentioned in Section 2, every 3—chain y € Cj is presented by a reduced form
y = Zle vi. Let n; be the degree of y;. The minimal and maximal numbers among

ni,...,ny are called the minimal and maximal degree of y, and denoted by mindeg(y)
and maxdeg(y), respectively. For an integer &, we denote by 7, = Ty (y) the set of
3—terms among ¥y, ..., of y whose degrees are equal to k.
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Lemma 3.1 For a 3—chain y = Zle y; € C3, the following are equivalent:

(1) y isa3-cyclein Z3, thatis, 03(y) =0.
() Yer,_, 800+ Lyer, /() =0 forany k € Z.

In particular, if y is a 3—cycle in Z3, then we have the following:

(i) > ). er, S (vi) =0 for k = mindeg(y).
() Ty, &) =0 for k = maxdeg(y).

Proof This follows by definition immediately. a

To describe elements of Rs in general, we use the following notation: for any different
elements ag and a; of Rs, we put

a,=ap+2s, az=ap+3s and a4 =ag+4s,
where s = ag —a(# 0). Then it is easy to see that

* Rs={ag.ay,az,a3,a4}, and
o

* a; =ayj_;, where the subscripts are taken in Zs.

apaq anza

For example, it holds that a|"™* = a;*"°, since

aopas4 __ aovag _ 04 __ azap __ 2\ap — —
a,’t=(a,")*=da,* =a4 and aj (a3 ) al = ay,
and that w?0%1 = ?49 for any w € Rs, since

w " =2a; — (2ag—w) =w+2s and w =2a)— (2as—w)=w + 2s.
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Example 3.2 Let y = Zf=1 ¥i € C3 be a 3—chain with

Y1 = +(n, w;a9,ay,ao), Ya=+m+1,w ay,a9,a4),
Y2 = —(n,w;ay4,a9,ay), ys =—(n+1,w a3, az,a9),
y3 = —(n,w;a4,ay,ayp), Y6 =—(n+1,w%;ag,ay,ao).

Then it holds that 7,,(y) = {y1, 2, v3} and Ty,4+1 = {ya, Vs, Ve}. The 3—terms y;
and yg are of type 1, ¥, and y, are of type 2, and y3 and ys are of type 3. We see
that y is a 3—cycle in Z3. The equation d3(y) = 0 can be visualized by the graph as
shown in Figure 3.

(w+s50a0,a4)

(w+4s;a3,a3)

| »
(7

2 (w + 2s5az,a0)

(w + s;ay,ao)

(w;aq,ay)

Figure 3
For example, since

{f()/1) = —(n,w;ay,a9) — (n,w;ap,a), and
gly) =+m+1Lw"ay,ap) —(m+ 1, w"az,a0) + (n+ 1, w%; a9, a4),

the 3—term y; is incident to two incoming edges of degree n and three (two outgoing
and one incoming) edges of degree n + 1.

The 3-terms y;, y» and y3 are connected by four edges of degree n, or equivalently,

SO+ f(2)+ f(y3) =0,
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which ensures Lemma 3.1(iii). Similarly, by observing the edges of degree n + 1 and
n + 2, it holds that

gy)+g(2)+g(3)+f(va)+ f(ys)+ f(ve) =0 and g(ys)+g(ys)+g(ys)=0.

Here, we use the equations w?04! = w40 = y 4 5, W% = Y4190 = g + 4y,
w4 = 4 = gy + 25 and w992 = W% =y + s for the indices of edges of
degree n + 2.

4 Reverse and reflection

For a 3—term y = ¢(n, w; x, y, z), we define the reverse of y by
Y =e(—n, w%; xY%, y%, 2).

We extend it to the reverse of a 3—chain naturally. Similarly, the reverse of a 2—term
6 =e&(n, w; x, y) is defined by

§=e(—n,w*’;x”,y)
and extended to that of a 2—chain.
Let 0: C, — C, be an automorphism of C, defined by
o(n,w;x,y)=m+1,w;x,y),

which increases the degree of a 2—term by one. Then we have the following:

Lemma 4.1 Lety € C3 be a 3—chain.
@ y=v.
(i) y isa3—termoftype 1,2 or 3 if and only if y is of type 2, 1 or 3, respectively.

(i) f(7)=0(g(¥)). g#) =0(f(¥)).and d5(¥) =0 (03(y)).
(iv) yeZjifandonlyify € Z3.

Proof The proof is straightforward. We remark that, since

bb che b€

d .d
a’”’ =a, a°“=a and q9bcd — gb%c

a
hold for any a, b, c,d € Rs, we have
(wxyZ)xyZyZz — (wxy)zxyzyzz — (wxy)(xyz)z )7 — (wxy)xyy

= @ = @H = @) =w. o
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[ 1 1 [ 1 1
EDoGED GDoED)
o L
deg=n deg = —n deg=n deg = —n
Figure 4
Roughly speaking, the reverse-operation changes the graph of a 3—cycle upside down
with respect to the degree. See Figure 4.
For a 3—term y = e(n, w; x, y, z), we define the reflection of y by
y* =e(n, (=D Mw; (=1)"(z —w), (=) (y —w), (=1)" (x —w)).

We extend it to the reflection of a 3—chain naturally. Similarly, the reflection of a
2—term § = e(n, w; x, y) is defined by

§* =e(n, (=1)" M w; (=" (y —w), (=" (x —w))

and extended to that of a 2—chain.

Lemma 4.2 Let y € C; be a 3—chain.

@ vy =y.

(ii)) y and y* are of the same type.
(i) f(r")=/S()*. g(r*) =g¥)*. and I3(y*) = 33(y)*.
(iv) y € Zsz ifandonly if y* € Z3.

Proof The proof is straightforward. We remark that the equations

((_1)n+lw)(—l)"(x—w) — 2(_1)n(x _ U)) _ (_1)n+1w — (_l)nwx
and
=D (F —w?) = ()22 —x) - 2z —w)) = (1) (x —w)

hold in Rs. a
Roughly speaking, the reflection-operation changes the color (x, y, z) of a 3—term into
(z, y, x) by a slight modification.

Let y1, ..., ¥x be 3—terms of the same degree such that Zle f(yi) =0. We say that
they are f—splittable if there is a nonempty proper subset I of {1,2,...,k} such that

Zf()’i)=0 and Zf(y,-)zo.

iel igl
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If y1,..., Y% are not f—splittable, then they are called f—connected. The notions of
g—splittability and g—connectivity are defined similarly. In Example 3.2, the 3—terms
y1, ¥2 and y3 are f—connected, and y4, ¥5 and y¢ are g—connected.

Lemma 4.3 Let y; = ¢;(n, w;i; x;, yi,zi) (i =1,...,k) be 3—terms.

(i) The following are equivalent:

* Y1,...,Yk are f—connected.
* Yi,...,Y are g—connected.
* Y.....yg are f-connected.
(i) Ifyy,...,y, are f—connected, then w; = --- = wy.
(i) If yi.....yx are g—connected, then wy'”’'*! = ... = w*7*%k,
Proof The lemma follows by Lemmas 4.1 and 4.2 immediately. |

5 Degrees of 3—terms

The aim of this section is to study the degrees of 3—terms in a 3—cycle whose length is
at most seven.

Lemma 5.1 For any 3—term y = ¢(n, w; x, y, z), it holds that f(y) # 0.
Proof The lemma follows from the definition of f. a

Lemma 5.2 Let y; and y, be 3—terms of degree n with y; # —y,. If Ziz:l f(lyi)=0,
then their indices are the same, say w, and Ziz:l)/i is equal to

+(n,w;a,b,a)— (n,w;b,a,b)
for some a # b € Rs.
Proof Since y; and y, are f—connected by Lemma 5.1, we have w; = w, (= w)
by Lemma 4.3(ii).

The sum of the signs of 2—terms in f(y;) is equal to —2¢; if y; is of type 1 and —e¢;
if y; is of type 2 or 3. Therefore, we have

e &1 = —¢g, (we may assume that ¢y = +1 and ¢, = —1), and

e y; and ), are both of type 1, or both of type 2 or 3.
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Case 1 Assume that y; and y, are both of type 1. We may take

2
> yi =+ wiab.a)— (n.wix, y2.x2),

i=1

where a # b € Rs. Then it holds that

2
Zf()/,') =—(n,w;b,a)— (n,w;a,b)+ (n,w; yr, x2) + (n, w; xz, y) =0.

i=1

Since (x3, y2) # (a,b), we have (x3, y2) = (b, a). See Figure 5.

lf (w;a,b) ,
<
Figure 5

Case 2 Assume that y; and y, are both of type 2 or 3. We may take
2
> yi=+mwiab.c)— (n.wixa, 2. 2),

i=1

where a, b, ¢ € Rs are mutually different. Then it holds that

2
> S =~ wib.c) + (n,wia. ) — (n.wia,b)

i=1 + (n, w; ya2,22) — (n, w; X3, 22) + (1, w; X3, y3) = 0.

The 2—term +(n, w; a, ¢) must be canceled with —(n, w; x5, z); that is, (x5, z5) =

(a,c). See Figure 6. Then y, = b, which contradicts the condition y; # —y;. a
—(wia, y2,¢)
(w;a,c)
\'4
(w;b,c) (w;a,b) (w; y2,¢) (w;a, y2)
Figure 6

Lemma 5.3 For the 3—chain Y 7_, y; in Lemma 5.2, we have Y i, g(yi) # 0.
Moreover, if k 3—terms ys, ..., yx+o of degree n + 1 satisfy
k+2

2
D e+ Y fr) =0,
i=3

i=1

then we have k > 4.
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Proof For 21-2=1 vi =+(n,w;a,b,a)— (n,w;b,a,b), it holds that

2
Zg(yi) =+(n+1L,whbh,a)—n+1,wbab a)+ (n+1,w% a,b%)

= —(n+ 1, wPa,b)+(n+1,wb% b)—(n+1,w;b.ab) #0.

We remark that there is no canceling pair among the above six 2—terms. Since the
three 2—terms of index w? have all the positive sign, there are at least two 3—terms of

index w? among y3, ..., Yk+2. See Figure 7. Similarly, we see that there are at least
two 3—terms of index w?. Therefore, we have k > 4. O
index = w? index = w?

Figure 7

Lemma 5.4 Let yy, y» and y3 be 3—terms of degree n. If Z?:l f(yi) =0, then
their indices are the same, say w, and Z;‘;l yi is equal to
(i) +m,w;a,b,a)—(n,w;c,a,b)—(n,w;c,b,a), or

(i) +@m,w;a,b,a)—(n,w;b,a,c)—(n,w;a,b,c),

up to sign, where a, b, c € R5 are mutually different. Moreover, the reflection of case (i)
is coincident with (i1) under a suitable transformation of variables.

Proof Since y, y» and y3 are f—connected by Lemma 5.1, we have w; = wp =
w3 (= w) by Lemma 4.3(ii). Let N/ (k =1,2,3,& = %) be the number of 3—terms
among y1, y2 and y3 whose types are k and signs are . Put Nj, = NJ + N7 . Since
the sum of the signs of 2—terms in Z?=l f(yi) is equal to zero, it holds that

2(N;F =N )+ (N5 —Nz;)=0 and > Nf=3.
k,e

Therefore, we have (N;", N[, N,5. N33) = (1,0,0,2) or (0,1,2,0).

23

We may assume that

3
> i =+ wia.b.a)— (n,w;xz, 2. 22) — (1, w; X3, y3. 23)

i=1
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up to sign, where a # b € Rs. Then we have

3
> f(i) == (. w:b.a)— (n.w:a.b)
= + (n,w; y2, 22) — (1, Wi X2, 22) + (n, Wi X2, 2)
+ (n,w; y3,z3) — (n,w; x3,23) + (n, w; x3, y3) = 0.
By taking the first factors of the colors of the above eight 2—terms, it holds that
{2, %2, y3. X3} =1{b.a,x3.x3}, thatis, {y.y3}={a.bj}.
We may assume that y, = a and y3 = b. Then the above equation is
(b,a) + (a,b) + (x2,22) + (x3,23) = (¢, 22) + (x2,a) + (b, z3) + (x3. D),
where we omit the degree n and index w for simplicity. It is not difficult to see that
(i) zp=0b, zz3 =a and x, = X3, or

(i) x,=b, x3=a and z, = z3.

See Figure 8.

(i) deg=mn

lf

(i) deg=n

lf

Figure 8

Moreover, the reflection of Z?:l yi in (1) is

+(n, (=D w; (=D)"(a —w), (=1)"(b —w), (—1)"(a — w))
—(n, (=) w; (=D (b —w), (=1)"(@ —w), (=1)"(c — w))
—(n, (=) w; (=)@ —w), (=1)"(b —w), (=1)"(c — w)).

By putting
)" lw=w, (D)"(a—w)=d, (D)"(b-—w)=>b, and (—1)"(c—w)=c,

we have case (ii): +(n,w’;d’,b',d’)— (n,w’;b’",d’,c')—(n,w';d’,b’, ). |
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We remark that at least one of the second and third 3—terms of y in Lemma 5.4 is of
type 3: in fact, it holds that ¢? # b or ¢? # a for any different a, b, ¢ € Rs.

Lemma 5.5 For the 3—chain ZLI yi in Lemma 5.4, we have Z?zl g(yi) # 0.
Moreover, if k 3—terms V4, ..., yx+3 with degree n + 1 satisfy

k+3

3
e+ S =0,
i=4

i=1

then we have k > 3.

Proof By Lemma 4.2(iii), we may assume that Zl~3=1 y; satisfies (i) in Lemma 5.4.
Then it holds that

3
Zg(yi) =+ @+ 1w ba)—(n+1,w’d a)+ (n+1,w a,b%)
i=1 —(m+1Lwab)+n+1L,whc b)—(m+1,w; b, ab)

— (41w b,a)+ (n41,wP e a)— (n+1,w% ¢, b # 0.

Here, if y; or y3 is of type 2, then the underlined 2—term is removed from the equation

above. See Figure 9. Therefore, there is at least one 3-term of each index w?, w? and

w€ among Y4, ..., Vik+3- a

index = w? index = w® index = w¢

Figure 9

Proposition 5.6 Ify = Zle y; € Z3 is a 3—cycle with 1 < £ <7, then we have the
following eight cases up to reverse, where n = mindeg(y).
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(M) £ =4 with |T,| = 4.

(D) £=>5 with |Ty| = 5.

(1) € =6 with |T,| = 6.

(IV) £ =7 with |T,| = 7.

(V) £=6 with |T,| =2 and |T,+1| = 4.
(V) €=7 with |T,| =2 and |Ty41] = 5.
(VI) € =6 with |Tp| =3 and | Tys1| = 3.

(VII) € =7 with |T,| =3 and | Ty41] = 4.

Proof Put N = maxdeg(y). If n = N, then we have |T,| > 4 by Lemmas 5.1, 5.3
and 5.5 to obtain the cases I, II, IIT and IV. If n < N, then we have

|Tul =2, [Tn|=2 and |T,|+|TNn| =7

by Lemmas 3.1(iii), (iv) and 5.1. By taking the reverse of y if necessary, we may
assume that |7, | < |Tx| by Lemma 4.1(iv). If |7,| = 2, then we have |T,4+1| > 4 by
Lemma 5.3 to obtain the cases V and VI with N =n + 1. If |T,,| = 3, then we have
|Ty+1] = 3 by Lemma 5.5 to obtain the cases VII and VIIl with N =n + 1. o

6 Cases I, IL, III and IV

Throughout this section, we assume that y = Zf: 1 Vi € Z3 is a 3—cycle whose degrees
are the same. We omit the degree » in presentation of 2— and 3—terms.

Lemma 6.1 Ify,,...,yp are f—connected and g —connected, then we have £ > §.
Proof Since y1,..., Yy are f—connected, their indices are the same by Lemma 4.3(ii),
say w. Since yq,..., ), are also g—connected, we have w*1V1%1 =... = yXtYtZt by

Lemma 4.3(iii); that is,
Xi=n+tzi==x¢—y¢+z.

Put a9 = x; — yi + z;. Then each term y; has a form £(w;ap,aq,a,) such that
ap—ag +ay =ag. Since p—q +r =0, each y; is one of the following 32 terms,
where we omit the index w:

+ (a1, a0,a4), *(az,a0,a3), =*(as,a0,a2), =*(ag,ao,ay),

+(ar,asz,a1), =*(az,ay,aq), =*(az,ar,a3), =*(ag,ar,az),

+ (ay,a3,a2), =*(az,a3,a1), =£(asz,az,aq), *(ag,a2,a3),

+ (ay,aq4,a3), *(az,as,az), =£(asz,aq,a1), =*(aq,a3,a4).

Algebraic & Geometric Topology, Volume 16 (2016)



3340 Shin Satoh

We rewrite y =) apgr(ap, aq. ar) for apg, € Z, where the sum is taken for p #q #r
and p—q+r = 0. The coefficient of the 2—term (a1, ag) in f(y) is equal to ajp4: in
fact, there is no 3—term other than (a1, ag, a4) which satisfies (a1, ag, *), (a1, *, dg)
or (*,d1,ap) in the above table. Therefore, we have o194 =0 by f(y) = 0. Similarly,
it holds that a3 = ®302 = @491 = 0. In other words, ¥ has no 3—term of type 2.

Since the reverse y has the same property as y, ¥ has no 3—term of type 2 by the
above argument. Therefore, y has no 3—term of type 1.

Finally, we obtain a presentation
Yy = azia(az, ay,aq) +agq12(ag, ay,az) +ay3z(ay, az, az) + az3i(az, az,ay)

+aszq(as, az,aq) +agr3aq, az,a3) + a1a3(ar, ag, a3) + o3a1(as, ag, ay).
It follows by f(y) = g(y) = 0 that

0214 = —CQ412 = —0132 = Q23] = ({324 = —Q423 = —(143 = U341,
that is,
y =k[(az.a1,a4) — (as,a1.az) — (ay. a3, a2) + (a2, az,ay)

+(az.az.as) — (ag.az.a3) — (a1, a4.a3) + (a3, a4, ay) |

for some k # 0 € Z. Therefore, we have £(y) = 8|k| = 8. a
Proposition 6.2 There is no 3—cycle y = Z?zl y; € Z5 in case L.

Proof By Lemma 6.1, yy,..., )4 are f-splittable or g—splittable. By taking the
reverse if necessary, we may assume that they are f—splittable. Then we can take

Y =+(w:a,b,a)—(w;b,a,b)+ (v: p,q, p)—(v.q. p.q)

for a # b and p # ¢q by Lemmas 5.1 and 5.2. Tt follows by g(y) = 0 that w? = v?
and w? = v?. Furthermore, we have

{(b.a), (a.0%), (. b)} = {(p?. p). (p.q). (q. p7)}

{@.a).@.b).(0.a")} = {(g. ). (p.47). (4. 9)}.
See Figure 10. In particular, we have

{a.b,b% ={p.q.p?} and {a,b.a"}=1{p.q.q"}

by observing the first factors. Since y has no canceling pair of 3—terms, we have
(a,b) # (q, p). Then it is easy to see that

and

a=p, b=gqg, b*=p? and a®=q?”.

Since % # a® holds in Rs, we have a contradiction. a
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index = w? index = w? index = v? index = v?

(b.a)(a,b%) (b, b) (ab,a)(a,b)(b.a®) (q.p)(p.q”)(?.q) (p?.p)(p.q)(q. p?)

[ ] L]
(wiban) (+eran) (—wiaro)

Figure 10

()

Proposition 6.3 There is no 3—cycle y = Zis=1 y; € Z3 in case IL.

Proof By Lemma 6.1, it is sufficient to consider the case that yq,...,ys are f-
splittable. We may assume that

y =+(w;a,b,a)— (w;b,a,b)+ (v; p,q, p) — (v;r, p,q) — (v;r,q, p)

up to sign and reflection for some @ # b and mutually different p, g, r by Lemmas 5.1,
5.2 and 5.4. See Figure 11. Therefore, the number of positive 2—terms in g(y) is
at most seven, and that of negative 2—terms is equal to eight. This contradicts the
assumption g(y) =0. a

Te Y4 Y4y Y4 YA Y4Y

degznG—(w;a,b,aD (—(w;b,a,bD G—(v;p,q,pD (—(v;r,p,q)) (—(v;r,q,p))
lf N\ — ) k ~— \_j}_/ J

Figure 11

Proposition 6.4 There is no 3—cycle y = Z?Zl y; € Z3 in case IlIl.

Proof It is sufficient to consider the case that yq,..., ) are f—splittable. By
Lemma 5.1, we have the following three cases.

(a) The six 3—terms are divided into three sets, each of which consists of two
f—connected 3—terms (6 =2+ 2+ 2).

(b) The six 3—terms are divided into two sets, each of which consists of three
f—connected 3—terms (6 = 3 + 3).

(¢) The six 3—terms are divided into two sets which consist of two and four f-
connected 3—terms, respectively (6 = 2 + 4).
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Figure 12

See Figure 12. We see that the y; are g—splittable: In fact, for cases (a) and (c), y
contains
+(w;a,b,a) and —(w;b,a,b)

for some a # b by Lemma 5.2. Since w®? £ wb@?  the y; are g—splittable by
Lemma 4.3(iii). Similarly, for case (b), y contains

+(w;aabsa)’ —(w;C,a,b) and —(w;C,b,a)

for some mutually different a, b, ¢ by Lemma 5.4, up to sign and reflection, which

satisfies w0 £ weba,

Let Nj be the number of 3—terms among the y; with type k(= 1,2, 3). Since the y;
and y; are both f—splittable, we have Ny > 2 and N, > 2.

Case 1 Consider the case that y satisfies (a). Then Ny = 6 and N, = N3 = 0. This
contradicts N, > 2, and so case 1 does not happen.

Case 2 Consider the case that y satisfies (b). We may assume that y satisfies (b)
or (¢c). By Lemma 5.4, we can take

y1=+w;a,b,a), y,=—(w;c,a,b) and y3=—(w;c,b,a)

up to sign and reflection. We remark that at least one of y, and yj is of type 3. Since
N, = 2, one of y, and y3 is of type 2, and the other is of type 3. Put a = a( and
b= aq.

If y, is of type 2, then ¢? = b, that is, ¢ = b? = a4. Therefore, we have
Vl :+(w;a0,al’a0)7 VZZ_(U);CM,GO,GI) and J/3 :_(w;a4’alsa0)'
The indices of y1, > and y3 are

waoalao — wa4, wa4a0a1 — wa() and wa4a1ao — wa3’

respectively. Since they are mutually different,  must satisfy case (a). This contradicts
the assumption.
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b b

If y5 is of type 2, then ¢” = a, that is, ¢ = a” = a,. Therefore, we have

Y1 =+(w;a0’al’a0)9 V2=_(w§a2,a0,al) and V3 =_(w;a29alaa0)'
The indices of Y7, ¥» and y3 are

w0140 — 44 @20001 — /)3 apd  @29140 — 491

respectively, and hence, we have a contradiction by a similar argument as above.
Therefore, case 2 does not happen.

Case 3 Consider the case that y satisfies (c). We may assume that ) also satisfies (c).
We can take

y1 = +(w:a,b,a) and 7y, =—(w;b,a,b)
for some @ # b. Since y; and y, are of type 2, we may assume that

e ys5 and yg are of type 2,
* V,...,V4 are g—connected, and

e ys5 and yg are g—connected.

See Figure 13. Since w??? # w?e® it must be that yy, ..., y4 are g—splittable. This
is a contradiction. Therefore, case 3 does not happen. This completes the proof. O

©90000

Figure 13

Proposition 6.5 There is no 3—cycle y = 217:1 y; € Z3 in case IV.

Proof 1t is sufficient to consider the case that yy,...,)y; are f—splittable. By
Lemma 5.1, we have the following three cases.

(a) The seven 3—terms are divided into three sets consisting of two, two and three
f—connected 3-terms, respectively (7 =2+ 2+ 3).

(b) The seven 3—terms are divided into two sets consisting of two and five f-
connected 3—terms, respectively (7 =2+ 5).

(¢) The seven 3—terms are divided into two sets consisting of three and four f-
connected 3—terms, respectively (7 =3+ 4).
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Figure 14

See Figure 14. Similarly to the proof of Proposition 6.4, we see that the y; are g—
splittable. Let Ny be the number of 3—terms among the y; with type k(= 1,2, 3).
Since the y; and y; are both f—splittable, we have N; > 1 and N, > 1.

Case 1 Consider the case that y satisfies (a). We may assume that

e 1y and y, are f—connected,
e y3 and y4 are f—connected, and

* V5,¥s, )7 are f—connected.

By Lemmas 5.2 and 5.4, it holds that Ny = 5. Similarly to case 2 in the proof of
Proposition 6.4, the indices of the reverses s, ¥, Y7 are mutually different. Therefore,
y must satisfy (a), which implies that N, = 5. This contradicts N; + N, + N3 =7,
and so case 1 does not happen.

Case 2 Consider the case that both y and y satisfy (b). We may assume that

e vy and y, are f—connected, and

* y3,...,y7 are f—connected.

Since y; and y, are of type 1, we may also assume that

* v and y7 are g—connected such that y¢ and y; are of type 2, and

* Yi,...,Ys are g—connected.
See Figure 15. On the other hand, as the indices of y; and y, are different, y1,..., s
must be g—splittable. This is a contradiction, and so case 2 does not happen.

Case 3 Consider the case that y and y satisfy (c) and (b), respectively. We may
assume that

* V1,2, Y3 are f—connected such that y; is of type 1, and

® Y4,...,y7 are f—connected.
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©0000009

Figure 15

We see that both y, and y3 are of type 3: in fact, if one of them is of type 2, then the
indices of ¥, y» and y3 are mutually different, which contradicts that y satisfies (b).
Therefore, we may also assume that

e Y6 and y7 are g—connected such that y¢ and y7 are of type 2, and

* yi,...,ys are g—connected.
Figure 16
See Figure 16. We can take
y1 = +(w;ag,ar,ap), y»=—(w;c,ap,a;) and y3=—(w;c,ay,ap)

up to sign and reflection. Since y, and y3 are of type 3, we have ¢ = a3. Then the
indices of y7, ¥,, and y3 are

woa1ao — wa4’ w3041 — y@4  gnd %3140 — waz’

respectively. This contradicts that yq,...,ys are g—connected, and so case 3 does
not happen.

Case 4 Consider the case that both y and y are of type 3. We may assume that

e vi,¥2, Y3 are f—connected such that y; is of type 1, and

® Y4,...,y7 are f—connected.

Similarly to case 3, we see that both ), and y3 are of type 3. Then we can take
y1=+(w:ao.ar,a0), y2=—(wiaz,a9,a1) and y3;=—(w;as,ai,ao)

up to sign and reflection. The indices of ¥, J» and 3 are w%, w? and w2,
respectively. Therefore, since ) satisfies (c), we may also assume that

* V3,4, Vs are g—connected such that ys is of type 2, and

* V1,2, Vs, Y7 are g—connected.
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Figure 17
See Figure 17. Since y3 = —(w%?;ay,aq,ap) and 3, ¥4 and 5 are f—connected,
we have
va=—(wa4,a1,a0) or y4s=—(w;ay,ag,as).
by Lemma 5.4. Since y4 is of type 3, we have Y4 = —(w%?;aq,ay,ap). Therefore, it
holds that

Vs = +(w*ay,a4,a1) or ys =+(wa4,ay,a4).

We remark that the index of y4 is equal to w?2444190 = g 4 5, and that of ys is equal
to wé2414441 = g 4 ¢ or w?29441%4 =y, Since y4, ..., y7 are f—connected, we have
ys = +(w%;aq, as,aq). This implies that we have

Ya=—(w+siaz,a4.a0) and ys=—+(w +sida9,a3,41).
It follows by f(y4 +---+ y7) =0 that

Se+v1)=—f(ya+ys)
= —(w +s;a4,a0) + (W +s;a2,a0) — (W + 5,42, a4)
+ (w+s;as,a;) —(w+s;ap,a1) + (w+s;a9,a3).

It is not difficult to see that
Y6 +v7 = +(w+s5az,a4,a0) — (W +s;a9,a3,a1) = —(ys + vs).

This is a contradiction, and so case 4 does not happen. |

7 Cases V and VI

Throughout this section, we assume that y = Zf=1 yieZs (L =6,7) is a 3—cycle
such that

N :+(n’w;a0’alaa0)’ VZZ_(n’w;al’a07al)’and

e the degrees of y3,..., ) are equal to n + 1.
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It holds that
Srat+-tv)=—g1+72)
=—(m+1,w%;ay,ag) — (n+1,w*; a9, a4) — (n+1, w*;ay4,a;)
+(n+1L,w*as,a0)+(m+1,w a9, a1) + (n+1, w*  ay,az).
Proposition 7.1 If y = Z?=1 y; € Z3 is a 3—cycle in case V, then

y = +(n,w;ap,ay,a0) — (n, w;ay, ap,ar)
+(n+ 1L, w*ay,a9,a1) +m+1,w%;aq,a4,ay)

—(n+ 1L, w5 az,ay,a) —(n+ 1, w5 az,a9,a1)

up to reverse and reflection.

Proof By Lemma 5.3, we may assume that w3 = wq = w% and ws = wg = w?!.
First, we consider the equation

S +ya) =—(n+ 1w ar,a0) —(n+ 1, w" ag,as) — (n + 1, w*; aq, ay).
It is not difficult to see that there are six possibilities for 3 + y4; that is,

vitya=+m+ 1L, w z,x,2)+n+1,w%; x, y,z2)
or
Vitva=+m+1,wx,z,x)+m+1,w" x,p,z2)

for (x,y,z) = (a1, ap,a4), (ap,as,ay), or (as,ay,aop).

We see that y3, ...,y are g—connected: In fact, if they are g—splittable, then they are
of type 2 by Lemmas 5.1 and 5.2. This contradicts that y3 or y4 is of type 1.

Ifys+ys=+m+1,w%z,x,2)+(m+1,w%;x, p, z), then w07*% = w?0*¥% or
equivalently, 2x = y + z. Therefore, it holds that (x, y, z) = (ag, a4,a;) and

y3i+yva=4+m+ 1w ay,a0,a1)+ n+1,w* a0, a4,a;).

Similarly, if y3 4+ y4 =+®m+ 1, w;x,z,x)+ (n + 1, w*; x, y, z), then we have
WAOXEX = 20XYZ " or equivalently, 2z = x + y. Therefore, it holds that (x, y,z) =
(as4,ay,ap) and

V3+va=4+m+ 1w a4,a0,a4) + (n+ 1, W a4,a;,a0).

We remark that the second solution is coincident with the reflection of the first one
under a suitable transformation of variables.
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Next, we consider the equation
Slys+ve) =+m+Lw"az,a0) + (n+ 1, w* a9, a1) + (n+ L w* 1ay,az).

The solutions of ys + ¢ are obtained from those of y3 4+ y4 with opposite sign by
replacing a; with a;_;. Therefore, we have

Vs +ve =—(n+1,wag,ay,a0) — (n+ 1,w s ay,a3,a9)
or
Ys+ve =—(n+ 1, w az,ay,a;)—(n+ 1, w% s a,, a9, ay).

Finally, by taking the reflection if necessary, we may assume that 3 4 y4 satisfies the
first solution. Since ys, ..., ¥ are g—connected, we see that ys 4 yg must satisfy the
second solution. Then it is easy to see that g(y3 +---+ y6) = 0. See Figure 18. 0O

/N

AN
s 7
AN
'Tg 1< 7 A\
deg=n+1€(w"0;a1,a0,aD €(w“0;a0,a4,a) —(w“l;az,al,aa Gw“l;az,ao,a)
if C ¢ J

+(w;ag,ar,ag)

Z
N\

/N

Figure 18

Proposition 7.2 There is no 3—cycle y = ZZZI y; € Z3 in case VL

Proof Let N/ be the number of 3—terms among y3, ..., y7 with type k(= 1,2, 3)
and sign e(= £). Since it holds that

« Nt.....Ny=>o0,

« Nt+-+N;y=5,

o 2(N = N)+ (N =N;)+ (N, —=N;)=0,and
o (NJF=N)+2(N —N;)+ (Nt —N;) =0,
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we have that (N, NT, N2+, Ny, N3+,N3_) is equal to either
(1,0,1,0,0,3) or (0,1,0,1,3,0).
By a similar argument to the proof of Proposition 7.1, we may assume that
vi+ya=+m+1,wz,x,2)+(n+1,w*;x, p,2)
for (x, y,z) = (a1,aq,a4), (ag,as,ay) or (ag,ay,ap), and ws = wg = w7 = w,

We see that ys, ..., y7 are g—connected: In fact, if they are g—splittable, then we have
that 3, ..., )7 are f—splittable and divided into two sets consisting of two and three
f—connected 3—terms, respectively (5 =2+ 3). By Lemmas 5.2 and 5.4, we see that

N+ N; =3.

This is a contradiction. See Figure 19.

oYoJoYeYo

Figure 19
Since the indices of 3 and ¥, are the same, that is, w?0?*? = wW?0*YZ  we have
(x,y,z) = (ao.as,a;) and
Y3+ va=+m+1L,w"a,a9,a1)+@m+1,w" a9,a4,a;).
This implies that
N =1 and N;F=>1,
and we have a contradiction. m|

8 Cases VII and VIII

Throughout this section, we assume that y = Zle yi€Z3 (L =6,7) is a 3—cycle
such that

* y1=+(n,w;ap,ar,a0), y2=—(n,w;x,ao,ar),and y3 = —(n, w; x,ar,aop)
for x # ag, ay, up to sign and reflection, and

° n4=...=ne:n—f—1,
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It holds that

Sra+--+vo)
=—g+r2+vs)
=—m+1,w"ay,ag)—(m+1,w% a9,a3) — (n+ 1, w; x%, ay)
+ (41, w*; x% ag) + (n+ 1, w* s az,a0) + (n + 1, w; x4, ay)

+m+1L,wx% ag)+(n+1,w*a9,a1) +(m+1,w*;ay,ag).

Here, the underlined (or doubly underlined) 2—term is removed if x = a4 (or x = a,).

Proposition 8.1 Ify = Zle y; € Z3 is a 3—cycle in case VII, then

y =+, w;ag,ay,a9) — (n,w;as, ap,a;) — (n,w;aq,ay,ap)

+(n+ 1L, w*ay,ag,a4) — (n+ 1, w*a3,a5,a9) — (n+ 1, w**;ag,ay,ag)

up to sign, reverse and reflection.

Proof By Lemma 5.5, we may assume that wy = w%, ws = w?' and wg = w*.

The 3—-term y, satisfies

f(ya) =—m+ 1L, w"ay,a0) — (n+ 1, w*; a9, a4)

—(n+ 1L, w; x% a)) + (n+ 1, w*; x9, ay).

Therefore, the underlined 2—term is removed with x = a4, and therefore, we have
ya=—4+m+1,w%;ay,a9,a4). Then ys satisfies

flys) =+m+1Lw"az,a0) + (n+ 1w a3, a2) — (n+ 1, w* a3, a9),
so that y5s = —(n + 1, w?;as,a,,aq). We remark that the indices of 4 and y5 are
w40a140a4 _ 1,,a1a3a2a0 _ 4
On the other hand, since the 3—term Yy satisfies
f(ve) = +(n+ 1, w*; ag,ar) + (n+ 1, w*;ay, ao),

we have yg = —(n+ 1, w?*;ag,ay,a9) or —(n+ 1, w?*;aq,a9,ay). The index of yg
is either
wa4404140 — oy or 91NN = g 4 3.

Since y4, Y5 and yg are g—connected, we have yg = —(n + 1, w; ag,ay, ap).

It is easy to see that g(y4 + s + y6) = 0. See Figure 3. a
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Proposition 8.2 Ify = 217:1 y; € Z3 is a 3—cycle in case VIII, then
y =+ n,w;ag,ay,ap) — (n,w;az,ap,ay) — (n,w;as,ay, ap)
+(n+1L,was,ay,a9) + 1+ 1, w0 a3,a9,as4)

—(m+1,wa9,az,a0) — (n+1,w*;a9,a1,a0)
or

y =4 (n,w;ag,ay,a0) — (n,w;as,ap,ay) — (n,w;as,ay, aop)
+(m+1,w%az,a1,a0) + (n+ 1, w*;a;, a9, a4)
—(n+1,w*a4,a2,a9)— (n+1,w*;a9,ay,ag)

up to sign, reverse and reflection.

Proof We divide the proof into three cases with respect to x = a5, a3, d4.
Case 1 Consider the case x = a,. It holds that
fat+-+y)=—m+1L,w"ar,a0)— (n+1,w*;ao,as)
—(n+1Lwas,a;)+ n+1,w% a3, a4)
+m+1,w*ay,a9) + (mn+1,w* a9, as)
+m+ 1, w2 ag,a1) + (n+1,w*?;ay, ap).
Therefore, we may assume that wy = ws = w4, wg = w?!, and w; = w?. It is easy
to see that
e ve=—(n+1,w%;ag9,ay,a9) or —(n+ 1,w?%;a,,ag,a,), and the index of
Ve is w + 4s or w + s, respectively, and
e y;=—(m+1,w%;a9,ay,a9) or —(n+ 1,w*?;ay,a9,ay), and the index of
y7 is w + 4s or w, respectively.
Let N be the number of 3—terms among s, ..., y7 with type k(= 1,2, 3) and sign
e(= ). Since
o NF.....Ny =0,
o Nt+-+N;=4,
o 2(N; = N)+ (NS =N;)+ (N;F —=N;7)=-2,and
o (N7 =N])+2(N;/ —N;)+ (N7 —N;) =0,
we have
(N;", N N,F Ny Nt N;) =(0,2,0,0,2,0).
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We see that y4, ..., y7 are g—connected: In fact, if they are g—splittable, then they are
of type 2 by Lemmas 5.1 and 5.2. This contradicts N2+ =N, =0.

Since the indices of Yy and y7 are the same, we have
ve = —(n+1,w%ag,az,a¢) and y; =—(n+1,w%;ag,ay,a).
For y4 and ys, it holds that
flra+ys)=—(m+ 1w ay,a0) — (n+1,w*ag,aq)
—(n+1,w%;a3,a;)+ (n+1,w%; a3, a4).
It is not difficult to see that

Ya+ys=+m+ 1, w%as,a1,a0) + (n+1,w; a3, a9,a4)
or
Ya+ys=+m+1,way,a9,a4) + (n+1,w a3, ay,a4).

Since the indices of )4 and ys are w + 4s, we have the first solution. Then it holds
that g(y4 +---+ y7) = 0. See Figure 20.

AN
Vd N

- > _
P e <
=il
deg= n+1 C(w“o a3 ar, a) C( a0, a3 ag, a) ((w"l ag,as, a) C(w"2 ap,dy, a)

g

T |
deg=n G—(w,ao,ahao) (_(w§a2’00sa1D C—(w;az,alsaoD
v T - CoF7 )
Z J
N

N

Figure 20

Case 2 Consider the case x = a4. It holds that

Sa4-+y1)=—m+1L,way,a0) — (n+1,w% ag,as) + (n+1, w*:ay, as)
+ (n+1, w5 az,a0) + (n+1,w* a3, az) — (n+1, w* ; a3, ap)
+ (n+1,w*;ag,a1) + (n+1,w*; aq, ap).
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By a similar argument to case 1, we have
(N;" Ny N Ny NP N;) =(0.2,0,0,2,0).

There are at least two 3—terms of index w?® among 4, ..., y7: In fact, if the number
is just one, then the 3—term is +(n 4+ 1, w%9; ay, ag, a4). This implies that N1+ >1,
which is a contradiction.

Similarly, there are at least two 3—terms of index w%! among yq, ..., y7: In fact, if
the number is just one, then the 3—term is —(n + 1, w?!; a3, as, ag). This implies that
N; =1, which is a contradiction.

On the other hand, there is at least one 3—term of index w?4. Therefore, we have
N 1+ +---+ N > 5, which is a contradiction.

Case 3 Consider the case x = a3. It holds that
Sa+-Fy) =—m+1,w"ay,a0) — (n4+1,w"; ag, ay)
—(n+1, w5 as, ay) + (n+1,w"; az, aq)
+ (n+1,was,a0) + (n+1,w* a4, a2) — (n+1, w4 ay, ag)
+ (n+1,w*ag,ay) + (n+1, w*;ay, ayp).
We may assume that wy = ws = w%, wg = w?!, and w7 = w??. Itis easy to see that
o ye=—(m+1,w;a4,ay,a9), and the index of g is w + 25, and
e yr=—(m+1,w%;a9,a1,a9) or —(n+ 1, w*;ay,a9,a;), and the index of
y7 is w + 2s or w + 3s, respectively.
We see that y4, ..., y7 are g—connected: In fact, if they are g—splittable, then they are
all of type 2 by Lemmas 5.1 and 5.2. Since y7 is of type 1, we have a contradiction.
Since the indices of yg and y; are the same, we have
Ve =—(n+ 1w aq,az,a0) and y;=—(n+1,w*:ag,ar,ao).
For y4 and ys, it holds that
Sra+ys)=—(m+1Lw"a,a0) —(n+ 1w ag,as)
—(n+ L way,a1)+ m+1, w0 a,,a4).

It is not difficult to see that

Ya+ys=+m~+1,w% ar ay,a0)+(n+1,w% as,a9,a4)
or
Ya+ys=+m+1,way,a9,a4) + (n+1,w ay,ay,a4).

Since the indices of ¥4, and ys are w + 25, we have the first solution. Then it holds
that g(y4 +---+ y7) = 0. See Figure 21. O
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9 Mochizuki 3—cocycle

Theorem 9.1 If a nonzero 3—cycle y = Zle y; € Z3 satisfies £ <7, then we have
the following up to sign, reverse and reflection.

i) vy =+, w;ap,a1,a0)—(n,w;ay,ap,ar)
+m+1,w*ay,a9,a1)+ 4+ 1,w* a9, a4,ay)
—(n+ 1, w5 as,ay,a2)— (m+ 1, w*az,a9,ay).

(i) y =+(n,wiag,a1.a0)—(n,wias,ap.a1)—(n,wias,ay,ao)

+(m+1,w%ay,a9,a4)— (n+1,w*"a3,az,a0) — (n+1,w**;a9,a1,a0).
(iii) y =4 (n,w;ap,ay,a0) — (n,w;as,ap,a;)— (n,w;as,ay,ao)

+(m+1,w a3, ar,a9) + (n+1,w*; a3, a9, aq)
—(n+1,w*ag,ar,a9) — (n+ 1, w*2;a9,ay,agp).

(iv) y=+(n,wiag,ay,a¢)—(n,wias,ap,ay) —(n,w;as,a,do)
+ 4+ 1L, w*az,ar,a0) + (n+1,w*; az, a0, as)

—(n+ 1w as,az,a0) —(n+ 1, w%; a9, ay, ap).
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Proof This follows from Propositions 5.6, 6.2—-6.5, 7.1, 7.2, 8.1, and 8.2 directly. O

Proposition 9.2 The reflection y* of y in Theorem 9.1 is given as follows, where
bi = (=1)"(a; —w) and v = (=1)" 1w,
(1) V* =+(n,v;b(),bl,b())_(n,U;b],bo,bl)
+ (n+ I,Ubo;b4,b0,b4)+(l’l+ I,Ubo;b4,b1,b())
—(n+ 1,00 by, by, bo) — (n+ 1,v20: by, by, by).
(i) y* =4 (n,v:bo,by,bo) — (n,v;by,bo,bs) — (n,v;bo, by, bs)
+ (n+1,0%0:by, by, bs) — (n+1,0°1; by, by, bs) — (n+1,0%%; b3, by, b3).
(i) y* =+ (n,v:bg,b1,bo) — (n,v:by,bg, br) — (n,v:bg, by, b>)
+ (n+ 1,020 bg, by, by) 4 (n 4 1,070 by, by, by)
— (41,001 by, b, by) — (n+ 1,072: b4, by, by).
(iv) y* =+, v:bo,by,bo) — (n,v:by,bg,b3) — (n,v:bg, by, b3)
+ (n+ 1,020 bg, by, b3) 4 (n 4 1,070 by, by, b3)
—(n+ 10" by, by, b3) — (n + 1,03 by by, by).

Proof It holds that
Y =2b; —b; = (=1)"(2aj —a; —w) = (—1)"(anj_j —w) = baj _;
with {bg,...,bs} = R5. Since
(=) 2% = (=1)""2Q2a; —w) = 2bj —v = pbi
and ' bj
(—D)" @i —wY) = (=1)"T(a; — 2a; + w) =2b; —b; = b,”,
the reflection of e(n, w;a;,aj,ay) is
8(}’1, (=Dl w: (=) (a — w), (—=D"(a; —w), (—=1)"(a; — w)) =¢e(n,v; by, bj, b;),
and that of e(n + 1, w;a;,a;,ay) is
e(n+ 1, (=1)" 2w (=" @ —w®), (=1 (@j—w®), (=1)"* (@;—w”))
by

= e(n+1,0%:5 . b b))

Therefore, we have the conclusion. O
Recall that ¢: C3 = C3(Rs5)zxrs — C3(Rs) is the chain homomorphism defined

by ¢(n,w;x, y,z) = (x,y,z), and { ,0\y): C3(Rs) — Zs is the evaluation by the
Mochizuki 3—cocycle Oy.
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Lemma 9.3 For any 3—chain y € Cx, it holds that {¢p(¥), Om) = (@(y), Om).
Proof Tt is sufficient to prove the equality for a 3—term y = +(n, w; x, y, z). Recall
that the reverse of y is given by ¥ = +(—n, w*¥?; x¥%, y#, z). We see that

XV —yP =Q2z-2y+x)—Qz—y)=x—y
and y?? = y. Therefore, we have

z)5 zZ\5 _ 9.5
(7). ) = (77 — 7)) +(y5 ) -2z

(yZ)S + yS _ 225
5

= (¢(y), Om). a

=(x—y)

Proof of Theorem 2.3 We will prove that (¢(y), 6y) = 0 for any 3—cycle in Z3
with £(y) < 7. By Lemma 9.3, it is sufficient to consider the 3—cycles in Theorem 9.1
and Proposition 9.2. We put a; =ag +is and b; = by + it for 0 <i <4 as integers.

For the 3—cycle y in Theorem 9.1(i), it holds that

(a1)° + (a4)® —2(ao)’ ( (ao)® + (a2)° —2(ay)°
5 —(a1—ayp) 3
(a0)’ + (a2)° = 2(a1)’ (a4) + (a3)° = 2(a1)’

(p(y), Om) = (ao—ay)

+ (a1—aop) s + (ap—as) s
(a1)® + (a3)° —2(az)’ (a0)® + (a2)® —2(ay)?
—(az—ay) 5 — (az—aop) s

=5(2(ar)’ — (a3)° — (a4)’) € Z.

Since k° =k (mod 5), we have (¢(y), Oy) = s(2a; —az —as) =0 (mod 5). For the
reverse ™ in Proposition 9.2(i), it holds that

(b1)° + (ba)® —2(bo)? (bo)® + (b2)> —=2(by)?

5 5 5 5 s s
+ (ba—bo) L (b35) 269)° .y B0 (b45) 2(bo)
-~ (bo—bl)(bl)5 + (b45)5 —2(bo)’ _ (b1—by) (b2)° + (b35)5 —2(bo)’

=1(—(bo)” + (b1)° + (b3)> — (bs)’) € Z.

Then we have (¢p(y*), Om) = t(—bo + by + b3 —bg) =0 (mod 5).
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Similarly, for the 3—cycles in (ii)—(iv), we have

= 5((a0)’ + (a1)’ — (a2)° — (a4)*),

. (p(¥), Om
(i1) { ( —o.

e(r™), Om

)
)
i) { (9(), ) = 5(—(@0)* + (@)’ + (@3)° = (@s)?),
(@(r™). 0m) = t(—(bo)” + 2(b2)° — (ba)*).
| foa = $((@0)° +(@)* = (@)° = (ag)?), and
(@(r™).0m) = 1(—=(b2)” +2(b3)° — (ba)*).
Therefore, it holds that (¢(y), Opm) = (@(¥*), By) = 0 (mod 5). O
10 Example

Let F =S UT be the 2—component surface-link presented by the diagram as shown
in Figure 22, where S and 7 are components of F' linking once. The component 7'
is constructed by taking the product of the diagram of the figure-eight knot with
periodicity two and a circle equipped with a half twist. We remark that each of S
and T is unknotted; see [20].

Y

T

connect with a half twist

<
O=ao O=a1 O=0a2 [J=a3 O=aa U)

Figure 22
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The diagram of F in the figure has eight triple points. For a suitable orientation of F,
there is an (R5)zx grs—coloring such that the 3—cycle y associated with the coloring
is given as follows:

y =+ (n,w;ag,ay,as) + (n,w;ay,ap,as)
—(n,w;az,ap,a1)— (n,w;as,ay,aop)
+(m+1,w%az,a1,a4) —(n+1; W% a1,a4,a3)

+m+ 1w a4,a9,a2) — (n+ 1, w a9, as,as3).

It is easy to see that

(@), On) = + (ao—al)(“‘)5 + (“05)5 —2(a3)” (@1—do) (a0)® + (6115)5 —2(a3)®
(g (5’0)5"‘(“2)5—2(611)5_ _ (a1)® + (as)’ —2(ao)’
(Cl3 aO) 3 (a3 al) ;
5 5 5 5 s s
b (agmay WD, (0 T ) 2 2)
5 5 5 5 5 5
_|_(a4_a0)(ao) +(a45) —2(az) —(ao—az)(@) +(a45) —2(a3)

=5((a0)’ + (a1)’ — (a2)” —2(a3)° + (a4)’)
= s(ag + a1 —a, —2as + as) = 2s* # 0 (mod 5).

Therefore, we have t(F) = 8.
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