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Relative left properness of colored operads

PHILIP HACKNEY
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The category of C–colored symmetric operads admits a cofibrantly generated model
category structure. In this paper, we show that this model structure satisfies a relative
left properness condition, ie that the class of weak equivalences between †–cofibrant
operads is closed under cobase change along cofibrations. We also provide an example
of Dwyer which shows that the model structure on C–colored symmetric operads is
not left proper.

18D50, 55U35; 18G55, 55P48, 18D20

1 Introduction

Operads are combinatorial devices that encode families of algebras defined by multilin-
ear operations and relations. Common examples are the operads A, C and L whose
algebras are associative, associative and commutative, and Lie algebras, respectively.
Colored operads are a bit more exotic, with what is likely the most famous example
being Voronov’s “Swiss-cheese operad”, which models the genus-zero moduli spaces
that appear in open-closed string theory. Other examples of colored operads1 encode
complicated algebraic structures such as operadic modules, enriched categories, and
even categories of operads themselves. The study of model category structures on
categories of colored operads has found many recent applications, including the recti-
fication of diagrams of operads by Berger and Moerdijk, [4] and the construction of
simplicial models for 1–operads by Cisinski and Moerdijk [7].

Our goal in this paper is to further the study of the Quillen model category structure of
colored operads initiated by the second author [26], Cisinski and Moerdijk [7], and
Caviglia [6]. Specifically, we are interested in understanding if the category of colored,
symmetric operads is left proper; ie we wish to know if weak equivalences between
all colored, symmetric operads are closed under cobase change along cofibrations.
The main result of this paper is to say that this is not the case, but we give sufficient

1Colored operads are also sometimes called (symmetric) multicategories in the literature.
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conditions on a monoidal model category M in order for the model category structure
of M–enriched, colored, symmetric operads to be relatively left proper, ie for the
class of weak equivalences between †–cofibrant operads to be closed under cobase
change along cofibrations (Theorem 3.1.10). Recall that in any model category, the
class of weak equivalences between cofibrant objects is closed under cobase change
along cofibrations. The class of †–cofibrant operads is much larger than the class
of cofibrant operads; in particular, this class includes small examples such as the
associative operad A. If one is instead willing to consider the category of reduced (or
constant-free) operads (those satisfying P

�
c
¿

�
D¿), then Batanin and Berger [1] prove

a strict left properness result.

The question of (relative) left properness for categories of symmetric operads has many
immediate applications. As an example, left properness makes it easier to identify ho-
motopy pushouts since, in a left proper model category, any pushout along a cofibration
is a homotopy pushout. Relative left properness allows us to make similar statements.

Furthermore, understanding when left properness holds allows us to describe the rectifi-
cation of homotopy coherent diagrams and weak maps between homotopy O–algebras,
as first proposed by Berger and Moerdijk in [4, Section 6]. More explicitly, it is
well known that the structure of a model category on the category of M–enriched
operads is important for the study of up-to-homotopy algebras over an operad such as
A1–algebras and E1–algebras which are respectively associative and commutative
“up to homotopy.” The deformations of algebraic structures and morphisms between
algebraic structures are controlled by up-to-homotopy resolutions of (colored) operads.
These resolutions include the W-construction of Boardman and Vogt [5], the cobar-bar
resolutions of Ginzburg and Kapranov [12] and Kontsevich and Soibelman [19], and
the Koszul resolutions of Fresse [10]. In their paper [4], Berger and Moerdijk show that
a coherent theory of up-to-homotopy resolutions of operadic algebras is provided by a
Quillen model category structure on C–colored operads in a general monoidal model
category M. (Relative) left properness is one way to establish when these resolutions
can be rectified, in the sense of being weakly homotopy equivalent to strict O–algebras.

Related work To the knowledge of the authors, the idea of relative left properness, and
much of the inspiration for this paper, was first established in the thesis of Spitzweck [28]
where he considers semi-model structures of categories of operads in general monoidal
model categories. Similarly, Dwyer and Hess [8] and Muro [24] established a left
properness result which is identical to that of Theorem 3.1.10 for nonsymmetric,
monochromatic operads enriched in simplicial sets and monoidal model categories, re-
spectively. Of particular note, Muro’s proof requires that his monoidal model categories
satisfy weaker conditions than those imposed on the monoidal model categories in this
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work. The stronger conditions in Theorem 3.1.10 are due to both the extra complexity
introduced by the addition of the symmetric group actions and the authors’ desire to
exhibit the most direct proof of this result which still applies in many situations.

It must also be noted that one could obtain similar results using the techniques of the
recent paper of Batanin and Berger [1]; see Remark 3.1.11. The actual definition of
relative left properness in [1] is slightly different, though morally the same, as that used
in Spitzweck [28], Muro [24], and this paper, and we have made note of similarities
in their results and our own throughout this paper. Again, the authors of this work have
made stronger assumptions on our enriching monoidal model category, as it is our belief
that these assumptions allowed for greater clarity in the arguments while still being appli-
cable in most cases of interest. These assumptions also allow for generalizations to more
complicated cases such as relative left properness of dioperads and wheeled properads
(see the authors’ [13]), the latter of which is inaccessible to the Batanin–Berger ma-
chinery; see [1, Proposition 10.8]. These generalizations will serve as key components
of the authors’ larger body of work constructing models for 1–wheeled properads.

Acknowledgments The authors would like to thank Giovanni Caviglia and Kathryn
Hess for enlightening discussions and for pointing out errors in earlier drafts of this paper.
We would also like to thank Bill Dwyer for allowing us to use his counterexample
to left properness of colored operads in Section 4. This counterexample was also
independently obtained by Caviglia as part of his thesis work. Finally, the authors
would like to thank the anonymous referee for several insightful comments on an earlier
draft of this paper.

2 Colored operads and algebras

In this section, we briefly recall the definitions of colored operads and algebras over
colored operads.

2.1 Colors and profiles

Throughout, let .M;˝; I/ be a closed, symmetric monoidal category with all small
colimits. Let ¿ denote the initial object of M and Hom.X;Y / 2M the internal hom
object. We will briefly give the necessary definitions and notations regarding colored
objects in M. A more complete discussion of the following definitions can be found
in [31].

Definition 2.1.1 (colored objects) Fix a nonempty set of colors, C.

(1) A C–profile is a finite sequence of elements in C,

c D .c1; : : : ; cm/D c Œ1;m � ;
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with each ci 2 C. If C is clear from the context, then we simply say profile. The
empty C–profile is denoted ¿, which is not to be confused with the initial object
in M. Write jcj Dm for the length of a profile c .

(2) An object in the product category
Q

C MDMC is called a C–colored object
in M; similarly, a map of C–colored objects is a map in

Q
C M. A typical

C–colored object X is also written as fXag with Xa 2M for each color a 2 C.

(3) Fix c 2 C. An X 2MC is said to be concentrated in the color c if Xd D¿ for
all c 6D d 2 C.

(4) Similarly, fix c2C. For f W X!Y 2M, we say that f is said to be concentrated
in the color c if both X and Y are concentrated in the color c .

Now we are ready to define the colored version of †–objects underlying the category
of colored operads. These objects are also sometimes called symmetric sequences,
†–modules, or collections in the literature.

Definition 2.1.2 (colored symmetric sequences) Fix a nonempty set C.

(1) If a and b are C–profiles, then a map (or left permutation) � W a ! b is a
permutation � 2†jaj such that

�aD .a��1.1/; : : : ; a��1.m//D b:

This necessarily implies jaj D jbj Dm.

(2) The groupoid of C–profiles, which has C–profiles as the objects and left permu-
tations as the isomorphisms, is denoted by †C . The opposite groupoid, †op

C , is
the groupoid of C–profiles with right permutations

a� D .a�.1/; : : : ; a�.m//

as isomorphisms.

(3) The orbit of a profile a is denoted by Œa�. The maximal connected subgroupoid
of †C containing a is written as †Œa� . Its objects are the left permutations of a.
There is an orbit decomposition of †C :

(2.1.2.1) †C Š

a
Œa �2†C

†Œa� ;

where there is one coproduct summand for each orbit Œa� of a C–profile.

(4) Define the diagram category

(2.1.2.2) SymSeqC.M/DM†
op
C �C;
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whose objects are called C–colored symmetric sequences or just symmetric
sequences when C is understood. The decomposition (2.1.2.1) implies that there
is a decomposition

(2.1.2.3) SymSeqC.M/Š
Y

. Œc � Id/2†
op
C �C

M†
op
Œc �
�fdg

;

where †op
Œc � � fdg Š†

op
Œc � .

(5) For X 2 SymSeqC.M/, we write

(2.1.2.4) X
� d

Œc�

�
2M†

op
Œc �
�fdg
ŠM†

op
Œc �

for its .Œc�I d/–component. For .cI d/2†op
C �C (ie c is a C–profile and d 2 C),

we write

(2.1.2.5) X
� d

c

�
2M

for the value of X at .cI d/.
(6) Write N.C/ for the set Ob.†op

C �C/; ie an element in N.C/ is a pair .cI d/ 2
†

op
C �C.

Remark 2.1.3 In the case where CD f�g, for each integer n� 0, there is a unique
C–profile of length n, usually denoted by Œn�. We have †Œn� D†n , which is just the
symmetric group †n regarded as a one-object groupoid. So we have

N.C/DN; †C D

a
n�0

†n D† and SymSeqC.M/DM†
op
C �C DM†op

:

So one-colored symmetric sequences are symmetric sequences (also known as †–
objects and collections) in the usual sense.

Unless otherwise specified, we will assume that C is a fixed, nonempty set of colors.

2.2 Colored circle product

We define C–colored operads to be monoids in SymSeqC.M/ with respect to the
C–colored circle product. In order to define the latter, we need the following definition.

Definition 2.2.1 (tensored over a groupoid) Suppose D is a small groupoid, X 2

MDop
, and Y 2MD . Define the object X ˝D Y 2M as the colimit of the composite

D
Š�
���! Dop

�D
.X ;Y /
����!M�M

˝
��!M;

where the first map is the composite of the diagonal map and the isomorphism D�DŠ
Dop �D .
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We mainly use the construction ˝D when D is the finite connected groupoid †Œc � for
some orbit Œc� 2†C .

Convention 2.2.2 For an object A 2M, we take A˝0 to mean I , the ˝–unit in M.

Definition 2.2.3 (colored circle product) Suppose X;Y 2 SymSeqC.M/, d 2 C,
c D .c1; : : : ; cm/ 2†C , and Œb�D Œ.b1; : : : ; bm/� 2†C is an orbit.

(1) Define the object Y c 2M†
op
C Š

Q
Œb �2†C

M†
op
Œb � as having the Œb�–component

(2.2.3.1) Y c.Œb�/D
a

f Œbj �2†Cg1�j�m

Lan
†

op
Œb �

� mO
jD1

Y
� cj

Œbj �

��
2M†

op
Œb � :

The Kan extension in (2.2.3.1) is defined as shown:

Qm
jD1†

op
Œbj�

concatenation
��

Q
Y .cj
�/

//M�m

˝

��

†
op
Œb�

Lan
†

op
Œb� Œ

N
Y .
:::/�

left Kan extension
//M

(2) Considering left permutations of c in (2.2.3.1), we obtain Y Œc � 2M†
op
C �†Œc � ŠQ

Œb �2†C
M†

op
Œb�
�†Œc � with components

(2.2.3.2) Y Œc � .Œb�/ 2M†
op
Œb �
�†Œc � :

(3) Using the product decomposition (2.1.2.3) of SymSeqC.M/, the C–colored
circle product X ıY 2 SymSeqC.M/ is defined to have components

(2.2.3.3) .X ıY /
� d

Œb�

�
D

a
Œc �2†C

X
� d

Œc�

�
˝†Œc �

Y Œc � .Œb�/ 2M†
op
Œb �
�fdg

;

where the coproduct is indexed by all the orbits in †C , as d runs through C and
Œb� runs through all the orbits in †C . The construction ˝†Œc �

is as defined in
Definition 2.2.1.

Remark 2.2.4 In the one-colored case (ie CD f�g), the C–colored circle product is
equivalent to the circle product of †–objects in [25, Section 2.2.3]. An anonymous
referee made the authors aware that the idea to first define the circle product through
Day’s convolution belongs to G M Kelly [18].

The following observation is the colored version of [14, Proposition 4.13].
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Proposition 2.2.5 With respect to ı, SymSeqC.M/ is a monoidal category.

Remark 2.2.6 We consider MC as a subcategory of MN.C/ via the inclusion

C �!N.C/; c 7�!
� c

¿
�

We use this to consider O B� as a functor with domain MC in Example 2.3.5.

2.3 Colored operads as monoids

In the previous section we show that the category of C–colored operads is a category
of monoids “with many objects”. We make this explicit below.

Definition 2.3.1 For a nonempty set C of colors, denote by OperadC.M/, or OperadC

when M is understood, the category of monoids [20, Section VII.3] in the monoidal
category .SymSeqC.M/; B /. An object in OperadC is called a C–colored operad in M.
We write ¿C for the initial object in OperadC .

Remark 2.3.2 Unpacking Definition 2.3.1, a C–colored operad is equivalent to a
triple .O; 
;u/ consisting of

� O 2 SymSeqC.M/,

� a C–colored unit map

I
uc
��! O

� c

c

�
2M

for each color c 2 C, and

� operadic composition

(2.3.2.1) O
� d

c

�
˝

mO
iD1

O
� ci

bi

�


��! O

� d

b

�
2M

for all d 2 C, c D .c1; : : : ; cm/ 2 †C with m � 1, and bi 2 †C , where b D

.b1; : : : ; bm/.

The triple .O; 
;u/ is required to satisfy the obvious associativity, unity, and equivari-
ance axioms, the details of which can be found in [31, Definition 11.14] . The detailed
axioms in the one-colored case can also be found in [23]. This way of expressing a
C–colored operad is close to the way an operad was defined in [22].
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Remark 2.3.3 In the case C D f�g, write Operad for OperadC . Objects of this
category are called 1–colored operads or monochromatic operads. In this case, we
write O.n/ for the .Œn�I �/–component of O 2 Operad, where Œn� is the orbit of the
f�g–profile consisting of n copies of � (this orbit has only one object). Our notion
of a 1–colored operad agrees with the notion of an operad in, eg [23] and [14]. Note
that even for 1–colored operads, our definition is slightly more general than the one
in [21, Section II.1.2] because, in our definition, the 0–component O.0/ corresponds
to the empty profile, f�g. In general, the purpose of the 0–component (whether in
the one-colored or the general colored cases) is to encode units in O–algebras. Also
note that in [22], where an operad was first defined in the topological setting, the
0–component was required to be a point.

Definition 2.3.4 Suppose n� 0. A C–colored symmetric sequence X is said to be
concentrated in arity n if

jcj 6D n D) X
� d

c

�
D¿ for all d 2 C.

Example 2.3.5 (1) A C–colored symmetric sequence concentrated in arity 0 is
precisely a C–colored object. In the C–colored circle product X BY (2.2.3.3),
if Y is concentrated in arity 0, then so is X BY because, by (2.2.3.1),

b 6D¿ D) Y c.Œb�/D¿

for all c . In other words, there is a lift:

MC //

��

MC

��

SymSeqC.M/
OB�

// SymSeqC.M/

So if O is a C–colored operad, then the functor

(2.3.5.1) O B�WMC
�!MC

defines a monad [20, Section VI.1] whose monadic multiplication and unit are
induced by the multiplication O BO! O and the unit ¿C! O, respectively.

(2) A C–colored operad O concentrated in arity 1 is exactly an M–enriched category
with object set C. In this case, the nontrivial operadic compositions correspond to
the categorical compositions. Restricting further to the 1–colored case .CDf�g/,
a 1–colored operad concentrated in arity 1 is precisely a monoid in M.
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2.4 Algebras over colored operads

The category of representations over an operad O is referred to, for classical reasons,
as the category of algebras over an operad.

Definition 2.4.1 Suppose O is a C–colored operad. The category of algebras over the
monad [20, Section VI.2]

O B�WMC
�!MC

in (2.3.5.1) is denoted by Alg.OIM/ or simply Alg.O/ when M is understood. Objects
of Alg.O/ are called O–algebras (in M).

Definition 2.4.2 Suppose A D fAcgc2C 2 MC is a C–colored object. For c D

.c1; : : : ; cn/ 2†C with associated orbit Œc�, define the object

(2.4.2.1) Ac D

nO
iD1

Aci
DAc1

˝ � � �˝Acn
2M

and the diagram AŒc � 2M†Œc � with values

(2.4.2.2) AŒc � .c
0/DAc0

for each c0 2 Œc�. All the structure maps in the diagram AŒc � are given by permuting
the factors in Ac .

Remark 2.4.3 (unwrapping O–algebras) From the definition of the monad O B�,
an O–algebra A has a structure map �W O BA!A 2MC . For each color d 2 C, the
d –colored entry of O BA is

(2.4.3.1) .O BA/d D
a

Œc �2†C

O
� d

Œc�

�
˝†Œc �

AŒc � :

So the d –colored entry of the structure map � consists of maps

O
� d

Œc�

�
˝†Œc �

AŒc �

�
��!Ad 2M

for all orbits Œc� 2†C . The ˝†Œc �
here means that we can unpack � further into maps

(2.4.3.2) O
� d

c

�
˝Ac

�
��!Ad 2M

for all d 2 C and all objects c 2 †C . Then an O–algebra is equivalent to a C–
colored object A together with structure maps (2.4.3.2) that are associative, unital,
and equivariant in an appropriate sense, the details of which can be found in [31,
Corollary 13.37] . The detailed axioms in the 1–colored case can also be found in [23].
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Note that when c D¿, the map (2.4.3.2) takes the form

(2.4.3.3) O
� d

¿
�

�
��!Ad

for d 2 C. In practice, this 0–component of the structure map gives A the structure of
d –colored units. For example, in a unital associative algebra, the unit arises from the
0–component of the structure map.

Remark 2.4.4 The C–colored endomorphism operad, End.A/, is defined by

End
� d

c

�
D HomM.Ac ;Ad /:

It is an elementary exercise to check that, for an C–colored operad O, an O–algebra A

is equivalent to a map of C–colored operads

O
�
��! End.A/:

Some important examples of colored operads and their algebras follow.

Example 2.4.5 (free operadic algebras) Fix a C–colored operad O. There is an
adjoint pair

(2.4.5.1) MC
OB�
����! ����Alg.O/

in which the right adjoint is the forgetful functor. The left adjoint takes a C–colored
object A to the object O BA which has the canonical structure of an O–algebra, called
the free O–algebra of A. In particular, free O–algebras always exist.

Example 2.4.6 If O is an M–enriched category, then the category of O–algebras is
the M–enriched functor category ŒO;M�.

Example 2.4.7 (C–colored operads as operadic algebras) First, recall that N.C/D
Ob.†op

C �C/. For each nonempty set of colors C, there exists an N.C/–colored operad
OpC and an isomorphism

(2.4.7.1) OperadC Š Alg.OpC/:

So C–colored operads are equivalent to algebras over the N.C/–colored operad OpC .
This is a special case of [31, Lemma 14.4], which describes any category of generalized
props (of which OperadC is an example) as a category of algebras over some colored
operad; in the case C D f�g, this construction appears in [4, Example 1.5.6]. As
mentioned in Example 2.4.5, it follows that free C–colored operads (D free OpC–
algebras) always exist. The construction of OpC begins with an N.C/–colored operad
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OpCSet in the symmetric monoidal category of sets and Cartesian products. There is a
strong symmetric monoidal functor

(2.4.7.2) Set �!M; S 7�!
a
S

I:

The colored operad OpC is the entrywise image of OpCSet under this strong symmetric
monoidal functor. Therefore, if M has a model structure in which I is cofibrant, then
OpC is entrywise cofibrant. In fact, when I is cofibrant, a careful inspection of OpC

shows that its underlying symmetric sequence is cofibrant in SymSeqC.M/. This is a
key example for us, and we will elaborate on it more later.

2.5 Limits and colimits of colored operadic algebras

Limits of Alg.O/ are taken in the underlying category of colored objects MC via the
free-forgetful adjoint pair

MC
OB�
����! ����Alg.O/

in (2.4.5.1) for a C–colored operad. The following observation is the colored version
of a well known result (see, for example [25, Proposition 2.3.5], [14, Proposition 5.15],
or the closely related [9, Proposition II.7.2]).

Proposition 2.5.1 Suppose O is a C–colored operad. Then the category Alg.O/ has
all small limits and colimits, with reflexive coequalizers and filtered colimits preserved
and created by the forgetful functor Alg.O/!MC .

2.6 Model structure on colored operadic algebras

In this section, we will assume that our cocomplete, closed, symmetric monoidal
category M comes with a compatible cofibrantly generated Quillen model category
structure; ie we assume that M is a monoidal model category [27, Definition 3.1] with
cofibrant tensor unit.

The category of C–colored objects, MC , admits a cofibrantly generated model category
structure where weak equivalences, fibrations, and cofibrations are defined entrywise, as
described in [15, Proposition 11.1.10]. In this model category, a generating cofibration
in MC D

Q
C M (ie a map in I) is a generating cofibration of M, concentrated in one

entry. Similarly, the set of generating acyclic cofibrations is J� C. In addition, the
properties of being simplicial, or proper, are inherited from M.

A functor F between two symmetric monoidal categories is called symmetric monoidal
if there is a unit I! F.I/ and a binatural transformation

F.�/˝F.�/) F.�˝�/

satisfying unit, associativity, and symmetry conditions [20].
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Definition 2.6.1 We say that M admits functorial path data if there exist a symmetric
monoidal functor Path on M and monoidal natural transformations

sW Id) Path and d0; d1W Path) Id

such that for any fibrant X in M,

X
s
�! Path.X /

d0�d1
����!X �X

is a path object (ie s is a weak equivalence and d0 � d1 is a fibration).

Remark 2.6.2 The definition of functorial path data is adapted from Fresse [11,
Fact 5.3]. As a particular example, Fresse showed that functorial path data exists if M
is the category of chain complexes over a ring of characteristic 0 or the category of
simplicial modules.

One way to check if M admits functorial path data is to check if M admits an interval
object defined as follows.

Definition 2.6.3 We say that M admits a cocommutative, coassociative coalgebra
interval J if the fold map I t I! I can be factored as

I t I
˛
��! J

ˇ
��! I;

in which ˛ is a cofibration, ˇ is a weak equivalence, J is a coassociative cocommutative
comonoid in M, and ˛ and ˇ are both maps of comonoids.

For example, the categories of compactly generated spaces and simplicial sets admit
such cocommutative coalgebra intervals. The category of unbounded chain complexes
over a ring which is not characteristic 0 admits an interval which is coassociative, but
not cocommutative.

Lemma 2.6.4 [17, Proposition 3.10] If M admits a coassociative, cocommutative
coalgebra interval and I is cofibrant, then M admits functorial path data.

Definition 2.6.5 A symmetric monoidal fibrant replacement functor is a functor
f WM!M together with a natural transformation r W Id) f such that

� rX W X ! f .X / is a fibrant replacement for each object X ,

� f is a symmetric monoidal functor, and
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� for every X and Y in M, the following diagram commutes:

X ˝Y

rX˝rY

��

rX˝Y
// f .X ˝Y /

fX ˝f Y

77

Throughout this paper, we will want our monoidal model category M to satisfy a
number of conditions, as we want M to have a symmetric monoidal fibrant replacement
functor. To simplify the listing of these conditions, we make the following definition.

Definition 2.6.6 A monoidal model category M is called nice if

� M is strongly cofibrantly generated, ie the domain of each generating (acyclic)
cofibration is small with respect to the entire category;

� there is a symmetric monoidal fibrant replacement functor;
� there is functorial path data;
� every object is cofibrant;
� weak equivalences are closed under filtered colimits.

Examples of nice monoidal model categories are sSet, Z–graded chain complexes in
characteristic zero, and simplicial presheaves.

Remark 2.6.7 The definition of a nice monoidal model category automatically implies
that our monoidal model categories are what are called “strongly h-monoidal” in Batanin
and Berger [1, Propositions 1.8, 2.5], and that our monoidal model categories satisfy
the monoid axiom of Schwede and Shipley [27, Definition 3.3], which also makes an
appearance in the work of Muro [24].

The following is a restricted version of [4, Theorem 2.1] and is a colored operad analogue
of [17, Theorem 3.11] which dealt with the more complicated case of colored props.

Theorem 2.6.8 Suppose M is a nice monoidal model category and that O is a C–
colored operad in M. Then Alg.O/ admits a strongly cofibrantly generated model
category structure, in which:

� fibrations and weak equivalences are created in MC ,
� the set of generating cofibrations is O B I, where I is the set of generating

cofibrations in MC , and
� the set of generating acyclic cofibrations is OB J, where J is the set of generating

acyclic cofibrations in MC .
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Example 2.6.9 The category of simplicial sets, sSet, is a Cartesian closed, cofibrantly
generated, monoidal model category that admits a coassociative, cocommutative interval.
As a symmetric monoidal fibrant replacement functor, we can choose either the Ex1

functor or the singular chain complex of the geometric realization functor, since both
are product-preserving. Similarly, the category of Z–graded chain complexes over a
field K with the projective model structure [16, Chapter 2] satisfies the conditions of
Theorem 2.6.8.

Corollary 2.6.10 If M is a nice monoidal model category, then Alg.OpC/ŠOperadC

admits a cofibrantly generated model structure.

Definition 2.6.11 � The fibrant C–colored operads are those which are locally
fibrant; ie P

�
d
c

�
is fibrant in M for all profiles .cI d/.

� A C–colored operad is called †–cofibrant if P is cofibrant as an object in
SymSeqC.M/DM†

op
C �C .

Every cofibrant operad is, in particular, †–cofibrant [3, Proposition 4.3].

Example 2.6.12 The associative operad A is the prototypical †–cofibrant operad
which is not cofibrant. In sSet, the commutative operad C is neither †–cofibrant nor
cofibrant.

3 Relative left properness of operads with fixed colors

In this section, we show that the model category structure of Corollary 2.6.10 satisfies a
property close to that of left properness, to which we will refer as relative left properness.

Definition 3.0.1 The model category OperadC is called left proper relative to the class
of †–cofibrant operads if pushouts by cofibrations preserve weak equivalences whose
domain and codomain are †–cofibrant.

3.1 The pushout filtration

Relative left properness of OperadC comes down to a study of pushouts of C–colored op-
erads where one of the defining maps is a free morphism of free operads (Lemma 3.1.6).
To perform this analysis, we make use of the language of colored, planar trees such as
those in [2, Section 5.8], [12] or [3, Section 3]. The following definition comes from
[30, Chapter 3].
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Definition 3.1.1 A rooted n–tree is a nonempty, finite, connected, directed graph with
no directed cycles in which

(1) there are n distinguished vertices, called inputs, each with exactly one outgoing
edge and no incoming edges;

(2) there is a distinguished vertex that is not an input, called the root, with exactly
one incoming edge and no outgoing edges;

(3) each vertex away from the set of inputs and the root has exactly one outgoing edge.

A planar rooted tree is a rooted tree in which the set of incoming edges at each vertex
is equipped with a linear ordering.

Remark 3.1.2 For a planar rooted tree T , we write in.T / for the set of its input
edges. Since T is planar, the input edges (or leaves) have a linear order, and we write
�.T / for the set of all such orderings

f1; : : : ; ng �! in.T /;

where nD jin.T /j. It is fairly easy to check that one can identify the set �.T / of all
linear orderings of the input edges of T with the group of permutations †n .

Definition 3.1.3 Let A 2 SymSeqC.M/ (Definition 2.1.2), and suppose that m � 1

and t; sj 2N.C/ for 1� j �m.

(1) Denote by Tree.t/ the groupoid of directed, planar, rooted, C–colored trees
in which the input-output profile is given by t . The morphisms in Tree.t/ are
nonplanar isomorphisms of C–colored trees.

(2) Denote by Tree.fsj g
m
1
I t/ the groupoid of pairs .T; ds/ such that

� T 2 Tree.t/, and
� ds� Vt.T / such that the set of vertex profiles in ds is the set fsj g

m
1

.

Vertices in ds are called distinguished vertices. Vertices in the complement

n.T /� Vt.T / n ds

are called normal vertices. Isomorphisms of Tree.fsj gI t/ are isomorphisms of
C–colored trees which preserve the distinguished vertices and colorings of edges.

(3) A pair .T; ds/ 2 Tree.fsj gI t/ is said to be well-marked if every flag of a distin-
guished vertex is part of an internal edge whose other end vertex is normal.

(4) A pair .T; ds/ 2 Tree.fsj gI t/ is said to be reduced if it is well-marked and there
are no adjacent normal vertices, ie every vertex adjacent to a normal vertex is
distinguished. The groupoid of such reduced trees is denoted by rTree.fsj gI t/.
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(5) Given a vertex u in a tree T , write A.u/ for the component of the symmetric
sequence A corresponding to the profiles of u. In other words, if the profiles of u

are .cI d/ 2N.C/, then A.u/D A
�
d
c

�
. We also say that A.u/ is a decoration

of u by A and that u is A–decorated. A tree with each vertex decorated by A

is said to be A–decorated.

Definition 3.1.4 Suppose that f W H !G is a homomorphism of groups. Then there
is an adjoint pair

.�/ �H GWMH op
��! ��MGop

Wf �;

which is actually a Quillen adjunction [3, Lemma 2.5.1]. If f is a subgroup inclusion
and X 2M is an object with a right H action (ie X 2MH op

), we have

X �H G Š
a

G=H

X;

where the coproduct is indexed over the cosets of H in G .

The following definition appears in [14, Definition 7.10].

Definition 3.1.5 (Q–construction) Suppose there is a map i W X ! Y 2M. The
object Qt

q 2M†t is given as follows.

� Qt
0
DX˝t .

� Qt
t D Y ˝t .

� For 0< q < t , there is a pushout in M†t :

(3.1.5.1)

ŒX˝.t�q/˝Q
q
q�1

� �†t�q�†q
†t

.id;i�/
��

//

H
)

Qt
q�1

��

ŒX˝.t�q/˝Y ˝q � �†t�q�†q
†t

// Qt
q

Lemma 3.1.6 For A 2 OperadC and a map i W X ! Y in M, regarded as a map in
MN.C/ concentrated in the s–entry for some s 2N.C/, consider a pushout

OpC BX

i�
��

f
//

H
)

A

h

��

OpC BY // A1
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in OperadC . Then for a fixed orbit Œr �, with r 2N.C/, the Œr �–entry of the map h is a
countable composition

A.Œr �/DA0.Œr �/
h1
��!A1.Œr �/

h2
��!A2.Œr �/

h3
��! � � � �!A1.Œr �/;

where, for k � 1, the hk are inductively defined as the following pushout in M†Œr � :

(3.1.6.1)

`
ŒT;ds�

˚�N
u2n.T /A.u/

�
˝Qk

k�1

	
�Aut.T;ds/†Œr �

q.id˝i�k/˝Aut.T;ds/id

��

f k�1
�

//

H
)

Ak�1.Œr �/

hk

��`
ŒT;ds�

˚�N
u2n.T /A.u/

�
˝Y ˝k„ ƒ‚ …

normal/dist. vertex decorations

	
�Aut.T;ds/ †Œr �„ƒ‚…

input labeling
�k

// Ak.Œr �/

In this pushout:

(1) The top horizontal map f k�1
� is induced by f and the operad structure map of A.

(2) Each coproduct on the left is indexed by the set of weak isomorphism classes
of reduced trees .T; ds/ such that

� the input profile of T is in the orbit Œr �, and
� ds consists of k distinguished vertices, all with profiles in the orbit Œs�.

Proof This theorem is a special case of Proposition 4.3.16 in [29] by taking ODOpC ;
we sketch the proof. For each r 2N.C/, define

B.Œr �/D colim
k

Ak.Œr �/:

Then B has a canonical C–colored operad structure given as follows.

� Its colored units are those of A; ie I!A
�

c
c

�
! B

�
c
c

�
for each c 2 C.

� The operadic ıi compositions are given by the grafting of reduced trees, where
the colored operad structure of A is used to bring the grafted tree to a reduced
one if necessary.

� Its equivariant structure is given by the factors †j in.T /j .

The operad map A! B is induced by A0! B . The map Y ! B is induced by �1
(for the s–corolla whose only vertex is distinguished) and A1! B . That B is the
pushout A1 follows from its inductive definition.
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For any finite group G , the category of G–objects, MG , has a natural structure of
a cofibrantly generated model category, where weak equivalences and fibrations are
defined entrywise, as described in [15, Proposition 11.1.10]. In this model category, a
generating (acyclic) cofibration is a G –equivariant (acyclic) cofibration in the category
of M–objects with G–action. Because it will be important to keep track of which
group we are working with, we will denoted these sets of generating cofibrations by
I ŒG� and generating acyclic cofibrations by J ŒG�.

The following lemma, due to Berger and Moerdijk [2, Lemma 5.10] and Spitzweck [28,
Lemma 4], gives an equivariant version of the pushout product axiom.

Lemma 3.1.7 Let G and � be finite groups with � acting from the right on G . For
any �–cofibration i W X ! Y and any map of right G Ì � –objects A! B whose
underlying map is a cofibration in a nice monoidal model category M, the induced map

.X ˝B/qX˝A .Y ˝A/ �! Y ˝B

is a G Ì� –cofibration, where G Ì� acts on Y ˝B by .y˝ b/.g;
 / D y
 ˝ b.g;
 / .

In practice, � will be the symmetric group acting on the inputs of a tree T in rTree.

Lemma 3.1.8 In the context of Lemma 3.1.6, suppose that
� M is a nice monoidal model category,
� i W X ! Y 2M is a cofibration, and
� A is a †–cofibrant operad.

Then each map �N
u2n.T /A.u/

�
˝Qk

k�1

id˝i�k

���N
u2n.T /A.u/

�
˝Y ˝k

is an Aut.T; ds/–cofibration.

Proof As in [2, Lemma 5.9], each .T; ds/ has a grafting decomposition as

.T; ds/D tn..T1; ds1/; : : : ; .Tn; dsn//;

where
� tn is the n–corolla,
� dsD ds1q� � �q dsn if the top vertex is not distinguished, and
� dsD ds1q� � �q dsnq tn if the top vertex is distinguished.
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Let
.Tj1

; dsj1
/; : : : ; .Tjk

; dsjk
/ 2 f.T1; ds1/; : : : ; .Tn; dsn/g

be such that each .T`; ds`/ is isomorphic to exactly one .Tji
; dsji

/, and let

ni D
ˇ̌˚
.T`; ds`/ j .T`; ds`/Š .Tji

; dsji
/
	ˇ̌
:

There is a decomposition of the automorphism group,

Aut.T; ds/Š
� kY

iD1

Aut.Tji
; dsji

/�ni

„ ƒ‚ …
G

�
Ì
� kY

iD1

†ni„ ƒ‚ …
�

�
;

where each ni � 1 and n1C � � �C nk D n.

(1) The map i�k is a cofibration in M by the pushout-product axiom. Furthermore,
it has a right Aut.T; ds/–action (ie a G Ì �–action) because isomorphisms
preserve distinguished vertices.

(2) Since A.r/ is � –cofibrant (where r is the vertex at the root) and � acts onN
n.T /nr A.u/ by permuting tensor factors, we know that

N
n.T /A.u/ is � –

cofibrant.

These two facts and Lemma 3.1.7 together imply that

id˝i�k
D

h
¿ �!

O
A.u/

i
� i�k

is a G Ì� –cofibration.

Lemma 3.1.9 Suppose that M is a nice monoidal model category, and that i W X ! Y

is a cofibration in M, regarded as a map in MN.C/ concentrated at the s–entry for
some s 2N.C/. Suppose we have a diagram

(3.1.9.1)

OpC BX

i�
��

//

H
)

A

hA

��

f

�
//

H
)

B

hB

��

OpC BY // A1
f1
// B1

in Alg.OpC/ Š OperadC in which both squares are pushouts and f W A ! B is a
weak equivalence between †–cofibrant operads. Then f1 is also a weak equivalence
between †–cofibrant operads.
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Proof Weak equivalences in Alg.OpC/ are created entrywise in M. The outer rectan-
gle in (3.1.9.1) is also a pushout. It follows that hA

k
and hB

k
are filtered in such a way

that for each orbit Œr �, the Œr �–entry of the k th map is a pushout as in (3.1.6.1). There
is a commutative ladder diagram in M†Œr � :

A.Œr �/

f

��

A0.Œr �/

f0

��

hA
1
// A1.Œr �/

f1

��

hA
2
// � � � // colim Ak.Œr �/DA1.Œr �/

f1
��

B.Œr �/ B0.Œr �/
hB

1
// B1.Œr �/

hB
2
// � � � // colim Bk.Œr �/D B1.Œr �/

We now argue that all the horizontal maps hA
k

and hB
k

are cofibrations in M†Œr � , and
all the objects in the ladder diagram are cofibrant in M†Œr � . Each coproduct summand
map on the left of (3.1.6.1) is a † Œr � –cofibration since

.�/ �Aut.T;ds/† Œr � WMAut.T;ds/
�!M†Œr �

is a left Quillen functor and each id˝i�k is an Aut.T; ds/–cofibration by Lemma 3.1.8.
But cofibrations are closed under coproducts and pushouts, so each hA

k
and hB

k
is

a cofibration in M†Œr � . The fact that all objects are cofibrant now follows from the
†–cofibrancy of A and B .

By [15, Proposition 15.10.12(1)], in order to show that the map f1 is a weak equiv-
alence between cofibrant objects in M†Œr � , it suffices to show that all the vertical
maps fk , with 0� k <1, are weak equivalences by induction on k .

The map f0 is a weak equivalence by assumption. Suppose k � 1. Consider the
commutative cube in M†Œr � , where the coproducts are taken over the same sets of
trees as in (3.1.6.1):`˚�N

A.u/
�
˝Qk

k�1

	
�Aut.T;ds/†Œr �

`
.Id˝i�k/�

��

f� --

// Ak�1.Œr �/
fk�1

��

��

`˚�N
B.u/

�
˝Qk

k�1

	
�Aut.T;ds/†Œr �

��

// Bk�1.Œr �/

��

`˚�N
A.u/

�
˝Y ˝k

	
�Aut.T;ds/†Œr �

f� --

// Ak.Œr �/
fk

��`˚�N
B.u/

�
˝Y ˝k

	
�Aut.T;ds/†Œr �

// Bk.Œr �/

Both the back face (with As) and the front face (with B s) are pushout squares, and
the maps from the back square to the front square are all induced by f . Moreover,
fk�1 is a weak equivalence by the induction hypothesis. By Lemma 3.1.8, all the
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objects in the diagram are cofibrant in M† Œr � , and the vertical and diagonal maps are
† Œr � –cofibrations. To see that fk in the above diagram is a weak equivalence, it is
enough to show, by the cube lemma [16, Lemma 5.2.6], that both maps labeled as f�
are weak equivalences.

To see that the top f� in the above diagram is a weak equivalence, note that a coprod-
uct of weak equivalences between cofibrant objects is again a weak equivalence by
Ken Brown’s lemma [16, Lemma 1.1.12]. The left Quillen functor (Definition 3.1.4)
.�/ �Aut.T;ds/† Œr � takes Aut.T; ds/–cofibrations between Aut.T; ds/–cofibrant objects
to † Œr � –cofibrations between † Œr � –cofibrant objects. Now Ken Brown’s lemma again
says that it is enough to show that within each coproduct summand, the map

(3.1.9.2)
hO

A.u/
i
˝Qk

k�1

f�
���!

hO
B.u/

i
˝Qk

k�1

is a weak equivalence between Aut.t; ds/–cofibrant objects. Recall that weak equiva-
lences in any diagram category in M are defined entrywise. The maphO

A.u/
i

f�
���!

hO
B.u/

i
is a finite tensor product of entries of f , each of which is a weak equivalence in M.
So this f� is a weak equivalence between cofibrant objects, and tensoring this map
with Qk

k�1
yields a weak equivalence.

A similar argument with Y ˝k in place of Qk
k�1

shows that the bottom f� in the
commutative diagram is also a weak equivalence. Therefore, as discussed above, fk is
a weak equivalence, finishing the induction.

Theorem 3.1.10 If M is a nice monoidal model category, then the cofibrantly gener-
ated model structure on Alg.OpC/Š OperadC in Corollary 2.6.10 is left proper relative
to the class of †–cofibrant operads.

Proof The set of generating cofibrations in Alg.OpC/Š OperadC is OpC B I, where I

is the set of generating cofibrations in MN.C/ , each of which is concentrated in one
entry and is a generating cofibration of M there. A general cofibration in Alg.OpC/

is a retract of a relative .OpC B I/–cell complex. So a retract and transfinite induction
argument reduces the proof to the situation in Lemma 3.1.9.

Remark 3.1.11 An anonymous referee has pointed out that an alternative proof of
Lemma 3.1.9 and Theorem 3.1.10 can be obtained using the machinery developed
in [1]. Specifically, a modification of the proof of [1, Theorem 8.1], together with [1,
Theorem 2.11, Proposition 2.14] would reproduce these results. The filtration on the
pushout (3.1.9.1) would be different from the one we have used here, instead being
based on “classifiers.”
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4 Categories of operads are not left proper

In this section, we present an illuminating counterexample to the category of C–colored
operads being left proper. The example is due to Bill Dwyer, and we thank him for
allowing us to present it in this paper.

Let M be the category of simplicial sets with the standard (Kan) model category
structure, and fix CD f�g. In other words, we are working in just regular simplicial
operads. Let ¿ denote the initial operad, and let ¿C denote the operad constructed by
attaching a singleton in arity 0. In other words,

¿.n/D
�
fidg nD 1;

¿ n¤ 1;
¿C.n/D

8<:
� nD 0;

fidg nD 1;

¿ n> 1:

The inclusion i W ¿!¿C is a cofibration of operads.

Given an operad A, we can construct the pushout

¿

i

��

// A

��

¿C // AC

where AC.0/D j̀ A.j /=†j , and the map A!AC is a cofibration of simplicial op-
erads. If OperadC were left proper, then in the pushout diagram

¿

i

��

// A

��

f
// B

��

¿C // AC
fC
// BC

we would have that if f is a weak equivalence, then fC is a weak equivalence.
Taking A to be an E1–operad and B to be the commutative operad, we know that
f W A! B is a weak equivalence. On the other hand, in arity 0, fC is the map

fC.0/W
a
j

A.j /=†j D

a
j

E†j=†j D

a
j

B†j �!

a
j

B.j /=†j D

a
j

�:

This is not a weak equivalence since B†j is not contractible for j > 1.
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