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Finite-type invariants of w-knotted objects, I:
w-knots and the Alexander polynomial

DROR BAR-NATAN

ZSUZSANNA DANCSO

This is the first in a series of papers studying w-knots, and more generally, w-knotted
objects (w-braids, w-tangles, etc). These are classes of knotted objects which are
wider, but weaker than their “usual” counterparts.

The group of w-braids was studied (under the name “welded braids”) by Fenn,
Rimanyi and Rourke and was shown to be isomorphic to the McCool group of “basis-
conjugating” automorphisms of a free group Fn : the smallest subgroup of Aut.Fn/

that contains both braids and permutations. Brendle and Hatcher, in work that traces
back to Goldsmith, have shown this group to be a group of movies of flying rings
in R3 . Satoh studied several classes of w-knotted objects (under the name “weakly-
virtual”) and has shown them to be closely related to certain classes of knotted
surfaces in R4 . So w-knotted objects are algebraically and topologically interesting.

Here we study finite-type invariants of w-braids and w-knots. Following Berceanu
and Papadima, we construct homomorphic universal finite-type invariants of w-braids.
The universal finite-type invariant of w-knots is essentially the Alexander polynomial.

Much as the spaces A of chord diagrams for ordinary knotted objects are related
to metrized Lie algebras, the spaces Aw of “arrow diagrams” for w-knotted objects
are related to not-necessarily-metrized Lie algebras. Many questions concerning
w-knotted objects turn out to be equivalent to questions about Lie algebras. Later in
this paper series we re-interpret the work of Alekseev and Torossian on Drinfel’d as-
sociators and the Kashiwara–Vergne problem as a study of w-knotted trivalent graphs.

57M25, 57Q45

1 Introduction

1.1 Dreams

We have a dream,1 at least partially founded on reality, that many of the difficult
algebraic equations in mathematics, especially those that are written in graded spaces,

1Understanding the authors’ history and psychology ought never be necessary to understand their
papers, yet it may be helpful. Nothing material in the rest of this paper relies on Section 1.1.
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more especially those that are related in one way or another to quantum groups, and
even more especially those related to the work of Etingof and Kazhdan [38], can be
understood, and indeed, would appear more natural, in terms of finite-type invariants
of various topological objects.

We believe this is the case for Drinfel’d’s theory of associators [34], which can be
interpreted as a theory of well-behaved universal finite-type invariants of parenthesized
tangles2 (see Le and Murakami [63], Bar-Natan [10]), and as a theory of universal
finite-type invariants of knotted trivalent graphs (see Dancso [32]).

We believe this is the case for Drinfel’d’s “Grothendieck–Teichmüller group” [35],
which is better understood as a group of automorphisms of a certain algebraic struc-
ture, also related to universal finite-type invariants of parenthesized tangles (see Bar-
Natan [11]).

And we’re optimistic, indeed we believe, that sooner or later the work of Etingof and
Kazhdan [38] on quantization of Lie bialgebras will be re-interpreted as a construction
of a well-behaved universal finite-type invariant of virtual knots (see Kauffman [54])
or of some other class of virtually knotted objects. Some steps in that direction were
taken by Haviv [49].

We have another dream, to construct a useful “algebraic knot theory”. As at least a
partial writeup exists (see Bar-Natan [12]), we’ll only state that an important ingredient
necessary to fulfil that dream would be a “closed form”3 formula for an associator, at
least in some reduced sense. Formulae for associators or reduced associators were in
themselves the goal of several studies undertaken for various other reasons (see Le and
Murakami [62], Lieberum [71], Kurlin [60] and Lee [65]).

1.2 Stories

Thus, the first named author, DBN, was absolutely delighted when in January 2008
Anton Alekseev described to him his joint work [2] with Charles Torossian: Anton told
DBN that they found a relationship between the Kashiwara–Vergne conjecture [52], a
cousin of the Duflo isomorphism (which DBN already knew to be knot-theoretic [21]),
and associators taking values in a space called sder, which he could identify as “tree-
level Jacobi diagrams”, also a knot-theoretic space related to the Milnor invariants (see
Bar-Natan [7], Habegger and Masbaum [45]). What’s more, Anton told DBN that in
certain quotient spaces the Kashiwara–Vergne conjecture can be solved explicitly; this
should lead to some explicit associators!

2“q –tangles” in Le and Murakami [63], “non-associative tangles” in Bar-Natan [10].
3The phrase “closed form” in itself requires an explanation. See Section 4.2.
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So DBN spent the following several months trying to understand [2], which eventually
led to this sequence of papers. One main thing we learned is that the Alekseev–Torossian
paper, and with it the Kashiwara–Vergne (KV) conjecture, fit very nicely with our first
dream described above, about interpreting algebra in terms of knot theory. Indeed
much of [2] can be reformulated as a construction and a discussion of a well-behaved
universal finite-type invariant4 Z of a certain class of knotted objects (which we will
call w-knotted), a certain natural quotient of the space of virtual knots more precisely,
virtual trivalent tangles); this will be the subject of the second paper in the series. It
is also possible to provide a topological interpretation (and independent topological
proof) of the formula of Alekseev, Enriquez and Torossian [1] for explicit solutions
to the KV problem in terms of associators. This will be done in the third paper. And
our hopes remain high that later we (or somebody else) will be able to exploit this
relationship in directions compatible with our second dream described above, on the
construction of an “algebraic knot theory”.

The story, in fact, is prettier than we were hoping for, as it has the following additional
qualities:

� w-knotted objects are quite interesting in themselves: as stated in the abstract,
they are related to combinatorial group theory via “basis-conjugating” automor-
phisms of a free group Fn , to groups of movies of flying rings in R3 , and more
generally, to certain classes of knotted surfaces in R4 . The references include
Goldsmith [40], McCool [74], Fenn, Rimányi and Rourke [39], Satoh [81], and
Brendle and Hatcher [28].

� The “chord diagrams” for w-knotted objects (really, these are “arrow diagrams”)
describe formulae for invariant tensors in spaces pertaining to not-necessarily-
metrized Lie algebras in much the same way as ordinary chord diagrams for
ordinary knotted objects describe formulae for invariant tensors in spaces per-
taining to metrized Lie algebras. This observation is bound to have further
implications.

� Arrow diagrams also describe the Feynman diagrams of topological BF theory
(see Cattaneo, Cotta-Ramusino, Fröhlich and Martellini [31; 30]) and of a certain
class of Chern–Simons theories (see Naot [76]). Thus, it is likely that our story
is directly related to quantum field theory.5

4The notation Z for universal finite-type invarants comes from the famous universal finite-type
invariant of classical links, the Kontsevich integral.

5Some non-perturbative relations between BF theory and w-knots was discussed by Baez, Wise and
Crans [5].
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� The main objective of this paper is to prove that when composed with the map
from knots to w-knots, Z becomes the Alexander polynomial. For links, it
becomes an invariant stronger than the multi-variable Alexander polynomial,
which contains the multi-variable Alexander polynomial as an easily identifiable
reduction.

� On other w-knotted objects Z has easily identifiable reductions that can be
considered as “Alexander polynomials” with good behaviour relative to various
knot-theoretic operations: cablings, compositions of tangles, etc. There is also a
certain specific reduction of Z that can be considered as an “ultimate Alexander
polynomial”; in the appropriate sense, it is the minimal extension of the Alexander
polynomial to other knotted objects which is well behaved under a whole slew
of knot theoretic operations, including the ones named above. See Bar-Natan
and Selmani [22], Bar-Natan [14].

� The true value of w-knots, though, is likely to emerge later, for we expect them
to serve as a warmup example for what we expect will be even more interesting:
the study of virtual knots, or v-knots. We expect v-knotted objects to provide the
global context whose associated graded structure will be the Etingof–Kazhdan
theory of deformation quantization of Lie bialgebras [38].

1.3 The bigger picture

Parallel to the w-story run the possibly more significant u-story and v-story. The u-story
is about u-knots, or more generally, u-knotted objects (braids, links, tangles, etc), where
“u” stands for usual; hence the u-story is about classical knot theory. The v-story is
about v-knots, or more generally, v-knotted objects, where “v” stands for virtual, in the
sense of Kauffman [54].

The stories of u-, v- and w-knotted objects are quite different from each other. Yet
they can be told along similar lines: first the knots (topology), then their finite-type
invariants and their “chord diagrams” (combinatorics), then those map into certain
universal enveloping algebras and similar spaces associated with various classes of Lie
algebras (low algebra), and finally, in order to construct a “good” universal finite-type
invariant, in each case one has to confront a certain deeper algebraic subject (high
algebra). These stories are summarized in table form in Figure 1.

u-Knots map into v-knots, and v-knots map into w-knots.6 The other parts of our
stories, the “combinatorics” and “low algebra” and “high algebra” rows of Figure 1,

6Though the composition “u! v! w” is not 0 . In fact, the composed map u! w is injective.
u-Knots, for example, are determined by the fundamental groups of their complements plus “peripheral
systems” (or alternatively, by their “quandles” as in Joyce [50]), and this information is easily recovered
from the w-knot images of u-knots. Similar considerations apply to other classes of u-knotted objects.
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u-knots �! v-knots �! w-knots

To
po

lo
gy

Ordinary (usual) knotted
objects in 3D: braids,
knots, links, tangles,
knotted graphs, etc.

Virtual knotted objects:
“algebraic” knotted
objects, or “not
specifically embedded”
knotted objects; knots
drawn on a surface,
modulo stabilization.

Ribbon knotted objects
in 4D; “flying rings”.
Like v, but also with
“overcrossings
commute”.

C
om

bi
na

to
ri

cs Chord diagrams and
Jacobi diagrams, modulo
4T , STU, IHX, etc.

Arrow diagrams and
v-Jacobi diagrams,
modulo 6T and various
“directed” STUs and
IHXs, etc.

Like v, but also with
“tails commute”. Only
“two in one out” internal
vertices.

L
ow

er
al

ge
br

a Finite-dimensional
metrized Lie algebras,
representations, and
associated spaces.

Finite-dimensional Lie
bialgebras,
representations, and
associated spaces.

Finite-dimensional
co-commutative Lie
bialgebras (ie gË g�),
representations, and
associated spaces.

H
ig

he
ra

lg
eb

ra The Drinfel’d theory of
associators.

Likely, quantum groups
and the Etingof–Kazhdan
theory of quantization of
Lie bialgebras.

The Kashiwara–Vergne–
Alekseev–Torossian
theory of convolutions
on Lie groups and Lie
algebras.

Figure 1: The u-v-w stories

are likewise related, and this relationship is a crucial part of our overall theme. Thus,
we cannot and will not tell the w-story in isolation, and while it is central to this article,
we will necessarily also include some episodes from the u and v series.

1.4 Plans

In this paper we study w-braids and w-knots; the main result is Theorem 3.26, which
states that the universal finite-type invariant of w-knots is essentially the Alexander
polynomial. However, starting with braids and taking a classical approach to finite-type
invariants, this paper also serves as a gentle introduction to the subsequent papers
and in particular to [16], where we will present a more algebraic point of view. For
more detailed information on the content consult the first summary paragraphs at the
beginning of each section or here below. An “Odds and ends” section follows the main
sections.
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Section 2, w-braids This section is largely a compilation of existing literature, though
we also introduce the language of arrow diagrams that we use throughout the rest of
the paper. In Sections 2.1 and 2.2 we define v-braids and then w-braids and survey
their relationship with basis-conjugating automorphisms of free groups and with “the
group of (horizontal) flying rings in R3 ” (really, a group of knotted tubes in R4 ).
In Section 2.3 we play the usual game of introducing finite-type invariants, weight
systems, chord diagrams (arrow diagrams, for this case), and 4T –like relations. In
Section 2.4 we define and construct a universal finite-type invariant Z for w-braids; it
turns out that the only algebraic tool we need to use is the formal exponential function
exp.a/ WD

P
an=n!. In Section 2.5 we study some good algebraic properties of Z , its

injectivity, and its uniqueness, and we conclude with the slight modifications needed
for the study of non-horizontal flying rings.

Section 3, w-knots In Section 3.1 we define v-knots and w-knots (long v-knots and
long w-knots, to be precise) and discuss a map v! w . In Section 3.2 we determine
the space of “chord diagrams” for w-knots to be the space Aw."/ of arrow diagrams
modulo

�!
4T and TC relations, and in Section 4.1 we compute some relevant dimensions.

In Section 3.4 we show that Aw."/ can be re-interpreted as a space of trivalent
graphs modulo STU– and IHX–like relations, and is therefore related to Lie algebras
(Section 3.5). This allows us to completely determine Aw."/. With no difficulty in
Section 3.3 we construct a universal finite-type invariant for w-knots. With a bit of
further difficulty we show in Section 3.6 that it is essentially equal to the Alexander
polynomial.

Acknowledgements We wish to thank the anonymous referee, Anton Alekseev, Jana
Archibald, Scott Carter, Karene Chu, Iva Halacheva, Joel Kamnitzer, Lou Kauffman,
Peter Lee, Louis Leung, Jean-Baptiste Meilhan, Dylan Thurston, Daniel Tubbenhauer
and Lucy Zhang for comments and suggestions.

This work was partially supported by NSERC grant RGPIN 262178. See [15] for
electronic version, videos (wClips) and related files.

2 w-braids

This section is largely a compilation of existing literature, though we also introduce the
language of arrow diagrams that we use throughout the rest of the paper. In Sections 2.1
and 2.2 we define v-braids and then w-braids and survey their relationship with basis-
conjugating automorphisms of free groups and with “the group of (horizontal) flying
rings in R3 ” (really, a group of knotted tubes in R4 ). In Section 2.3 we play the usual
game of introducing finite-type invariants, weight systems, chord diagrams (arrow
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diagrams, for this case), and 4T –like relations. In Section 2.4 we define and construct
a universal finite-type invariant Z for w-braids; it turns out that the only algebraic tool
we need to use is the formal exponential function exp.a/ WD

P
an=n!. In Section 2.5

we study some good algebraic properties of Z , its injectivity, and its uniqueness,
and we conclude with the slight modifications needed for the study of non-horizontal
flying rings.

2.1 Preliminary: virtual braids, or v-braids

Our main object of study for this section, w-braids, are best viewed as “virtual
braids” [24; 55; 25], or v-braids, modulo one additional relation; hence, we start
with v-braids.

It is simplest to define v-braids in terms of generators and relations, either algebraically
or pictorially. This can be done in at least two ways: the easier-at-first but philosophi-
cally less satisfying “planar” way, and the harder-to-digest but morally more correct
“abstract” way.7

2.1.1 The “planar” way For a natural number n set vBn to be the group generated
by symbols �i (1� i � n� 1), called “crossings” and graphically represented by an
overcrossing ! “between strand i and strand i C 1” (with inverse "),8 and si , called
“virtual crossings” and graphically represented by a non-crossing, P, also “between
strand i and strand i C 1”, subject to the following relations:

� The subgroup of vBn generated by the virtual crossings si is the symmetric
group Sn , and the si correspond to the transpositions .i; i C 1/. That is, we
have

(1) s2
i D 1; sisiC1si D siC1sisiC1; and if ji � j j> 1, then sisj D sj si :

In pictures, this is

(2)

i iC2iC1 i iC2iC1
i iC1 i iC1 i iC1 i iC1 j jC1j jC1

D D D � � �� � �, , .

7Compare with a similar choice that exists in the definition of manifolds, as either appropriate subsets
of some ambient Euclidean spaces (modulo some equivalences) or as abstract gluings of coordinate patches
(modulo some other equivalences). Here in the “planar” approach of Section 2.1.1 we consider v-braids
as “planar” objects, and in the “abstract approach” of Section 2.1.2 they are just “gluings” of abstract
“crossings”, not drawn anywhere in particular.

8We sometimes refer to ! as a “positive crossing” and to " as a “negative crossing”.
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Note that we read our braids from bottom to top, and that all relations (and most
pictures in this paper) are local: the braids may be bigger than shown but the
parts not shown remain the same throughout a relation.

� The subgroup of vBn generated by the crossings �i is the usual braid group
uBn , and �i corresponds to the “braiding of strand i over strand i C 1”. That
is, we have

(3) �i�iC1�i D �iC1�i�iC1; and if ji � j j> 1 then �i�j D �j�i :

In pictures, dropping the indices, this is

(4) DD � � �� � �and :

The first of these relations is the “Reidemeister 3 move”9 of knot theory. The
second is sometimes called “locality in space” [10].

� Some “mixed relations”, that is,

(5) si�
˙1
iC1si D siC1�

˙1
i siC1; and if ji � j j> 1, then si�j D �j si :

In pictures, this is

(6) D , andD D� � � � � � :

Remark 2.1 The “skeleton” of a v-braid B is the set of strands appearing in it,
retaining the association between their beginning and ends but ignoring all the crossing
information. More precisely, it is the permutation induced by tracing along B , and even
more precisely it is the image of B via the “skeleton morphism” & W vBn! Sn defined
by &.�i/ D &.si/ D si (or pictorially, by &.!/ D &.P/ D P). Thus, the symmetric
group Sn is both a subgroup and a quotient group of vBn .

Just as there are pure braids to accompany braids, there are pure virtual braids as well:

Definition 2.2 A pure v-braid is a v-braid whose skeleton is the identity permutation.
The group PvBn of all pure v-braids is simply the kernel of the skeleton morphism
& W vBn! Sn .

9The Reidemeister 2 move is the relation �i�
�1
i D 1 which is part of the definition of a group. There

is no Reidemeister 1 move in the theory of braids.
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We note the short exact sequence of group homomorphisms

(7) 1 �! PvBn ,�! vBn

&
�! Sn �! 1:

This short exact sequence splits, with the splitting given by the inclusion Sn ,! vBn

mentioned above (1). Therefore, we have that

(8) vBn D PvBn ÌSn:

2.1.2 The “abstract” way The relations (2) and (6) that govern the behaviour of
virtual crossings say precisely that virtual crossings really are “virtual”: if a piece of
strand is routed within a braid so that there are only virtual crossings around it, it can
be rerouted in any other “virtual only” way, provided the ends remain fixed (this is
Kauffman’s “detour move” [54; 55]). Since a v-braid B is independent of the routing
of virtual pieces of strand, we may as well never supply this routing information.

Thus, for example, a perfectly fair verbal description of the following (pure!) v-braid
is “strand 1 goes over strand 3 by a positive crossing then positively over strand 2 then
negatively over 3, then 2 goes positively over 1”.

1 2 3

We don’t need to specify how strand 1 got to be near strand 3 so that it can go over it;
it got there by means of virtual crossings, and it doesn’t matter how. Hence we arrive
at the following “abstract” presentation of PvBn and vBn .

Proposition 2.3 [24, Theorems 1 and 2] (1) The group PvBn of pure v-braids is
isomorphic to the group generated by symbols �ij for 1� i ¤ j � n (meaning

“strand i crosses over strand j at a positive crossing”),10 subject to the third
Reidemeister move and to locality in space (compare with (3) and (4)):�

�ij�ik�jk D �jk�ik�ij whenever jfi; j ; kgj D 3;

�ij�kl D �kl�ij whenever jfi; j ; k; lgj D 4:

(2) If � 2 Sn , then with the action ��ij WD �� i;�j we recover the semi-direct product
decomposition vBn D PvBn ÌSn . �

10The inverse, ��1
ij , is “strand i crosses over strand j at a negative crossing”.
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2.2 On to w-braids

To define w-braids, we break the symmetry between overcrossings and undercrossings
by imposing one of the “forbidden moves” in virtual knot theory, but not the other:

(9) �i�iC1si D siC1�i�iC1; yet si�iC1�i ¤ �iC1�isiC1:

Alternatively,
�ij�ik D �ik�ij ; yet �ik�jk ¤ �jk�ik :

In pictures, this is

(10)

i j k i j k i j ki j k

¤D yet .

The relation we have just imposed may be called the “unforbidden relation”, or, perhaps
more appropriately, the “overcrossings commute” relation, abbreviated OC. Ignoring
the non-crossings11

P, the OC relation says that it is the same if strand i first crosses
over strand j and then over strand k , or if it first crosses over strand k and then over
strand j . The “undercrossings commute” relation UC, the one we do not impose in (9),
would say the same except with “under” replacing “over”.

Definition 2.4 The group of w-braids is wBn WD vBn =OC. Note that & descends to
wBn , and hence we can define the group PwBn of pure w-braids to be the kernel of
the map & W wBn ! Sn . We still have a split exact sequence as in (7) and a thus, a
semi-direct product decomposition wBn D PwBn ÌSn .

Exercise 2.5 Show that the OC relation is equivalent to the relation

��1
i siC1�i D �iC1si�

�1
iC1; or D :

While for most of this paper the pictorial/algebraic definition of w-braids (and other
w-knotted objects) will suffice, we ought to describe at least briefly a few further
interpretations of wBn .

11Why this is appropriate was explained in the previous section.
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2.2.1 The group of flying rings Let Xn be the space of all placements of n numbered
disjoint geometric circles in R3 such that all circles are parallel to the xy plane. Such
placements will be called horizontal.12 A horizontal placement is determined by
the centres in R3 of the n circles and by n radii, so dim Xn D 3nC n D 4n. The
permutation group Sn acts on Xn by permuting the circles, and one may think of
the quotient zXn WD Xn=Sn as the space of all horizontal placements of n unmarked
circles in R3 . The fundamental group �1. zXn/ is a group of paths traced by n disjoint
horizontal circles (modulo homotopy), so it is fair to think of it as “the group of flying
rings”.

Theorem 2.6 The group of pure w-braids PwBn is isomorphic to the group of flying
rings �1.Xn/. The group wBn is isomorphic to the group of unmarked flying rings
�1. zXn/.

For the proof of this theorem, see [40; 81] and especially [28, Proposition 3.3]. Here
we will content ourselves with pictures describing the images of the generators of wBn

in �1. zXn/ and a few comments.

�i Dsi D

i i C 1 i i C 1

Thus, we map the permutation si to the movie clip in which ring number i trades places
with ring number i C 1 by having the two fly around each other. This acrobatic feat is
performed in R3 and it does not matter if ring number i goes “above” or “below” or
“left” or “right” of ring number iC1 when they trade places, as all of these possibilities
are homotopic. More interestingly, we map the braiding �i to the movie clip in which
ring i C 1 shrinks a bit and flies through ring i . It is a worthwhile exercise for the
reader to verify that the relations in the definition of wBn become homotopies of movie
clips. Of these relations it is most interesting to see why the “overcrossings commute”
relation �i�iC1si D siC1�i�iC1 holds, yet the “undercrossings commute” relation
��1

i ��1
iC1

si D siC1�
�1
i ��1

iC1
doesn’t.

Exercise 2.7 To be perfectly precise, we have to specify the fly-through direction. In
our notation, �i means that the ring corresponding to the strand going under (in the
local picture for �i ) approaches from below the bigger ring representing the strand

12For the group of non-horizontal flying rings see Section 2.5.4.
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going over, then flies through it and exists above. For ��1
i we are “playing the movie

backwards”, ie the ring of the strand going under comes from above and exits below
the ring of the “over” strand.

Let “the signed w braid group”, swBn , be the group of horizontal flying rings where
both fly-through directions are allowed. This introduces a “sign” for each crossing �i ,

i i C 1 i i C 1

C ��i� D�iC D

In other words, swBn is generated by si , �iC and �i� , for i D 1; : : : ; n� 1. Check
that �i� D si�

�1
iC si in swBn , and this, along with the other obvious relations implies

swBn Š wBn .

2.2.2 Certain ribbon tubes in R4 With time as the added dimension, a flying ring
in R3 traces a tube (an annulus) in R4 , as shown below:

i i C 1 i i C 1

si D �i D

Note that we adopt here the drawing conventions of Carter and Saito [29]: we draw
surfaces as if they were projected from R4 to R3 , and we cut them open whenever
they are “hidden” by something with a higher fourth coordinate.

Note also that the tubes we get in R4 always bound natural 3D “solids”; their “insides”,
in the pictures above. These solids are disjoint in the case of si and have a very specific
kind of intersection in the case of �i : these are transverse intersections with no triple
points, and their inverse images are a meridional disk on the “thin” solid tube and an
interior disk on the “thick” one. By analogy with the case of ribbon knots and ribbon
singularities in R3 (see eg [53, Chapter V]) and following Satoh [81], we call these
kinds of intersections of solids in R4 “ribbon singularities” and thus, our tubes in R4

are always “ribbon tubes”.

2.2.3 Basis conjugating automorphisms of Fn Let Fn be the free (non-abelian)
group with generators �1; : : : ; �n . Artin’s theorem [4, Theorems 15 and 16] says that
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the (usual) braid group uBn (equivalently, the subgroup of wBn generated by the �i )
has a faithful right action on Fn . In other words, uBn is isomorphic to a subgroup
H of Autop.Fn/ (the group of automorphisms of Fn with opposite multiplication,
ie  1 2 WD  2 ı 1 ). Precisely, using .�;B/ 7! � �B to denote the right action of
Autop.Fn/ on Fn , the subgroup H consists of those automorphisms BW Fn! Fn of
Fn that satisfy the following two conditions:

(1) B maps any generator �i to a conjugate of a generator (possibly different). That
is, there is a permutation ˇ 2 Sn and elements ai 2 Fn such that for every i ,

(11) �i �B D a�1
i �ˇ.i/ai :

(2) B fixes the ordered product of the generators of Fn ,

�1�2 � � � �n �B D �1�2 � � � �n:

McCool’s theorem13 [74] says that almost the same statement holds true14 for the
bigger group wBn : namely, wBn is isomorphic to the subgroup of Autop.Fn/ consisting
of automorphisms satisfying only the first condition above. So wBn is precisely the
group of “basis-conjugating” automorphisms of the free group Fn , the group of those
automorphisms which map any “basis element” in f�1; : : : ; �ng to a conjugate of a
(possibly different) basis element.

The relevant action is explicitly defined on the generators of wBn and Fn as follows (we
state how each generator of wBn acts on each generator of Fn , in each case omitting
the generators of Fn which are fixed under the action):

(12) .�i ; �iC1/� si D .�iC1; �i/;

.�i ; �iC1/� �i D .�iC1; �iC1�i�
�1
iC1/;

�j � �ij D �i�j�
�1
i :

It is a worthwhile exercise to verify that � respects the relations in the definition of
wBn and that the permutation ˇ in (11) is the skeleton &.B/.

There is a more conceptual description of � in terms of the structure of wBnC1 .
Consider the inclusions

(13) wBn
�
,�! wBnC1

iu
 �- Fn:

Here � is the inclusion of wBn into wBnC1 by adding an inert .nC 1/st strand (it is
injective as it has a well-defined one sided inverse: the deletion of the .nC1/st strand).

13Strictly speaking, the main theorem of [74] is about PwBn , yet it can easily be restated for wBn .
14Though see Warning 2.8.
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The inclusion iu of the free group Fn into wBnC1 is defined by iu.�i/ WD �i;nC1 ,
depicted as follows:

1 i iC1 n nC1
� � � � � �

�i 7!

The image iu.Fn/� wBnC1 is the set of all w-braids whose first n strands are straight
and vertical, and whose .nC 1/st strand wanders among the first n strands mostly
virtually (ie mostly using virtual crossings), occasionally slipping under one of those
n strands, but never going over anything. It is easier to see that this is indeed injective
using the “flying rings” picture of Section 2.2.1. The image iu.Fn/� wBnC1 can be
interpreted as the fundamental group of the complement in R3 of n stationary rings
(which is indeed Fn ); in iu.Fn/ the only ring in motion is the last, and it only goes
under, or “through”, other rings, so it can be replaced by a point object whose path is
an element of the fundamental group. The injectivity of iu follows from this geometric
picture.

One may explicitly verify that iu.Fn/ is normalized by �.wBn/ in wBnC1 (that is, the
set iu.Fn/ is preserved by conjugation by elements of �.wBn/). Thus, the following
definition, pictured as

B�1

B



makes sense: for B 2 wBn � wBnC1 and for  2 Fn � wBnC1 ,

(14)  �B WD i�1
u .B�1B/

It is a worthwhile exercise to recover the explicit formulae in (12) from the above
definition.

Warning 2.8 People familiar with the Artin story for ordinary braids should be warned
that even though wBn acts on Fn and the action is induced from the inclusions in (13)
in much the same way as the Artin action is induced by inclusions

uBn
�
,�! uBnC1

i
 �- Fn;

there are also some differences, and some further warnings apply:

� In the ordinary Artin story, i.Fn/ is the set of braids in uBnC1 whose first n

strands are unbraided (that is, whose image in uBn via “dropping the last strand”
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is the identity). This is not true for w-braids. For w-braids, in iu.Fn/ the last
strand always goes “under” all other strands (or just virtually crosses them), but
never “over”.

� Thus, unlike the isomorphism PuBnC1 Š PuBn ËFn , it is not true that PwBnC1

is isomorphic to PwBn ËFn .

� The OC relation imposed in wB breaks the symmetry between overcrossings
and undercrossings. Thus, let ioW Fn! wBn be the “opposite” of iu , mapping
into braids in which the last strand is always “over” or virtual. Then io is not
injective (its image is in fact abelian) and its image is not normalized by �.wBn/.
So there is no “second” action of wBn on Fn defined using io .

� For v-braids, both iu and io are injective and there are two actions of vBn on
Fn : one defined by first projecting into w-braids, and the other defined by first
projecting into v-braids modulo “undercrossings commute”. Yet v-braids contain
more information than these two actions can see. The “Kishino” v-braid below,
for example, is visibly trivial if either overcrossings or undercrossings are made
to commute, yet by computing its Kauffman bracket we know it is non-trivial as
a v-braid [15, “The Kishino braid”]:

a b

The commutator ab�1a�1b of v-braids a; b annihilated by OC/UC, respec-
tively, with a minor cancellation.

Problem 2.9 Are PvBn and PwBn semi-direct products of free groups? For PuBn ,
this is the well-known “combing of braids” and it follows from PuBnŠPuBn�1 ËFn�1

and induction.

Remark 2.10 Note that Gutiérrez and Krstić [44] have found “normal forms” for the
elements of PwBn , yet they do not decide whether PwBn is “automatic” in the sense
of [37].

2.3 Finite type invariants of v-braids and w-braids

Just as we had two definitions for v-braids (and thus, for w-braids) in Section 2.1, we
will give two equivalent developments of the theory of finite-type invariants of v-braids
and w-braids: a pictorial/topological version in Section 2.3.1, and a more abstract
algebraic version in Section 2.3.2.
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2.3.1 Finite type invariants: the pictorial approach In the standard theory of finite-
type invariants of knots, also known as Vassiliev or Goussarov–Vassiliev invariants
(see [83; 43; 6; 13]), one progresses from the definition of finite-type via iterated
differences to chord diagrams and weight systems, to 4T (and other) relations, to the
definition of universal finite-type invariants, and beyond. The exact same progression
(with different objects playing similar roles, and sometimes, when yet insufficiently
studied, with the last step or two missing) is also seen in the theories of finite-type
invariants of braids [9], 3–manifolds [77; 64; 61], virtual knots [42; 78] and of several
other classes of objects. We thus assume that the reader has familiarity with these basic
ideas, and we only indicate briefly how they are implemented in the case of v-braids
and w-braids.

Much like the formula  ! !�" of Vassiliev–Goussarov fame, given a v-braid
invariant V W vBn!A valued in some abelian group A, we extend it to “singular” v-
braids, ie braids that contain “semi-virtual crossings” like Q and R using the formulae
V .Q/ WD V .!/�V .P/ and V .R/ WD V ."/�V .P/ (see [42; 78; 20]). We say that
“V is of type m” if its extension vanishes on singular v-braids having more than
m semi-virtual crossings. Up to invariants of lower type, an invariant of type m is
determined by its “weight system”, which is a functional W D Wm.V / defined on
“m–singular v-braids modulo !DPD"”. Let us denote the vector space of all formal
linear combinations of such equivalence classes by GmDvn . Much as m–singular knots
modulo !D " can be identified with chord diagrams, the basis elements of GmDvn
can be identified with pairs .D; ˇ/, where D is a horizontal arrow diagram and ˇ is a
“skeleton permutation”, see Figure 2.

We assemble the spaces GmDvn together to form a single graded space,

Dvn WD
1M

mD0

GmDvn:

Note that throughout this paper, whenever we write an infinite direct sum, we auto-
matically complete it. Thus, in Dvn we allow infinite sums with one term in each
homogeneous piece GmDvn ; in particular, exponential-like sums will be heavily used.

In the standard finite-type theory for knots, weight systems always satisfy the 4T

relation, and are therefore functionals on A WD D=4T . Likewise, in the case of v-
braids, weight systems satisfy the “6T relation” of [42; 78; 20], shown in Figure 3,
and are therefore functionals on Avn WD Dvn=6T . In the case of w-braids, the OC
relation (9) implies the “tails commute” (TC) relation on the level of arrow diagrams,
and in the presence of the TC relation, two of the terms in the 6T relation drop
out, and what remains is the “

�!
4T” relation. These relations are shown in Figure 4.
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i j k l i j k l

1 2 3 4

1 2 3 4
ˇ

D

1 2 3 4

1 2 3 4

Figure 2: On the left, a 3–singular v-braid and its corresponding 3–arrow
diagram. A self-explanatory algebraic notation for this arrow diagram is
.a12a41a23; 3421/ . Note that we regard arrow diagrams as graph-theoretic
objects, and hence, the two arrow diagrams on the right, whose underlying
graphs are the same, are regarded as equal. In algebraic notation this means
that we always impose the relation aij akl D aklaij when the indices i , j ,
k , and l are all distinct.

kji kji kji

C C

kji kji kji

C CD

aij aik C aij ajk C aikajk D aikaij C ajkaij C ajkaik

or Œaij ; aik �C Œaij ; ajk �C Œaik ; ajk �D 0:

Figure 3: The 6T relation. Standard knot theoretic conventions apply: only
the relevant parts of each diagram are shown; in reality each diagram may
have further vertical strands and horizontal arrows, provided the extras are the
same in all 6 diagrams. Also, the vertical strands are in no particular order —
other valid 6T relations are obtained when those strands are permuted in
other ways.

i j k i j k

D

i j k i j ki j k i j k

C CD

aij aik D aikaij aij ajk C aikajk D ajkaij C ajkaik

or Œaij ; aik �D 0: or Œaij C aik ; ajk �D 0:

Figure 4: The TC and the
�!
4T relations.

Thus, weight systems of finite-type invariants of w-braids are linear functionals on
Awn WD Dvn=TC;

�!
4T.
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The next question that arises is whether we have already found all the relations that
weight systems always satisfy. More precisely, given a degree m linear functional on
Avn D Dvn=6T (or Awn D Dvn=TC;

�!
4T), is it always the weight system of some type m

invariant V of v-braids (or w-braids)? As in every other theory of finite-type invariants,
the answer to this question is affirmative if and only if there exists a “universal finite-type
invariant” (or simply, an “expansion”) of v-braids (or w-braids), defined as follows.

Definition 2.11 An expansion for v-braids (or w-braids) is an invariant ZW vBn!Avn
(or ZW wBn!Awn ) satisfying the following “universality condition”:

� If B is an m–singular v-braid (or w-braid) and D 2 GmDvn is its underlying
arrow diagram as in Figure 2, then

Z.B/DDC .terms of degree >m/:

Indeed if Z is an expansion and W 2 GmA? ,15 the universality condition implies
that W ıZ is a finite-type invariant whose weight system is W . To go the other
way, if .Di/ is a basis of A consisting of homogeneous elements, if .Wi/ is the dual
basis of A? and .Vi/ are finite-type invariants whose weight systems are the Wi , then
Z.B/ WD

P
i DiVi.B/ defines an expansion.

In general, constructing a universal finite-type invariant is a hard task. For knots,
one uses either the Kontsevich integral or perturbative Chern–Simons theory (also
known as “configuration space integrals” [27] or “tinker-toy towers” [82]) or the rather
fancy algebraic theory of “Drinfel’d associators” (a summary of all those approaches
is in [23]). For homology spheres, this is the “LMO invariant” [64; 61] (also the
“Århus integral” [17; 18; 19]). For v-braids, an expansion exists by a difficult result of
P. Lee [66]. In contrast, as we shall see below, the construction of an expansion for
w-braids is quite easy.

2.3.2 Finite type invariants: the algebraic approach For any group G , one can
form the group algebra QG by allowing formal linear combinations of group elements
and extending multiplication linearly, where Q is the field of rational numbers.16 The
augmentation ideal is the ideal generated by differences, or equivalently, the set of
linear combinations of group elements whose coefficients sum to zero:

I WD
� kX

iD1

aigi W ai 2Q;gi 2G;

kX
iD1

ai D 0

�
:

15A? here denotes either Avn or Awn , or in fact any of many similar spaces that we will discuss later.
16The definitions in this subsection make sense over Z as well, but the main result of the next

subsection requires a field of characteristic 0 . For simplicity of notation we stick with Q .
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Powers of the augmentation ideal provide a filtration of the group algebra. We denote
by

A.G/ WD
M
m�0

Im=ImC1

the associated graded space corresponding to this filtration.

Definition 2.12 An expansion for the group G is a map ZW G!A.G/ such that the
linear extension ZW QG!A.G/ is filtration-preserving and the induced map

gr ZW .gr QG DA.G//! .gr A.G/DA.G//

is the identity. An equivalent way to phrase this is that the degree m piece of Z

restricted to Im is the projection onto Im=ImC1 .

Exercise 2.13 Verify that for the groups PvBn and PwBn the mth power of the
augmentation ideal coincides with the span of all resolutions of m–singular v- or w-
braids (by a resolution we mean the formal linear combination where each semivirtual
crossing is replaced by the appropriate difference of a virtual and a regular crossing, as
in Figure 2). Then check that the notion of expansion defined above is the same as that
of Definition 2.11, restricted to pure braids.

Finally, note the functorial nature of the construction above. What we have described
is a functor gr from the category of groups to the category of graded algebras, which
assigns to each group G the graded algebra A.G/. To each homomorphism �W G!H ,
gr assigns the induced map

gr �W .A.G/D gr QG/! .A.H /D gr QH /:

2.4 Expansions for w-braids

The space Awn of arrow diagrams on n strands is an associative algebra in an ob-
vious manner: if the permutations underlying two arrow diagrams are the identity
permutations, then we simply juxtapose the diagrams. Otherwise we “slide” arrows
through permutations in the obvious manner: if � is a permutation, we declare that
�a.� i/.�j/ D aij� . Instead of seeking an expansion wBn!Awn , we set the bar a little
higher and seek a “homomorphic expansion”, defined as follows.

Definition 2.14 A homomorphic expansion ZW wBn ! Awn is an expansion that
carries products in wBn to products in Awn .
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To find a homomorphic expansion, we just need to define it on the generators of wBn

and verify that it satisfies the relations defining wBn and the universality condition.
Following [26, Section 5.3] and [2, Section 8.1] we set Z.P/DP (that is, a transpo-
sition in wBn gets mapped to the same transposition in Awn , adding no arrows) and
Z.!/D exp.S/P. (Recall that we work in the degree completion.) This last formula
is important so deserves to be magnified, explained and replaced by some new notation:

(15) Z
�
!

�
D exp

�
S

�
�PD C C

1

2
C

1

3!
C � � �

DW
ea :

Thus the new notation ea

�! stands for an “exponential reservoir” of parallel arrows,
much like

ea
D 1C aC aa=2C aaa=3!C � � �

is a “reservoir” of a’s. With the obvious interpretation for e�a

�! (that is, the � sign
indicates that the terms should have alternating signs, as in e�a D 1� aC a2=2�

a3=3!C � � � ), the second Reidemeister move !"D 1 forces that we set

Z
�
"

�
DP � exp

�
�S

�
D

e�a

D
e�a :

Theorem 2.15 The above formulae define an invariant ZW wBn ! Awn (that is, Z

satisfies all the defining relations of wBn ). The resulting Z is a homomorphic expansion
(that is, it satisfies the universality property of Definition 2.14).

Proof Following [26; 2]: for the invariance of Z , the only interesting relations to check
are the Reidemeister 3 relation of (4) and the OC relation of (10). For Reidemeister 3,
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we have

D
Z

ea
ea

ea

eaea

ea

D ea12ea13ea23�
1
D ea12Ca13ea23�

2
D ea12Ca13Ca23�;

where � is the permutation 321, equality 1 holds because a TC relation implies
Œa12; a13� D 0, and equality 2 holds because Œa12C a13; a23� D 0 by a

�!
4T relation.

Likewise, again using TC and
�!
4T,

D
Z

ea

ea

ea
ea

ea

ea

D ea23ea13ea12� D ea23ea13Ca12�

D ea23Ca13Ca12�;

and so Reidemeister 3 holds. An even simpler proof using just the TC relation shows
that the OC relation also holds. Finally, since Z is homomorphic, it is enough to check
the universality property at degree 1, where it is very easy:

Z
�
Q

�
D exp

�
S

�
�P�PDS �PC .terms of degree > 1/

A similar computation manages the R case.

Remark 2.16 Note that the main ingredient of the above proof was to show that
R WDZ.�12/D ea12 satisfies the famed Yang–Baxter equation,

R12R13R23
DR23R13R12;

where Rij means “place R on strands i and j ”.

2.5 Some further comments

2.5.1 Compatibility with braid operations As with any new gadget, we would like
to know how compatible the expansion Z of the previous section is with the gadgets
we already have; namely, with various operations that are available on w-braids and
with the action of w-braids on the free group Fn ; see Section 2.2.3.
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2.5.1.1 Z is compatible with braid inversion Let � denote both the “braid in-
version” operation � W wBn ! wBn defined by B 7! B�1 and the “antipode” anti-
automorphism � W Awn !Awn defined by mapping permutations to their inverses and
arrows to their negatives (that is, aij 7! �aij ). Then the diagram below commutes:

wBn
� //

Z
��

wBn

Z
��

Awn
�

// Awn

	

2.5.1.2 Braid cloning and the group-like property Let � denote both the “braid
cloning” operation �W wBn!wBn �wBn defined by B 7! .B;B/ and the “co-product”
algebra morphism �W Awn ! Awn ˝ Awn defined by cloning permutations (that is,
� 7! � ˝ � ) and by treating arrows as primitives (that is, aij 7! aij ˝ 1C 1˝ aij ).
Then the diagram below commutes:

wBn
� //

Z
��

wBn �wBn

Z�Z
��

Awn �
// Awn ˝Awn

	

In formulae, this is �.Z.B// D Z.B/˝Z.B/, which is the statement “Z.B/ is
group-like”.

2.5.1.3 Strand insertions Let �W wBn ! wBnC1 be an operation of “inert strand
insertion”. Given B 2 wBn , the resulting �B 2 wBnC1 will be B with one strand S

added at some location chosen in advance: to the left of all existing strands, or to the
right, or starting from between the 3rd and the 4th strand of B and ending between
the 6th and the 7th strand of B ; when adding S , add it “inert”, so that all crossings
on it are virtual (this is well-defined). There is a corresponding inert strand addition
operation �W Awn ! Aw

nC1
, obtained by adding a strand at the same location as for

the original � and adding no arrows. It is easy to check that Z is compatible with �;
namely, that the following diagram is commutative:

wBn
� //

Z
��

wBnC1

Z
��

Awn �
// Aw

nC1
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2.5.1.4 Strand deletions Given 1�k�n, let dk W wBn!wBn�1 be the operation of
“removing the k th strand”. This operation induces a homonymous operation dk W Awn !
Aw

n�1
: if D 2Awn is an arrow diagram, then dkD is D with its k th strand removed if

no arrows in D start or end on the k th strand, and it is 0 otherwise. It is easy to check
that Z is compatible with dk ; namely, that the diagram below is commutative:17

wBn
dk //

Z
��

wBn�1

Z
��

Awn
dk

// Aw
n�1

	

2.5.1.5 Compatibility with the action on Fn Let FAn denote the (degree-completed)
free, associative (but not commutative) algebra on the generators x1; : : : ;xn . Then
there is an “expansion” ZW Fn! FAn defined by �i 7! exi (see [72] and the related
“Magnus Expansion” of [73]). Also, there is a right action18 of Awn on FAn defined on
generators by xi� D x� i for � 2 Sn and by xj aij D Œxi ;xj � and xkaij D 0 for k ¤ j

and extended by the Leibniz rule to the rest of FAn and then multiplicatively to the
rest of Awn . This fits into the diagram below:

Fn V

Z
��

wBn

Z
��

FAn V
Awn

	

Exercise 2.17 Use the definition of the action in (14) and the commutative diagrams
of paragraphs 2.5.1.1, 2.5.1.2 and 2.5.1.3 to show that the diagram of paragraph 2.5.1.5
is also commutative.

17In [16] we’ll say that “dk W wBn! wBn�1 ” is an algebraic structure made of two spaces (wBn and
wBn�1 ), two binary operations (braid composition in wBn and in wBn�1 ), and one unary operation, dk .
After applying gr we get the algebraic structure dk W Awn !Aw

n�1
with dk as described above, and an

alternative way of stating our assertion is to say that Z is a morphism of algebraic structures. A similar
remark applies (sometimes in the negative form) to the other operations discussed in this section.

18In the language of [16], we will say that FAnDgr Fn and that when the actions involved are regarded
as instances of the algebraic structure “one monoid acting on another”, we have that .FAnVAwn / D
gr .FnVwBn/ .
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2.5.1.6 Unzipping a strand Given k between 1 and n, let uk W wBn! wBnC1 be
the operation of “unzipping the k th strand”, briefly defined as follows:19

C
k uk

k
ukk

uk

DW xCyCWD

The induced operation uk W Awn !Aw
nC1

is also shown: if an arrow starts (or ends) on
the strand being doubled, it is replaced by a sum of two arrows that start (or end) on
either of the two “daughter strands”. This is performed for each arrow independently;
so if there are t arrows touching the k th strands in a diagram D , then ukD will be a
sum of 2t diagrams.

In some sense, much of this current series of papers as well as the works of Kashiwara
and Vergne [52] and Alekseev and Torossian [2] are about coming to grips with the
fact that Z is not compatible with uk ; that is, the diagram

wBn
uk //

Z
��

wBnC1

Z
��

Awn uk

// Aw
nC1

6	

is not commutative. Indeed, let x WD a13 and y WD a23 be as above, and let s be the
permutation 21 and � the permutation 231. Then d1Z.!/ D d1.e

a12s/ D exCy� ,
while Z.d1!/D eyex� . So the failure of d1 and Z to commute is the ill behaviour
of the exponential function when its arguments do not commute, which is measured by
the BCH formula, central to both [52] and [2].

2.5.2 Power and injectivity The following theorem is due to Berceanu and Pa-
padima [26, Theorem 5.4]; a variant of this theorem is also true for ordinary braids [57;
7; 45], and can be proven by similar means.

Theorem 2.18 ZW wBn ! Awn is injective. In other words, finite-type invariants
separate w-braids.

Proof The statement follows immediately from the faithfulness of the action FnVwBn ,
from the compatibility of Z with this action, and from the injectivity of ZW Fn! FAn

19Unzipping a knotted zipper turns a single band into two parallel ones. This operation is also known as
“strand doubling”, but for compatibility with operations that will be introduced later, we prefer “unzipping”.
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(the latter is well known, see eg [73, Theorem 5.6]20 and [72]). Indeed, if B1 and B2

are w-braids and Z.B1/DZ.B2/, then Z.�/Z.B1/DZ.�/Z.B2/ for any � 2 Fn .
Therefore 8� , Z.� �B1/ D Z.� �B2/, therefore 8� , � �B1 D � �B2 , therefore
B1 D B2 .

Remark 2.19 Apart from the easy fact that Awn can be computed degree by degree in
exponential time, we do not know a simple formula for the dimension of the degree
m piece of Awn or a natural basis of that space. This compares unfavourably with the
situation for ordinary braids (see eg [9]). Also compare with Problem 2.9 and with
Remark 2.10.

2.5.3 Uniqueness There is certainly not a unique expansion for w-braids: if Z1 is an
expansion and P is any degree-increasing linear map Aw!Aw (a “pollution” map),
then Z2 WD .I CP / ıZ1 is also an expansion, where I W Aw ! Aw is the identity.
But that’s all, and if we require a bit more, even that freedom disappears.

Proposition 2.20 If Z1;2W wBn ! Awn are expansions then there exists a degree-
increasing linear map P W Aw!Aw such that Z2 D .I CP / ıZ1 .

Sketch of proof Let bwBn be the unipotent completion of wBn . That is, let QwBn

be the algebra of formal linear combinations of w-braids, let I be the ideal in QwBn

generated by QD!�P and by RDP�", and set

bwBn WD lim
 ��

m!1

QwBn =Im:

Here bwBn is filtered with

Fm bwBn WD lim
 ��

m0>m

Im=Im0 :

An “expansion” can be re-interpreted as an “isomorphism of bwBn and Awn as filtered
vector spaces”. Always, any two isomorphisms differ by an automorphism of the target
space, and that’s the essence of I CP .

Proposition 2.21 If Z1;2W wBn! Awn are homomorphic expansions that commute
with braid cloning (Section 2.5.1.2) and with strand insertion (Section 2.5.1.3), then
Z1 DZ2 .

20Though notice that we use �i 7! exi whereas [73, Theorem 5.6] uses �i 7! 1Cxi . The injectivity
proof of [73] holds in our case just as well.
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Sketch of proof A homomorphic expansion that commutes with strand insertions is
determined by its values on the generators !, " and P of wB2 . Commutativity with
braid cloning (see Section 2.5.1.2) implies that these values must be, up to permuting
the strands, group-like: that is, the exponentials of primitives. But the only primitives
are a12 and a21 , and one may easily verify that there is only one way to arrange these
so that Z will respect P2 D! �"D 1 and Q 7!SC .higher degree terms/.

2.5.4 The group of non-horizontal flying rings Let Yn denote the space of all
placements of n numbered disjoint oriented unlinked geometric circles in R3 . Such a
placement is determined by the centres in R3 of the circles, the radii, and a unit normal
vector for each circle pointing in the positive direction, so dim YnD 3nCnC3nD 7n.
Sn ËZn

2
acts on Yn by permuting the circles and mapping each circle to its image in

either an orientation-preserving or an orientation-reversing way. Let zYn denote the
quotient Yn=SnËZn

2
. The fundamental group �1. zYn/ can be thought of as the “group

of flippable flying rings”. Without loss of generality, we can assume that the basepoint
is chosen to be a horizontal placement. We want to study the relationship of this group
to wBn .

Theorem 2.22 The group �1. zYn/ is a Zn
2

–extension of wBn , generated by si , �i

(1 � i � n� 1/, and wi (“flips”) for 1 � i � n, with the relations as above, and in
addition:

w2
i D 1I wiwj D wjwi I wj si D siwj when i ¤ j ; j C 1I

wisi D siwiC1I wiC1si D siwi I wj�i D �iwj if j ¤ i; i C 1I

wiC1�i D �iwi I yet wi�i D si�
�1
i siwiC1:

The two most interesting flip relations in pictures:

(16) DD yet .
w

i

w

i
i

w

w

i
iC1 iC1

iC1 iC1

Instead of a proof, we provide some heuristics. Since each circle starts out in a horizontal
position and returns to a horizontal position, there is an integer number of “flips” they
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do in between; these are the generators wi , as shown below:

i

wwi D

The first relation says that a double flip is homotopic to doing nothing. Technically,
there are two different directions of flips, and they are the same via this (non-obvious
but true) relation. The rest of the first line is obvious: flips of different rings commute,
and if two rings fly around each other while another one flips, the order of these events
can be switched by homotopy. The second line says that if two rings trade places with
no interaction while one flips, then the order of these events can be switched as well.
However, we have to re-number the flip to conform to the strand labelling convention.

The only subtle point is how flips interact with crossings. First of all, if one ring flies
through another while a third one flips, the order clearly does not matter. If a ring flies
through another and also flips, the order can be switched. However, if ring A flips and
then ring B flies through it, this is homotopic to ring B flying through ring A from
the other direction and then ring A flipping. In other words, commuting �i with wi

changes the “sign of the crossing” in the sense of Exercise 2.7. This gives the last, and
the only truly non-commutative flip relation.

To explain why the flip is denoted by w , let us consider the alternative description by
ribbon tubes. A flipping ring traces a so-called wen21 in R4 . A wen is a Klein bottle
cut along a meridian circle, as shown below. The wen is embedded in R4 .

Finally, note that �1Yn is exactly the pure w-braid group PwBn : since each ring has to
return to its original position and orientation, each does an even number of flips. The
flips (or wens) can all be moved to the bottoms of the braid diagram strands (to the
bottoms of the tubes, to the beginning of words), at a possible cost, as specified by
Equation (16). Once together, they pairwise cancel each other. As a result, this group
can be thought of as not containing wens at all.

21The term wen was coined by Kanenobu and Shima in [51].
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2.5.5 The relationship with u-braids For the sake of ignoring strand permutations,
we restrict our attention to pure braids.

By Section 2.3.2, for any expansion ZuW PuBn!Au
n , where PuBn is the “usual” braid

group and Au
n is the algebra of horizontal chord diagrams on n strands, there is a

square of maps as follows:

PuB Zu
//

a

��

Au

˛
��

PwB Zw
// Aw

Here Zw is the expansion constructed in Section 2.4, the left vertical map a is the
composition of the inclusion and projection maps PuBn! PvBn! PwBn . The map ˛
is the induced map by the functoriality of gr, as noted after Exercise 2.13. The reader
can verify that ˛ maps each chord to the sum of its two possible directed versions.

Note that this square is not commutative for any choice of Zu even in degree 2: the
image of a crossing under Zw is outside the image of ˛ .

More specifically, for any choice c of a “parenthesization” of n points, the KZ-
construction/Kontsevich integral (see for example [10]) returns an expansion Zu

c of
u-braids:

PuBn

Zu
c //

a

��

Au
n

˛

��
PwB Zw

// Awn

We shall see in [16, Proposition 4.15] that for any choice of c , the two compositions
˛ ıZu

c and Zw ı a are “conjugate in a bigger space”: there is a map i from Aw to a
larger space of “non-horizontal arrow diagrams”, and in this space the images of the
above composites are conjugate. However, we are not certain that i is an injection, and
whether the conjugation leaves the i –image of Aw invariant, and so we do not know
if the two compositions differ merely by an outer automorphism of Aw .

3 w-knots

In Section 3.1 we define v-knots and w-knots (long v-knots and long w-knots, to be
precise) and discuss a map v! w . In Section 3.2 we determine the space of “chord
diagrams” for w-knots to be the space Aw."/ of arrow diagrams modulo

�!
4T and TC

relations, and in Section 4.1 we compute some relevant dimensions. In Section 3.4 we
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show that Aw."/ can be re-interpreted as a space of trivalent graphs modulo STU– and
IHX–like relations, and is therefore related to Lie algebras (Section 3.5). This allows
us to completely determine Aw."/. With no difficulty in Section 3.3 we construct a
universal finite-type invariant for w-knots. With a bit of further difficulty we show in
Section 3.6 that it is essentially equal to the Alexander polynomial.

Knots are the wrong objects for study in knot theory, v-knots are the wrong objects
for study in the theory of v-knotted objects and w-knots are the wrong objects for study
in the theory of w-knotted objects. Studying uvw-knots on their own is the parallel
of studying cakes, cookies and pastries as they come out of the bakery: we sure want
to make them our own, but the theory of desserts is more about the ingredients and
how they are put together than about the end products. In algebraic knot theory this
reflects through the fact that knots are not finitely generated in any sense (hence, they
must be made of some more basic ingredients), and through the fact that there are very
few operations defined on knots (connected sums and satellite operations being the
main exceptions), and thus, most interesting properties of knots are transcendental,
or non-algebraic, when viewed from within the algebra of knots and operations on
knots [12].

The right objects for study in knot theory, or v-knot theory or w-knot theory, are thus
the ingredients that make up knots and that permit a richer algebraic structure. These
are braids, studied in the previous section, and even more so tangles and tangled graphs,
studied in [16]. Yet tradition has its place and the sweets are tempting, and we can
introduce and apply some of the tools we will use in the deeper and healthier study of
w-tangles and w-tangled foams in the limited, but tasty, arena of the baked goods of
knot theory, the knots themselves.

3.1 v-knots and w-knots

v-knots may be understood either as knots drawn on surfaces modulo the addition or
removal of empty handles [59], or as “Gauss diagrams” (see Remark 3.4), or simply
“unembedded but wired together” crossings modulo the Reidemeister moves (see [54;
80] and [16, Section 2]). But right now we forgo the topological and the abstract and
give only the “planar” (and somewhat less philosophically satisfying) definition of
v-knots.

Definition 3.1 A “long v-knot diagram” is an arc smoothly drawn in the plane from
�1 to C1, with finitely many self-intersections, divided into “virtual crossings” P,
overcrossings ! (aka positive crossings), and undercrossings " (aka negative cross-
ings); and regarded up to planar isotopy.
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D

Figure 5: A long v-knot diagram with 2 virtual crossings, 2 positive crossings
and 2 negative crossings. A positive-negative pair can easily be cancelled
using R2, and then a virtual crossing can be cancelled using VR1, and it
seems that the rest cannot be simplified any further.

A picture is worth more than a more formal definition, and one appears in Figure 5. A
“long v-knot” is an equivalence class of long v-knot diagrams, modulo the equivalence
generated by the Reidemeister 1s , 2 and 3 moves (R1s , R2 and R3),22 the virtual
Reidemeister 1 through 3 moves (VR1, VR2, VR3), and by the mixed relations (M);
all these are shown in Figure 6. Finally, “long w-knots” are obtained from long v-knots
by also dividing by the overcrossings commute (OC) relations, also shown in Figure 6.
Note that we never mod out by the Reidemeister 1 (R1) move nor by the undercrossings
commute relation (UC).

D

R3

¤

R1

D

R2

VR1

D

VR3

D
w
D ¤

M OC UC

R1s

D

D

VR2

D

Figure 6: The relations defining v-knots and w-knots, along with two relations
that are not imposed.

Definition and warning 3.2 A “circular v-knot” is like a long v-knot, except that it
is parametrized by a circle rather than by a long line. Unlike the case of usual knots,
circular v-knots are not equivalent to long v-knots [54]. The same applies to w-knots.

22 R1s is the “spun” version of R1: kinks can be spun around, but not removed outright. See Figure 6.
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Definition and warning 3.3 Long v-knots form a monoid using the concatenation
operation #. Unlike the case of usual knots, the resulting monoid is not abelian [54].
The same applies to w-knots.

Remark 3.4 A “Gauss diagram” is a straight “skeleton line” along with signed directed
chords (signed “arrows”) marked along it (more in [54; 42]). Gauss diagrams are in
obvious bijection with long v-knot diagrams; the skeleton line of a Gauss diagram
corresponds to the parameter space of the v-knot, and the arrows correspond to the
crossings, with each arrow heading from the upper strand to the lower strand, marked
by the sign of the relevant crossing:

32 4 1 2 4 3

C C

�

2 4 3 11

�

One may also describe the relations in Figure 6 as well as circular v-knots and other
types of v-knots (as we will encounter later) in terms of Gauss diagrams with varying
skeletons.

Remark 3.5 Since we do not mod out by R1, it is perhaps more appropriate to call
our class of v/w-knots “framed long v/w-knots”, but since we care more about framed
v/w-knots than about unframed ones, we reserve the unqualified name for the framed
case, and when we do wish to mod out by R1 we will explicitly write “unframed long
v/w-knots”.

Recall that in the case of “usual knots”, or u-knots, dropping the R1 relation altogether
also results in a Z2 –extension of unframed knot theory, where the two factors of Z
are framing and rotation number. If one wants to talk about “true” framed knots, one
mods out by the spun Reidemeister 1 relation (R1s of Figure 6), which preserves the
blackboard framing but does not preserve the rotation number. We take the analogous
approach here, including the R1s relation — but not R1 — in the v and w cases.

This said, note that the monoid of long v-knots is just a central extension by Z of
the monoid of unframed long v-knots, and so studying the framed case is not very
different from studying the unframed case. Indeed the four “kinks” of Figure 7 generate
a central Z within long v-knots, and it is not hard to show that the sequence

(17) 1 �! Z �! flong v-knotsg �! funframed long v-knotsg �! 1

is split and exact. The same can be said for w-knots.
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R;�:L;C: L;�: R;C:

Figure 7: The positive and negative under-then-over kinks (left), and the
positive and negative over-then-under kinks (right). In each pair the negative
kink is the #–inverse of the positive kink, where # denotes the concatenation
operation.

Exercise 3.6 Show that a splitting of the sequence (17) is given by the “self-linking”
invariant slW flong v-knotsg ! Z defined by

sl.K/ WD
X

crossings
x in K

sign x;

where K is a v-knot diagram, and the sign of a crossing x is defined so as to agree
with the signs in Figure 7.

Remark 3.7 Note that w-knots are strictly weaker than v-knots. A notorious example
is the Kishino knot (see eg [36]) which is non-trivial as a v-knot, yet both it and its mirror
are trivial as w-knots. Yet ordinary knots inject even into w-knots, as the Wirtinger
presentation makes sense for w-knots and therefore w-knots have a “fundamental
quandle” which generalizes the fundamental quandle of ordinary knots [54], and as the
fundamental quandle of ordinary knots separates ordinary knots [50, Corollary 16.3].

3.1.1 A topological construction of Satoh’s tubing map Following Satoh [81] and
using the same constructions as in Section 2.2.2, we can map w-knots to (“long”)
ribbon tubes in R4 (and the relations in Figure 6 still hold). It is natural to expect
that this “tubing” map is an isomorphism; in other words, that the theory of w-knots
provides a “Reidemeister framework” for long ribbon tubes in R4 : that every long
ribbon tube is in the image of this map and that two “w-knot diagrams” represent the
same long ribbon tube iff they differ by a sequence of moves as in Figure 6. This
remains unproven.

Let ıW fv-knotsg ! fRibbon tori in R4g denote the tubing map. In Satoh [81], ı is
called “Tube”. It is worthwhile giving a completely “topological” definition of ı . To
do this we must start with a topological interpretation of v-knots.

The standard topological interpretation of v-knots (see eg [59]) is that they are oriented
framed knots drawn23 on an oriented surface †, modulo “stabilization”, which is the
addition and/or removal of empty handles (handles that do not intersect with the knot).

23Here and below, “drawn on †” means “embedded in †� Œ��; ��”.
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We prefer an equivalent, yet even more bare-bones approach. For us, a virtual knot is
an oriented framed knot  drawn on a “virtual surface † for  ”. More precisely, † is
an oriented surface that may have a boundary,  is drawn on †, and the pair .†;  / is
taken modulo the following relations:

� Isotopies of  on † (meaning, in †� Œ��; ��).

� Tearing and puncturing parts of † away from  :

 

puncturing

isotopytearing
@†

†

(We call † a “virtual surface” because tearing and puncturing imply that we only care
about it in the immediate vicinity of  ).

We can now define24 a map ı , defined on v-knots and taking values in ribbon tori
in R4 . Given .†;  /, embed † arbitrarily in R3

xzt �R4 . Note that the unit normal
bundle of † in R4 is a trivial circle bundle and it has a distinguished trivialization,
constructed using its positive y–direction section and the orientation that gives each
fibre a linking number C1 with the base †. We say that a normal vector to † in R4

is “near unit” if its norm is between 1� � and 1C � . The near-unit normal bundle
of † has as fibre an annulus that can be identified with Œ��; ���S1 (identifying the
radial direction Œ1� �; 1C �� with Œ��; �� in an orientation-preserving manner), and
hence, the near-unit normal bundle of † defines an embedding of †� Œ��; ���S1

into R4 . On the other hand,  is embedded in †� Œ��; �� so  �S1 is embedded in
†� Œ��; ���S1 , and we can let ı. / be the composition

 �S1 ,!†� Œ��; ���S1 ,!R4;

which is a torus in R4 , oriented using the given orientation of  and the standard
orientation of S1 .

24Following a private discussion with Dylan Thurston.
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A framing of a knot (or a v-knot)  can be thought of as a “nearby companion” to  .
Applying the above procedure to a knot and a nearby companion simultaneously, we
find that ı takes framed v-knots to framed ribbon tori in R4 , where a framing of a
tube in R4 is a continuous up-to-homotopy choice of unit normal vector at every point
of the tube. Note that from the perspective of flying rings as in Section 2.2.1, a framing
is a “companion ring” to a flying ring. In the framing of ı. / the companion ring is
never linked with the main ring, but can fly parallel inside, outside, above or below it
and change these positions, as shown in Figure 8.

Figure 8: Framing as companion rings.

We leave it to the reader to verify that ı. / is ribbon, that it is independent of the
choices made within its construction, that it is invariant under isotopies of  and under
tearing and puncturing of †, that it is also invariant under the OC relation of Figure 6
and hence, the true domain of ı is w-knots, and that it is equivalent to Satoh’s tubing
map.

3.2 Finite type invariants of v-knots and w-knots

Much as for v-braids and w-braids (see Section 2.3) and much as for ordinary knots (see
eg [6]) we define finite-type invariants for v-knots and for w-knots using an alternation
scheme with Q! ! �P and R! P �". That is, given any invariant of v- or
w-knots taking values in an abelian group, we extend the invariant to v- or w-knots
also containing “semi-virtual crossings” like Q and R using the above assignments,
and we declare an invariant to be “of type m” if it vanishes on v- or w-knots with more
than m semi-virtuals. As for v- and w-braids and as for ordinary knots, such invariants
have an “mth derivative”, their “weight system”, which is a linear functional on the
space Asv."/ (for v-knots) or Asw."/ (for w-knots). We turn to the definitions of
these spaces, following [42; 20].

Definition 3.8 An “arrow diagram” is a chord diagram along a long line (called “the
skeleton”), in which the chords are oriented (hence “arrows”). An example is given in
Figure 9. Let Dv."/ be the space of formal linear combinations of arrow diagrams.
Let Av."/ be Dv."/ modulo all “6T relations”. Here a 6T relation is any (signed)
combination of arrow diagrams obtained from the diagrams in Figure 3 by placing the 3
vertical strands there along a long line skeleton in any order, and possibly adding some
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further arrows in between, as shown in Figure 9. Let Asv."/ be the further quotient of
Av."/ by the RI relation, where the RI (for rotation number independence) relation
asserts that an isolated arrow pointing to the right equals an isolated arrow pointing to
the left,25 as shown in Figure 9.

RI
D

C C

CC
6T
D

Figure 9: An arrow diagram of degree 6, a 6T relation, and an RI relation.
The dotted parts indicate that there may be more arrows on other parts of the
skeleton, however these remain the same throughout the relation.

Let Aw."/ be the further quotient of Av."/ by the TC relation, first displayed in
Figure 4 and reproduced for the case of a long line skeleton in Figure 10. Likewise,
let Asw."/ WDAsv."/=TCDAw."/=RI. Alternatively, noting that given TC two of
the terms in 6T drop out, Aw."/ is seen to be the space of formal linear combinations
of arrow diagrams modulo the TC and

�!
4T relations, displayed in Figures 4 and 10.

Likewise, Asw D Dv=TC;
�!
4T;RI. Finally, grade Dv."/ and all of its quotients by

declaring that the degree of an arrow diagram is the number of arrows in it.

As an example, the spaces Av;sv;w;sw."/ (that is, any of the spaces above) restricted
to degrees up to 2 are studied in detail in Section 4.3.

In the same manner as in the theory of finite-type invariants of ordinary knots (see
especially [6, Section 3]), the spaces A?."/ (meaning, all of the spaces above) carry
much algebraic structure. The juxtaposition product makes them into graded algebras.
The product of two finite-type invariants is a finite-type invariant (whose type is the sum
of the types of the factors); this induces a product on weight systems, and therefore a
co-product � on arrow diagrams. In brief (and much the same as in the usual finite-type
story), the co-product �D of an arrow diagram D is the sum of all ways of dividing
the arrows in D between a “left co-factor” and a “right co-factor”. In summary:

25 The XII relation of [20] follows from RI and need not be imposed.
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and

C

�!
4T
D

TC
D

C

Figure 10: The TC and the
�!
4T relations for knots.

Proposition 3.9 Av."/, Asv."/, Aw."/, and Asw."/ are co-commutative graded
bialgebras.

By the Milnor–Moore theorem [75, Theorem 6.11] we find that Av;sv;w;sw."/ are
the universal enveloping algebras of their Lie algebras of primitive elements (that is,
elements D such that �.D/D 1˝DCD˝ 1). Denote these (graded) Lie algebras
by Pv;sv;w;sw."/, respectively.

When we grow up we’d like to understand Av."/ and Asv."/. At the moment we
know only very little about these spaces beyond the generalities of Proposition 3.9.
In Section 4.1 some dimensions of low degree parts of Av;sv."/ are discussed. Also,
given a finite-dimensional Lie bialgebra and a finite-dimensional representation thereof,
we know how to construct linear functionals on Av."/ (one in each degree [49; 70]),
but not on Asv."/. But we don’t even know which degree m linear functionals on
Asv."/ are the weight systems of degree m invariants of v-knots (that is, we have not
solved the “Fundamental Problem” [23] for v-knots).

As we shall see below, the situation is much brighter for Aw;sw."/.

3.3 Expansions for w-knots

The notion of “an expansion” (or “a universal finite-type invariant”) for w-knots (or
v-knots) is defined in complete analogy with the parallel notion for usual knots (see
eg [6]), except replacing double points  with semi-virtual crossings Q and R, and
replacing chord diagrams by arrow diagrams. Alternatively, it is the same as an
expansion for w-braids (as in Definition 2.11), simply replacing w-braids by w-knots.
Just as in the cases of u-knots (ie ordinary knots) and/or w-braids, the existence of an
expansion ZW fw-knotsg!Asw."/ is equivalent to the statement “every weight system
integrates”, ie “every degree m linear functional on Asw."/ is the mth derivative of a
type m invariant of long w-knots”.
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Theorem 3.10 There exists an expansion ZW fw-knotsg !Asw."/.

Proof It is best to define Z by an example, and it is best to display the example only
as a picture:

44
eaZ

e�a

D
e�a

D
e�a ea

e�a

1 3 2 3

ea ea

e�aea

21 4 3 2 1

It is clear how to define Z.K/ in the general case: for every crossing in K place an
exponential reservoir of arrows (compare with Equation (15)) next to that crossing, with
the arrows heading from the upper strand to the lower strand, taking positive reservoirs
(ea , with a symbolizing the arrow) for positive crossings and negative reservoirs (e�a )
for negative crossings, and then tug the skeleton until it looks like a straight line. Note
that the TC relation in Asw is used to show that all reasonable ways of placing an
arrow reservoir at a crossing (with its heading and sign fixed) are equivalent:

D D D
ea

ea

ea
ea

The same proof that shows the invariance of Z in the braid case (see Theorem 2.15)
works here as well,26 and the same argument as in the braid case shows the universality
of Z .

Remark 3.11 Using the language of Gauss diagrams (Remark 3.4) the definition of
Z is even simpler. Simply map every positive arrow in a Gauss diagram to a positive
(ea ) reservoir, and every negative one to a negative (e�a ) reservoir:

Z�

C C

�
e�a

ea ea

e�a

An expansion (a universal finite-type invariant) is as interesting as its target space, for
it is just a tool that takes linear functionals on the target space to finite-type invariants
on its domain space. The purpose of the next section is to find out how interesting our
present target space, Asw."/, and its “parent”, Aw."/, are.

26A tiny bit of extra care is required for invariance under R1s : it easily follows from RI.
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3.4 Jacobi diagrams, trees and wheels

In studying Aw."/ we again follow the model set by usual knots: we introduce the space
Awt of “w-Jacobi diagrams” and show that it is isomorphic to Aw . Major advantages
of working with Awt are that the co-product, the primitives, and the relationship with
Lie algebras are much more natural and easy to describe. Compare the following
definitions and theorem with [6, Section 3].

Definition 3.12 A “w-Jacobi diagram on a long line skeleton”27 is a connected graph
made of the following ingredients:

� A “long” oriented “skeleton” line. We usually draw the skeleton line a bit thicker
for emphasis.

� Other directed edges, usually called “arrows”.

� Trivalent “skeleton vertices” in which an arrow starts or ends on the skeleton
line.

� Trivalent “internal vertices” in which two arrows end and one arrow begins (this
will be important in Section 3.5 where we relate these diagrams to Lie algebras).
The internal vertices are “oriented”: of the two arrows that end in an internal
vertices, one is marked as “left” and the other is marked as “right”. In reality
when a diagram is drawn in the plane, we almost never mark “left” and “right”,
but instead assume the “left” and “right” inherited from the plane, as seen from
the outgoing arrow from the given vertex.

Note that we allow multiple arrows connecting the same two vertices (though at most
two are possible, given connectedness and trivalence) and we allow “bubbles”: arrows
that begin and end in the same vertex. Also keep in mind that for the purpose of
determining equality of diagrams the skeleton line is distinguished. The “degree” of a
w-Jacobi diagram is half the number of trivalent vertices in it, including both internal
and skeleton vertices. An example of a w-Jacobi diagram is in Figure 11.

Definition 3.13 Let Dwt ."/ be the graded vector space of formal linear combina-
tions28 of w-Jacobi diagrams on a long line skeleton, and let Awt ."/ be Dwt ."/ mod-
ulo the

��!
STU1 ,

��!
STU2 , and TC relations of Figure 12. Note that each diagram appearing

in each
��!
STU relation has a “central edge” e which can serve as an “identifying name”

for that
��!
STU. Thus, given a diagram D with a marked edge e which is either on the

27What a mouthful! We usually short this to “w-Jacobi diagram”, or sometimes “arrow diagram” or
just “diagram”.

28 Q–linear, or any other field of characteristic 0.
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lr

Figure 11: A degree 11 w-Jacobi diagram on a long line skeleton. It has a
skeleton line at the bottom, 13 vertices along the skeleton (of which 2 are
incoming and 11 are outgoing), 9 internal vertices (with only one explicitly
marked with “left” (l ) and “right” (r )) and one bubble. The five quadrivalent
vertices that seem to appear in the diagram are just projection artifacts and
graph-theoretically, they don’t exist.

skeleton or which contacts the skeleton, there is an unambiguous
��!
STU relation “around”

or “along” the edge e .

e

e

��!
STU2 : D �

e
e

D0
��!
STU3 DTC: �

e
e

D �
��!
STU1 :

e
e

Figure 12: The
��!
STU1;2 and TC relations with their “central edges” marked e .

We like to call the following theorem “the bracket-rise theorem”, for it justifies the
introduction of internal vertices, and as should be clear from the

��!
STU relations and as

will become even clearer in Section 3.5, internal vertices can be viewed as “brackets”.
Two other bracket-rise theorems are [6, Theorem 6] and Ohtsuki’s theorem, ie [78,
Theorem 4.9].
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Theorem 3.14 (Bracket-rise) The obvious inclusion �W Dv."/! Dwt ."/ of arrow
diagrams (see Definition 3.8) into w-Jacobi diagrams descends to the quotient Aw."/
and induces an isomorphism29

x�W Aw."/ �!� Awt ."/:

Furthermore, the
�!
AS and

��!
IHX relations of Figure 13 hold in Awt ."/.

D

C

l r r l
�!
AS: 0 D

�
��!
IHX: e e

e

Figure 13: The
�!
AS and

��!
IHX relations.

Proof The proof, joint with D Thurston, is modelled after the proof of [6, Theorem 6].
To show that � descends to Aw."/ we just need to show that in Awt ."/,

�!
4T follows

from
��!
STU1;2 . Indeed, applying

��!
STU1 along the edge e1 and

��!
STU2 along e2 in the

picture below, we get the two sides of
�!
4T:

(18)
e2 e1

��!
STU1

D

��!
STU2

D

�

�

The fact that x� is surjective is easy: indeed, for diagrams in Awt ."/ that have no
internal vertices there is nothing to show, for they are really in Aw."/. Further, by
repeated use of

��!
STU1;2 relations, all internal vertices in any diagram in Awt ."/ can

be removed (remember that the diagrams in Awt ."/ are always connected, and in
particular, if they have an internal vertex they must have an internal vertex connected
by an edge to the long line skeleton, and the latter vertex can be removed first).

To complete the proof that x� is an isomorphism it is enough to show that the “elimination
of internal vertices” procedure of the last paragraph is well-defined: that its output is

29At this point a vector space isomorphism, but we’ll soon define a bialgebra structure on Awt to
make it into an isomorphism of bialgebras.
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independent of the order in which
��!
STU1;2 relations are applied in order to eliminate

internal vertices. Indeed, this done, the elimination map would by definition satisfy the
��!
STU1;2 relations, and thus descend to a well-defined inverse for x�.

On diagrams with just one internal vertex, Equation (18) shows that all ways of elimi-
nating that vertex are equivalent modulo

�!
4T relations, and hence, the elimination map

is well-defined on such diagrams.

We proceed by induction on the number of internal vertices. We have shown that x� is
well defined if there is only one internal vertex. Now assume that we have shown that
the elimination map is well defined on all diagrams with at most k internal vertices for
some positive integer k � 1, and let D be a diagram with .kC 1/ internal vertices.
Let e and e0 be edges in D that connect the skeleton of D to an internal vertex. We
need to show that any elimination process that begins with eliminating e yields the
same answer, modulo

�!
4T, as any elimination process that begins with eliminating e0 .

There are several cases to consider.

Case I The edges e and e0 connect the skeleton to different internal vertices of D :

e e0

In this case, after eliminating e we get a signed sum of two diagrams with exactly 7
internal vertices, and since the elimination process is well-defined on such diagrams,
we may as well continue by eliminating e0 in each of those, getting a signed sum of 4
diagrams with 6 internal vertices each. On the other hand, if we start by eliminating e0

we can continue by eliminating e , and we get the same signed sum of 4 diagrams with
6 internal vertices.

Case II The edges e and e0 are connected to the same internal vertex v of D , yet
some other edge e00 exists in D that connects the skeleton of D to some other internal
vertex v0 in D :

e e0 e00

In that case, use the previous case and the transitivity of equality: (elimination starting
with e ) D (elimination starting with e00 ) D (elimination starting with e0 ).

Case III This is what remains if neither Case I nor Case II hold. In that case, D must
have a schematic form as below, with the “blob” not connected to the skeleton other
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than via e or e0 , yet further arrows may exist outside of the blob:

e
e0

f

Let f denote the edge connecting the blob to e and e0 . The “two in one out” rule for
vertices implies that any part of a diagram must have an excess of incoming edges over
outgoing edges, equal to the total number of vertices in that diagram part. Applying
this principle to the blob, we find that it must contain exactly one vertex, as shown
below. Then by the “two in one out” rule f must be oriented upwards, and hence, by
the “two in one out” rule again, e and e0 must be oriented upwards as well.

We leave it to the reader to verify that in this case the two ways of applying the
elimination procedure, e and then f or e0 and then f , yield the same answer modulo
�!
4T (in fact, that answer is 0):

f

e0e

We also leave it to the reader to verify that
��!
STU1 implies

�!
AS and

��!
IHX. In Section 3.5

we’ll describe the relationship between Awt and Lie algebras. Algebraically, the
relations

��!
STU1 ,

�!
AS and

��!
IHX are restatements of the anti-symmetry of the bracket

and of Jacobi’s identity: if Œx;y� WD xy�yx , then 0D Œx;y�C Œy;x� and Œx; Œy; z� �D
Œ Œx;y�; z�� Œ Œx; z�;y�.

Note that Awt ."/ inherits algebraic structure from Aw."/: it is an algebra by con-
catenation of diagrams, and a co-algebra with �.D/, for D 2 Dwt ."/, being the sum
of all ways of dividing D between a “left co-factor” and a “right co-factor” so that
connected components of D �S are kept intact, where S is the skeleton line of D

(compare with [6, Definition 3.7]).

As Aw."/ and Awt ."/ are canonically isomorphic, from this point on we will not
keep the distinction between the two spaces. One may add the RI relation to the
definition of Awt ."/ to get a space Aswt ."/. For an unframed version one may add
the stronger framing independence (FI) relation, setting DL DDR D 0, with DL and
DR the single arrows as in Figure 14. The resulting space is called Arwt ."/. The
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statement and proof of the bracket rise theorem adapt with no difficulty, and we find
that Asw."/ŠAswt ."/ and Arw."/ŠArwt ."/. In the future we’ll drop the t from
all superscripts.

The advantages of allowing internal trivalent vertices are already apparent (for example,
note that there is a nice description of primitive elements: they are the arrow diagrams
which remain connected if the skeleton is removed). Further advantages will emerge in
Section 3.5.

� � �
kwk DDL D DR D

Figure 14: The left-arrow diagram DL , the right-arrow diagram DR and the
k –wheel wk .

Theorem 3.15 The bialgebra Aw."/ is the bialgebra of polynomials in the diagrams
DL , DR and wk (for k � 1) shown in Figure 14, where deg DL D deg DR D 1

and degwk D k , subject to the one relation w1 DDL �DR . Thus, Aw."/ has two
generators in degree 1 and one generator in every degree greater than 1, as stated in
Section 4.1.

Sketch of proof Readers familiar with the diagrammatic PBW theorem [6, Theorem 8]
will note that it has a direct analogue for the Aw."/ case, and that the proof in [6]
carries through almost verbatim. Namely, the space Aw."/ is isomorphic to a space
Bw of “unitrivalent diagrams” with symmetrized univalent ends modulo

�!
AS and

��!
IHX.

Given the “two in one out” rule for arrow diagrams in Aw."/ (and hence, in Bw ) the
connected components of diagrams in Bw can only be “trees” or “wheels”. A tree is a
unitrivalent diagram with no cycles (oriented or not). A wheel is a single oriented cycle
with some number of incoming “spokes” (see wk in Figure 14 and remove the skeleton
line). The reader might object that there are also “wheels of trees” — trees attached to
an oriented cycle — but these can be reduced to linear combinations of wheels using
the
��!
IHX relation.

Trees vanish if they have more than one leaf, as their leafs are symmetric while their
internal vertices are anti-symmetric, so Bw is generated by wheels and by the one-leaf-
one-root tree, which is simply a single arrow. Wheels map to the wk in Aw."/ under
the isomorphism, and the arrow maps to the average of DL and DR . The relation
w1 DDL�DR is then easily verified using

��!
STU2 .

One may also argue directly, without using Bw . In short, let D be a diagram in Aw."/
and S is its skeleton. Then D�S may have several connected components, whose
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“legs” are intermingled along S . Using the
��!
STU relations these legs can be sorted (at

a cost of diagrams with fewer connected components, which could have been treated
earlier in an inductive proof). At the end of the sorting procedure one can see that
the only diagrams that remain are our declared generators. It remains to show that
our generators are linearly independent (apart from the relation w1 D DL �DR ).
For the generators in degree 1, simply write everything out explicitly in the spirit of
Section 4.3.2. In higher degrees there is only one primitive diagram in each degree, so
it is enough to show that wk ¤ 0 for every k . This can be done “by hand”, but it is
more easily done using Lie algebraic tools in Section 3.5.

Exercise 3.16 Show that the bialgebra Arw."/ (see Section 4.1) is the bialgebra of
polynomials in the wheel diagrams wk for k � 2, and that Asw."/ is the bialgebra of
polynomials in the same wheel diagrams and an additional generator DA WDDLDDR .

Proposition 3.17 In Aw./ all wheels vanish, and hence the bialgebra Aw./ is
the bialgebra of polynomials in a single variable DL DDR .

Proof This is [76, Lemma 2.7]. In short, a wheel in Aw./ can be reduced using
��!
STU2 to a difference of trees, as shown in Figure 15. One of these trees has two
adjoining leafs, hence it is 0 by TC and

�!
AS. In the other, two of the leafs can be

commuted “around the circle” using TC until they are adjoining and hence vanish by
TC and

�!
AS.

0� 0

D

��!
STU2

�

pull tail around

D

Figure 15: Wheels in a circle vanish.

Exercise 3.18 Show that Asw./Š Aw./ and yet Arw./ vanishes except in
degree 0.
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The following two exercises may help the reader to develop a better “feel” for Aw."/
and will be needed within the discussion of the Alexander polynomial (especially
within Definition 3.31).

Exercise 3.19 Show that the “commutators commute” (CC) relation, shown below,
holds in Aw."/:

D 0

(Interpreted in terms of Lie algebras as in the next section, this relation becomes
Œ Œx;y�; Œz; w��D 0, hence the name “commutators commute”). Note that the proof of
CC depends on the skeleton having a single component; later, when we will work with
Aw–spaces with more complicated skeleta, the CC relation will not hold.

Exercise 3.20 Show that “detached wheels” and “hairy Y s” make sense in Aw."/.
As pictured below, a detached wheel is a wheel with a number of spokes, and a hairy
Y is a combinatorial Y shape (three arrows meeting at a single internal vertex) with
further “hair” on its trunk (its outgoing arrow):

W

hair

Y

It is specified where the trunk and the leafs of the Y connect to the skeleton, but it
is not specified where the spokes of the wheel and where the hair on the Y connect
to the skeleton. The content of the exercise is to show that modulo the relations of
Aw."/, it is not necessary to specify this further information: all ways of connecting
the spokes and the hair to the skeleton are equivalent. Like the previous exercise, this
result depends on the skeleton having a single component.

Remark 3.21 In the case of usual knots and usual chord diagrams, Jacobi diagrams
have a topological interpretation using the Goussarov–Habiro calculus of claspers [41;
46]. In the w case a similar such calculus was developed by Watanabe in [84]. Various
related results are in [47; 48].

3.5 The relation with Lie algebras

The theory of finite-type invariants of knots is related to the theory of metrized Lie
algebras via the space A of chord diagrams, as explained in [6, Theorem 4 and
Exercise 5.1]. In a similar manner the theory of finite-type invariants of w-knots
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is related to arbitrary finite-dimensional Lie algebras (or equivalently, to doubles of
co-commutative Lie bialgebras, as explained below) via the space Aw."/ of arrow
diagrams.

3.5.1 Preliminaries Given a finite-dimensional Lie algebra30 g let Ig WD g� Ì g be
the semi-direct product of the dual g� of g with g, with g� taken as an abelian algebra
and with g acting on g� by the usual coadjoint action. In formulae,

IgD f.';x/ W ' 2 g�; x 2 gg;

Œ.'1;x1/; .'2;x2/�D .x1'2�x2'1; Œx1;x2�/:

In the case where g is the algebra so.3/ of infinitesimal symmetries of R3 , its dual g�

is R3 itself with the usual action of so.3/ on it, and Ig is the algebra R3 Ì so.3/ of
infinitesimal affine isometries of R3 . This is the Lie algebra of the Euclidean group
of isometries of R3 , which is often denoted ISO.3/. This explains our choice of the
name Ig.

Note that if g is a co-commutative Lie bialgebra, then Ig is the “double” of g [33].
This is a significant observation, for it is a part of the relationship between this paper
and the Etingof–Kazhdan theory of quantization of Lie bialgebras [38]. Yet we will
make no explicit use of this observation below.

In the construction that follows we are going to define a map from Aw to U.Ig/, the
universal enveloping algebra of Ig. Note that a map Aw!U.Ig/ is “almost the same”
as a map Asw! U.Ig/, in the following sense. The quotient map pW Aw!Asw has
a one-sided inverse F W Asw!Aw defined by

F.D/D

1X
kD0

.�1/k

k!
Sk

L.D/ �w
k
1 :

Here SL denotes the map that sends an arrow diagram to the sum of all ways of deleting
a left-going arrow, Sk

L
is SL applied k times, and w1 denotes the 1–wheel, as shown

in Figure 14. The reader can verify that F is well-defined, an algebra- and co-algebra
homomorphism, and that p ıF D idAsw .

3.5.2 The construction Fixing a finite-dimensional Lie algebra g, we construct a
map

T wg W A
w
! U.Ig/

30Over Q , or another field of characteristic 0.

Algebraic & Geometric Topology, Volume 16 (2016)



Finite-type invariants of w-knotted objects 1109

which assigns to every arrow diagram D an element of the universal enveloping algebra
U.Ig/. As is often the case in our subject, a picture of a typical example is worth more
than a formal definition:

�!

g�

B

g� g g

g g�

g�

B

contract

I

g�

�! g�˝ g�˝ g˝ g˝ g�˝ g� �! U.Ig/

In short, we break up the diagram D into its constituent pieces and assign a copy of the
structure constants tensor B 2 g�˝ g�˝ g to each internal vertex v of D (keeping an
association between the tensor factors in g�˝g�˝g and the edges emanating from v ,
as dictated by the orientations of the edges and of the vertex v itself). We assign the
identity tensor in g�˝g to every arrow in D that is not connected to an internal vertex,
and contract any pair of factors connected by a fully internal arrow. The remaining
tensor factors (g�˝ g�˝ g˝ g˝ g�˝ g� in our examples) are all along the skeleton
and can thus be ordered by the skeleton. We then multiply these factors to get an output
T wg .D/ in U.Ig/.

It is also useful to restate this construction given a choice of a basis. Let .xj / be a
basis of g and let .'i/ be the dual basis of g� , so that

'i.xj /D ı
i
j ;

and let bk
ij denote the structure constants of g in the chosen basis:

Œxi ;xj �D
X

bk
ij xk :

Mark every arrow in D with lower case Latin letter from within31 fi; j ; k; : : : g. Form
a product PD by taking one b



˛ˇ
factor for each internal vertex v of D using the

letters marking the edges around v for ˛ , ˇ and  and by taking one x˛ or 'ˇ factor
for each skeleton vertex of D , taken in the order that they appear along the long line
skeleton, with the indices ˛ and ˇ dictated by the edge markings and with the choice
between factors in g and factors in g� dictated by the orientations of the edges. Finally

31The supply of these can be made inexhaustible by the addition of numerical subscripts.
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let T wg .D/ be the sum of PD over the indices i; j ; k; : : : running from 1 to dim g:

(19) �! i j

k

lmn

bm
kl

bk
ji

'i 'j xn xm 'n 'l

�!

dim gX
i;j ;k;l;m;nD1

bk
ij bm

kl'
i'j xnxm'

l
2 U.Ig/:

The next proposition is easy to verify (compare with [6, Theorem 4 and Exercise 5.1]).

Proposition 3.22 The above two definitions of T w
g agree, are independent of the

choices made within them, and respect all the relations defining Aw .

While we do not provide a proof of this proposition here, it is worthwhile stating the
correspondence between the relations defining Aw and the Lie algebraic information
in U.Ig/:

�
�!
AS is the antisymmetry of the bracket of g.

�
��!
IHX is the Jacobi identity of g.

�
��!
STU1 and

��!
STU2 are the relations Œxi ;xj �D xixj �xj xi and Œ'i ;xj �D '

ixj �

xj'
i in U.Ig/.

� TC is the fact that g? is taken as an abelian algebra.

�
�!
4T is the fact that the identity tensor in g�˝ g is g–invariant.

3.5.3 Example: the 2–dimensional non-abelian Lie algebra Let g be the Lie
algebra with two generators x1;2 satisfying Œx1;x2�Dx2 , so that the only non-vanishing
structure constants bk

ij of g are b2
12
D�b2

21
D1. Let 'i 2g� be the dual basis of xi ; by

an easy calculation, we find that in Ig the element '1 is central, while Œx1; '
2�D�'2

and Œx2; '
2�D '1 . We calculate T wg .DL/, T wg .DR/ and T wg .wk/ using the “in basis”

technique of Equation (19). The outputs of these calculations lie in U.Ig/; we display
these results in a PBW basis in which the elements of g� precede the elements of g:

(20) T wg .DL/D x1'
1
Cx2'

2
D '1x1C'

2x2C Œx2; '
2�D '1x1C'

2x2C'1;

T wg .DR/D '
1x1C'

2x2;

T wg .wk/D .'
1/k :
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For the last assertion above, note that all non-vanishing structure constants bk
ij in our

case have k D 2, and therefore all indices corresponding to edges that exit an internal
vertex must be set equal to 2:

1 1 1 1

2
222

'1 '1 '1 '1

This forces the “hub” of wk to be marked 2 and therefore the legs to be marked 1,
and therefore wk is mapped to .'1/k .

Note that the calculations in (20) are consistent with the relation DL�DR D w1 of
Theorem 3.15 and that they show that other than that relation, the generators of Aw

are linearly independent.

3.6 The Alexander polynomial

Let K be a long w-knot, and let Z.K/ be the invariant of Theorem 3.10. Theorem 3.26
below asserts that apart from self-linking, Z.K/ contains precisely the same informa-
tion as the Alexander polynomial A.K/ of K (recalled below). But we have to start
with some definitions.

8

1 2 3 4

5

6 7

Figure 16: A long 817 , with the span of crossing #3 marked. The projection
is as in Brian Sanderson’s garden. See [15]/SandersonsGarden.html.

Definition 3.23 Enumerate the crossings of K from 1 to n in some arbitrary order. For
1 � j � n, the “span” of crossing #i is the connected open interval along the line
parametrizing K between the two times K “visits” crossing #i (see Figure 16). Form
a matrix T D T .K/ with Tij the indicator function for whether “the lower strand
of crossing #j is within the span of crossing #i ” (so Tij is 1 if for a given i; j the
quoted statement is true, and 0 otherwise). Let si be the sign of crossing #i (recall
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that ! is positive, " is negative; so .�;�;�;�;C;C;C;C/ for Figure 16), let di be
C1 if K visits the “over” strand of crossing #i before visiting the “under” strand of
that crossing, and let di D�1 otherwise (so .�;C;�;C;�;C;�;C) for Figure 16).
Let S D S.K/ be the diagonal matrix with Sii D sidi , and for an indeterminate X ,
let X�S denote the diagonal matrix with diagonal entries X�si di . Finally, let A.K/

be the Laurent polynomial in ZŒX;X�1� given by

(21) A.K/.X / WD det
�
I CT

�
I �X�S

��
:

Example 3.24 For the knot diagram in Figure 16,

T D

0BBBBBBBBBBBB@

0 1 1 1 1 0 1 0

0 0 1 0 1 0 0 0

0 1 0 0 1 0 0 0

0 1 0 0 1 0 1 0

0 1 0 1 0 1 1 1

0 1 0 1 0 0 1 0

0 0 0 1 0 1 0 0

0 0 0 1 0 1 0 0

1CCCCCCCCCCCCA
; S D

0BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 �1 0 0 0 0

0 0 0 0 �1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 1

1CCCCCCCCCCCCA
;

AD

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

1 1�X 1�X�1 1�X 1�X 0 1�X 0

0 1 1�X�1 0 1�X 0 0 0

0 1�X 1 0 1�X 0 0 0

0 1�X 0 1 1�X 0 1�X 0

0 1�X 0 1�X 1 1�X�1 1�X 1�X�1

0 1�X 0 1�X 0 1 1�X 0

0 0 0 1�X 0 1�X�1 1 0

0 0 0 1�X 0 1�X�1 0 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌
:

The last determinant equals �X 3 C 4X 2 � 8X C 11 � 8X�1 C 4X�2 �X�3 , the
Alexander polynomial of the knot 817 (see eg [79]).

Theorem 3.25 (Lee, [67, Theorem 1]) For any (classical) knot K , A.K/ is equal to
the normalized Alexander polynomial [79] of K .

The Mathematica notebook [15, “wA”] verifies Theorem 3.25 for all prime knots with
up to 11 crossings.

The following theorem says that Z.K/ can be computed from A.K/ (see Equation (22))
and that modulo a certain additional relation and with the appropriate identifications in
place, Z.K/ is A.K/ (see Equation (23)).
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Theorem 3.26 (Proof in Section 3.7) Let x be an indeterminate, let sl be self-
linking as in Exercise 3.6, let DA WD DL D DR and wk be as in Figure 14, and let
wW QJxK!Aw be the linear map defined by xk 7! wk . Then for a long w-knot K ,

(22) Z.K/D expAsw .sl.K/DA/„ ƒ‚ …
sl coded in arrows

� expAsw

�
�w

�
logQJxK A.K/.ex/

��„ ƒ‚ …
main part: Alexander coded in wheels

;

where the logarithm and inner exponentiation are computed by formal power series in
QJxK and the outer exponentiations are likewise computed in Asw .

Let Areduced be Asw modulo the additional relations DA D 0 and wkwl D wkCl for
k; l ¤ 1:

D

Dw2 � w3 w5

The quotient Areduced can be identified with the vector space of (infinite) linear com-
binations of the wk , with k ¤ 1. Identifying the k –wheel wk with xk , we see
that Areduced is the space of power series in x having no linear terms. Note by
inspecting Equation (21) that A.K/.ex/ never has a term linear in x , and that modulo
wkwl D wkCl , the exponential and the logarithm in Equation (22) cancel each other
out. Hence, within Areduced ,

(23) Z.K/DA�1.K/.ex/:

Remark 3.27 In [47] Habiro, Kanenobu, and Shima show that all coefficients of the
Alexander polynomial are finite-type invariants of w-knots, and in [48] Habiro and
Shima show that all finite-type invariants of w-knots are polynomials in the coefficients
of the Alexander polynomial. Thus, Theorem 3.26 is merely an “explicit form” of these
earlier results.

3.7 Proof of Theorem 3.26

We start with a sketch. The proof of Theorem 3.26 can be divided into three parts:
differentiation, bulk management, and computation.

Differentiation Both sides of our goal, that is, Equation (22), are exponential in
nature. When seeking to show an equality of exponentials it is often beneficial to
compare their derivatives.32 In our case the useful “derivatives” to use are the “Euler
operator” E (“multiply every term by its degree”, an analogue of f 7! xf 0 , defined

32Thanks, Dylan.
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in Section 3.7.1), and the “normalized Euler operator” Z 7! zEZ WDZ�1EZ , which
is a variant of the logarithmic derivative f 7! x.logf /0 D xf 0=f . Since zE is one to
one (see Section 3.7.1) and since we know how to apply zE to the right hand side of
Equation (22) (see Section 3.7.1), it is enough to show that with B WDT .exp.�xS/�I/

and suppressing the fixed w-knot K from the notation,

(24) EZ DZ � .sl �DA�wŒx tr..I �B/�1TS exp.�xS//�/ in Asw:

Bulk management Next we seek to understand the left-hand side of Equation (24).
Z is made up of “quantities in bulk”: arrows that come in exponential “reservoirs”. As
it turns out, EZ is made up of the same bulk quantities, but also allowing for a single
non-bulk “excitation”, which we often highlight in red. (Compare with Eex D x � ex ;
the “bulk” ex remains, and single “excited red” x gets created). We wish to manipulate
and simplify that red excitation. This is best done by introducing a certain module,
IAMK , the “infinitesimal Alexander module” of K (see Section 3.7.2). The elements
of IAMK can be thought of as names for “bulk objects with a red excitation”, and
hence there is an “interpretation map” �W IAMK ! Asw , which maps every “name”
into the object it represents. There are three special elements in IAMK : an element
�, which is the name of EZ (that is, �.�/DEZ ), the element ıA which is the name
of DA �Z (so �.ıA/DDA �Z ), and an element !1 which is the name of a “detached”
1–wheel that is appended to Z . The latter can take a coefficient which is a power of
x , with �.xk!1/D w.x

kC1/ �Z D .Z times a .kC 1/–wheel/. Thus, it is enough to
show that in IAMK ,

(25) �D sl � ıA� tr
�
.I �B/�1TSX�S

�
!1; with X D ex :

Indeed, applying � to both sides of the above equation, we get Equation (24) back
again.

Computation Last, we show in Section 3.7.3 that Equation (25) holds true. This is a
computation that happens entirely in IAMK and does not mention finite-type invariants,
expansions or arrow diagrams in any way.

3.7.1 The Euler operator Let A be a completed, graded algebra with unit, in which
all degrees are � 0. Define a continuous linear operator EW A!A by setting EaD

.deg a/a for homogeneous a 2 A. In the case A DQJxK, we have Ef D xf 0 , the
standard “Euler operator”; indeed, for each n, Exn D nxn D x � .xn/0 . Hence, we
adopt the name E for this operator in general.

We say that Z 2A is a “perturbation of the identity” if its degree 0 piece is 1. Such a Z

is always invertible. For such a Z , set zEZ WDZ�1 �EZ , and call the thus (partially)
defined operator zEW A!A the “normalized Euler operator”. From this point on when
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we write zEZ for some Z 2A, we automatically assume that Z is a perturbation of
the identity or that it is trivial to show that Z is a perturbation of the identity. Note
that for f 2 QJxK, we have zEf D x.logf /0 , so zE is a variant of the logarithmic
derivative.

Claim 3.28 zE is one to one.

Proof Assume Z1 ¤Z2 and let d be the smallest degree in which they differ. Then
d > 0 and in degree d the difference zEZ1�

zEZ2 is d times the difference Z1�Z2 ,
and hence, zEZ1 ¤

zEZ2 .

Thus, in order to prove our goal — that is, Equation (22) — it is enough to compute
zE of both sides and to show the equality then. We start with the right-hand side of

Equation (22); but first, we need some simple properties of E and zE . The proofs of
these properties are routine and hence are omitted.

Proposition 3.29 The following hold true:

(1) E is a derivation: E.fg/D .Ef /gCf .Eg/.

(2) If Z1 commutes with Z2 , then zE.Z1Z2/D zEZ1C
zEZ2 .

(3) If z commutes with Ez , then Eez D ez.Ez/ and zEez DEz .

(4) If wW A!A is a morphism of graded algebras, then it commutes with E and
zE .

Let us denote the right-hand side of Equation (22) by Z1.K/. Then, by the above
proposition, remembering (see Theorem 3.15) that Asw is commutative and that
deg DA D 1, we have

zEZ1.K/D sl �DA�w.E log A.K/.ex//D sl �DA�w
�
x

d

dx
log A.K/.ex/

�
:

The rest is an exercise in matrices and differentiation. A.K/ is a determinant, see
Equation (21), and in general d

dx
log det.M /D tr

�
M�1 d

dx
M
�
. So with BDT .e�xS�

I/, and so M D I �B , we have

zEZ1.K/D sl �DACw
�
x tr

�
.I �B/�1 d

dx
B
��

D sl �DA�w
�
x tr

�
.I �B/�1TSe�xS

��
;

as promised in Equation (24).
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3.7.2 The infinitesimal Alexander module Let K be a w-knot diagram. The “in-
finitesimal Alexander module” IAMK of K , which is defined in detail below, is a
certain module made from a certain space IAM0

K of pictures “annotating” K with
“red excitations” modulo some pictorial relations that indicate how the red excitations
can be moved around. The space IAM0

K in itself is made of three pieces, or “sectors”:
the “A sector” in which the excitations are red arrows, the “Y sector” in which the
excitations are “red hairy Y-diagrams”, and a rank 1 “W sector” for “red hairy wheels”.
There is an “interpretation map” �W IAM0

K ! Aw which descends to a well-defined
(and homonymous) �W IAMK !Aw . Finally, there are some special elements � and ıA
that live in the A sector of IAM0

K , and !1 that lives in the W sector.

In principle, the description of IAM0
K and of IAMK can be given independently of

the interpretation map �, and there are some good questions to ask about IAMK (and
the special elements in it) that are completely independent of the interpretation of
the elements of IAMK as “perturbed bulk quantities” within Asw . Yet IAMK is a
complicated object and we fear its definition will appear completely artificial without
its interpretation. Hence, below the two definitions will be woven together.

IAMK and � may equally well be described in terms of K or in terms of the Gauss
diagram of K (see Remark 3.4). For pictorial simplicity, we choose to use the latter;
so let G DG.K/ be the Gauss diagram of K . It is best to read the following definition
while at the same time studying Figure 17.

� C � C � C � C

r r

K G in A in Y in W

r

Figure 17: A sample w-knot K , its Gauss diagram G , and one generator
from each of the A, Y, and W sectors of IAM0

K . Red parts are marked with
the letter r.

Definition 3.30 Let R be the ring ZŒX;X�1� of Laurent polynomials in a variable
X with integer coefficients,33 and let R1 be the subring of polynomials that vanish
at X D 1 (ie whose sum of coefficients is 0).34 Let IAM0

K be the direct sum of the
following three modules (which for the purpose of taking the direct sum are all regarded
as Z–modules):

33Later, X is interpreted in Aw as a formal exponential ex . So within IAM we can restrict to
coefficients in Z , yet in Aw we must allow coefficients in Q .

34 R1 is only very lightly needed, and only within Definition 3.31. In particular, all that we say about
IAMK that does not concern the interpretation map � is equally valid with R replacing R1 .
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(1) The “A sector” is the free Z–module generated by all diagrams made from G

by the addition of a single unmarked “red excitation” arrow, whose endpoints
are on the long line skeleton of G and are distinct from each other and from all
other endpoints of arrows in G . Such diagrams are considered combinatorially:
so two are equivalent if and only if they differ only by an orientation-preserving
diffeomorphism of the skeleton. Let us count: if K has n crossings, then G

has n arrows and the skeleton of G gets subdivided into m WD 2nC 1 arcs. An
A sector diagram is specified by the choice of an arc for the tail of the red arrow
and an arc for the head (m2 choices), except if the head and the tail fall within
the same arc, then their relative ordering has to be specified as well (m further
choices). So the rank of the A sector over Z is m.mC 1/.

(2) The “Y sector” is the free R1 –module generated by all diagrams made from G

by the addition of a single “red excitation” Y –shape single-vertex graph, with
two incoming edges (“tails”) and one outgoing (“head”), modulo anti-symmetry
for the two incoming edges (again, considered combinatorially). Counting is
more elaborate: when the three edges of the Y end in distinct arcs in the skeleton
of G , we have 1

2
m.m�1/.m�2/ possibilities ( 1

2
for the antisymmetry). When

the two tails of the Y lie on the same arc, we get 0 by anti-symmetry. The
remaining possibility is to have the head and one tail on one arc (order matters!)
and the other tail on another, at 2m.m� 1/ possibilities. So the rank of the Y
sector over R1 is m.m� 1/.1

2
mC 1/.

(3) The “W sector” is the rank 1 free R–module with a single generator w1 . It
is not necessary for w1 to have a pictorial representation, yet one, involving a
single “red” 1–wheel, is shown in Figure 17. This pictorial representation is
consistent with the interpretation in the definition below of !1 as a detached
1–wheel.

Definition 3.31 The “interpretation map” �W IAM0
K !Aw is defined by sending the

arrows (marked C or �) of a diagram in IAM0
K to .e˙a/–exponential reservoirs of

arrows, as in the definition of Z (see Remark 3.11). In addition, the red excitations of
diagrams in IAM0

K are interpreted as follows:

(1) In the A sector, the red arrow is simply mapped to itself, with the colour red
suppressed.

(2) In the Y sector, diagrams have red Y s and coefficients f 2 R1 . Substitute
X D ex in f , expand in powers of x , and interpret xkY as a “hairy Y with
k�1 hairs” as in Exercise 3.20. Note that f .1/D 0, so only positive powers of
x occur. So we never need to worry about “Y s with �1 hairs”. This is the only
point where the condition f 2R1 (as opposed to f 2R) is needed.
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(3) In the W sector treat the coefficients as above, but interpret xkw1 as a detached
wkC1 , ie as a detached wheel with kC 1 spokes, as in Exercise 3.20.

As stated above, IAMK is the quotient of IAM0
K by some set of relations. The best

way to think of this set of relations is as “everything that’s obviously annihilated by �”.
Here’s the same thing, in a more formal language.

r

r

�

r
D

r r

r

r

�

r
� D D 0

rr
Aw

�s

r

Ath
s

r
D .1�X s/

r

s

�

r

sAhh
D .1�X s/

r

s

r

s

s

r

Yt t

r

�s D 0

D .X s � 1/

r

ss

r

Yht
s

r

�

D 0s

s

r

r r

�

� s

s

r

s

r

D .X s � 1/

s

Aht

Yth

Yhh

Yw

At t

�s sD .X s � 1/

r

s

D .1�X s/

r

ss

Figure 18: The relations R making IAMK .
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Definition 3.32 Let IAMK WD IAM0
K =R, where R is the linear span of the relations

depicted in Figure 18. The top 8 relations are about moving a leg of the red excitation
across an arrow head or an arrow tail in G . Since the red excitation may be either an
arrow A or a Y , its leg in motion may be either a tail or a head, and it may be moving
either past a tail or past a head, there are 8 relations of that type. The Aw relation
corresponds to DL�DR D w1 D 0. The Yw relation indicates the “price” (always a
red w1 ) of commuting a red head across a red tail. As per custom, in each case only
the changing part of the diagrams involved is shown. Further, the red excitations are
marked with the letter “r” and the sign of an arrow in G is marked s ; so we always
have s 2 f˙1g. The relations in the left column may be multiplied by a scalar in Z,
while the relations in the right column may be multiplied by a scalar in R. Hence, for
example, x0w1 D 0 by Aw , yet xkw1 ¤ 0 for k > 0.

Proposition 3.33 The interpretation map � indeed annihilates all the relations in R.

Proof Both �At t and �Yt t follow immediately from the TC relation. The for-
mal identity ead b.a/D ebae�b (here ad denotes the adjoint representation) implies
ead b.a/eb D eba, and hence, aeb�ebaD .1�ead b/.a/eb . With a interpreted as “red
head”, b as “black head”, and ad b as “hair” (justified by the �–meaning of hair and by
the
��!
STU1 relation, see Figure 12), the last equality becomes a proof of �Yhh . Further

pushing that same equality, we get

aeb
� ebaD

1�ead b

ad b
.Œb; a�/;

where .1� ead b/= ad b is first interpreted as a power series .1� ey/=y involving only
non-negative powers of y , and then the substitution yD ad b is made. But that’s �Ahh ,
when one remembers that � on the Y sector automatically contains a single “1=hair”
factor. Similar arguments, though using

��!
STU2 instead of

��!
STU1 , prove that Yht , Yth ,

Aht , and Ath are all in ker �. Finally, �Aw is RI, and �Yw is a direct consequence
of
��!
STU2 .

Finally, we come to the special elements �, ıA , and !1 .

Definition 3.34 Within IAMG , let !1 be, as before, the generator of the W sector.
Let ıA be a “short” red arrow, as in the Aw relation (exercise: modulo R, this is
independent of the placement of the short arrows within G ). Finally, let � be the
signed sum of exciting each of the (black) arrows in G in turn. The picture says all,
and it is Figure 19.
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r

C C � r
ıR D

C C � C C �

!1 D
C C � r

C C �
r�

r�D C

Figure 19: The special elements !1 , ıA , and � in IAMG , for a sample
3–arrow Gauss diagram G .

Lemma 3.35 In Asw."/, the special elements of IAMG are interpreted as follows:
�.!1/DZw1 , �.ıA/DZDA , and most interestingly, �.�/DEZ . Thus Equation (25)
(if true) implies Equation (24) and hence, it implies our goal, Theorem 3.26.

Proof For the proof of this lemma, the only thing that isn’t done yet and isn’t trivial is
the assertion �.�/DEZ . But this assertion is a consequence of Ee˙a D˙ae˙a and
of a Leibniz law for the derivation E , appropriately generalized to a context where
Z can be thought of as a “product” of “arrow reservoirs”. The details are left to the
reader.

3.7.3 The computation of � Naturally, our next task is to prove Equation (25). This
is done entirely algebraically within the finite rank module IAMG . To read this section
one need not know about Asw."/, or �, or Z , but we do need to lay out some notation.
Start by marking the arrows of G with a1 through an in some order.

Let � stand for the informal yet useful quantity “a little”. Let �ij denote the difference
�0ij ��

00
ij of red excitations in the A sector of IAMG , where �0ij is the diagram with a

red arrow whose tail is � to the right of the left end of ai and whose head is 1
2
� away

from the head of aj in the direction of the tail of aj , and where �00ij has a red arrow
whose tail is � to the left of the right end of ai and whose head is as before, 1

2
� away

from head of aj in the direction of the tail of aj . Let ƒD .�ij / be the matrix whose
entries are the �ij , as shown in Figure 20.

Similarly, let yij denote the element in the Y sector of IAMG whose red Y has its head
1
2
� away from head of aj in the direction of the tail of aj , its right tail (as seen from

the head) � to the left of the right end of ai and its left tail � to the right of the left end
of ai . Let Y D .yij / be the matrix whose entries are the yij , as shown in Figure 20.

Lemma 3.36 With S and T as in Definition 3.23, and with B D T .X�S � I/ and �
as above, the following identities between elements of IAMG and matrices with entries

Algebraic & Geometric Topology, Volume 16 (2016)



Finite-type invariants of w-knotted objects 1121

r

r

r

r

r

r

r

r

r

r
r

r

2

� �

ƒ 1

1

2

j

i

� �

2

1 2j

i

1

Y

Figure 20: The matrices ƒ and Y for a sample 2–arrow Gauss diagram (the
signs on a1 and a2 are suppressed, and so are the r marks). The twists in
y11 and y22 may be replaced by minus signs.

in IAMG hold true:

�� sl �DA D tr Sƒ;(26)

ƒD�BY �TX�Sw1;(27)

Y D BY CTX�Sw1:(28)

Proof of Equation (25) given Lemma 3.36 The last of the equalities above implies
that Y D .I �B/�1TX�Sw1 . Thus,

�� sl �DA D tr SƒD� tr S.BY CTX�Sw1/

D� tr S.B.I �B/�1TX�S
CTX�S /w1

D� tr..I �B/�1TSX�S /w1;

and this is exactly Equation (25).

Algebraic & Geometric Topology, Volume 16 (2016)



1122 Dror Bar-Natan and Zsuzsanna Dancso

Proof of Lemma 3.36 Equation (26) is trivial. The proofs of Equations (27) and (28)
both have the same simple cores, that have to be supplemented by highly unpleasant
tracking of signs and conventions and powers of X . Let us start from the cores.

To prove Equation (27) we wish to “compute” �ik D �
0
ik
��00

ik
. As �0

ik
and �00

ik
have

their heads in the same place, we can compute their difference by gradually sliding
the tail of �0

ik
from its original position near the left end of ai towards the right end

of ai , where it would be cancelled by �00
ik

. As the tail slides we pick up a yjk term
each time it crosses a head of an aj (relation Ath ), we pick up a vanishing term each
time it crosses a tail (relation At t ), and we pick up a w1 term if the tail needs to cross
over its own head (relation Aw ). Ignoring signs and .X˙1 � 1/ factors, the sum of
the yjk –terms should be proportional to T Y , for indeed, the matrix T has non-zero
entries precisely when the head of an aj falls within the span of an ai . Un-ignoring
these signs and factors, we get �BY (recall that B D T .X�S � I/ is just T with
added .X˙1� 1/ factors). Similarly, a w1 term arises in this process when a tail has
to cross over its own head, that is, when the head of ak is within the span of ai . Thus,
the w1 term should be proportional to Tw1 , and we claim it is �TX�Sw1 .

The core of the proof of Equation (28) is more or less the same. We wish to “compute”
yik by sliding its left leg, starting near the left end of ai , towards its right leg, which is
stationary near the right end of ai . When the two legs come together, we get 0 because
of the anti-symmetry of Y excitations. Along the way we pick up further Y terms from
the Yth relations, and sometimes a w1 term from the Yw relation. When all signs and
.X˙1� 1/ factors are accounted for, we get Equation (28).

We leave it to the reader to complete the details in the above proofs. It is a major
headache, and we would not have trusted ourselves had we not written a computer
program to manipulate quantities in IAMG by a brute force application of the relations
in R. Everything checks; see [15, “The Infinitesimal Alexander Module”].

This concludes the proof of Theorem 3.26.

Remark 3.37 We chose the name “infinitesimal Alexander module” as in our mind
there is some similarity between IAMK and the “Alexander module” of K . Yet beyond
the above, we did not embark on any serious study of IAMK . In particular, we do not
know if IAMK in itself is an invariant of K (though we suspect it wouldn’t be hard to
show that it is), we do not know if IAMK contains any further information beyond sl
and the Alexander polynomial, and we do not know if there is any formal relationship
between IAMK and the Alexander module of K .
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Remark 3.38 The logarithmic derivative of the Alexander polynomial also appears in
Lescop’s work, see [69; 68]. We don’t know if its appearances there are related to its
appearance here.

3.8 The relationship with u-knots

Unlike in the case of braids, there is a canonical universal finite-type invariant of
u-knots: the Kontsevich integral Zu . So it makes sense to ask how it is related to the
expansion Zw .

We claim that the square

Ku."/
Zu

//

a

��

Au."/

˛

��
Kw."/ Zw

// Asw."/

commutes, where Ku."/ stands for long u-knots (knottings of an oriented line), and
similarly Kw."/ denotes long w-knots. As before, a is the composition of the maps
u-knots ! v-knots ! w-knots, and ˛ is the induced map on the associated graded
spaces, mapping each chord to the sum of the two ways to direct it.

Recall that ˛ kills everything but wheels and arrows (hence Zw is much weaker, but
also easier to handle, than the Kontsevich integral). We are going to use the formula
for the “wheel part” of the Kontsevich integral as stated in [58]. Let K be a 0–framed
long knot, and let A.K/ denote the Alexander polynomial. Then by [58],

Zu.K/D expAu

�
�

1
2

log A.K/.eh/
ˇ̌
h2n!wu

2n

�
C “loopy terms”;

where wu
2n

stands for the unoriented wheel with 2n spokes, and “loopy terms” means
terms that contain diagrams with more than one loop, which are killed by ˛ . Note that
by the symmetry A.z/D A.z�1/ of the Alexander polynomial, A.K/.eh/ contains
only even powers of h, as suggested by the formula.

We need to understand how ˛ acts on wheels. Due to the two-in-one-out rule, a
wheel is zero unless all the “spokes” are oriented inward, and the cycle oriented in one
direction. In other words, there are two ways to orient an unoriented wheel: clockwise
or counterclockwise. Due to the anti-symmetry of chord vertices, we get that for odd
wheels ˛.wu

2hC1
/D 0, and for even wheels ˛.wu

2h
/D 2ww

2h
. As a result,

˛Zu.K/D expAsw

�
�

1
2

log A.K/.eh/
ˇ̌
h2n!2w2n

�
D expAsw

�
� log A.K/.eh/

ˇ̌
h2n!w2n

�
;
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which agrees with the formula (22) of Theorem 3.26. Note that since K is 0–framed,
the first part (“sl coded in arrows”) of formula (22) is trivial.

4 Odds and ends

4.1 Some dimensions

The table below lists what we could find about Av and Aw by crude brute force
computations in low degrees. We list degrees 0 through 7. The spaces we study are
A�."/, As�."/ (the � in the subscript means “v and w”), and Ar�."/ which is
A�."/ moded out by “isolated” arrows,35 P�."/ which is the space of primitives in
A�."/, and A�./, As�./, and Ar�./, which are the same as A�."/, As�."/,
and Ar�."/ except with closed knots (knots with a circle skeleton) replacing long
knots. Each of these spaces we study in three variants: the v and the w variants, as
well as the usual knots u variant which is here just for comparison. We also include a
row “dimGmLie�."/” for the dimensions of “Lie-algebraic weight systems”. Those
are explained in the u and v cases in [6; 49; 70], and in the w case in Section 3.5.

See Section 4.3

m 0 1 2 3 4 5 6 7 Comments

dimGmA�."/ ujv

w

1j1

1

1j2

2

2j7

4

3j27

7

6j139

12

10j813

19

19j?

30

33j?

45

.1/j.2/

.3/; .4/; .5/

dimGmLie�."/ ujv

w

1j1

1

1j2

2

2j7

4

3j27

7

6j �128

12

10j?

19

19j?

30

33j?

45

.1/j.6/

.5/

dimGmAs�."/
ujv

w

�j1

1

�j1

1

�j3

2

�j10

3

�j52

5

�j298

7

�j?

11

�j?

15

.7/j.2/

.3/; .8/

dimGmAr�."/
ujv

w

1j1

1

0j0

0

1j2

1

1j7

1

3j42

2

4j246

2

9j?

4

14j?

4

.1/j.9/

.3/; .10/

dimGmP�."/ ujv

w

0j0

0

1j2

2

1j4

1

1j15

1

2j82

1

3j502

1

5j?

1

8j?

1

.1/j.11/

.3/

dimGmA�./ ujv

w

1j1

1

1j1

1

2j2

1

3j5

1

6j19

1

10j77

1

19j?

1

33j?

1

.1/j.12/

.3/

dimGmAs�./
ujv

w

�j1

1

�j1

1

�j1

1

�j2

1

�j6

1

�j23

1

�j?

1

�j?

1

.7/j.2/

.3/

dimGmAr�./
ujv

w

1j1

1

0j0

0

1j0

0

1j1

0

3j4

0

4j17

0

9j?

0

14j?

0

.1/j.12/

.3/

35That is, Ar�."/ is A�."/ modulo “framing independence” (FI) relations (see Section 3.4, cf [6],
with the isolated arrow taken with either orientation). It is the space related to finite-type invariants of
unframed knots, on which the R1 move is also imposed, in the same way as A�."/ is related to framed
knots.
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Comments 4.1 (1) Much more is known computationally in the u-knots case. See
especially [6; 8; 56; 3].

(2) These dimensions were computed by Louis Leung and DBN using a program
available at [15, “Dimensions”].

(3) As we have seen in Section 3.4, the spaces associated with w-knots are understood
to all degrees.

(4) To degree 4, these numbers were also verified by [15, “Dimensions”].

(5) The next few numbers in these sequences are 67, 97, 139, 195, 272.

(6) These dimensions were computed by Louis Leung and DBN using a program
available at [15, “Arrow Diagrams and gl.N /”]. Note the match with the row
above.

(7) There is no “s” quotient in the “u” case.

(8) The next few numbers in this sequence are 22, 30, 42, 56, 77.

(9) These numbers were computed by [15, “Dimensions”]. Contrary to the Au case,
Arv is not the quotient of Av by the ideal generated by degree 1 elements, and
therefore the dimensions of the graded pieces of these two spaces cannot be
deduced from each other using the Milnor–Moore theorem.

(10) The next few numbers in this sequence are 7, 8, 12, 14, 21.

(11) These dimensions were deduced from the dimensions of GmAv."/ using the
Milnor–Moore theorem.

(12) Computed by [15, “Dimensions”]. Contrary to the Au case, Av./, Asv./

and Arv./ are not isomorphic to Av."/, Asv."/ and Arv."/, and separate
computations are required.

4.2 What do we mean by “closed form”?

As stated earlier, one of our hopes for this sequence of papers is that it will lead to
closed-form formulae for tree-level associators. The notion “closed-form” in itself
requires an explanation. Is ex a closed form expression for

P1
nD0 xn=n!, or is it just

an artificial name given for a transcendental function we cannot otherwise reduce?
Likewise, why not call some tree-level associator ˆtree and now it is “in closed form”?

For us, “closed-form” should mean “useful for computations”. More precisely, it means
that the quantity in question is an element of some space Acf of “useful closed-form
thingies” whose elements have finite descriptions (hopefully, finite and short) and
on which some operations are defined by algorithms which terminate in finite time
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(hopefully, finite and short). Furthermore, there should be a finite-time algorithm to
decide whether two descriptions of elements of Acf describe the same element.36 It
is even better if the said decision algorithm takes the form “bring each of the two
elements in question to a canonical form by means of some finite (and hopefully short)
procedure, and then compare the canonical forms verbatim”; if this is the case, then
many algorithms that involve managing a large number of elements become simpler
and faster.

Thus, for example, polynomials in a variable x are always of closed form, for they
are simply described by finite sequences of integers (which in themselves are finite
sequences of digits), the standard operations on polynomials (C, �, and, say, d

dx
) are

algorithmically computable, and it is easy to write the “polynomial equality” computer
program. Likewise for rational functions and even for rational functions of x and ex .

On the other hand, general elements ˆ of the space Atree."3/ of potential tree-level
associators are not closed-form, for they are determined by infinitely many coefficients.
Thus, iterative constructions of associators, such as the one in [10] are computationally
useful only within bounded-degree quotients of Atree."3/ and not as all-degree closed-
form formulae. Likewise, “explicit” formulae for an associator ˆ in terms of multiple
�–values (eg [62]) are not useful for computations as it is not clear how to apply tangle-
theoretic operations to ˆ (such as ˆ 7!ˆ1342 or ˆ 7! .1˝�˝ 1/ˆ) while staying
within some space of “objects with finite description in terms of multiple �–values”.
And even if a reasonable space of such objects could be defined, it remains an open
problem to decide whether a given rational linear combination of multiple �–values is
equal to 0.

4.3 Arrow diagrams up to degree 2

Just as an example, in this section we study the spaces A�."/, As�."/, Ar�."/,
P�."/, A�./, As�./, and Ar�./ in degrees m� 2 in detail, both in the “v”
case and in the “w” case (the “u” case has long been known [6; 56; 8]).

4.3.1 Arrow diagrams in degree 0 There is only one degree 0 arrow diagram, the
empty diagram D0 (see Figure 21). There are no relations, and thus fD0g is the basis
of all G0A�."/ spaces, and its closure, the empty circle, is the basis of all G0A�./
spaces. D0 is the unit 1, yet �D0DD0˝D0D 1˝1¤D0˝1C1˝D0 , so D0 is
not primitive and dimG0P�."/D 0.

36In our context, if it is hard to decide within the target space of an invariant whether two elements are
equal or not, the invariant is not too useful in deciding whether two knotted objects are equal or not.
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4.3.2 Arrow diagrams in degree 1 There are only two degree 1 arrow diagrams, the
“right arrow” diagram DR and the “left arrow” diagram DL (see Figure 21). There are
no 6T relations, and thus fDR;DLg is the basis of G1A�."/. Modulo RI, DL DDR

and hence, DA WDDL DDR is the single basis element of G1As�."/. Both DR and
DL vanish modulo FI, so dimG1Ar�."/D dimG1Ar�./D 0. Both DR and DL

are primitive, so dimG1P�."/D 2. Finally, the closures xDR and xDL of DR and DL

are equal, so

G1As�./D G1A�./D h xDRi D h
xDLi D h

xDAi:

D6 D

D7 D

D8 D

D9 D

D10 D

D11 D

D12 D

D0 D

DR D

DL D

D1 D

D2 D

D3 D

D4 D

D5 D

Figure 21: The 15 arrow diagrams of degree at most 2.

4.3.3 Arrow diagrams in degree 2 There are 12 degree 2 arrow diagrams, which we
denote D1; : : : ;D12 (see Figure 21). There are six 6T relations, corresponding to the 6
ways of ordering the 3 vertical strands that appear in a 6T relation (see Figure 3) along
a long line. The ordering .ij k/ becomes the relation D3CD9CD3DD6CD3CD6 .
Likewise, .ikj / 7!D6CD1CD11 DD3CD5CD1 , .j ik/ 7!D10CD2CD6 D

D2CD5CD3 , .j ki/ 7!D4CD7CD1DD8CD1CD11 , .kij / 7!D2CD7CD4D

D10 CD2 CD8 , and .kj i/ 7! D8 CD4 CD8 D D4 CD12 CD4 . After some
linear algebra, we find that fD1;D2;D6;D8;D9;D11;D12g form a basis of G2Av."/,
and that the remaining diagrams reduce to the basis as follows: D3 D 2D6 �D9 ,
D4 D 2D8�D12 , D5 DD9CD11�D6 , D7 DD11CD12�D8 , and D10 DD11 .
In G2Asv."/ we further have that D5DD6 , D7DD8 , and D9DD10DD11DD12 ,
and so G2Asv."/ is 3–dimensional with basis D1 , D2 , and D3 D � � � D D12 . In
G2Arv."/ we further have that D5�12 D 0. Thus, fD1;D2g is a basis of G2Arv."/.
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There are 3 OC relations to write for G2Aw."/: D2DD10 , D3DD6 , and D4DD8 .
Along with the 6T relations, we find that

fD1;D3 DD6 DD9;D2 DD5 DD7 DD10 DD11;D4 DD8 DD12g

is a basis of G2Aw."/. Similarly fD1;D2 D � � � D D12g is a basis of the two-
dimensional G2Asw."/. When we mod out by FI, only one diagram remains non-zero
in G2Arw."/ and it is D1 .

We leave the determination of the primitives and the spaces with a circle skeleton as an
exercise to the reader.
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