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A family of transverse link homologies

HAO WU

We define a homology HN for closed braids by applying Khovanov and Rozansky’s
matrix factorization construction with potential axNC1. Up to a grading shift, H0 is
the HOMFLYPT homology defined by Khovanov and Rozansky. We demonstrate
that for N � 1 , HN is a Z2 ˚Z˚3–graded QŒa�–module that is invariant under
transverse Markov moves, but not under negative stabilization/destabilization. Thus,
for N � 1 , this homology is an invariant for transverse links in the standard contact
S3 , but not for smooth links. We also discuss the decategorification of HN and the
relation between HN and the sl.N / Khovanov–Rozansky homology.

57M25, 57R17

1 Introduction

1.1 Transverse links in the standard contact S 3

A contact structure � on an oriented 3–manifold M is an oriented tangent plane
distribution such that there is a 1–form ˛ on M satisfying � D ker˛ , d˛j� > 0 and
˛ ^ d˛ > 0. Such a 1–form is called a contact form for � . The standard contact
structure �st on S3 is given by the contact form ˛st D dz�ydxCxdy D dzC r2d� .

We say that an oriented smooth link L in S3 is transverse if ˛stjL > 0. Two transverse
links are said to be transverse isotopic if there is an isotopy from one to the other through
transverse links. In [2], Bennequin proved that every transverse link is transverse
isotopic to a counterclockwise transverse closed braid around the z–axis. Clearly, any
smooth counterclockwise closed braid around the z–axis can be smoothly isotoped
into a transverse closed braid around the z–axis without changing the braid word. In
the rest of this paper, all closed braids are counterclockwise and around the z–axis.

Recall that two closed braids represent the same smooth link if and only if one of them
can be changed into the other by a finite sequence of Markov moves, which are:

� Braid group relations generated by
– �i�

�1
i D ��1

i �i D∅,
– �i�j D �j�i when ji � j j> 1,
– �i�iC1�i D �iC1�i�iC1 .
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� Conjugations: �! ��1��, where �; � 2 Bm .

� Stabilizations and destabilizations:
– Positive: � .2 Bm/! ��m .2 BmC1/.
– Negative: � .2 Bm/! ���1

m .2 BmC1/.

In the above, Bm is the braid group on m strands.

The following theorem by Orevkov and Shevchishin [15] and Wrinkle [18] describes
when two transverse closed braids are transverse isotopic.

Theorem 1.1 [15; 18] Two transverse closed braids are transverse isotopic if and
only if the braid word of one of them can be changed into that of the other by a
finite sequence of braid group relations, conjugations and positive stabilizations and
destabilizations.

From now on, braid group relations, conjugations and positive stabilizations and
destabilizations will be called transverse Markov moves. Theorem 1.1 tells us that
there is a one-to-one correspondence:�

Transverse isotopy classes
of transverse links

�
 !

�
Closed braids modulo

transverse Markov moves

�
:

Note that �st admits a nowhere-vanishing basis f@x C y@z; @y � x@zg. For each
transverse link L, this basis induces a trivialization of the normal bundle of L in
S3 , that is, a framing of L. We call this framing the contact framing of L. With its
contact framing, any transverse link is also a framed link. It is easy to see that if two
transverse links are transverse isotopic, then they are isotopic as framed links. It is
possible for two transverse links to be non-isotopic as transverse links, but still isotopic
as framed links. If a smooth link type contains two transverse links that are isotopic as
framed links but not as transverse links, then we call this smooth link type “transverse
non-simple”. An invariant for transverse links is called classical if it depends only
on the framed link type of the transverse link. Otherwise, it is called non-classical or
effective (in the sense that it is effective in detecting transverse non-simplicity).

See, for example, Birman and Menasco [4], Etnyre [5], Etnyre and Honda [6], and
Ng [14] for more about transverse links and their invariants.

1.2 The Khovanov–Rozansky homology

In [10], Khovanov and Rozansky introduced an approach to construct link homologies
using matrix factorizations, which consists of the following steps:
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(1) Choose a base ring R and a potential polynomial p.x/ 2RŒx�.

(2) Define matrix factorizations associated to MOY graphs using this potential p.x/.

(3) Define chain complexes of matrix factorizations associated to link diagrams
using the crossing information.

This approach has been carried out for the following potential polynomials:

� xNC1 2 QŒx�, which gives the sl.N / Khovanov–Rozansky homology; see
Khovanov and Rozansky [10].

� ax 2 QŒa;x�, which gives the HOMFLYPT homology; see Khovanov and
Rozansky [11].

� xNC1C
PN

lD1�lx
l 2QŒx�, giving the deformed sl.N / Khovanov–Rozansky

homology; see Gornik [8] and Wu [20].
� xNC1 C

PN
lD1alx

l 2 QŒa1; : : : ; aN ;x�, which gives the equivariant sl.N /

Khovanov–Rozansky homology; see Krasner [12].

Among these link homologies, the HOMFLYPT homology appears somewhat different.
All the other homologies are invariant under all Reidemeister moves. Therefore, these
homologies of a given smooth link can be computed from any diagram of this link.
But the HOMFLYPT homology is only invariant under braid-like Reidemeister moves.
So the HOMFLYPT homology of a smooth link can only be computed from its braid
diagrams.

In [11], Khovanov and Rozansky proposed studying the homology defined by the
potential polynomial

PNC1
lD1 alx

l 2QŒa1; : : : ; aN ; aNC1;x�, which generalizes the
HOMFLYPT homology.

1.3 A family of transverse link homologies

By Theorem 1.1, one can construct an invariant for transverse links by constructing an
invariant for closed braids that is invariant under transverse Markov moves. This is
what we will do in the current paper.

More precisely, we will generalize the construction in [11] to a matrix factorization
construction with the potential polynomial p.x/D axNC1 2QŒa;x�. We will:

(1) Work with the potential polynomial axNC1 2QŒa;x�.

(2) Define matrix factorizations associated to MOY graphs in Definition 3.5 (see
also equations (3-6) and (3-7)).

(3) Define chain complexes of matrix factorizations associated to link diagrams in
Definition 4.2.
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For each N � 0, this construction gives a Z2 ˚ Z˚3 –graded homology HN . Of
course, when N D 0, the homology we get is just the HOMFLYPT homology with
a grading shift. It turns out that, when N � 1, HN is only invariant under positive
Reidemeister move I and braid-like Reidemeister moves II and III. So it is not a smooth
link invariant. But, when we restrict to closed braids, this homology is invariant under
transverse Markov moves. Thus, by Theorem 1.1, it is a transverse link invariant.

The definition of HN and the proof of its invariance may look very similar to that of the
sl.N / Khovanov–Rozansky homology in [10]. But the graded QŒa�–module structure
of HN displays interesting properties and may contain more topological information
than the sl.N / Khovanov–Rozansky and HOMFLYPT homologies. To control the
length of the paper, we limit the goal of the current paper to defining the homology
HN , proving its invariance and establishing some very basic properties of HN . We
leave the more detailed study of properties of HN to a follow-up paper [19].

The following is the main result of the current paper.

Theorem 1.2 Suppose N � 1. Let B be a closed braid and .CN .B/; dmf ; d�/ the
chain complex of matrix factorizations associated to B defined in Definition 4.2.
Then the homotopy type of CN .B/ does not change under transverse Markov moves.
Moreover, the homotopy equivalences induced by transverse Markov moves preserve
the Z2˚Z˚3 –grading of CN .B/, where the Z2 –grading is the Z2 –grading of the
underlying matrix factorization and the three Z–gradings are the homological, a–, and
x–gradings of CN .B/.

Consequently, for the homology HN .B/DH.H.CN .B/; dmf /; d�/ of CN .B/ defined
in Definition 4.3, every transverse Markov move on B induces an isomorphism of
HN .B/ preserving the Z2˚Z˚3 –grading of HN .B/ inherited from CN .B/.

Theorem 1.2 follows directly from Propositions 5.5, 6.1 and 7.5. The proofs of the
invariance under braid-like Reidemeister moves II and III in Propositions 6.1 and 7.5
are fairly similar to those in [10; 11]. But the proof of the invariance under positive
Reidemeister move I in Proposition 5.5 is quite different from that in [10; 11]. This
is mainly because we need to handle matrix factorizations that are not homotopically
finite.

Question 1.3 Is HN .B/ a classical or a non-classical invariant for transverse links?

1.4 Negative stabilization

Next we describe how HN changes under negative stabilizations and demonstrate by a
simple example that HN is not invariant under negative stabilizations. Theorem 1.5
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and Corollary 1.6 in this subsection will be proved in Section 5.4. We will use the
following notation in our statements.

Definition 1.4 For a Z2˚Z˚3 –graded space H with a Z2 –grading, a homological
grading, an a–grading and an x–grading, we denote by H ";i;j ;k the subspace of H

of homogeneous elements of Z2 –degree ", homological degree i , a–degree j and
x–degree k .

Replacing one of these indices by a “?” means direct summing over all possible values
of this index. For example,

H ";i;?;k
D

M
j2Z

H ";i;j ;k and H ";i;?;?
D

M
.j ;k/2Z˚2

H ";i;j ;k :

Moreover, we denote by H fq; rg the Z2˚Z˚3 –graded space obtained from H by
shifting the a–grading by q and the x–grading by r . That is, .H fq; rg/";i;j ;k D
H ";i;j�q;k�r . We also use the notation H ";i;?;?fq; rg WD .H fq; rg/";i;?;? .

To state Theorem 1.5, we need to introduce a homomorphism �0 . Note that for
any Z2˚Z˚2 –graded matrix factorization M of 0 over QŒa�, M=aM is a Z2˚

Z˚2 –graded matrix factorization of 0 over Q. Denote by �0 WM !M=aM the
standard quotient map, which induces a homomorphism �0 WH.M /!H.M=aM /

of homology of matrix factorizations. For a chain complex .C; d/ of Z2 ˚ Z˚2 –
graded matrix factorizations of 0 over QŒa�, this further induces a homomorphism
�0 WH.H.C; dmf /; d/!H.H.C=aC; dmf /; d/. Generally speaking, these induced
homomorphisms are no longer quotient maps. To simplify the notation, we write
HN .L/ WDH.H.CN .L/=aCN .L/; dmf /; d�/.

The following theorem is proved in Section 5.4.

Theorem 1.5 Let L be a transverse closed braid, and let L� be a transverse closed
braid obtained from L by a single negative stabilization. Then the chain complex
.H.CN .L�/; dmf /; d�/ is isomorphic to the total chain complex of

0! .H.CN .L/; dmf /; d�/f�2; 0g„ ƒ‚ …
0

�0
�! .H.CN .L/=aCN .L/; dmf /; d�/f�2; 0g„ ƒ‚ …

1

! 0;

where the under-braces indicate shifts of the homological grading. This isomorphism
preserves the Z2˚Z˚3 –grading. In particular, there is a long exact sequence

� � � !H";i�1;?;?
N

.L/f�2; 0g
�0
�!H";i�1;?;?

N
.L/f�2; 0g !H";i;?;?

N
.L�/

!H";i;?;?
N

.L/f�2; 0g
�0
�!H";i;?;?

N
.L/f�2; 0g ! � � �

preserving the a– and x–gradings.

Algebraic & Geometric Topology, Volume 16 (2016)



46 Hao Wu

The following corollary shows that for N � 1, HN is not invariant under negative
stabilizations. This corollary is proved in Section 5.4 below.

Corollary 1.6 Let U be the transverse unknot represented by the 1–strand braid, and
U� the transverse unknot obtained from U by a single negative stabilization. For
N � 1, HN .U /ŠQŒa;x�=.axN /, where a is a variable of bidegree .2; 0/ and x is a
variable of bidegree .0; 2/. As Z˚2 –graded QŒa�–modules,

H";i;?;?
N

.U /Š

8̂̂̂̂
<̂
ˆ̂̂:

�
N�1L
lD0

QŒa�f�1;�N C 1C 2lg

�
˚

�
1L

mD0

QŒa�=.a/f�1;N C 1C 2mg

�
if "D 1 and i D 0;

0 otherwise,

H";i;?;?
N

.U�/Š

8̂̂̂̂
<̂
ˆ̂̂:

N�1L
lD0

QŒa�f�1;�N C 1C 2lg if "D 1 and i D 0;

1L
mD0

QŒa�=.a/f�2; 2mg if "D 0 and i D 1;

0 otherwise.

More generally, the Z2˚Z˚3 –graded QŒa�–modules structures of HN for all trans-
verse unknots are computed in [19, Corollary 1.7].

1.5 Decategorification

Definition 1.7 We define the decategorification PN of HN by

PN .B/ WD
X

.";i;j ;k/

2Z2˚Z˚3

.�1/i�"˛j�k dimQ H";i;j ;k
N

.B/ 2 ZŒŒ˛; ��� Œ˛�1; ��1; � �=.�2
� 1/

for any closed braid B .1

Next, we describe PN by a skein definition that is very similar to the classical HOM-
FLYPT skein relation.

Theorem 1.8 (1) PN is invariant under transverse Markov moves.

(2) ˛�1��NPN

�
✒■
�
�˛�NPN

�
■✒

�
D �.��1� �/PN

�
✒■
�

.

1From the definition of CN .B/ , one can see that its homological grading is bounded and its a– and
x –gradings are bounded below.
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(3) Denote by Utm the m–strand closed braid with no crossings. Then

PN .U
t1/D �˛�1

�
ŒN �

� 1X
iD0

˛2i

�
C

1X
jD0

�NC1C2j

�
;

PN .U
tm/D .�˛�1ŒN � /m

�
1

1�˛2
C

�
�˛��1C��N

��N��N

�m
� 1

�˛��N�1C 1

�
for m� 1, where ŒN � WD .��N � �N /=.��1� �/.2

(4) Parts (1)–(3) above uniquely determine the value of PN on every closed braid.

Theorem 1.8 will be proved in Section 8 below. In a nutshell, parts (1)–(3) of this
theorem follow from the definition of HN and Theorems 1.2 and 1.5, while part (4)
follows from the “invariant computation tree” constructed by Franks and Williams
in [7].

Remark 1.9 Unfortunately, PN turns out to be much less interesting than it appears.
For example, in a forthcoming update of [19], we will include a proof that PN is a
classical invariant of transverse links.

1.6 Relation to the sl.N / Khovanov–Rozansky homology

Denote by HN the sl.N / Khovanov–Rozansky homology defined in [10]. HN is a
Z2˚Z˚2 –graded link homology theory, where the Z2 –grading is the Z2 –grading
of the underlying matrix factorization and the two Z–gradings are the homological
grading and the x–grading. We denote by H

";i;k
N

the homogeneous component of HN

of Z2 –degree ", homological grading i and x–grading k .

The following theorem, which will be proved in Section 9, describes the relation
between HN and HN .

Theorem 1.10 Let B be a closed braid, and ."; i; k/ 2 Z2˚Z˚2 . Then:

(1) H
";i;k
N

.B/ŠH";i;?;k
N

.B/=.a� 1/H";i;?;k
N

.B/.

(2) As a Z–graded QŒa�–module,

H";i;?;k
N

.B/Š

�m";i;kM
pD1

QŒa�fspg

�
˚

� n";i;kM
qD1

QŒa�=.alq /ftqg

�
;

where
2For the structure of HN .U

tm/ , see [19, Lemma 3.6].
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� fsg means shifting the a–grading by s ,
� m";i;k D dimQ H

";i;k
N

.B/ <1,
� n";i;k is a finite non-negative integer determined by B and the triple ."; i; k/,
� fs1; : : : ; sm";i;k g � Z is a sequence determined up to permutation by B and

the triple ."; i; k/,
� f.l1; t1/; : : : ; .ln";i;k ; tn";i;k /g � Z˚2 is a sequence determined up to permu-

tation by B and the triple ."; i; k/.

A more precise description of the Z2˚Z˚3 –graded QŒa�–module structure of HN

can be found in [19, Theorem 1.4].

1.7 Organization of this paper

We review the definition and basic properties of matrix factorizations in Section 2. Then
we define the matrix factorizations associated to MOY graphs and chain complexes
associated to link diagrams in Sections 3 and 4. The invariance is established in
Sections 5–7. Finally, we discuss the decategorification and the relation to the sl.N /

Khovanov–Rozansky homology in Sections 8 and 9.

Although this paper is mostly self-contained, some prior experience with the Khovanov–
Rozansky homology would certainly be helpful.

Acknowledgements The author was partially supported by NSF grant DMS-1205879
and a Collaboration Grant for Mathematicians from the Simons Foundation.

2 Matrix factorizations

In this section, we review the definition and some basic properties of matrix factoriza-
tions over the bigraded polynomial ring QŒa;X1; : : : ;Xk �.

We write R D QŒa;X1; : : : ;Xk � and fix a non-negative integer N throughout this
section.

2.1 Z˚2–graded R–modules

Definition 2.1 We define a Z˚2 –grading on RDQŒa;X1; : : : ;Xk � by letting deg aD

.2; 0/ and deg Xi D .0; 2ni/ for i D 1; : : : ; k , where each ni is a positive integer. We
call the first component of this Z˚2 –grading the a–grading and denote its degree
function by dega . We call the second component of this Z˚2 –grading the x–grading
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and denote its degree function by degx . An element of R is said to be homogeneous
if it is homogeneous with respect to both the a–grading and the x–grading.

A Z˚2 –graded R–module M is a R–module M equipped with a Z˚2 –grading
such that, for any homogeneous element3m of M , deg.am/ D deg mC .2; 0/ and
deg.Xim/D deg mC .0; 2ni/ for i D 1; : : : ; k . Again, we call the first component of
this Z˚2 –grading of M the a–grading and denote its degree function by dega . We
call the second component of this Z˚2 –grading of M the x–grading and denote its
degree function by degx .

We say that the Z˚2 –grading on M is bounded below if both the a–grading and the
x–grading are bounded below.

For a Z˚2 –graded R–module M , we denote by M fj ; kg the Z˚2 –graded R–module
obtained by shifting the Z˚2 –grading of M by .j ; k/. That is, for any homogeneous
element m of M , we have degM fj ;kgmD degM mC .j ; k/.

A basis of a Z˚2 –graded free R–module M is called a homogeneous basis if all the
elements of this basis are homogeneous.

In our construction of HN , we need to use the fact that if the Z˚2 –grading of a
Z˚2 –graded free R–module M is bounded below, then M admits a homogeneous
basis over R. To prove this, we start with the following lemma, which is implicitly
given in [16].

Lemma 2.2 [21, Lemma 4.4] Suppose that M is a Z–graded free QŒX1; : : : ;Xk �–
module whose grading is bounded below. Then M admits a homogeneous basis over
QŒX1; : : : ;Xk �.

Proof See [21, Section 4.1].

Lemma 2.3 Suppose that M is a Z˚2 –graded free R–module and its a–grading and
x–grading are both bounded below. Then M admits a homogeneous basis over R.

In particular, if M is a Z˚2 –graded finitely generated free R–module, then M admits
a homogeneous basis over R.

Proof Assume that M is a free Z˚2 –graded R–module and both the a–grading and
the x–grading on M are bounded below. Denote by j0 the lowest a–degree for any non-
zero homogeneous element of M . Since a is homogeneous, the R–module M=aM

inherits the Z˚2 –grading of M . Also, note that the multiplication by Xi does not affect

3An element of M is said to be homogeneous if it is homogeneous with respect to both Z–gradings.
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the a–grading. So, as a Z–graded QŒX1; : : : ;Xk �–module, M=aM D
L1

jDj0
Mj ,

where Mj is the component of M=aM of element homogeneous with respect to the
a–grading of a–degree j . On each Mj , the x–grading is bounded below. So, by
Lemma 2.2, each Mj admits a homogeneous basis fyvj ;p j p 2 Ij g with respect to the
x–grading, where Ij is an index set. Thus, fyvj ;p j j � j0; p 2 Ij g is a homogeneous
basis for the Z˚2 –graded QŒX1; : : : ;Xk �–module M=aM .

Denote by �M the standard quotient map �M W M !M=aM . For each yvj ;p , there
exists a homogeneous element vj ;p of M such that �M .vj ;p/D yvj ;p , dega vj ;p D

dega yvj ;p D j and degx vj ;p D degx yvj ;p . We claim that fvj ;p j j � j0; p 2 Ij g is a
homogeneous basis for the Z˚2 –graded R–module M .

First, we prove that fvj ;p j j � j0; p 2 Ij g is R–linearly independent. Assume thatPl
iD1 fji ;pi

vji ;pi
D 0 for some fvj1;p1

; : : : ; vjl ;pl
g � fvj ;p j j � j0; p 2 Ij g, where

fji ;pi
is a non-zero element in R for each i D 1; : : : ; l . After possibly dividing this

sum by a power of a, assume without loss of generality that, for some i , fji ;pi
is not a

multiple of a. Let � be the standard quotient map � W R!R=aRŠQŒX1; : : : ;Xk �.
Then, in M=aM , we have �M

�Pl
iD1 fji ;pi

vji ;pi

�
D
Pl

iD1 �.fji ;pi
/yvji ;pi

D0, where
�.fji ;pi

/ ¤ 0 for some i . This is a contradiction since fyvj ;p j j � j0; p 2 Ij g is a
basis for the QŒX1; : : : ;Xk �–module M=aM .

Now we prove by an induction on dega u that any homogeneous element u of M is
in the span of fvj ;p j j � j0; p 2 Ij g. Recall that j0 is the lowest a–degree for any
non-zero homogeneous element of M . So, if dega u < j0 , then uD 0, which is in
the span of fvj ;p j j � j0; p 2 Ij g. Now assume that for some j � j0 , u is in the
span of fvj ;p j j � j0; p 2 Ij g whenever dega u < j . Suppose dega u D j . Then
�M .u/ 2Mj and therefore, �M .u/ D

P
p2Ij

cpyvj ;p , where cp 2 QŒX1; : : : ;Xk �.
Thus, �M .u�

P
p2Ij

cpvj ;p/ D 0 and u�
P

p2Ij
cpvj ;p 2 aM . Then, there is an

element v in M such that

� av D u�
P

p2Ij
cpvj ;p ,

� v is homogeneous with respect to the a–grading and dega v D j � 2.

Note that each homogeneous part of v is of a–degree j � 2. By the induction
hypothesis, v is in the span of fvj ;p j j � j0; p 2 Ij g. Hence, u is also in the span of
fvj ;p j j � j0; p 2 Ij g.

This completes the induction and proves that M admits a homogeneous basis over R

if the a–grading and x–grading on M are both bounded below.

If M is finitely generated, then M is generated by a finite set of homogeneous elements.
Then the lowest a–degree and x–degree of these elements are lower bounds for the
a–grading and the x–grading of M . So the lemma applies to M .
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2.2 Matrix factorizations and morphisms of matrix factorizations

Definition 2.4 Again, we define a Z˚2 –grading on RDQŒa;X1; : : : ;Xk � by letting
deg a D .2; 0/ and deg Xi D .0; 2ni/ for i D 1; : : : ; k , where each ni is a positive
integer. Let w be a homogeneous element of R D QŒa;X1; : : : ;Xk � with bidegree
.2; 2N C2/. A Z2˚Z˚2 –graded matrix factorization M of w over R is a collection
of two Z˚2 –graded free R–modules M0 , M1 and two homogeneous R–module
maps d0W M0!M1 , d1W M1!M0 of bidegree .1;N C1/, called differential maps,
such that

d1 ı d0 D w � idM0
; d0 ı d1 D w � idM1

:

We usually write M as M0

d0
�!M1

d1
�!M0 .

The Z2 –grading of M takes value " on M" . The a– and x–gradings of M are the
a– and x–gradings of the underlying Z˚2 –graded R–module M0˚M1 .

Following [10], we denote by M h1i the matrix factorization M1

d1
�!M0

d0
�!M1 and

write

M hj i DM

j times‚ …„ ƒ
h1i � � � h1i :

For any Z2 ˚ Z˚2 –graded matrix factorization M of w over R and j ; k 2 Z,
M fj ; kg is naturally a Z2˚Z˚2 –graded matrix factorization of w over R. For any
two Z2˚Z˚2 –graded matrix factorizations M and M 0 of w over R, M ˚M 0 is
naturally a Z2˚Z˚2 –graded matrix factorization of w over R. Let w and w0 be
two homogeneous elements of R with bidegree .2; 2N C 2/. For Z2˚Z˚2 –graded
matrix factorizations M of w and M 0 of w0 over R, the tensor product M ˝R M 0

is the Z2˚Z˚2 –graded matrix factorization of wCw0 over R such that:

� .M ˝M 0 /0 D .M0˝M 0
0/˚ .M1˝M 0

1/;

.M ˝M 0 /1 D .M1˝M 0
0/˚ .M1˝M 0

0/:

� The differential is given by the signed Leibniz rule. That is, d.m˝m0/ D

.dm/˝m0C .�1/"m˝ .dm0/ for m 2M" and m0 2M 0 .

Definition 2.5 Let w be a homogeneous element of R with bidegree .2; 2N C 2/,
M , M 0 two Z2˚Z˚2 –graded matrix factorizations of w over R, and dM , dM 0 the
differential maps of M and M 0 .

(1) A morphism of Z2˚Z˚2 –graded matrix factorizations from M to M 0 is a
homogeneous R–module homomorphism f W M !M 0 preserving the Z2˚

Z˚2 –grading and satisfying dM 0f D fdM . We denote by Hommf.M;M 0/ the
Q–space of all morphisms of Z2˚Z˚2 –graded matrix factorizations from M

to M 0 .
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(2) Two morphisms f and g of Z2˚Z˚2 –graded matrix factorizations from M to
M 0 are called homotopic if there is an R–module homomorphism hW M !M 0

shifting the Z2 –grading by 1 such that f � g D dM 0hC hdM . In this case,
we write f ' g . We denote by Homhmf.M;M 0/ the Q–space of all homotopy
classes of morphisms of Z2˚Z˚2 –graded matrix factorizations from M to
M 0 . That is, Homhmf.M;M 0/D Hommf.M;M 0/='.

(3) Two morphisms f and g of Z2˚Z˚2 –graded matrix factorizations from M to
M 0 are called projectively homotopic if there is a c 2Qnf0g such that f ' cg .
In this case, we write f � g .

Let M and M 0 be as in Definition 2.5. Consider the R–module HomR.M;M 0/ of
R–module homomorphisms from M to M 0 . It admits a Z2 –grading that takes value

� 0 on Hom0
R.M;M 0/D HomR.M0;M

0
0
/˚HomR.M1;M

0
1
/,

� 1 on Hom1
R.M;M 0/D HomR.M1;M

0
0
/˚HomR.M0;M

0
1
/.

Moreover, HomR.M;M 0/ admits a differential map d given by d.f /D dM 0 ıf �

.�1/"f ı dM for f 2 Hom"R.M;M 0/, which makes HomR.M;M 0/ into a chain
complex with a Z2 –homological grading.

Lemma 2.6 Let w be a homogeneous element of R with bidegree .2; 2N C 2/, and
M , M 0 any two Z2˚Z˚2 –graded matrix factorizations of w over R. Then:

(1) A homogeneous R–module homomorphism f W M !M 0 preserving the Z2˚

Z˚2 –grading is a morphism of Z2˚Z˚2 –graded matrix factorizations if and
only if df D 0.

(2) Two morphisms f and g of Z2˚Z˚2 –graded matrix factorizations from M

to M 0 are homotopic if and only if f �g D dh for some h 2 Hom1
R.M;M 0/.

(3) If M is finitely generated over R, then HomR.M;M 0/ is naturally Z2˚Z˚2 –
graded, and:
� Hommf.M;M 0/ D .ker d/0;0;0 , where .ker d/";j ;k is the Q–subspace of

ker d of homogeneous elements of Z2˚Z˚2 –degree ."; j ; k/.
� Homhmf.M;M 0/DH 0;0;0.HomR.M;M 0/; d/, where we use the notation

H ";j ;k.HomR.M;M 0/; d/ for the Q–subspace of H.HomR.M;M 0/; d/

of homogeneous elements of Z2˚Z˚2 –degree ."; j ; k/.

Proof The first two parts of the lemma are simple reformulations of definitions. For
Part (3), note that, when M is finitely generated, the Z2˚Z˚2 –gradings of M and
M 0 induce a Z2˚Z˚2 –grading on HomR.M;M 0/. Since d is homogeneous under
this grading, both ker d and H.HomR.M;M 0/; d/ inherit this Z2˚Z˚2 –grading.
The rest follows easily.
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Definition 2.7 Let w be a homogeneous element of R with bidegree .2; 2N C 2/,
and M , M 0 any two Z2˚Z˚2 –graded matrix factorizations of w over R. Then:

(1) An isomorphism of Z2˚Z˚2 –graded matrix factorizations from M to M 0 is a
morphism of Z2˚Z˚2 –graded matrix factorizations that is also an isomorphism
of the underlying R–modules. We say that M and M 0 are isomorphic, or
M ŠM 0 , if there is an isomorphism from M to M 0 .

(2) M and M 0 are called homotopic, or M 'M 0 , if there are morphisms f W M !
M 0 and gW M 0!M such that gıf ' idM and f ıg' idM 0 . The morphisms
f and g are called homotopy equivalences between M and M 0 .

2.3 Koszul matrix factorizations

In the definition of HN , we will use matrix factorizations of a special form, called
Koszul matrix factorizations. We now review the definition and basic properties of
Koszul matrix factorizations.

Definition 2.8 If a0; a1 2 R are homogeneous elements with deg a0 C deg a1 D

.2; 2N C 2/, then denote by .a0; a1/R the Z2˚Z˚2 –graded matrix factorization

R
a0
�!Rf1� dega a0; N C 1� degx a0g

a1
�!R

of a0a1 over R. More generally, if a1;0; a1;1; : : : ; al;0; al;1 2 R are homogeneous
with deg aj ;0C deg aj ;1 D .2; 2N C 2/, then denote by0BBB@

a1;0; a1;1

a2;0; a2;1
:::

:::

al;0; al;1

1CCCA
R

the tensor product .a1;0; a1;1/R ˝R .a2;0; a2;1/R ˝R � � � ˝R .al;0; al;1/R . This is a
Z2˚Z˚2 –graded matrix factorization of

Pl
jD1 aj ;0aj ;1 over R, and is call the Koszul

matrix factorization associated to the above matrix. We drop “R” from the notation
when it is clear from the context.

Note that the above Koszul matrix factorization is finitely generated over R.

Lemma 2.9 [10; 11] Let a0; a1 and a1;0; a1;1; : : : ; al;0; al;1 be as in Definition 2.8.
Then

.a1; a0/R Š .a0; a1/Rh1if1� dega a1; N C 1� degx a1g;
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and0BBB@
a1;1; a1;0

a2;1; a2;0
:::

:::

al;1; al;0

1CCCA
R

Š

0BBB@
a1;0; a1;1

a2;0; a2;1
:::

:::

al;0; al;1

1CCCA
R

hli

� lX
jD1

.1� dega aj ;1/;

lX
jD1

.NC1� degx aj ;1/

�
:

Lemma 2.10 [10; 11] Let a1;0; a1;1; : : : ; al;0; al;1 be as in Definition 2.8. Then for
any Z2˚Z˚2 –graded matrix factorization M of

Pl
jD1 aj ;0aj ;1 over R,

HomR

0BBB@
0BBB@

a1;0; a1;1

a2;0; a2;1
:::

:::

al;0; al;1

1CCCA
R

; M

1CCCAŠM ˝R

0BBB@
�a1;1; a1;0

�a2;1; a2;0
:::

:::

�al;1; al;0

1CCCA
R

ŠM ˝R

0BBB@
a1;0; �a1;1

a2;0; �a2;1
:::

:::

al;0; �al;1

1CCCA
R

hli

� lX
jD1

.1� dega aj ;1/;

lX
jD1

.NC1� degx aj ;1/

�

as Z2˚Z˚2 –graded chain complexes.

Lemma 2.11 [10, Proposition 2] Let a1;0; a1;1; : : : ; al;0; al;1 be as in Definition 2.8
and

M D

0BBB@
a1;0; a1;1

a2;0; a2;1
:::

:::

al;0; al;1

1CCCA
R

:

If r is an element of the ideal .a1;0; a1;1; : : : ; al;0; al;1/ of R, then the multiplication
by r , as an endomorphism of M , is homotopic to 0.

Lemma 2.12 [17] Suppose that a1;0; a1;1; a2;0; a2;1; k are homogeneous elements
of R satisfying deg aj ;0C deg aj ;1 D .2; 2N C 2/ and deg k D deg a1;0C deg a2;0�

.2; 2N C 2/. Then �
a1;0 a1;1

a2;0 a2;1

�
R

Š

�
a1;0C ka2;1 a1;1

a2;0� ka1;1 a2;1

�
R

:

Lemma 2.13 [10; 17] Suppose a1;0; a1;1; a2;0; a2;1; c are homogeneous elements
of R satisfying deg aj ;0 C deg aj ;1 D .2; 2N C 2/ and deg c D deg a1;0 � deg a2;0 .
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Then �
a1;0 a1;1

a2;0 a2;1

�
R

Š

�
a1;0C ca2;0 a1;1

a2;0 a2;1� ca1;1

�
R

:

Definition 2.14 Let a1; : : : ; ak be elements of R. The sequence fa1; : : : ; akg is
called R–regular if a1 ¤ 0 and aj is not a zero divisor in R=.a1; : : : ; aj�1/ for
j D 2; : : : ; k .

Lemma 2.15 [9; 17] Suppose that fa1; : : : ; akg is an R–regular sequence of ho-
mogeneous elements of R. Assume that f1; : : : ; fk ;g1; : : : ;gk are homogeneous
elements of R such that degfj D deg gj D .2; 2N C 2/� deg aj and

Pk
jD1 fj aj DPk

jD1 gj aj . Then 0B@f1; a1
:::

:::

fk ; ak

1CA
R

Š

0B@g1; a1
:::

:::

gk ; ak

1CA
R

:

The proofs of the above lemmas are omitted here since they are relatively easy and can
be found, for example, in [10; 11; 9; 17; 20]. The following are two versions of [10,
Proposition 9], which are very useful in computations.

Proposition 2.16 (Strong version) Let X be a homogeneous indeterminate such that
deg X D .0; 2n/ and n � N C 1. Denote by P W RŒX �! R the evaluation map at
X D 0. That is, P .f .X //D f .0/ for all f .X / 2RŒX �.

Suppose that a1; : : : ; al ; b1; : : : ; bl are homogeneous elements of RŒX � such that
� deg aj C deg bj D .2; 2N C 2/, 8j D 1; : : : ; l ,
�
Pl

jD1 aj bj 2R,
� 9 i 2 f1; : : : ; lg such that bi DX .

Then

M D

0BBB@
a1 b1

a2 b2
:::

:::

ak bk

1CCCA
RŒX �

and M 0
D

0BBBBBBBBBB@

P .a1/ P .b1/

P .a2/ P .b2/
:::

:::

P .ai�1/ P .bi�1/

P .aiC1/ P .biC1/
:::

:::

P .ak/ P .bk/

1CCCCCCCCCCA
R

are homotopic as Z2˚Z˚2 –graded matrix factorizations over R.

Proof See [21, Proposition 3.19].
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Proposition 2.17 (Weak version) Let I be an ideal of R generated by homogeneous
elements. Assume w , a0 and a1 are homogeneous elements of R such that degw D
deg a0Cdeg a1D .2; 2NC2/ and wCa0a1 2 I . Then w 2 IC.a0/ and w 2 IC.a1/.

Let M be a Z2˚Z˚2 –graded matrix factorization of w over R, and zM DM ˝R

.a0; a1/R . Then zM =I zM , M=.I C .a0//M and M=.I C .a1//M are all Z2˚Z˚2 –
graded chain complexes of R–modules such that:

(1) If a0 is not a zero-divisor in R=I , then there is an R–linear quasi-isomorphism
f W zM =I zM ! .M=.I C .a0//M /h1if1� dega a0;N C 1� degx a0g that pre-
serves the Z2˚Z˚2 –grading.

(2) If a1 is not a zero-divisor in R=I , then there is an R–linear quasi-isomorphism
gW zM =I zM !M=.I C .a1//M that preserves the Z2˚Z˚2 –grading.

Proof This proposition is [10, Proposition 9]. Since the quasi-isomorphism g in (2)
will be used in the proof of Theorem 1.5, we sketch a proof for (2) here.

Write M DM0
d0
�!M1

d1
�!M0 , saD 1�dega a0 and sx DN C1�degx a0 . Recall

that .a0; a1/R DR
a0
�!Rfsa; sxg

a1
�!R. Then zM DM ˝R .a0; a1/R is the matrix

factorization
M0

˚

M1fsa; sxg

zd0
��!

M1

˚

M0fsa; sxg

zd1
��!

M0

˚

M1fsa; sxg

;

where

zd0 D

�
d0 �a1

a0 d1

�
; zd1 D

�
d1 a1

�a0 d0

�
:

For " 2Z2 , denote by P"W M"=IM"!M"=.I C .a1//M" the standard quotient map.
We define gW zM =I zM ! .M=.I C .a1//M / by the mappings

M0=IM0

˚

.M1=IM1/fsa; sxg

.P0;0/
�����! M0=.I C .a1//M0;

M1=IM1

˚

.M0=IM0/fsa; sxg

.P1;0/
�����! M1=.I C .a1//M1:

It is straightforward to check that

� g is a surjective R–linear chain map that preserves the Z2˚Z˚2 –grading,

� ker g is a homotopically trivial subcomplex of zM =I zM .
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So the short exact sequence

0! ker g ,! zM =I zM
g
�! .M=.I C .a1//M /! 0

induces an exact triangle

H. zM =I zM /
g

// H.M=.I C .a1//M /;

tt0

hh

which implies that g is a quasi-isomorphism.

2.4 Categories of matrix factorizations

Definition 2.18 Let w be a homogeneous element of R with bidegree .2; 2N C 2/.

Suppose M is a Z2˚Z˚2 –graded matrix factorization of w over R. We say that M

is homotopically finite if there exists a finitely generated graded matrix factorization
M over R with potential w such that M 'M.

We define categories mf all
R;w , mfR;w , hmf all

R;w and hmfR;w by the following table:

Category Objects Morphisms

mf all
R;w all Z2˚Z˚2–graded matrix factorizations ofw over

R with the Z˚2–grading bounded below
Hommf

mfR;w all homotopically finite Z2 ˚Z˚2–graded matrix
factorizations of w over R with the Z˚2–grading
bounded below

Hommf

hmf all
R;w all Z2˚Z˚2–graded matrix factorizations ofw over

R with the Z˚2–grading bounded below
Homhmf

hmfR;w all homotopically finite Z2 ˚Z˚2–graded matrix
factorizations of w over R with the Z˚2–grading
bounded below

Homhmf

Definition 2.19 Let w be a homogeneous element of R with bidegree .2; 2N C 2/.
Denote by I the maximal homogeneous ideal .a;X1; : : : ;Xk/ of R. Note that w 2 I
and, for a Z2 ˚ Z˚2 –graded matrix factorization M of w over R, M=IM is a
chain complex of Z˚2 –graded Q–spaces with a Z2 –homological grading. We define
HR.M / to be the Z2˚Z˚2 –graded homology of M=IM .

Denote by H
";j ;k
R

.M / the subspace of HR.M / of homogeneous elements of Z2 –
degree " and Z˚2 –degree .j ; k/. If the Z˚2 –grading of M is bounded below and
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dim H
";j ;k
R

.M / <1 for all "; j ; k , then we define the graded dimension of M over
R to be

gdimR.M /D
X
";j ;k

�"˛j�k dimQ H
";j ;k
R

.M / 2 ZŒŒ˛; ��� Œ˛�1; ��1; � �=.�2
� 1/:

Lemma 2.20 Let M be a Z˚2 –graded free R–module whose Z˚2 –grading is
bounded below. Define V DM=IM . Then there is a homogeneous R–module isomor-
phism F W V ˝Q R!M preserving the Z˚2 –grading. In particular, if fvˇ j ˇ 2 Bg is
a homogeneous Q–basis for V , then fF.vˇ˝ 1/ j ˇ 2 Bg is a homogeneous R–basis
for M .

Proof By Lemma 2.3, M has a homogeneous basis fe˛ j ˛ 2 Ag. Then, as Z˚2 –
graded vector spaces, V Š

L
˛2A Q �e˛ . So M Š

L
˛2A R �e˛ Š V ˝Q R as graded

R–modules. This proves the existence of F . The rest of the lemma follows easily.

Proposition 2.21 [10, Proposition 7] Let w be a homogeneous element of R with
bidegree .2; 2N C 2/, and M a Z2˚Z˚2 –graded matrix factorization of w over R.
Assume the Z˚2 –grading of M is bounded below. Then there exist Z2˚Z˚2 –graded
matrix factorizations Mc and Mes of w over R such that

(i) M ŠMc ˚Mes ,

(ii) Mc ' 0 and, therefore, M 'Mes ,

(iii) Mes Š HR.M / ˝Q R as Z2 ˚ Z˚2 –graded R–modules, and HR.M / Š

Mes=IMes as Z2˚Z˚2 –graded Q–spaces.

Proof (Following [10].) Write M as M0

d0
�!M1

d1
�!M0 . Then the chain complex

V WDM=IM is given by

V0

yd0
�! V1

yd1
�! V0;

where V" D M"=IM" for " D 0; 1. By Lemma 2.3, M" has a homogeneous R–
basis fe� j � 2 S"g, which induces a homogeneous Q–basis fye� j � 2 S"g for V" .
Under the homogeneous basis fe� j � 2 S"g, the entries of matrices of d0 and d1 are
homogeneous elements of R. And the matrices of yd0 and yd1 are obtained by letting
aDX1 D � � � DXm D 0 in the matrices of d0 and d1 , which preserves scalar entries
and kills entries with positive degrees.

We call f.yu�; yv�/ j � 2 Pg a “good” set if
� fyu� j � 2 Pg is a set of linearly independent homogeneous elements in V0 ,
� fyv� j � 2 Pg is a set of linearly independent homogeneous elements in V1 ,
� yd0.yu�/D yv� and yd1.yv�/D 0.
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Using Zorn’s lemma, we find a maximal “good” set G D f.yu˛; yv˛/ j ˛ 2 Ag. Using
Zorn’s lemma again, we extend fyu˛ j˛2Ag into a homogeneous basis fyu˛ j˛2A[B0g

for V0 , and fyv˛ j ˛ 2Ag into a homogeneous basis fyv˛ j ˛ 2A[B1g for V1 . For each
ˇ 2 B0 , we can write yd0yuˇ D

P
˛2A[B1

c˛ˇ � yv˛ , where c˛ˇ 2Q, and the right-hand
side is a finite sum.

By Lemma 2.20, there is a homogeneous isomorphism F"W V"˝QR�!
Š

M" preserving
the Z˚2 –grading. Let u˛DF0.yu˛˝1/ and v˛DF1.yv˛˝1/. Then fu˛ j˛ 2A[B0g

and fv˛ j ˛ 2 A [ B1g are homogeneous R–bases for M0 and M1 . Recall that
yd0.yu˛/D yv˛ for ˛ 2A. So we have that, for any ˛ 2A,

du˛ D v˛C
X

ˇ2A[B1
ˇ¤˛

fˇ˛vˇ;

where fˇ˛ 2 I and the sum on the right-hand side is a finite sum. That is, for each ˛ ,

(2-1) fˇ˛ D 0 for all but finitely many ˇ:

For two pairs of integers .i; j /, .k; l/ we say that

� .i; j /� .k; l/ if i � k and j � l ,

� .i; j /� .k; l/ if .i; j /� .k; l/ and .i; j /¤ .k; l/.

For each pair of .˛; ˇ/ with ˛ 2 A, ˇ 2 A[ B1 and ˛ ¤ ˇ , the requirement that
fˇ˛ 2 I implies

(2-2) fˇ˛ ¤ 0 only if deg vˇ � deg v˛:

For ˛ 2A and k > 0, let

C k
�˛Df.0; : : : ; k/2AkC1

jkD˛; deg v0
�� � ��deg vk

; f01
� � � fk�1k

¤0g:

By Equation (2-1), C k
�˛ is a finite set. For each ˛ , C k

�˛ D ∅ for large k since the
Z˚2 –grading of M is bounded below. For ˛; ˇ 2A and k > 0, let

C k
ˇ˛ D f.0; : : : ; k/ 2 C k

�˛ j 0 D ˇg:

Then
S
ˇ2A C k

ˇ˛
D C k

�˛ . So each C k
ˇ˛

is finite. And, for each k , C k
ˇ˛
¤∅ for only

finitely many ˇ . Also, by definition, it is easy to see that C k
ˇ˛
¤∅ only if deg vˇ �

deg v˛ . Moreover, for each ˛ , there is a k0> 0 such that C k
ˇ˛
D∅ for any ˇ whenever

k > k0 .
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Now, for ˛; ˇ 2A, define tˇ˛ 2R by

tˇ˛ D

8̂̂<̂
:̂

1 if ˇ D ˛;P
k�1

.�1/k
P

.0;:::;k/2C k
ˇ˛

f01
� � � fk�1k

if deg vˇ � deg v˛;

0 otherwise.

From the above discussion, we know that the sum on the right-hand side is always
a finite sum. So tˇ˛ is well defined. Furthermore, given an ˛ 2 A, tˇ˛ D 0 for
all but finitely many ˇ . So, for ˛ 2 A, u0˛ WD

P
ˇ2A tˇ˛uˇ is well-defined. It is

straightforward to check that

� fu0˛ j ˛ 2Ag[ fuˇ j ˇ 2 B0g is also a homogeneous R–basis for M0 ;

� for ˛ 2A, du0˛ D v˛C
P
ˇ2B1

f 0
ˇ˛
vˇ , where the right-hand side is a finite sum,

and f 0
ˇ˛
2 I.

Now let

v0˛ D

(
v˛C

P
ˇ2B1

f 0
ˇ˛
vˇ if ˛ 2A;

v˛ if ˛ 2 B1:

Then fv0˛ j ˛ 2A[B1g is a homogeneous R–basis for M1 . We have(
du0˛ D v

0
˛ if ˛ 2A;

duˇ D
P̨
2A

g˛ˇv
0
˛C

P
2B1

gˇv
0
 if ˇ 2 B0;

where the sums on the right-hand side are finite sums. For ˇ 2 B0 , we let u0
ˇ
D

uˇ�
P
˛2A g˛ˇu0˛ . Then fu0˛ j ˛ 2A[B0g is again a homogeneous R–basis for M0 ,

and (
du0˛ D v

0
˛ if ˛ 2A;

du0
ˇ
D

P
2B1

gˇv
0
 if ˇ 2 B0;

where the sum on the right-hand side is a finite sum. Using that d1d0 D w � idM0
and

d0d1 D w � idM1
, one can check that(

dv0˛ D w � v
0
˛ if ˛ 2A;

dv0
ˇ
D

P
2B0

hˇu0 if ˇ 2 B1;

where the sum on the right-hand side is a finite sum.

Define M.1;w/ to be the submodule of M spanned by fu0˛ j ˛ 2 Ag [ fv0˛ j ˛ 2 Ag,
and M 0 the submodule of M spanned by fu0

ˇ
j ˇ 2 B0g [ fv

0
ˇ
j ˇ 2 B1g. Then

M.1;w/ and M 0 are both Z2˚Z˚2 –graded matrix factorizations of w over R and
M DM.1;w/˚M 0 . Note that
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(a) M.1;w/ is a direct sum of components of the form .1; w/Rfj ; kg;
(b) under the standard projection M !M=IM , we have, for ˛ 2 A, u0˛ 7! yu˛

and v0˛ 7! yv˛ .

In particular, (b) above means that M 0 does not have direct sum components of the form
.1; w/Rfj ; kg. Otherwise, we can enlarge the “good” set G , which contradicts the fact
that G is maximal. We then apply a similar argument to M 0 and find a decomposition
M 0 DM.w;1/˚Mes of Z2˚Z˚2 –graded matrix factorizations such that
� M.w;1/ is a direct sum of components of the form .w; 1/Rfj ; kg;
� Mes has no direct sum component of the forms .1; w/Rfj ; kg or .w; 1/Rfj ; kg.

Let Mc D M.1;w/ ˚M.w;1/ . Then M D Mc ˚Mes . We have Mc ' 0 since
.1; w/Rfj ; kg and .w; 1/Rfj ; kg are both homotopic to 0. So M 'Mes . It is clear
that under any homogeneous basis for Mes , all entries of the matrices representing
the differential map of Mes must be in I. Otherwise, a simple change of basis
would show that Mes has a direct sum component of the form .1; w/Rfj ; kg or
.w; 1/Rfj ; kg. Therefore, HR.M /ŠHR.Mes/ŠMes=IMes . So, by Lemma 2.20,
Mes ŠHR.M /˝Q R as graded modules.

Corollary 2.22 [10, Corollary 4] Let w be a homogeneous element of R with
bidegree .2; 2N C 2/, and M a Z2˚Z˚2 –graded matrix factorization of w over R

whose Z˚2 –grading is bounded below. We have:
(1) M ' 0 if and only if HR.M /D 0 or, equivalently, gdimR.M /D 0.
(2) M is homotopically finite if and only if dimQ HR.M / is finite.

Proof (Following [10]) For (1), note that, by Proposition 2.21, M ' 0 if and only
if Mes ' 0 if and only if HR.M /D 0.

Now consider (2). If M is homotopically finite, then there is a finitely generated
Z2˚Z˚2 –graded matrix factorization M of w over R such that M 'M. Note
that M=IM is finite-dimensional over Q. Thus, HR.M / Š HR.M/ is finite-
dimensional over Q. On the other hand, if HR.M / is finite-dimensional over Q,
then by Proposition 2.21, Mes Š HR.M /˝Q R is finitely generated over R. But
M 'Mes . So M is homotopically finite.

Definition 2.23 An additive category C is said to be fully additive if every idempotent
endomorphism in C splits. That is, for every object C of C and every endomorphism
f of C satisfying f ıf D f , there exist objects C0 and C1 of C and an isomorphism

C0

˚

C1

.J0;J1/
�����! C
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such that f ıJ0 D 0 and f ıJ1 D J1 .

Lemma 2.24 Let C be a fully additive category. Assume that

� A and C are objects of C,

� A
f
�!C and C

g
�!A are morphisms of C such that g ıf D idA .

Then there exists an object C0 of C such that C ŠA˚C0 .

Proof Consider the morphism C f ıg
���!C . We have .f ıg/ı.f ıg/D f ı idA ıgD

f ıg . Since C is fully additive, there exist objects C0 and C1 of C and an isomorphism

C0

˚

C1

�
J0; J1

�
�������! C

such that f ıg ıJ0 D 0 and f ıg ıJ1 D J1 . Denote by

C

�
P0

P1

�
����!

C0

˚

C1

the inverse of .J0;J1/. Note that P1 ı f ı g ı J1 D P1 ı J1 D idC1
. Moreover,

idA D g ıf D g ı idC ıf D g ı .J0 ıP0CJ1 ıP1/ ıf . So

idA D idA ı idA D g ıf ıg ı .J0 ıP0CJ1 ıP1/ ıf

D g ı .f ıg ıJ0 ıP0Cf ıg ıJ1 ıP1/ ıf D g ıJ1 ıP1 ıf:

Thus, the morphisms A P1ıf���!C1 and C1
gıJ1���!A are isomorphisms. This shows that

AŠ C1 and, therefore, C Š C0˚C1 ŠA˚C0 .

Proposition 2.25 [10, Proposition 24] Let w be a homogeneous element of R with
bidegree .2; 2N C 2/. Then mf all

R;w , mfR;w and hmfR;w are all fully additive.

Proof (Following [10].) The category of Z˚2 –graded R–modules is of course fully
additive. By the Quillen–Suslin theorem, we know that any projective R–module is
a free R–module. Thus, the category of Z˚2 –graded free R–modules is also fully
additive. From this it is easy to deduce that mf all

R;w and mfR;w are both fully additive.

Next, we prove that hmfR;w is fully additive.

Let M be an object of hmfR;w and f W M !M a morphism of Z2˚Z˚2 –graded
matrix factorization such that f ıf ' f . Denote by P W M !Mes and J W Mes!M
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the homotopy equivalences from Part (ii) of Proposition 2.21. Then f induces a
morphism fes D P ıf ıJ W Mes!Mes , which satisfies fes ıfes ' fes .

Let ˛W Hommf.Mes;Mes/!Homhmf.Mes;Mes/ be the natural projection taking each
morphism to its homotopy class, and

ˇW Hommf.Mes;Mes/! HomQ.HR.M /;HR.M //

the map taking each morphism to the induced map on the homology. Then ker˛ and
kerˇ are ideals of the ring Hommf.Mes;Mes/, and ker˛ � kerˇ .

Note that M is homotopically finite. So, by Proposition 2.21 and Corollary 2.22, Mes is
finitely generated. Let fe1; : : : ; eng be a homogeneous basis for Mes . For any h2kerˇ ,
denote by H its matrix under this basis. By Proposition 2.21, HR.M /ŠMes=IMes .
Since ˇ.h/D 0, we know that all entries of H are elements of I. Thus, if h2 .kerˇ/l ,
then all entries of H are elements of Il . Recall that dega a D 2, degx Xi � 2 and
ID .a;X1; : : : ;Xk/. A simple degree count shows that the matrix of a homogeneous
endomorphism of Mes preserving the Z˚2 –grading cannot contain non-zero entries
from IK , where

K WDmax
˚
maxfdega ei�dega ej j1� i; j �ng; maxfdegx ei�degx ej j1� i; j �ng

	
:

Thus, .kerˇ/K D 0 and, therefore, .ker˛/K D 0. This shows that ker˛ is a nilpotent
ideal of Hommf.Mes;Mes/. By [3, Theorem 1.7.3], nilpotent ideals have the lifting
idempotents property. Thus, there is an endomorphism ges 2 Hommf.Mes;Mes/

satisfying ges ' fes and ges ıges D ges .

But mfR;w is fully additive. So ges splits Mes into a direct sum of two finitely
generated Z2˚Z˚2 –graded matrix factorizations. This direct sum is a splitting of M

by f in the category hmfR;w .

3 Matrix factorizations associated to MOY graphs

In this section, we define matrix factorizations associated to MOY graphs, which
are the building blocks of the chain complex CN used to define the homology HN .
Throughout this section, we fix a non-negative integer N and let a be a homogeneous
indeterminate of bidegree deg aD .2; 0/.

3.1 Symmetric polynomials

In this subsection, we recall some facts about symmetric polynomials, which will be
used in our definition of HN .
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Definition 3.1 A finite collection of homogeneous indeterminates of bidegree .0; 2/
is called an alphabet. We denote by Sym.X/ the ring of symmetric polynomials over
Q in the alphabet XD fx1; : : : ;xmg. More generally, given a collection fX1; : : : ;Xlg

of pairwise disjoint alphabets, we denote by Sym.X1j � � � jXl/ the ring of polynomials
in X1[ � � �[Xl over Q that are symmetric in each Xi .4 That is, Sym.X1j � � � jXl/D

Sym.X1/˝Q � � � ˝Q Sym.Xl/.

For an alphabet XD fx1; : : : ;xmg, we denote by Xk , hk.X/ and pk.X/ the elemen-
tary, complete and power sum symmetric polynomials in X. That is,

Xk D

8̂<̂
:

P
1�i1<���<ik�m

xi1
xi2
� � �xik

if 1� k �m;

1 if k D 0;

0 if k < 0 or k >m;

(3-1)

hk.X/D

8̂<̂
:

P
1�i1�����ik�m

xi1
xi2
� � �xik

if k � 1;

1 if k D 0;

0 if k < 0;

(3-2)

pk.X/D

8<:
mP

jD1

xk
j if k � 0;

0 if k < 0:

(3-3)

Recall that Sym.X/DQŒX1 : : : ;Xm�. So there are unique m–variable polynomials
hm;k and pm;k such that

hk.X/D hm;k.X1; : : : ;Xm/;(3-4)

pk.X/D pm;k.X1; : : : ;Xm/:(3-5)

Lemma 3.2 [21, Lemma 5.1]
@

@Xj
pm;k.X1; : : : ;Xm/D .�1/jC1khm;k�j .X1; : : : ;Xm/:

3.2 Matrix factorizations associated to MOY graphs

We now recall the definition of MOY graphs and define Z2 ˚Z˚2 –graded matrix
factorizations associated to MOY graphs. Although the definitions in this subsection
are for general MOY graphs, we will only need 1; 2; 3–colored MOY graphs in our
construction of HN .

4 Sym.X1j � � � jXl / is bigger than Sym.X1[� � �[Xl / . In fact, Sym.X1j � � � jXl / is a finitely generated
free Sym.X1 [ � � � [Xl /–module.
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Definition 3.3 An abstract MOY graph is an oriented graph with every edge colored
by a non-negative integer such that, for every vertex v with valence at least 2, the sum
of the colors of the edges entering v is equal to the sum of the colors of the edges
leaving v .

A vertex of valence 1 in an abstract MOY graph is called an end point. A vertex of
valence greater than 1 is called an internal vertex. An abstract MOY graph � is said
to be closed if it has no end points. We say that an abstract MOY graph is trivalent if
all of its internal vertices have valence 3.

A MOY graph is an embedding of an abstract MOY graph into R2 such that, through
each internal vertex v , there is a straight line Lv so that all the edges entering v enter
through one side of Lv and all edges leaving v leave through the other side of Lv .

A marking of a MOY graph � consists of the following:

(1) A finite collection of marked points on � such that
� every edge of � has at least one marked point;
� all the end points (vertices of valence 1) are marked;
� none of the internal vertices (vertices of valence at least 2) are marked.

(2) An assignment of pairwise disjoint alphabets to the marked points such that the
alphabet assigned to a marked point on an edge of color m has m independent
indeterminates.

■

i1

X1

❑

i2

X2

� � �

✒

ik

Xk

vLv i1 C i2 C � � � C ik D j1 C j2 C � � � C jl

✒j1

Y1

✕j2

Y2

� � �■ jl

Yl

Figure 1

For an MOY graph � with a marking, cut it at its marked points. This gives a collection
of marked MOY graphs, each of which is a star-shaped neighborhood of a vertex in �
and is marked only at its endpoints. (If an edge of � has two or more marked points,
then some of these pieces may be oriented arcs from one marked point to another.
In this case, we consider such an arc as a neighborhood of an additional vertex of
valence 2 in the middle of that arc.)
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Let v be a vertex of � with coloring and marking around it given as in Figure 1. Set
mD i1C i2C � � �C ik D j1C j2C � � �C jl . Define

RDQŒa�˝Q Sym.X1j � � � jXk jY1j � � � jYl/:

Note that R is the Z˚2 –graded polynomial ring generated by a and the elementary
symmetric polynomials of X1; : : : ; Xk ; Y1; : : : ; Yl , with bigrading given by deg aD

.2; 0/ and deg x D .0; 2/ for all x 2X1[ � � � [Xk [Y1[ � � � [Yl .

Write XDX1[ � � � [Xk and Y D Y1[ � � � [Yl , each of which is an alphabet of m

indeterminates. Denote by Xj and Yj the j th elementary symmetric polynomials in
X and Y . For j D 1; : : : ;m, define

(3-6) Uj D

pm;NC1.Y1; : : : ;Yj�1;Xj ; : : : ;Xm/
�pm;NC1.Y1; : : : ;Yj ;XjC1; : : : ;Xm/

Xj �Yj
:

We associate to the vertex v the Z2˚Z˚2 –graded matrix factorization

(3-7) CN .v/D

0BB@
aU1 X1�Y1

aU2 X2�Y2:::
:::

aUm Xm�Ym

1CCA
R

�
0; �

X
1�s<t�k

isit

�
;

of
Pm

jD1.Xj � Yj /Uj D apNC1.X/ � apNC1.Y / over R, where pNC1.X/ and
pNC1.Y / are the .N C 1/th power sum symmetric polynomials in X and Y .

Remark 3.4 Since

Sym.XjY /DQŒX1; : : : ;Xm;Y1; : : : ;Ym�DQŒX1�Y1; : : : ;Xm�Ym;Y1; : : : ;Ym�;

it is clear that fX1�Y1; : : : ;Xm�Ymg is Sym.XjY /–regular. (See Definition 2.14.)
But R is a free Sym.XjY /–module. (See for example [13].) So fX1�Y1; : : : ;Xm�

Ymg is also R–regular. Thus, by Lemma 2.15, the isomorphism type of C.v/ does
not depend on the particular choice of U1; : : : ;Um as long as they are homogeneous
with the right degrees and the potential of C.v/ remains

Pm
jD1 a.Xj � Yj /Uj D

apNC1.X/�apNC1.Y /. From now on, we will only specify our choice for U1; : : : ;Um

when it is actually used in the computation. Otherwise, we will simply denote the
entries in the left column of CN .v/ by �s.

Definition 3.5 We define
CN .�/ WD

O
v

CN .v/;
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where v runs through all the interior vertices of � (including those additional 2–
valent vertices.) Here, the tensor product is done over the common end points. More
precisely, for two sub-MOY graphs �1 and �2 of � intersecting only at (some of)
their end points, let W1; : : : ;Wn be the alphabets associated to these common end
points. Then, in the above tensor product, CN .�1/˝ CN .�2/ is the tensor product
CN .�1/˝QŒa�˝QSym.W1j���jWn/ CN .�2/.

Note that CN .�/ is a Z2˚Z˚2 –graded matrix factorization. We denote by C";j ;k
N

.�/

the homogeneous component of CN .�/ of Z2 –degree ", a–degree j and x–degree k .

If � is closed, that is, has no end points, then CN .�/ is considered a Z2˚Z˚2 –graded
matrix factorization of 0 over QŒa�.

Assume � has end points. Let E1; : : : ;En be the alphabets assigned to all end points
of � , among which E1; : : : ;Ek are assigned to exits and EkC1; : : : ;En are assigned
to entrances. Define the boundary ring of � to be R@ DQŒa�˝Q Sym.E1j � � � jEn/.
Then CN .�/ is viewed as a Z2˚Z˚2 –graded matrix factorization over R@ of w DPk

iD1 apNC1.Ei/�
Pn

jDkC1 apNC1.Ej /.

We allow the MOY graph to be empty. In this case, we define

CN .∅/DQŒa�! 0!QŒa�:

Lemma 3.6 If � is a MOY graph, then the homotopy type of CN .�/ does not depend
on the choice of the marking.

Proof We only need to show that adding or removing an extra marked point corre-
sponds to a homotopy equivalence of Z2˚Z˚2 –graded matrix factorizations. This
follows easily from Proposition 2.16.

Definition 3.7 Let � be a closed MOY graph with a marking. Then CN .�/ is a
Z2˚Z˚2 –graded chain complex of free QŒa�–modules. Define HN .�/ to be the
homology of CN .�/.

Note that HN .�/ is a Z2 ˚Z˚2 –graded QŒa�–module. Denote by H";j ;k
N

.�/ the
homogeneous component of HN .�/ of Z2 –degree ", a–degree j and x–degree k .
Define the Z2˚Z˚2 –graded dimension of � to be

gdim � D
X
";j ;k

�"˛j�k dimQ H";j ;k
N

.�/ 2 ZŒŒ˛; ��� Œ˛�1; ��1; � �=.�2
� 1/:

Remark 3.8 In the language of Definition 2.19,

gdim � D gdimQ.CN .�//¤ gdimQŒa�.CN .�//:
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Here, gdim � is well-defined because CN .�/ is a finitely generated Z2˚Z˚2 –graded
matrix factorization over a polynomial ring with finitely many indeterminates, which
implies that

(1) dimQ H";j ;k
N

.�/ <1 for all "; j ; k ,

(2) the Z˚2 –grading of HN .�/ is bounded below.

3.3 Edge sliding

Consider the MOY graphs in Figure 2. We call the local changes �1 • � 0
1

and
�2•� 0

2
edge slidings. In this subsection, we demonstrate that an edge sliding induces,

up to homotopy and scaling, a unique homotopy equivalence.

�1:

✻

■
✒
■✒

3

2

1 1 1

� 0

1
:

✻

✒
■
✒■

3

2

111

�2:

❄
❘✠
❘✠

3

2

1 1 1

� 0

2
:

❄
✠❘

✠❘

3

2

111

Figure 2

Lemma 3.9 Suppose that �1 , � 0
1

, �2 and � 0
2

are the MOY graphs shown in Figure 2.
Mark corresponding end points of �i and � 0i with the same alphabet and denote by
R@ the common boundary ring. Then CN .�1/' CN .�

0
1
/ and CN .�2/' CN .�

0
2
/ as

Z2˚Z˚2 –graded matrix factorizations over R@ .

Proof Let � be the MOY graph in Figure 3. We mark � and �1 as in Figure 3, where
X1 D fx1;x2;x3g and X2 D fx4;x5g. Write R@ D QŒa;x6;x7;x8�˝Q Sym.X1/

and RDQŒa;x6;x7;x8�˝Q Sym.X1jX2/. From Proposition 2.16, we know that, as
Z2˚Z˚2 –graded matrix factorizations over R@ ,

CN .�1/D

0BBBB@
� x7Cx8�x4�x5

� x7x8�x4x5

� x4Cx5Cx6�x1�x2�x3

� x4x5Cx5x6Cx6x4�x1x2�x2x3�x3x1

� x4x5x6�x1x2x3

1CCCCA
R

f0;�3g

'

0@� x7Cx8Cx6�x1�x2�x3

� x7x8Cx8x6Cx6x7�x1x2�x2x3�x3x1

� x7x8x6�x1x2x3

1A
R@

f0;�3g D CN .�/:
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Similarly, CN .�
0
1
/' CN .�/. So CN .�1/' CN .�

0
1
/, and CN .�2/' CN .�

0
2
/.

✻

✻■ ✒

3

1 1 1

X1

x6 x7 x8

�:

✻

■
✒
■✒

3

2
1 1 1

X1

X2

x6 x7 x8

�1:

Figure 3

Lemma 3.10 Suppose that �1 , � 0
1

, �2 and � 0
2

are the MOY graphs shown in Figure 2.
Then the homotopy equivalences

CN .�1/
'
�! CN .�

0
1/; CN .�

0
1/
'
�! CN .�1/;

CN .�2/
'
�! CN .�

0
2/; CN .�

0
2/
'
�! CN .�2/

of Z2˚Z˚2 –graded matrix factorizations from Lemma 3.9 are unique up to homotopy
and scaling by non-zero scalars.

Proof We only prove the uniqueness of

CN .�1/
'
�! CN .�

0
1/

here. The proofs of uniqueness of the other homotopy equivalences are similar and left
to the reader. Let R@ be as in the proof of Lemma 3.9. To prove the uniqueness of
CN .�1/

'
�! CN .�

0
1
/, we only need to prove that in the category

hmf
R@;a.x

NC1
6
Cx

NC1
7
Cx

NC1
8
�x

NC1
1
�x

NC1
2
�x

NC1
3

/
;

we have Homhmf.CN .�1/; CN .�
0
1
//ŠQ. Since CN .�1/' CN .�

0
1
/' CN .�/, we just

need to check that Homhmf.CN .�/; CN .�//ŠQ.

First, it is easy to see that CN .�/ is finitely generated over R@ and gdimR@
.CN .�//¤0.

By Corollary 2.22, this means that CN .�/ is not homotopic to 0. Thus, the identity map
of CN .�/ is not homotopic to 0. This implies that dimQ Homhmf.CN .�/; CN .�//� 1.

On the other hand, by Lemma 2.10,

HomR@.CN .�/; CN .�//

Š

0BBBBBBB@

aU1 x7Cx8Cx6�x1�x2�x3

aU2 x7x8Cx8x6Cx6x7�x1x2�x2x3�x3x1

aU3 x7x8x6�x1x2x3

aU1 �.x7Cx8Cx6�x1�x2�x3/

aU2 �.x7x8Cx8x6Cx6x7�x1x2�x2x3�x3x1/

aU3 �.x7x8x6�x1x2x3/

1CCCCCCCA
R@

h3if3; 3N � 9g;
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where U1 , U2 and U3 are given by Equation (3-6). Let R0 D QŒa;x6;x7;x8�. By
Proposition 2.16 and Lemma 3.2, we have that, as Z2˚Z˚2 –graded matrix factoriza-
tions of 0 over R0 ,0BBBBBBB@

aU1 x7Cx8Cx6�x1�x2�x3

aU2 x7x8Cx8x6Cx6x7�x1x2�x2x3�x3x1

aU3 x7x8x6�x1x2x3

aU1 �.x7Cx8Cx6�x1�x2�x3/

aU2 �.x7x8Cx8x6Cx6x7�x1x2�x2x3�x3x1/

aU3 �.x7x8x6�x1x2x3/

1CCCCCCCA
R@

'

0@ ahN .fx6;x7;x8g/ 0

ahN�1.fx6;x7;x8g/ 0

ahN�2.fx6;x7;x8g/ 0

1A
R0

Thus, as Z2˚Z˚2 –graded matrix factorizations of 0 over R0 ,

HomR@.CN .�/; CN .�//'M WD

0@ ahN .fx6;x7;x8g/ 0

ahN�1.fx6;x7;x8g/ 0

ahN�2.fx6;x7;x8g/ 0

1A
R0

h3if3; 3N � 9g:

As a Z2˚Z˚2 –graded R0–module,

M Š .R0˚R0 h1i f1;N�1g/˝R0 .R
0
˚R0 h1i f1;N�3g/˝R0 .R

0
˚R0 h1i f1;N�5g/:

From this, it is easy to see that the homogeneous component of M of Z2˚Z˚2 –degree
.0; 0; 0/ is 1–dimensional over Q. This implies that

dimQ H 0;0;0.HomR@.CN .�/; CN .�///� 1:

But, by Lemma 2.6,

Homhmf.CN .�/; CN .�//ŠH 0;0;0.HomR@.CN .�/; CN .�///:

Therefore, dimQ Homhmf.CN .�/; CN .�//� 1.

Putting the above together, we get Homhmf.CN .�/; CN .�//ŠQ.

3.4 Edge splitting and merging

Let � and �1 be the MOY graphs in Figure 4. We call the change �1 *� an edge
splitting and the change � * �1 an edge merging. In this subsection, we define the
morphisms induced by edge splitting and merging.
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✻

✻ ✻

✻2 fx1; x2g

2 fx3; x4g

1
x5

1
x6

�

✻fx1; x2g

2

fx3; x4g
�1

Figure 4

Lemma 3.11 [10, Proposition 30] Let R@DQŒa�˝Q Sym.fx1;x2gjfx3;x4g/. Then

CN .�/' CN .�1/f0;�1g˚ CN .�1/f0; 1g

as Z2 ˚ Z˚2 –graded matrix factorizations of a.xNC1
1

C xNC1
2

� xNC1
3

� xNC1
4

/

over R@ .

Proof (Following [10]) Set

RDQŒa�˝Q Sym.fx1;x2gjfx3;x4gjfx5;x6g/;

zRDQŒa�˝Q Sym.fx1;x2gjfx3;x4g/˝Q QŒx5;x6�:

Then R is a subring of zR and, as Z˚2 –graded R–modules, zR D R � 1˚R � x5 Š

R˚Rf0; 2g.

By definition,

(3-8) CN .�/D

0BB@
� x1Cx2�x5�x6

� x1x2�x5x6

� x5Cx6�x3�x4

� x5x6�x3x4

1CCA
zR

f0;�1g:

We add an extra marked point to �1 as in Figure 5. Then, by Lemma 3.6, we have

(3-9) CN .�1/'

0BB@
� x1Cx2�x5�x6

� x1x2�x5x6

� x5Cx6�x3�x4

� x5x6�x3x4

1CCA
R

:

Combining the above, we get that CN .�/' CN .�1/f0;�1g˚ CN .�1/f0; 1g as Z2˚

Z˚2 –graded matrix factorizations of a.xNC1
1

C xNC1
2

� xNC1
3

� xNC1
4

/ over R.
Since R@ is a subring of R, this proves the lemma.

Lemma 3.12 Let � , �1 and R@ be as in Lemma 3.11. Then, in the category
hmf

R@;a.x
NC1
1
Cx

NC1
2
�x

NC1
3
�x

NC1
4

/
, we have that, for k � 1,

Homhmf.CN .�/; CN .�1/f0; kg/Š Homhmf.CN .�1/; CN .�/f0; kg/Š

�
Q if k D 1;

0 if k > 1:

Algebraic & Geometric Topology, Volume 16 (2016)



72 Hao Wu

✻fx1; x2g

2

fx3; x4g

fx5; x6g

�1

Figure 5

Proof By Lemma 3.11, we have CN .�/' CN .�1/f0;�1g˚ CN .�1/f0; 1g. So

(3-10) Homhmf.CN .�/; CN .�1/f0; kg/

Š Homhmf.CN .�1/; CN .�/f0; kg/

Š Homhmf.CN .�1/; CN .�1/f0; k � 1g/

˚Homhmf.CN .�1/; CN .�1/f0; kC 1g/

Š H 0;0;1�k.HomR@.CN .�1/; CN .�1///

˚H 0;0;�1�k.HomR@.CN .�1/; CN .�1///:

By Lemma 2.10, we have that

HomR@.CN .�1/; CN .�1//Š

0BB@
aU1 x1Cx2�x3�x4

aU2 x1x2�x3x4

aU1 x3Cx4�x1�x2

aU2 x3x4�x1x2

1CCA
R@

f2; 2N � 4g;

where U1 and U2 are given by Equation (3-6). By Proposition 2.16 and Lemma 3.2,
as Z2˚Z˚2 –graded matrix factorizations over yR WDQŒa�˝Q Sym.fx1;x2g/,0BB@

aU1 x1Cx2�x3�x4

aU2 x1x2�x3x4

aU1 x3Cx4�x1�x2

aU2 x3x4�x1x2

1CCA
R@

Š

�
ahN .x1;x2/ 0

ahN�1.x1;x2/ 0

�
yR

:

So, as Z2˚Z˚2 –graded chain complexes over yR,

HomR@.CN .�1/; CN .�1//Š

�
ahN .x1;x2/ 0

ahN�1.x1;x2/ 0

�
yR

f2; 2N � 4g:

But, as a Z2˚Z˚2 –graded yR–module,�
ahN .x1;x2/ 0

ahN�1.x1;x2/ 0

�
yR

f2; 2N �4gŠ . yRf1;N �1g˚ yRh1i/˝ yR .
yRf1;N �3g˚ yRh1i/:
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This implies that

(3-11) dimQ H 0;0;�l.HomR@.CN .�1/; CN .�1///

�
� 1 if l D 0;

D 0 if l < 0:

It is easy to check that HR@.CN .�1//© 0. This means that CN .�1/ is not homotopic
to 0 and, therefore, idCN .�1/ is not homotopic to 0. Thus,

(3-12) dimQ H 0;0;0.HomR@.CN .�1/; CN .�1///D 1:

Now the lemma follows from equations (3-10), (3-11) and (3-12).

Lemma 3.13 Let � , �1 and R@ be as in Lemma 3.11. Then, up to homotopy
and scaling, there exist unique homotopically non-trivial R@–linear homogeneous
morphisms of matrix factorizations

CN .�1/
�
�! CN .�/ and CN .�/

�
�! CN .�1/

of Z2˚Z˚2 –degree .0; 0;�1/. For these two morphisms, we have

x� ı� ' 0;

x� ım.x5/ ı� D�x� ım.x6/ ı� � idCN .�1/;

where m.x5/ is the endomorphism of CN .�/ given by the multiplication by x5 .

Proof The existence and uniqueness of � and x� follow from Lemma 3.12. It remains
to show that � and x� satisfy the equations in the lemma.

Denote by Sym.x5;x6/
|
�!QŒx5;x6� the standard inclusion that maps every element

of Sym.x5;x6/ to itself in QŒx5;x6�. Set RD R@˝Q Sym.x5;x6/ as in the proof
of Lemma 3.11. Using expressions (3-8) and (3-9) for CN .�/ and CN .�1/, one
can see that | induces an R–linear homogeneous morphism of matrix factoriza-
tions CN .�1/

'
�! CN .�/ of Z2˚Z˚2 –degree .0; 0;�1/. Denote by QŒx5;x6�

�
�!

Sym.x5;x6/ the divided difference

�.f .x5;x6//D
f .x5;x6/�f .x6;x5/

x5�x6

2 Sym.x5;x6/:

Note that � is Sym.x5;x6/–linear. Using expressions (3-8) and (3-9) again, one
can see that � induces an R–linear homogeneous morphism of matrix factorizations
CN .�/

x'
�!CN .�1/ of Z2˚Z˚2 –degree .0; 0;�1/. It is easy to check that � ı| D 0

and � ım.x5/ ı | D �� ım.x6/ ı | D idSym.x5;x6/ . It follows that x' ı ' ' 0 and
x' ım.x5/ ı ' D �x' ım.x6/ ı ' � idCN .�1/ . In particular, the last equation implies
that ' and x' are homotopically non-trivial. Thus, by the uniqueness of � and x� , we
have � � ' and x� � x' . This completes the proof.
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3.5 �–morphisms

In this subsection, we construct two pairs of �–morphisms induced by the changes in
Figures 6 and 7. The morphisms �0 and �1 are direct generalizations of those defined
in [10; 11] and will be used in the definition of the chain complexes associated to
closed braids. The morphisms z�0 and z�1 will be used in the proof of the invariance of
HN under Reidemeister move III. The constructions of these morphisms are given in
more general settings in [21, Section 8].

As in [11], our construction of the �–morphisms are based on the following simple
observation.

Lemma 3.14 [11] Let r; s; t be homogeneous elements of R D QŒa;X1; : : : ;Xk �

with deg r C deg sC deg t D .2; 2N C 2/. Then there exist homogeneous morphisms
of matrix factorizations

f W .r; st/R! .rs; t/R; gW .rs; t/R! .r; st/R;

such that

(i) f and g preserve the Z2 –grading,

(ii) degf D .0; 0/ and deg g D deg s ,

(iii) g ıf D s � id.r;st/R and f ıg D s � id.rs;t/R .

✻ ✻
1 1

x1

y2

y1

x2

�0

�0

//

✯❨

❨ ✯

✻
1 1

1 1
2

x1

y2

y1

x2

�1

�1

oo

Figure 6

Lemma 3.15 [10; 11] Let �0 and �1 be the MOY graphs in Figure 6. Then there
exist homogeneous morphisms of matrix factorizations

CN .�0/
�0

�! CN .�1/ and CN .�1/
�1

�! CN .�0/

such that

(1) �0 and �1 are homotopically non-trivial,

(2) the Z2˚Z˚2 –degrees of �0 and �1 are both .0; 0; 1/,

(3) �1 ı�0 ' .x2�x1/idCN .�0/ and �0 ı�1 ' .x2�x1/idCN .�1/ .
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Moreover, up to homotopy and scaling,

� �0 is the unique homotopically non-trivial homogeneous morphisms from
CN .�0/ to CN .�1/ of Z2˚Z˚2 –degree .0; 0; 1/,

� �1 is the unique homotopically non-trivial homogeneous morphisms from
CN .�1/ to CN .�0/ of Z2˚Z˚2 –degree .0; 0; 1/.

Proof (Following [11].) We prove the existence of �0 and �1 first. Let R@ D

QŒa;x1;x2;y1;y2�. By Proposition 2.16,

CN .�1/'

�
aU1 x1Cy1�x2�y2

aU2 x1y1�x2y2

�
R@

f0;�1g;

where U1 and U2 are given by Equation (3-6). By Lemma 2.13,�
aU1 x1Cy1�x2�y2

aU2 x1y1�x2y2

�
R@

Š

�
a.U1Cx1U2/ x1Cy1�x2�y2

aU2 .x2�x1/.x1�y2/

�
R@

:

Thus, we have a pair of homotopy equivalences

CN .�1/
�
//
M WD

�
a.U1Cx1U2/ x1Cy1�x2�y2

aU2 .x2�x1/.x1�y2/

�
R@

f0;�1g
x�

oo

that are homotopy inverses of each other. On the other hand, by Lemmas 2.13 and 2.15,
we know that

CN .�0/Š

�
a.U1Cx1U2/ y1�x2

a.U1Cx2U2/ x1�y2

�
R@

Š

�
a.U1Cx1U2/ x1Cy1�x2�y2

a.x2�x1/U2 x1�y2

�
R@

:

This gives a pair of isomorphisms

CN .�0/
�
//
M 0 WD

�
a.U1Cx1U2/ x1Cy1�x2�y2

a.x2�x1/U2 x1�y2

�
R@

:
��1

oo

By Lemma 3.14, there are homogeneous morphisms M
f
//
M 0

g
oo such that

� the Z2˚Z˚2 –degrees of f and g are both .0; 0; 1/,

� f ıg ' .x2�x1/idM 0 and g ıf ' .x2�x1/idM .

Moreover, it is straightforward to check that HR@.M /
f
�!HR@.M

0/ and HR@.M
0/

g
�!

HR@.M / are both non-zero. So f and g are homotopically non-trivial. Define
�0 D x� ı g ı � and �0 D ��1 ı f ı � . It is easy to verify that these homogeneous
morphisms satisfy conditions (1)–(3) in the lemma.
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It remains to prove the uniqueness of �0 and �1 . This comes down to showing that in
the category hmf

R@;a.x
NC1
1
Cy

NC1
1

�x
NC1
2
�y

NC1
2

/
we have

Homhmf.CN .�0/; CN .�1/f0;�1g/Š Homhmf.CN .�1/; CN .�0/f0;�1g/ŠQ:

Next, we prove that Homhmf.CN .�0/; CN .�1/f0;�1g/ Š Q. We leave the similar
proof that Homhmf.CN .�1/; CN .�0/f0;�1g/ŠQ to the reader.

Since �0 is not homotopic to 0, we have that dimQ H 0;0;1.HomR@.M
0;M // � 1.

Note that by Lemma 2.6,

Homhmf.CN .�0/; CN .�1/f0;�1g/Š Homhmf.M
0;M f0;�1g/

ŠH 0;0;1.HomR@.M
0;M //:

By Lemma 2.10 and Proposition 2.16, we have that, as Z2 ˚ Z˚2 –graded matrix
factorizations over RDQŒa;x1;y1�,

HomR@.M
0;M /Š

0BB@
a.U1Cx1U2/ x1Cy1�x2�y2

aU2 .x2�x1/.x1�y2/

a.U1Cx1U2/ �.x1Cy1�x2�y2/

a.x2�x1/U2 �.x1�y2/

1CCA
R@

f2; 2N � 3g

Š

�
a.V1Cx1V2/ 0

aV2 0

�
R@

f2; 2N � 3g;

where Vi D Ui jy2Dx1; x2Dy1
2R. But, as a Z2˚Z˚2 –graded R–module,�

a.V1Cx1V2/ 0

aV2 0

�
R@

f2; 2N � 3g Š .Rf1;N � 1g˚Rh1i/

˝R .Rf1;N � 3g˚Rh1i/f0; 1g:

This implies that dimQ H 0;0;1.HomR@.M
0;M //� 1. Thus,

Homhmf.CN .�0/; CN .�1/f0;�1g/ŠQ:

Lemma 3.16 Let z�0 and z�1 be the MOY graphs in Figure 7. Then there exist
homogeneous morphisms of matrix factorizations

CN .z�0/
z�0

�! CN .z�1/ and CN .z�1/
z�1

�! CN .z�0/

such that

(1) z�0 and z�1 are homotopically non-trivial,

(2) the Z2˚Z˚2 –degrees of z�0 and z�1 are both .0; 0; 1/,

(3) z�1 ı z�0 ' .x2�x1/idCN .z�0/
and z�0 ı z�1 ' .x2�x1/idCN .z�1/

.
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Moreover, up to homotopy and scaling,

� z�0 is the unique homotopically non-trivial homogeneous morphisms from
CN .z�0/ to CN .z�1/ of Z2˚Z˚2 –degree .0; 0; 1/,

� z�1 is the unique homotopically non-trivial homogeneous morphisms from
CN .z�1/ to CN .z�0/ of Z2˚Z˚2 –degree .0; 0; 1/.

✻

✻

✻

✻
✲

1 2

2 1

1
x1

fy3; y4g

fy1; y2g

x2

z

z�0

z�0

//

✯❨

❨ ✯

✻
2 1

1 2

3

x1

fy3; y4g

fy1; y2g

x2

z�1

z�1

oo

Figure 7

Proof We follow the approach used in the proof of Lemma 3.15. The only difference
is that the computations are now more complex. To simplify the exposition, we
introduce the notation �j ;k to mean a homogeneous element of Z˚2 –degree .j ; k/.
From Lemma 2.15, we know that the isomorphism types of all the Koszul matrix
factorizations appearing in this proof are independent of the choice of �j ;k as long as
these matrix factorizations remain Z2˚Z˚2 –graded matrix factorizations of

a.xNC1
1

CyNC1
1

CyNC1
2

�xNC1
2

�yNC1
3

�yNC1
4

/:

Let R@ DQŒa;x1;x2�˝Q Sym.fy1;y2gjfy3;y4g/. By Proposition 2.16, we have

CN .z�1/'

0@ �2;2N x1Cy1Cy2�x2�y3�y4

�2;2N�2 x1y1Cx1y2Cy1y2�x2y3�x2y4�y3y4

�2;2N�4 x1y1y2�x2y3y4

1A
R@

f0;�2g:

Note that

.x1y1y2�x2y3y4/�x1.x1y1Cx1y2Cy1y2�x2y3�x2y4�y3y4/

Cx2
1.x1Cy1Cy2�x2�y3�y4/

D�.x2�x1/.x
2
1 �x1.y3Cy4/Cy3y4/

and

.x1y1Cx1y2Cy1y2�x2y3�x2y4�y3y4/�x1.x1Cy1Cy2�x2�y3�y4/

D y1y2C .x2�x1/.x1�y3�y4/�y3y4:
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So, by Lemma 2.12,0@ �2;2N x1Cy1Cy2�x2�y3�y4

�2;2N�2 x1y1Cx1y2Cy1y2�x2y3�x2y4�y3y4

�2;2N�4 x1y1y2�x2y3y4

1A
R@

Š

0@ �2;2N x1Cy1Cy2�x2�y3�y4

�2;2N�2 y1y2C .x2�x1/.x1�y3�y4/�y3y4

�2;2N�4 �.x2�x1/.x
2
1
�x1.y3Cy4/Cy3y4/

1A
R@

:

Thus, we have a pair of homotopy equivalences

CN .z�1/
�
//
M WD

0@ �2;2N x1Cy1Cy2�x2�y3�y4

�2;2N�2 y1y2C .x2�x1/.x1�y3�y4/�y3y4

�2;2N�4 �.x2�x1/.x
2
1
�x1.y3Cy4/Cy3y4/

1A
R@

f0;�2g
x�

oo

that are homotopy inverses of each other. By definition,

CN .z�0/D

0BB@
�2;2N x1C z�y3�y4

�2;2N�2 x1z�y3y4

�2;2N y1Cy2�x2� z

�2;2N�2 y1y2�x2z

1CCA
R@Œz�

f0;�1g:

We remove the indeterminate z by applying Proposition 2.16 to the first row of this
Koszul matrix factorization. This gives

CN .z�0/'

0@�2;2N�2 x1.y3Cy4�x1/�y3y4

�2;2N y1Cy2�x2� .y3Cy4�x1/

�2;2N�2 y1y2�x2.y3Cy4�x1/

1A
R@

f0;�1g

Š

0@ �2;2N y1Cy2�x2� .y3Cy4�x1/

�2;2N�2 y1y2�x2.y3Cy4�x1/

�2;2N�2 x1.y3Cy4�x1/�y3y4

1A
R@

f0;�1g

Š

0@ �2;2N x1Cy1Cy2�x2�y3�y4

�2;2N�2 y1y2C .x2�x1/.x1�y3�y4/�y3y4

�2;2N�2 �.x2
1
�x1.y3Cy4/Cy3y4/

1A
R@

f0;�1g;

where, in the last step, we applied Lemma 2.12 to the second and third rows. Thus, we
have a pair of homotopy equivalences

CN .z�0/
�
//
M 0 WD

0@ �2;2N x1Cy1Cy2�x2�y3�y4

�2;2N�2 y1y2C.x2�x1/.x1�y3�y4/�y3y4

�2;2N�2 �.x2
1
�x1.y3Cy4/Cy3y4/

1A
R@

f0;�1g
x�

oo
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that are homotopy inverses of each other.

By Lemma 3.14, there are homogeneous morphisms

M
f
//
M 0

g
oo

such that

� the Z2˚Z˚2 –degrees of f and g are both .0; 0; 1/,

� f ıg ' .x2�x1/idM 0 and g ıf ' .x2�x1/idM .

Moreover, it is straightforward to check that

HR@.M /
f
�!HR@.M

0/ and HR@.M
0/

g
�!HR@.M /

are both non-zero. So f and g are homotopically non-trivial. Define z�0 D x� ıg ı �

and z�0 D x� ıf ı � . It is easy to see that these are homogeneous morphisms satisfying
conditions (1)–(3) in the lemma.

This proves the existence of z�0 and z�1 . The uniqueness of z�0 and z�1 follows from
the fact that in the category

hmf
R@;a.x

NC1
1
Cy

NC1
1

Cy
NC1
2

�x
NC1
2
�y

NC1
3

�y
NC1
4

/
;

we have

Homhmf.CN .z�0/; CN .z�1/f0;�1g/Š Homhmf.CN .z�1/; CN .z�0/f0;�1g/ŠQ:

The computations of these Homhmf spaces are very similar to the corresponding com-
putation in the proof of Lemma 3.15. We leave details to the reader.

4 Definition of HN

We define in this section a chain complex CN .B/ of matrix factorizations for every
closed braid B . Then HN .B/ is defined to be the homology of CN .B/. Up to a grading
shift, C0.B/ is the chain complex defined in [11] and H0.B/ is the HOMFLYPT
homology. We will prove in Sections 5–7 that for N � 1, HN is an invariant for
transverse links but not for smooth links.

In this section, we again fix a non-negative integer N and let a be a homogeneous
indeterminate of bidegree deg aD .2; 0/.
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4.1 The chain complex associated to a marked tangle diagram

In this subsection, we define the chain complex associated to a marked oriented tangle.
Although this chain complex can be defined for any oriented tangle, we can only
establish its homotopy invariance under transverse Markov moves. So, in the end, this
definition will only be applied to closed braids to define a transverse link invariant via
transverse braids.

Definition 4.1 Let T be an oriented tangle diagram. We call a segment of T between
two adjacent crossings/end points an arc. We color all arcs of T with 1. A marking
of T consists of:

(1) A collection of marked points on T such that
� none of the crossings of T are marked,
� all end points are marked,
� every arc of T contains at least one marked point.

(2) An assignment of pairwise distinct homogeneous indeterminates of bidegree
.0; 2/ to the marked points such that every marked point is assigned a unique
indeterminate.

Let T be an oriented tangle with a marking. Cut T at all of its marked points. This
cuts T into a collection fT1; : : : ;Tlg of simple tangles, each of which is of one of the
three types in Figure 8 and is marked only at its end points.

✻
1

x1

x2

A

✒■1 1

1 1

x1

y2

y1

x2

CC

■ ✒
1 1

1 1

x1

y2

y1

x2

C�

Figure 8

Note that A is itself a MOY graph. We define the chain complex associated to A to be

(4-1) CN .A/D 0! CN .A/„ƒ‚…
0

! 0;

where the CN .A/ on the right-hand side is the matrix factorization associated to the
MOY graph A, and the under-brace indicates the homological grading. In other words,
the chain complex CN .A/ is given by a single copy of the matrix factorization CN .A/

at homological degree 0, and zero at all other homological degrees.
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✒■1 1

1 1

x1

y2

y1

x2

CC

0

zz

C1

$$

✻ ✻
1 1

x1

y2

y1

x2

�0

✯❨

❨ ✯

✻
1 1

1 1
2

x1

y2

y1

x2

�1

■ ✒
1 1

1 1

x1

y2

y1

x2

C�

0

dd

�1

::

Figure 9

To define the chain complexes CN .C˙/, consider the resolutions of C˙ in Figure 9.
We call the resolution C˙  �0 a 0–resolution and the resolution C˙  �1 a
˙1–resolution. We define

CN .CC/D 0! CN .�1/ h1i f1;N g„ ƒ‚ …
�1

�1

�! CN .�0/ h1i f1;N � 1g„ ƒ‚ …
0

! 0;(4-2)

CN .C�/D 0! CN .�0/ h1i f�1;�N C 1g„ ƒ‚ …
0

�0

�! CN .�1/ h1i f�1;�N g„ ƒ‚ …
1

! 0;(4-3)

where the morphisms �0 and �1 are defined in Lemma 3.15 and, again, the under-braces
indicate the homological gradings.

Note that the differential maps of CN .A/, CN .CC/ and CN .C�/ are homogeneous
morphisms of matrix factorizations that preserve the Z2˚Z˚2 –grading. Of course,
these differential maps raise the homological grading by 1.

Definition 4.2 We define the chain complex CN .T / associated to T to be CN .T / WDNl
iD1 CN .Ti/, where the tensor product is over the common end points. That is, if

x1; : : : ;xm are the indeterminates assigned to the common end points of Ti and Tj ,
then Ti ˝Tj WD Ti ˝QŒa;x1;:::;xm� Tj .

Suppose that

� the indeterminates assigned to end points of T are y1; : : : ;y2n ,
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� T points outward at end points assigned with y1; : : : ;yn ,

� T points inward at end points assigned with ynC1; : : : ;y2n .

Define R@DQŒa;y1; : : : ;y2n�. We view CN .T / as a chain complex over the category

hmf all
R@;a.

Pn
iD1 y

NC1
i

�
P2n
jDnC1 y

NC1
j

/
:

In particular, for a link diagram L, we view CN .L/ as a chain complex over the
category hmfQŒa�;0 .

We denote by d� the differential map of CN .L/ induced by the differential maps of
the chain complexes (4-1), (4-2) and (4-3) via the tensor product. d� is a homogeneous
morphism of matrix factorizations preserving the Z2 –, a– and x–gradings, and raising
the homological grading by 1.

The underlying matrix factorization of CN .T / endows it with a homogeneous differen-
tial dmf , which preserves homological grading and shifts the Z2 –grading by 1, the
a–grading by 1 and the x–grading by N C 1.

The differential d� commutes with the differential dmf since, at each homological
grading, d� is a morphism of matrix factorizations.

Definition 4.3 Suppose that B is a closed braid with a marking. Then CN .B/ is a
chain complex over the category hmf all

QŒa�;0 . Set HN .B/ WDH.H.CN .B/; dmf /; d�/.
Note that both d� and dmf are homogeneous homomorphisms of Z2˚Z˚3 –graded
QŒa�–modules. So HN .B/ inherits the Z2˚Z˚3 –graded QŒa�–module structure of
CN .B/, where the Z2 –grading is the Z2 –grading of matrix factorizations and the three
Z–gradings are the homological, the a– and the x–gradings.

Remark 4.4 Comparing Definitions 4.2 and 4.3 to the corresponding definitions
in [11], it is easy to see that up to a grading shift, H0 is the HOMFLYPT homology
defined in [11], which is a smooth link invariant. In the current paper, we focus on the
case N � 1 and show that, if N � 1, then HN is an invariant for transverse links but
not for smooth links.

4.2 Markings do not matter

Lemma 4.5 Suppose that T is an oriented tangle diagram with a marking and T 0 is
the same oriented tangle diagram with a different marking. Assume that

� each pair of corresponding end points of T and T 0 are marked by the same
indeterminate,
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� the indeterminates assigned to end points of T are y1; : : : ;y2n ,

� T points outward at end points assigned with y1; : : : ;yn ,

� T points inward at end points assigned with ynC1; : : : ;y2n .

Then CN .T /Š CN .T
0/ as chain complexes over the category

hmf all
R@;a

�Pn
iD1 y

NC1
i

�
P2n
jDnC1 y

NC1
j

�;
where R@ DQŒa;y1; : : : ;y2n�.

Proof To prove this lemma, we only need to show that adding and removing an
extra marked point near a crossing does not change the isomorphism type of the chain
complex associated to that crossing. There are four arcs near a crossing. So, in principle,
one needs to discuss where the extra marked point is added/removed. Here we prove
only that CN .C˙/Š CN .C

0
˙
/ as chain complexes over the category

hmf
R;a.x

NC1
1
Cy

NC1
1

�x
NC1
2
�y

NC1
2

/
;

where C
˙

and C 0
˙

are depicted in Figure 10, and RDQŒa;x1;x2;y1;y2�. The proofs
for the other cases are very similar and left to the reader.

✒■1 1

1 1

x1

y2

y1

x2

CC

■ ✒
1 1

1 1

x1

y2

y1

x2

C�

✒■
1 1

1 1

x1

y2

y1

x2

y3

C 0

C

■ ✒
1 1

1 1

x1

y2

y1

x2

y3

C 0
�

Figure 10

Consider the marked MOY graphs in Figure 11. Cutting � 0
0

at the pointed marked
by y3 , we get two marked MOY graphs, � 00

0
and A, where A is the arc from y3

to y1 , and � 00
0

is the remainder of � 0
0

. Then CN .�
0
0
/ Š CN .�

00
0
/˝QŒa;y3� CN .A/.

Similarly, cutting � 0
1

at the pointed marked by y3 , we get � 0
1
D� 00

1
[A and CN .�

0
1
/Š

CN .�
00
1
/˝QŒa;y3� CN .A/.

By Proposition 2.16 we know:
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� there are a pair of homotopy equivalences

CN .�
00
0
/˝QŒa;y3� CN .A/

xf
// CN .�0/

f

oo

of Z2˚Z˚2 –graded matrix factorizations that are homotopy inverses of each
other,

� there are a pair of homotopy equivalences

CN .�
00
1
/˝QŒa;y3� CN .A/

xg
// CN .�1/

g
oo

of Z2˚Z˚2 –graded matrix factorizations that are homotopy inverses of each
other.

✻ ✻
1 1

x1

y2

y1

x2

�0

✯❨

❨ ✯

✻
1 1

1 1
2

x1

y2

y1

x2

�1

✻ ✻
1 1

x1

y2

y1

x2

y3

� 0

0

✯❨

❨ ✯

✻
1 1

1 1

2

x1

y2

y1

x2

y3

� 0

1

Figure 11

Let
CN .�

00
0
/
.�0/00

// CN .�
00
1
/

.�1/00
oo

be the �–morphisms associated to � 00
0

and � 00
1

defined in Lemma 3.15. Using the
definitions of .�0/00 , .�1/00 and Proposition 2.17, one can check that

HR.CN .�
00
0
/˝QŒa;y3� CN .A//

.�0/00˝id
//
HR.CN .�

00
1
/˝QŒa;y3� CN .A//

.�1/00˝id
oo

are non-zero homomorphisms. Thus, .�0/00˝ id and .�1/00˝ id are homotopically
non-trivial. This implies that morphisms

CN .�0/
xgı..�0/00˝id/ıf

// CN .�1/
xf ı..�1/00˝id/ıg
oo

are homotopically non-trivial. Note that these are homogeneous morphisms of Z2˚

Z˚2 –degree .0; 0; 1/. Let
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CN .�0/
�0

// CN .�1/
�1

oo

be the �–morphisms associated to �0 and �1 defined in Lemma 3.15. By Lemma 3.15,
we know that up to homotopy and scaling, �0 and �1 are the unique homotopically non-
trivial homogeneous morphisms between CN .�0/ and CN .�1/ with Z2˚Z˚2 –degree
.0; 0; 1/. Thus, there exist non-zero scalars c0; c1 2Q such that xg ı ..�0/00˝ id/ıf '
c0�

0 and xf ı ..�1/00˝ id/ ıg ' c1�
1 .

The above shows that over the category hmf
R;a.x

NC1
1
Cy

NC1
1

�x
NC1
2
�y

NC1
2

/
we have

commutative diagrams

0 //

CN .�
00
1 /

˝QŒa;y3�

CN .A/h1if1;N g

.�1/00˝id
//

c1xg

��

CN .�
00
0 /

˝QŒa;y3�

CN .A/h1if1;N � 1g

//

xf
��

0

0 // CN .�1/h1if1;N g
�1

// CN .�0/h1if1;N � 1g // 0

and

0 //

CN .�
00
0 /

˝QŒa;y3�

CN .A/h1if�1;�N C 1g

.�0/00˝id
//

c0
xf

��

CN .�
00
1 /

˝QŒa;y3�

CN .A//h1if�1;�N g

//

xg

��

0

0 // CN .�0/h1if�1;�N C 1g
�0

// CN .�1/h1if�1;�N g // 0:

Since xf and xg are homotopy equivalences of Z2˚Z˚2 –graded matrix factorizations,
the above diagrams give isomorphisms CN .C˙/Š CN .C

0
˙
/ for chain complexes over

the category hmf
R;a.x

NC1
1
Cy

NC1
1

�x
NC1
2
�y

NC1
2

/
.

5 Reidemeister move I

In this section, we prove the invariance of HN under positive stabilizations and destabil-
izations and establish the long exact sequence induced by a negative stabilization.

5.1 Algebraic lemmas

First, we recall the Gaussian elimination lemma of [1], which will be used frequently
in the proof of the invariance of HN .
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Lemma 5.1 [1, Lemma 4.2] Let C be an additive category, and

ID � � � ! C

�
˛

ˇ

�
���!

A
˚

D

�
� ı

 "

�
�����!

B
˚

E

�
� �

�
�����! F ! � � �

a chain complex over C. Assume that A
�
�!B is an isomorphism in C with inverse

��1 . Then I is homotopic to

IID � � � ! C
ˇ
�!D

"���1ı
������!E

�
�! F ! � � � :

We call ���1ı the correction term in the differential. If ı or  is 0, then the
correction term is 0 and I is homotopic to

IID � � � ! C
ˇ
�!D

"
�!E

�
�! F ! � � � :

Next, we give a lemma about commutativity of certain morphisms between Koszul
matrix factorizations that will allow us to simplify morphisms �0 and �1 and prove
the invariance of HN under positive stabilization.

Lemma 5.2 Let R D QŒa;X1; : : : ;Xk � be a Z˚2 –graded polynomial ring with
deg a D .2; 0/ and deg Xi D .0; 2ni/, where ni is a positive integer. Suppose that
u; v;x;y; z;p are homogeneous elements of R such that

� deg uC deg v D .2; 2N C 2/,
� deg xC deg yC deg z D .2; 2N C 2/,
� deg p D deg x� deg v D deg u� deg y � deg z .

Consider the Z2˚Z˚2 –graded matrix factorizations

M0 D

�
u v

xy z

�
R

; M 0
0 D

�
uCpyz v

xy �ypv z

�
R

;

M1 D

�
u v

x yz

�
R

; M 0
1 D

�
uCpyz v

x�pv yz

�
R

:

Denote by

M0

g
//
M1

f

oo and M 0
0

g0
//
M 0

1
f 0
oo

the morphisms obtained by applying Lemma 3.14 to the second rows of these Koszul
matrix factorizations. Let

M0
 0
�!M 0

0 and M1
 1
�!M 0

1
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be the isomorphisms from Lemma 2.12. Then the following diagrams commute:

M0

g

��

 0
// M 0

0

g0

��

M1

f

��

 1
// M 0

1

f 0

��

M1

 1
// M 0

1
M0

 0
// M 0

0

Proof This lemma becomes fairly obvious once we explicitly write down these matrix
factorizations and morphisms. For simplicity, we omit the grading shifts in this proof.

Note that

M0 D

R00

˚

R11

0@ u �z

xy v

1A
��������!

R10

˚

R01

0@ v z

�xy u

1A
��������!

R00

˚

R11

;

M1 D

R00

˚

R11

0@u �yz

x v

1A
��������!

R10

˚

R01

0@ v yz

�x u

1A
��������!

R00

˚

R11

;

M 0
0 D

R00

˚

R11

0@ uCpyz �z

xy �ypv v

1A
�������������!

R10

˚

R01

0@ v z

�xyCypv uCpyz

1A
�������������������!

R00

˚

R11

;

M 0
1 D

R00

˚

R11

0@uCpyz �yz

x�pv v

1A
��������������!

R10

˚

R01

0@ v yz

�xCpv uCpyz

1A
�����������������!

R00

˚

R11

;

where each R"ı is a copy of R and the lower indices are just for keeping track of the
position of each component. Using these explicit matrix factorizations, we have the
following:

� The morphisms M0

g
//
M1

f

oo are given by

R00

˚

R11

G0
//
R00

˚

R11
F0

oo and
R10

˚

R01

G1
//
R10

˚

R01

;
F1

oo

where, as matrices over R,

G0 DG1 D

�
y 0

0 1

�
; F0 D F1 D

�
1 0

0 y

�
:
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� The morphisms M 0
0

g0
//
M 0

1
f 0
oo are given by

R00

˚

R11

G0
0

//
R00

˚

R11F 0
0

oo and
R10

˚

R01

G0
1

//
R10

˚

R01

;
F 0

1

oo

where, as matrices over R,

G00 DG01 D

�
y 0

0 1

�
; F 00 D F 01 D

�
1 0

0 y

�
:

� The isomorphism M0
 0
�!M 0

0
is given by

R00

˚

R11

‰00
//

R00

˚

R11

and
R10

˚

R01

‰01
//

R10

˚

R01

;

where, as matrices over R,

‰00 D

�
1 0

py 1

�
; ‰01 D

�
1 0

0 1

�
:

� The isomorphism M1
 1
�!M 0

1
is given by

R00

˚

R11

‰10
//

R00

˚

R11

and
R10

˚

R01

‰11
//

R10

˚

R01

;

where, as matrices over R,

‰10 D

�
1 0

p 1

�
; ‰11 D

�
1 0

0 1

�
:

It is easy to verify that ‰1"G"DG0"‰0" and ‰0"F"DF 0"‰1" for "D 0; 1. This proves
the lemma.

5.2 A closer look at the �–morphisms

Let us recall the definitions of �0 and �1 . From the proof of Lemma 3.15, we know
that, for the MOY graphs �0 and �1 in Figure 6,

CN .�0/Š

�
a.U1Cx1U2/ x1Cy1�x2�y2

a.x2�x1/U2 x1�y2

�
R@

;

CN .�1/f0; 1g '

�
a.U1Cx1U2/ x1Cy1�x2�y2

aU2 .x2�x1/.x1�y2/

�
R@

;

Algebraic & Geometric Topology, Volume 16 (2016)



A family of transverse link homologies 89

where R@ DQŒa;x1;x2;y1;y2�, and

U1 D
p2;NC1.x1Cy1;x1y1/�p2;NC1.x2Cy2;x1y1/

x1Cy1�x2�y2

;

U2 D
p2;NC1.x2Cy2;x1y1/�p2;NC1.x2Cy2;x2y2/

x1y1�x2y2

;

with the polynomial p2;NC1 given by Equation (3-5). Under the above homotopy
equivalences, the morphisms �0 and �1 are defined by applying Lemma 3.14 to the
second rows in the Koszul matrix factorizations on the right-hand side:

✻
✻

1 1x1

y1

x2

y�0

�0

//

❨

❨ ✯

✻
1

1 1
2x1

y1

x2

y�1

�1

oo

Figure 12

Now consider the MOY graphs y�0 and y�1 in Figure 12. From the above discussion,
we get the following lemma.

Lemma 5.3 We have

CN .y�0/Š

�
a.V1Cx1V2/ y1�x2

a.x2�x1/V2 0

�
R

;

CN .y�1/f0; 1g '

�
a.V1Cx1V2/ y1�x2

aV2 0

�
R

;

where R D QŒa;x1;x2;y1� and V1 D U1jy2Dx1
, V2 D U2jy2Dx1

. Moreover, the
morphisms

CN .y�0/
�0

// CN .y�1/
�1

oo

are obtained by applying Lemma 3.14 to the second rows in the Koszul matrix factor-
izations on the right-hand side.

Note that CN .y�0/ and CN .y�1/ are matrix factorizations of a.yNC1
1

�xNC1
2

/. So

V1Cx1V2 D hN .y1;x2/ WD
yNC1

1
�xNC1

2

y1�x2

:

Also,
V2 D U2jy2Dx1

D U2jy2Dx1;y1Dx2
C .y1�x2/p
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for some homogeneous element p of R of bidegree .0; 2N � 4/. By Lemma 3.2, we
have that

U2jy2Dx1;y1Dx2
D hN�1.x1;x2/ WD

xN
1
�xN

2

x1�x2

:

Thus, we get the following lemma.

Lemma 5.4 We have

CN .y�0/ŠM0 WD

�
ahN .y1;x2/ y1�x2

a.x2�x1/hN�1.x1;x2/ 0

�
R

;

CN .y�1/f0; 1g 'M1 WD

�
ahN .y1;x2/ y1�x2

ahN�1.x1;x2/ 0

�
R

;

where RDQŒa;x1;x2;y1�. Denote by

M0

g
//
M1

f

oo

the morphisms obtained by applying Lemma 3.14 to the second rows of these matrix
factorizations. Then there are commutative diagrams:

CN .y�0/�0

��

Š
// M0

g
��

CN .y�1/f0; 1g
'
// M1

CN .y�1/f0; 1g�1

��

'
// M1

f
��

CN .y�0/
Š

// M0

Proof This lemma follows from Lemmas 5.2 and 5.3.

5.3 Positive stabilization

We prove in this subsection the invariance of HN under positive stabilizations/de-
stabilizations. The main result of this subsection is Proposition 5.5.

✒
1

y1

x2

T

✒
1 1

1

x1

y1

x2

TC

Figure 13

Proposition 5.5 Let T and TC be the tangles in Figure 13. Then, for N � 1,
CN .T /' CN .TC/ as chain complexes over the category hmf all

QŒa;y1;x2�;a.y
NC1
1

�x
NC1
2

/
.
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Proof Let y�0 and y�1 be the MOY graphs in Figure 12. Set RDQŒa;x1;x2;y1� and
R@ DQŒa;x2;y1�. From Lemma 5.4, we know that

(5-1) CN .TC/D 0! CN .y�1/h1if1;N g„ ƒ‚ …
�1

�1

�! CN .y�0/h1if1;N � 1g„ ƒ‚ …
0

! 0

Š 0!M1h1if1;N � 1g„ ƒ‚ …
�1

f
�!M0h1if1;N � 1g„ ƒ‚ …

0

! 0;

where

M0 D

�
ahN .y1;x2/ y1�x2

a.x2�x1/hN�1.x1;x2/ 0

�
R

;(5-2)

M1 D

�
ahN .y1;x2/ y1�x2

ahN�1.x1;x2/ 0

�
R

;(5-3)

and f is the morphism obtained by applying Lemma 3.14 to the second rows of M0

and M1 .

We prove the proposition by simplifying the chain complex

0! M1„ƒ‚…
�1

f
�! M0„ƒ‚…

0

! 0:

Note that

(5-4) M0 D

R00

˚

R11f�2; 2� 2N g

D0���!

R10f�1; 1�N g
˚

R01f�1; 1�N g

D1���!

R00

˚

R11f�2; 2� 2N g
;

where

D0 D

�
ahN .y1;x2/ 0

a.x2�x1/hN�1.x1;x2/ y1�x2

�
;

D1 D

�
y1�x2 0

�a.x2�x1/hN�1.x1;x2/ ahN .y1;x2/

�
;

and

(5-5) M1 D

R00

˚

R11f�2; 4� 2N g

�0���!

R10f�1; 1�N g
˚

R01f�1; 3�N g

�1���!

R00

˚

R11f�2; 4� 2N g
;

where

�0 D

�
ahN .y1;x2/ 0

ahN�1.x1;x2/ y1�x2

�
; �1D

�
y1�x2 0

�ahN�1.x1;x2/ ahN .y1;x2/

�
:
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Moreover, the morphism f W M1!M0 is given by

R00

˚

R11f�2; 4� 2N g

0@1 0

0 x2�x1

1A
����������!

R00

˚

R11f�2; 2� 2N g
;

R10f�1; 1�N g
˚

R01f�1; 3�N g

0@1 0

0 x2�x1

1A
����������!

R10f�1; 1�N g
˚

R01f�1; 1�N g
:

In the above explicit forms, each R"ı is a copy of R. The lower indices are just for
keeping track of the position of each component.

Next, we decompose the matrix factorizations M0 and M1 over R@ . First, for M0 ,
denote by u

Œk�

"ı
the homogeneous element .x2�x1/

k in R"ı and denote by vŒk�
"ı

the
homogeneous element .x2�x1/

khN�1.x1;x2/ in R"ı . Let

B00 D fu
Œk�
00
j k � 0g;

B10 D fu
Œk�
10
j k � 0g;

B01 D fu
Œk�
01
j 0� k �N � 1g[ fv

ŒkC1�
01

j k � 0g;

B11 D fu
Œk�
11
j 0� k �N � 1g[ fv

ŒkC1�
11

j k � 0g:

It is easy to check that B"ı is a homogeneous R@–basis for R"ı . So

(5-6) B WD B00[B10[B01[B11

is a homogeneous R@–basis for M0 . Define

‚k D spanR@
fu
Œk�
00
;u
Œk�
10
; v
ŒkC1�
01

; v
ŒkC1�
11

g for k � 0;(5-7)

�k D spanR@
fu
Œk�
01
;u
Œk�
11
g for 0� k �N � 1:(5-8)

It is straightforward to check that the differential map of M0 preserves ‚k and �k .
So ‚k and �k are Z2˚Z˚2 –graded matrix factorizations of a.yNC1

1
�xNC1

2
/ over

R@ . Since B is a homogeneous R@–basis for M0 , we have that, as Z2˚Z˚2 –graded
matrix factorizations of a.yNC1

1
�xNC1

2
/ over R@ ,

(5-9) M0 D

�N�1M
kD0

�k

�
˚

� 1M
kD0

‚k

�
:
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Similarly, for M1 , denote by zu Œk�
"ı

the homogeneous element .x2�x1/
k in R"ı and

by zv Œk�
"ı

the homogeneous element .x2�x1/
khN�1.x1;x2/ in R"ı . Let

zB00 D fzu
Œk�
00
j k � 0g;

zB10 D fzu
Œk�
10
j k � 0g;

zB01 D fzu
Œk�
01
j 0� k �N � 2g[ fzv

Œk�
01
j k � 0g;

zB11 D fzu
Œk�
11
j 0� k �N � 2g[ fzv

Œk�
11
j k � 0g:

It is easy to see that zB"ı is a homogeneous R@–basis for R"ı . So

(5-10) zB WD zB00[
zB10[

zB01[
zB11

is a homogeneous R@–basis for M1 . Define

z‚k D spanR@
fzu
Œk�
00
; zu
Œk�
10
; zv
Œk�
01
; zv
Œk�
11
g for k � 0;(5-11)

z�k D spanR@
fzu
Œk�
01
; zu
Œk�
11
g for 0� k �N � 2:(5-12)

It is straightforward to check that the differential map of M1 preserves z‚k and z�k .
So z‚k and z�k are Z2˚Z˚2 –graded matrix factorizations of a.yNC1

1
�xNC1

2
/ over

R@ . Since zB is a homogeneous R@–basis for M1 , we have that, as Z2˚Z˚2 –graded
matrix factorizations of a.yNC1

1
�xNC1

2
/ over R@ ,

(5-13) M1 D

�N�2M
kD0

z�k

�
˚

� 1M
kD0

z‚k

�
:

From the matrix form of f given above, one can see that

� f .zu
Œk�
00
/D u

Œk�
00
; f .zu

Œk�
10
/D u

Œk�
10

for k � 0;

� f .zv
Œk�
01
/D v

ŒkC1�
01

; f .zv
Œk�
11
/D v

ŒkC1�
11

for k � 0;

� f .zu
Œk�
01
/D u

ŒkC1�
01

; f .zu
Œk�
11
/D u

ŒkC1�
11

for k D 0; : : : ;N � 2:

So

� f maps z‚k isomorphically onto ‚k for k � 0,

� f maps z�k isomorphically onto �kC1 for 0� k �N � 2.

Thus, by Lemma 5.1 and decompositions (5-9), (5-13), we know that

(5-14) 0! M1„ƒ‚…
�1

f
�! M0„ƒ‚…

0

! 0' 0! �0„ƒ‚…
0

! 0;
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as chain complexes over the category hmf all
R@;a.y

NC1
1

�x
NC1
2

/
. Note that

(5-15) �0 ŠR@f�2; 2�2N g
y1�x2
����!R@f�1; 1�N g

ahN .y1;x2/
��������!R@f�2; 2�2N g

D .ahN .y1;x2/;y1�x2/R@h1if�1; 1�N g:

Combining (5-1), (5-14) and (5-15), we get that

CN .TC/' 0! .ahN .y1;x2/;y1�x2/R@ ! 0' CN .T /

as chain complexes over the category hmf all
R@;a.y

NC1
1

�x
NC1
2

/
.

✻
✻

1 1x1

y1

x2

y�0

❨

❨ ✯

✻
1

1 1
2x1

y1

x2

y�1

✻
1

y1

x2

y�

Figure 14

The following is a simple corollary of the proof of Proposition 5.5.

Corollary 5.6 Let y�0 , y�1 and y� be the MOY graphs in Figure 14. Then, as objects
of the category hmf all

QŒa;y1;x2�;a.y
NC1
1

�x
NC1
2

/
,

CN .y�0/' CN .y�/ h1i f�1; 1�N g˚ CN .y�1/f0; 1g:

Proof This corollary follows from Lemma 5.4, decompositions (5-9), (5-13), isomor-
phism (5-15) and the fact that f maps z‚k isomorphically onto ‚k and maps z�k

isomorphically onto �kC1 .

5.4 Negative stabilization

The main result of this subsection is Proposition 5.8, which implies Theorem 1.5 and
Corollary 1.6. The proof of Proposition 5.8 is parallel to that of Proposition 5.5.

Before stating Proposition 5.8, we define a morphism of matrix factorizations. Note
that the tangle T can also be viewed as a MOY graph. Its matrix factorization is

CN .T /D .ahN .y1;x2/;y1�x2/R@ ŠR@

ahN .y1;x2/
��������!R@f�1;�N C 1g

y1�x2
����!R@;
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where R@ DQŒa;y1;x2�. Moreover,

CN .T /˝QŒa� .0; a/QŒa� D CN .T /˝R@ .0; a/R@

D

�
ahN .y1;x2/ y1�x2

0 a

�
R@

Š

R@
˚

R@f0;�2N g

�0
0
��!

R@f�1;�N C 1g
˚

R@f1;�N � 1g

�0
1
��!

R@
˚

R@f0;�2N g
;

where

�00 D

�
ahN .y1;x2/ �a

0 y1�x2

�
; �01D

�
y1�x2 a

0 ahN .y1;x2/

�
:

Definition 5.7 Using the above explicit forms of CN .T / and CN .T /˝QŒa� .0; a/QŒa� ,
we define an R@–module map | W CN .T /! CN .T /˝QŒa� .0; a/QŒa� by

R@

�
1
0

�
���!

R@
˚

R@f0;�2N g
; R@f�1;�N C 1g

�
1
0

�
���!

R@f�1;�N C 1g
˚

R@f1;�N � 1g
:

It is easy to check that | is a homogeneous morphism of matrix factorizations of
Z2˚Z˚2 –degree .0; 0; 0/.

✒
1

y1

x2

T

✒
1 1

1

x1

y1

x2

T�

Figure 15

Proposition 5.8 Let T and T� be the tangles in Figure 15, R@ DQŒa;y1;x2� and
w D a.yNC1

1
�xNC1

2
/. Denote by | W CN .T /! CN .T /˝R@ .0; a/R@ the morphism

given in Definition 5.7. Then, for N � 1,

CN .T�/' 0! CN .T /f�2; 0g„ ƒ‚ …
0

|
�! CN .T /˝QŒa� .0; a/QŒa�f�2; 0g„ ƒ‚ …

1

! 0

as chain complexes over the category hmf all
R@;w

.
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Proof Let y�0 and y�1 be the MOY graphs in Figure 12. Set R D QŒa;x1;x2;y1�.
From Lemma 5.4 we know that

(5-16) CN .T�/D 0! CN .y�0/h1if�1;�N C 1g„ ƒ‚ …
0

�0

�! CN .y�1/h1if�1;�N g„ ƒ‚ …
1

! 0

Š 0!M0h1if�1;�N C 1g„ ƒ‚ …
0

g
�!M1h1if�1;�N � 1g„ ƒ‚ …

1

! 0;

where M0 , M1 are the matrix factorizations defined in (5-2) and (5-3), and g is the
morphism obtained by applying Lemma 3.14 to the second rows of M0 and M1 .

We prove the proposition by simplifying the chain complex

0! M0„ƒ‚…
0

g
�!M1f0;�2g„ ƒ‚ …

1

! 0:

Again, we use the explicit forms (5-4) and (5-5) of M0 and M1 . Under these explicit
forms, the morphism gW M0!M1 is given by

R00

˚

R11f�2; 2� 2N g

0@x2�x1 0

0 1

1A
����������!

R00

˚

R11f�2; 4� 2N g
;

R10f�1; 1�N g
˚

R01f�1; 1�N g

0@x2�x1 0

0 1

1A
����������!

R10f�1; 1�N g
˚

R01f�1; 3�N g
:

Let B and zB be the R@–bases for M0 and M1 given in (5-6) and (5-10). We have

� g.u
Œk�
00
/D zu

ŒkC1�
00

, g.u
Œk�
10
/D zu

ŒkC1�
10

for k � 0,

� g.v
Œk�
01
/D zv

Œk�
01

, g.v
Œk�
11
/D zv

Œk�
11

for k � 0,

� g.u
Œk�
01
/D zu

Œk�
01

, g.u
Œk�
11
/D zu

Œk�
11

for k D 0; : : : ;N � 2.

So

� g maps ‚k isomorphically onto z‚kC1 for k � 0,

� g maps �k isomorphically onto z�k for 0� k �N � 2,

where the Z2˚Z˚2 –graded matrix factorizations ‚k , �k , z‚k and z�k are defined
in (5-7), (5-8), (5-11) and (5-12).
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Moreover, note that there are unique polynomials p0.x2/;p1.x2/; : : : ;pN�2.x2/ 2

QŒx2� such that

.x2�x1/
N�1
D .�1/N�1hN�1.x1;x2/C

N�2X
lD0

pl.x2/.x2�x1/
l :

Therefore,

g.u
ŒN�1�
01

/D .�1/N�1
zv
Œ0�
01
C

N�2X
lD0

pl.x2/zu
Œl�
01
;(5-17)

g.u
ŒN�1�
11

/D .�1/N�1
zv
Œ0�
11
C

N�2X
lD0

pl.x2/zu
Œl�
11
:(5-18)

By the Gaussian elimination lemma (Lemma 5.1), these properties of g imply that

(5-19) 0! M0„ƒ‚…
0

g
�!M1f0;�2g„ ƒ‚ …

1

! 0 ' 0!�N�1„ƒ‚…
0

.�1/N�1J
�������! z‚0f0;�2g„ ƒ‚ …

1

! 0;

Š 0!�N�1„ƒ‚…
0

J
�! z‚0f0;�2g„ ƒ‚ …

1

! 0;

where J.u
ŒN�1�
01

/D zv
Œ0�
01

and J.u
ŒN�1�
11

/D zv
Œ0�
11

.

From (5-4), one can see that as Z2˚Z˚2 –graded matrix factorizations over R@ ,

�N�1 DR@ �u
ŒN�1�
11

f�2; 2� 2N g
y1�x2
����!R@ �u

ŒN�1�
01

f�1; 1�N g

ahN .y1;x2/
��������!R@ �u

ŒN�1�
11

f�2; 2� 2N g

ŠR@f�2; 0g
y1�x2
����!R@f�1;N � 1g

ahN .y1;x2/
��������!R@f�2; 0g

Thus,

(5-20) �N�1h1if�1;�N C 1g

ŠR@f�2; 0g
ahN .y1;x2/
��������!R@f�3;�N C 1g

y1�x2
����!R@f�2; 0g

D .ahN .y1;x2/;y1�x2/R@f�2; 0g D CN .T /f�2; 0g:

Similarly, from (5-5), we have

z‚0 D

R@ �u
Œ0�
00

˚

R@ � v
Œ0�
11
f�2; 4� 2N g

�0
��!

R@ �u
Œ0�
10
f�1; 1�N g
˚

R@ � v
Œ0�
01
f�1; 3�N g

�1
��!

R@ �u
Œ0�
00

˚

R@ � v
Œ0�
11
f�2; 4� 2N g

Š

R@
˚

R@f�2; 2g

z�0
��!

R@f�1; 1�N g
˚

R@f�1;N C 1g

z�1
��!

R@
˚

R@f�2; 2g
;
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where

z�0 D

�
ahN .y1;x2/ 0

a y1�x2

�
; z�1 D

�
y1�x2 0

�a ahN .y1;x2/

�
:

Thus,

(5-21) z‚0h1if�1;�N � 1g

Š

R@f�2;�2N g
˚

R@f�2; 0g

z�1
��!

R@f�1;�N � 1g
˚

R@f�3;�N C 1g

z�0
��!

R@f�2;�2N g
˚

R@f�2; 0g

Š

R@f�2; 0g
˚

R@f�2;�2N g

�0
0
��!

R@f�3;�N C 1g
˚

R@f�1;�N � 1g

�0
1
��!

R@f�2; 0g
˚

R@f�2;�2N g

Š

�
ahN .y1;x2/ y1�x2

0 a

�
R@

f�2; 0g

D CN .T /˝QŒa� .0; a/QŒa�f�2; 0g;

where

�00 D

�
ahN .y1;x2/ �a

0 y1�x2

�
; �01 D

�
y1�x2 a

0 ahN .y1;x2/

�
:

Note that under isomorphisms (5-20) and (5-21), the morphism J W �N�1!
z‚0f0;�2g

is identified with the morphism | W CN .T /f�2; 0g ! CN .T /˝QŒa� .0; a/QŒa�f�2; 0g

defined in Definition 5.7. Thus, by (5-16) and (5-19), we have

CN .T�/' 0! CN .T /f�2; 0g„ ƒ‚ …
0

|
�! CN .T /˝QŒa� .0; a/QŒa�f�2; 0g„ ƒ‚ …

1

! 0:

Theorem 1.5 and Corollary 1.6 follow easily from Propositions 5.8 and 2.17.

Proof of Theorem 1.5 By Proposition 5.8,

CN .L�/' 0! CN .L/f�2; 0g„ ƒ‚ …
0

|
�! CN .L/˝QŒa� .0; a/QŒa�f�2; 0g„ ƒ‚ …

1

! 0:

So the chain complex .H.CN .L�/; dmf /; d�/ is isomorphic to the total chain complex
of

0!H.CN .L/; dmf /f�2; 0g„ ƒ‚ …
0

|
�!H.CN .L/˝QŒa� .0; a/QŒa�; dmf /f�2; 0g„ ƒ‚ …

1

! 0:
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By Part (2) of Proposition 2.17, there is a quasi-isomorphism

˛W .CN .L/˝QŒa� .0; a/QŒa�; dmf /! .CN .L/=aCN .L/; dmf /

that preserves the Z2˚Z˚3 –grading. From the definitions of | , ˛ and �0 , one can
check that �0D ˛ ı| . Thus, the chain complex .H.CN .L�/; dmf /; d�/ is isomorphic
to the total chain complex of

0!H.CN .L/; dmf /f�2; 0g„ ƒ‚ …
0

�0
�!H.CN .L/=aCN .L/; dmf /f�2; 0g„ ƒ‚ …

1

! 0:

The above total chain complex is of course the mapping cone of �0 . The long exact
sequence in Theorem 1.5 is the long exact sequence of this mapping cone.

Proof of Corollary 1.6 We put a single marking x on U . Then

CN .U /D ..N C 1/axN ; 0/QŒa;x� Š .axN ; 0/QŒa;x�

DQŒa;x�
axN

���!QŒa;x�f�1;�N C 1g
0
�!QŒa;x�:

From this, one can see that

H1;0;?;?
N

.U /ŠQŒa;x�=.axN /f�1;�N C 1g

Š

�N�1M
lD0

QŒa�f�1;�NC1C2lg

�
˚

� 1M
mD0

QŒa�=.a/f�1;NC1C2mg

�
and H";i;?;?

N
.U / Š 0 for any other pair of ."; i/ 2 Z2 ˚ Z. This completes the

computation of HN .U /.

Next, we compute HN .U / WD H.H.CN .U /=aCN .U /; dmf /; d�/. Since U has no
crossings, d� is 0 for U . So

HN .U / WDH.H.CN .U /=aCN .U /; dmf //

DH.QŒa;x�=.a/
0
�!QŒa;x�=.a/f�1;�N C 1g

0
�!QŒa;x�=.a//;

and therefore,

H";i;?;?
N

.U /D

8<:
QŒa;x�=.a/ if "D 0 and i D 0;

QŒa;x�=.a/f�1;�N C 1g if "D 1 and i D 0;

0 otherwise.

For "D1, the homomorphism �0W H
1;?;?;?
N

.U /!H1;?;?;?
N

.U / is the standard quotient
map

QŒa;x�=.axN / �0�!QŒa;x�=.axN ; a/DQŒa;x�=.a/:
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So the long exact sequence in Theorem 1.5 reduces to

0!H1;0;?;?
N

.U�/!H1;0;?;?
N

.U /f�2; 0g
�0
�!H1;0;?;?

N
.U /f�2; 0g ! 0:

Thus,

H1;i;?;?
N

.U�/Š

8̂̂̂̂
<̂
ˆ̂̂:

ker�0 D a �QŒa;x�=.axN /f�3;�N C 1g

Š

N�1M
lD0

QŒa�f�1;�N C 1C 2lg if i D 0;

0 if i ¤ 0:

For " D 0, the homomorphism �0W H
0;?;?;?
N

.U / ! H0;?;?;?
N

.U / is the zero map
0!QŒa;x�=.a/. So the long exact sequence in Theorem 1.5 reduces to

0!H0;0;?;?
N

.U /f�2; 0g !H0;1;?;?
N

.U�/! 0:

Thus,

H0;i;?;?
N

.U�/Š

�
QŒa;x�=.a/f�2; 0g Š

L1
mD0 QŒa�=.a/f�2; 2mg if i D 1;

0 if i ¤ 1:

This completes the computation of HN .U�/.

6 Reidemeister move II

In this section, we prove the invariance of HN under braid-like Reidemeister II moves.
The main result of this section is Proposition 6.1. Our proof here is a straightforward
adaptation of the proofs in [10; 11].

Proposition 6.1 Let T0 and T1 be the tangles in Figure 16. Then, for N � 0,
CN .T0/' CN .T1/ as chain complexes over the category

hmf
QŒa;x1;x2;x3;x4�;a.x

NC1
1
Cx

NC1
2
�x

NC1
3
�x

NC1
4

/
:

✻ ✻

1 1

x1

x5

x3

x2

x6

x4

T0

■ ✒

1 1

x1

x5

x3

x2

x6

x4

T1

Figure 16
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In the rest of this section, we let R@DQŒa;x1;x2;x3;x4� and wDa.xNC1
1
CxNC1

2
�

xNC1
3
�xNC1

4
/. The resolutions of T1 are listed in Figure 17. To prove Proposition 6.1,

we need the following lemma.

Lemma 6.2 Let �0;1 and ��1;0 be the MOY graphs in Figure 17. In the category
hmfR@;w , we have that

Homhmf.CN .�0;1/; CN .�0;1//Š Homhmf.CN .��1;0/; CN .��1;0//ŠQ:

Both of these spaces are spanned by the identity morphisms.

✯❨✻

✻ ✻

1 1

21 1

x1

x5

x3

x2

x6

x4

�0;1

✻ ✻

1 1

x1

x5

x3

x2

x6

x4

�0;0

✯❨✻

✻
■✒

❨ ✯1 1

2
1 1

21 1

x1

x5

x3

x2

x6

x4

��1;1

■✒
✻

❨ ✯1 1

2
1 1

x1

x5

x3

x2

x6

x4

��1;0

Figure 17

Proof By Lemma 3.6, CN .�0;1/' CN .��1;0/. So Homhmf.CN .�0;1/; CN .�0;1//Š

Homhmf.CN .��1;0/; CN .��1;0//. Thus, we only need to compute

Homhmf.CN .�0;1/; CN .�0;1//:

By Proposition 2.16, we have

CN .�0;1/'

�
aU1 x1Cx2�x3�x4

aU2 x1x2�x3x4

�
R@

f0;�1g;

where U1 and U2 are given by Equation (3-6). From this, it is easy to check that
gdimR@

CN .�0;1/¤ 0. So CN .�0;1/ is not homotopic to 0 and therefore, idCN .�0;1/

is not homotopic to 0. Thus,

dimQ Homhmf.CN .�0;1/; CN .�0;1//� 1:
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By Lemma 2.10 and Proposition 2.17, we have that

Homhmf.CN .�0;1/; CN .�0;1//ŠH 0;0;0

0BBB@
0BB@

aU1 x1Cx2�x3�x4

aU2 x1x2�x3x4

aU1 �x1�x2Cx3Cx4

aU2 �x1x2Cx3x4

1CCA
R@

f2; 2N � 4g

1CCCA
ŠH 0;0;0

��
aV1 0

aV2 0

�
R

f2; 2N � 4g

�
;

where RDR@=.x1Cx2�x3�x4;x1x2�x3x4/, and V1 , V2 are the images of U1 ,
U2 in R. As a Z2˚Z˚2 –graded R–module,�

aV1 0

aV2 0

�
R

f2; 2N � 4g Š .Rf1;N � 1g˚Rh1i/˝R .Rf1;N � 3g˚Rh1i/:

Note that the homogeneous component of the right-hand side of Z2˚Z˚2 –degree
.0; 0; 0/ is 1–dimensional over Q. Hence dimQ Homhmf.CN .�0;1/; CN .�0;1// � 1.
Thus, Homhmf.CN .�0;1/; CN .�0;1//ŠQ.

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 It is easy to check that CN .�0;0/ and CN .�0;1/'CN .��1;0/

are all homotopically finite over R@ . So

CN .T0/D 0! CN .�0;0/„ ƒ‚ …
0

! 0

is a chain complex over hmfR@;w . By Lemma 3.11, we have

(6-1) CN .��1;1/' CN .�0;1/f0; 1g˚ CN .��1;0/f0;�1g:

So CN .��1;1/ is also homotopically finite over R@ . Denote by �1
u , �0

u the �–
morphisms associated to the upper 2–colored edge in ��1;1 and by �1

l
, �0

l
the

�–morphisms associated to the lower 2–colored edge in ��1;1 . Then,

CN .T1/D 0! CN .�0;1/f0; 1g„ ƒ‚ …
�1

0@�1
l

�0
u

1A
���!

CN .�0;0/
˚

CN .��1;1/„ ƒ‚ …
0

�
�0

u;��
1
l

�
�������! CN .��1;0/f0;�1g„ ƒ‚ …

0

! 0;

which is a chain complex over hmfR@;w .

To prove Proposition 6.1, we need to use the morphisms involved in decomposition
(6-1). By Lemma 3.13,

Algebraic & Geometric Topology, Volume 16 (2016)



A family of transverse link homologies 103

� the projection CN .��1;1/! CN .�0;1/f0; 1g in decomposition (6-1) is the mor-
phism x� induced by edge merging,

� the inclusion CN .��1;0/f0;�1g ! CN .��1;1/ in decomposition (6-1) is the
morphism � induced by edge splitting.

In addition, let

� CN .�0;1/f0; 1g
J
�! CN .��1;1/ denote the corresponding inclusion in decompo-

sition (6-1),

� CN .��1;1/
P
�! CN .��1;0/f0;�1g denote the corresponding projection in decom-

position (6-1).

Then, as a chain complex over hmfR@;w ,

CN .T1/Š 0! CN .�0;1/f0; 1g„ ƒ‚ …
�1

ˆ1
��!

CN .�0;0/
˚

CN .�0;1/f0; 1g
˚

CN .��1;0/f0;�1g„ ƒ‚ …
0

ˆ2
��! CN .��1;0/f0;�1g„ ƒ‚ …

1

! 0;

where

ˆ1 D

0@ �1
l

x� ı�0
u

P ı�0
u

1A ; ˆ2 D
�
�0

u;��
1
l
ıJ;��1

l
ı�
�
:

Consider the morphism x� ı �0
u . First, note that it is a homogeneous morphism of

Z2˚Z˚2 –degree .0; 0; 0/. Moreover, by Lemmas 3.13 and 3.15, we have

x� ı�0
u ı�

1
u ı� '

x� ım.x6�x1/ ı� ' x� ım.x6/ ı� �m.x1/x� ı� � idCN .�0;1/;

which implies that x� ı�0
u is not homotopic to 0. By Lemma 6.2, this means that

(6-2) x� ı�0
u � idCN .�0;1/:

Similarly,

(6-3) �1
l ı� � idCN .��1;0/:

Thus, x� ı�0
u and �1

l
ı� are both homotopy equivalences. Now, applying the Gaussian

elimination lemma (Lemma 5.1) to these two homotopy equivalences in the above
chain complex, we get that

CN .T1/' 0!

0‚ …„ ƒ
CN .�0;0/! 0D CN .T0/:
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7 Reidemeister move III

In this section, we prove the invariance of HN under braid-like Reidemeister III moves.
The main result of this section is Proposition 7.5. We follow the ideas in [10; 11].
However, we include graphical descriptions of all morphisms used in our proof, which
makes our proof somewhat more explicit than those in [10; 11].

7.1 A decomposition

Now we establish for CN a version of “Direct Sum Decomposition IV” from [10]. The
main result of this subsection is Proposition 7.1.

✻

✻

✻

✻

✻

✻

✲

✛
2

1

2

1
1

1

2

1

fx1; x2g x3

fx4; x5g x6

x7

x8

x9

�

✻ ✻

2 1

fx1; x2g x3

fx4; x5g x6

�0

✒

✻

■

■

✒2

2

1

3

1

fx1; x2g x3

fx4; x5g x6

�1

Figure 18

Proposition 7.1 Assume that

� � , �0 , �1 are the MOY graphs in Figure 18,
� R@ DQŒa;x3;x6�˝Q Sym.fx1;x2g/˝Q Sym.fx4;x5g/,
� w D a.xNC1

1
CxNC1

2
CxNC1

3
�xNC1

4
�xNC1

5
�xNC1

6
/.

Then, for N � 0, CN .�/Š CN .�0/˚ CN .�1/ as objects of hmfR@;w .

Lemma 7.2 CN .�/, CN .�0/ and CN .�1/ are objects of hmfR@;w . Moreover,

gdimR@
CN .�/D gdimR@

CN .�0/C gdimR@
CN .�1/:

Proof It is easy to see that the Z˚2 –gradings of CN .�/, CN .�0/ and CN .�1/ are
bounded below. By Definition 3.5 and Proposition 2.16, we know that

CN .�0/D

0@ �2;2N x1Cx2�x4�x5

�2;2N�2 x1x2�x4x5

�2;2N x3�x6

1A
R@

;(7-1)

CN .�1/'

0@ �2;2N x1Cx2Cx3�x4�x5�x6

�2;2N�2 x1x2Cx2x3Cx3x1�x4x5�x5x6�x6x4

�2;2N�4 x1x2x3�x4x5x6

1A
R@

f0;�2g;(7-2)
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where �j ;k stands for a homogeneous element of the base ring of Z˚2 –degree .j ; k/.
So CN .�0/ and CN .�1/ are homotopically finite over R@ and, therefore, objects of
hmfR@;w . Note that the maximal homogeneous ideal of R@ is

ID .a;x1Cx2;x1x2;x4Cx5;x4x5;x3;x6/:

So

CN .�0/=I � CN .�0/Š

0@ 02;2N 0

02;2N�2 0

02;2N 0

1A
Q

;

CN .�1/=I � CN .�1/'

0@ 02;2N 0

02;2N�2 0

02;2N�4 0

1A
Q

f0;�2g;

where 0j ;k is “the zero element with Z˚2 –degree .j ; k/”. (This is only used to keep
track of grading shifts.) Note that the differential maps of these chain complexes are 0.
Thus,

gdimR@
CN .�0/D .1C �˛

�1��NC1/2.1C �˛�1��NC3/;(7-3)

gdimR@
CN .�1/D �

�2.1C �˛�1��NC1/.1C �˛�1��NC3/(7-4)

.1C �˛�1��NC5/:

Next we consider CN .�/. By Corollary 2.22, to show that CN .�/ is homotopically fi-
nite over R@ , we only need to show that dimQ HR@.CN .�// is finite. By Definition 3.5
and Proposition 2.16,

CN .�/'

0BBBBBBB@

�2;2N x1Cx2�x7�x8

�2;2N�2 x1x2�x7x8

�2;2N x7Cx9�x4�x5

�2;2N�2 x7x9�x4x5

�2;2N x8Cx3�x9�x6

�2;2N�2 x8x3�x9x6

1CCCCCCCA
R

f0;�2g;

where RDR@˝Q QŒx7;x8;x9�. So

CN .�/=I � CN .�/'

0BBBBBBB@

02;2N �x7�x8

02;2N�2 �x7x8

02;2N x7Cx9

02;2N�2 x7x9

02;2N x8�x9

02;2N�2 0

1CCCCCCCA
QŒx7;x8;x9�

f0;�2g:
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Applying Proposition 2.17 successively to the matrix factorization on the right-hand
side, we get that

HR@.CN .�//ŠH

0B@
0@ 02;2N 0

02;2N�2 0

02;2N�2 0

1A
QŒx9�=.x

2
9
/

1CA f0;�2g

ŠH

0B@
0@ 02;2N 0

02;2N�2 0

02;2N�2 0

1A
Q

1CA f0;�2g˚H

0B@
0@ 02;2N 0

02;2N�2 0

02;2N�2 0

1A
Q

1CA :
From this, we get

(7-5) gdimR@
CN .�/D .1C �

�2/.1C �˛�1��NC1/.1C �˛�1��NC3/2:

Equation (7-5) implies that dimQ HR@.CN .�// D 16. So CN .�/ is homotopically
finite over R@ . Moreover, comparing Equations (7-3) and (7-4) to Equation (7-5), we
have gdimR@

CN .�/D gdimR@
CN .�0/C gdimR@

CN .�1/.

Lemma 7.3 In the category hmfR@;w , we have

Homhmf.CN .�0/; CN .�0//Š Homhmf.CN .�1/; CN .�1//ŠQ;

Homhmf.CN .�0/; CN .�1//Š Homhmf.CN .�1/; CN .�0//Š 0:

Proof We prove Homhmf.CN .�1/; CN .�1//ŠQ and Homhmf.CN .�1/; CN .�0//Š 0

here. The proofs of the other two isomorphisms are very similar and left to the reader.

First, we compute Homhmf.CN .�1/; CN .�1//. Since gdimR@
CN .�1/ ¤ 0, we know

that CN .�1/ is not homotopic to 0. So idCN .�1/ is not homotopic to 0. This implies
that dimQ Homhmf.CN .�1/; CN .�1// � 1. By Equation (7-2) and Lemma 2.10, we
have

HomR@.CN .�1/; CN .�1//

'

0BBBBBBB@

�2;2N x1Cx2Cx3�x4�x5�x6

�2;2N�2 x1x2Cx2x3Cx3x1�x4x5�x5x6�x6x4

�2;2N�4 x1x2x3�x4x5x6

�2;2N �.x1Cx2Cx3�x4�x5�x6/

�2;2N�2 �.x1x2Cx2x3Cx3x1�x4x5�x5x6�x6x4/

�2;2N�4 �.x1x2x3�x4x5x6/

1CCCCCCCA
R@

h3if3; 3N � 9g:
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Applying Proposition 2.17 to the top three rows of the right-hand side, we get

Homhmf.CN .�1/; CN .�1//ŠH 0;0;0

0@0@ �2;2N 0

�2;2N�2 0

�2;2N�4 0

1A
R0

h3if3; 3N � 9g

1A ;
where R0DR@=.x1Cx2Cx3�x4�x5�x6;x1x2Cx2x3Cx3x1�x4x5�x5x6�

x6x4;x1x2x3�x4x5x6/. As a Z2˚Z˚2 –graded R0–module,0@ �2;2N 0

�2;2N�2 0

�2;2N�4 0

1A
R0

h3if3; 3N � 9g Š .R0h1if1;N � 1g˚R0/

˝R0.R
0
h1if1;N � 3g˚R0/

˝R0.R
0
h1if1;N � 5g˚R0/;

whose homogeneous component of Z2˚Z˚2 –degree .0; 0; 0/ is 1–dimensional over
Q. This implies that dimQ Homhmf.CN .�1/; CN .�1//� 1. Thus,

Homhmf.CN .�1/; CN .�1//ŠQ:

Similarly, by Equations (7-1), (7-2), Lemma 2.10 and Proposition 2.16, we have

HomR@.CN .�1/; CN .�0//

'

0BBBBBBB@

�2;2N x1Cx2�x4�x5

�2;2N�2 x1x2�x4x5

�2;2N x3�x6

�2;2N �.x1Cx2Cx3�x4�x5�x6/

�2;2N�2 �.x1x2Cx2x3Cx3x1�x4x5�x5x6�x6x4/

�2;2N�4 �.x1x2x3�x4x5x6/

1CCCCCCCA
R@

h3if3; 3N � 7g

'

0@ �2;2N 0

�2;2N�2 0

�2;2N�4 0

1A
yR

h3if3; 3N � 7g;

where yRDR@=.x1Cx2�x4�x5;x1x2�x4x5;x3�x6/ŠQŒa;x3�˝QSym.fx1;x2g/.
As a Z2˚Z˚2 –graded yR–module,0@ �2;2N 0

�2;2N�2 0

�2;2N�4 0

1A
yR

h3if3; 3N � 7g Š . yRh1if1;N � 1g˚ yR/

˝ yR
. yRh1if1;N � 3g˚ yR/

˝ yR
. yRh1if1;N � 3g˚ yRf0; 2g/;
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whose homogeneous component of Z2˚Z˚2 –degree .0; 0; 0/ vanishes. This implies

Homhmf.CN .�1/; CN .�0//ŠH 0;0;0

0@0@ �2;2N 0

�2;2N�2 0

�2;2N�4 0

1A
yR

h3if3; 3N � 7g

1AŠ 0:

We are now ready to prove Proposition 7.1.

Proof of Proposition 7.1 Define morphisms f W CN .�0/! CN .�/ and xf W CN .�/!

CN .�0/ by Figure 19. That is, f D �0 ı� and xf D x� ı�1 , where
� � and x� are the morphisms associated to the edge splitting/merging in the left

side of �0 and �2 defined in Lemma 3.13,
� �0 and �1 are the �–morphisms associated to the right side of � and �2 defined

in Lemma 3.15.

✻ ✻

2 1

fx1; x2g x3

fx4; x5g x6

�0

�

  

f
//

✻

✻

✻

✻

✻

✻

✲

✛
2

1

2

1
1

1

2

1

fx1; x2g x3

fx4; x5g x6

x7

x8

x9

�

xf

oo

�1

~~

✻

✻

✻ ✻
✐
2

1

2

1 1

fx1; x2g x3

fx4; x5g x6

x7

�2

x�

``

�0

>>

Figure 19

Note that
� � and x� are homogeneous morphisms of Z2˚Z˚2 –degree .0; 0;�1/,
� �0 and �1 are homogeneous morphisms of Z2˚Z˚2 –degree .0; 0; 1/.

So f and xf are homogeneous morphisms of Z2 ˚ Z˚2 –degree .0; 0; 0/. Using
Lemmas 3.13 and 3.15 again, we get

(7-6) xf ıf D x� ı�1
ı�0
ı� ' x� ım.x6�x8/ ı�

D�x� ım.x8/ ı�Cm.x6/ ı x� ı� � idCN .�0/:
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Next, define gW CN .�1/! CN .�/ and xgW CN .�/! CN .�1/ by Figure 20. That is,
g D z�1 ı h ı' and xg D x' ı xh ı z�0 , where

� ' and x' are the morphisms associated to the splitting/merging of the upper-left
2–colored edge in �1 defined in Lemma 3.13,

� h and xh are the homotopy equivalences induced by the edge sliding given in
Lemmas 3.9, 3.10 and are homotopy inverses of each other,

� z�0 and z�1 are the z�–morphisms associated to the lower half of � and � 0
3

defined in Lemma 3.16.

✒

✻

■

■

✒2

2

1

3

1

fx1; x2g x3

fx4; x5g x6

�1

'

��

g
//

✻

✻

✻

✻

✻

✻

✲

✛
2

1

2

1
1

1

2

1

fx1; x2g x3

fx4; x5g x6

x7

x8

x9

�

xg
oo

z�0

��

✯

■

✻
✛✻

❨

✻

✻

2

1

2

1

1

1

2

3

fx1; x2g x3

fx4; x5g x6

x7

�3

x'

OO

h
//

✯

■

✻

❨

✒

✻

✻

✛
2

1

2

1

2

1

1

3

fx1; x2g x3

fx4; x5g x6

x7

� 0

3

z�1

OO

xh

oo

Figure 20

Note that

� ' and x' are homogeneous morphisms of Z2˚Z˚2 –degree .0; 0;�1/,
� h and xh are homogeneous morphisms of Z2˚Z˚2 –degree .0; 0; 0/,
� z�0 and z�1 are homogeneous morphisms of Z2˚Z˚2 –degree .0; 0; 1/.

So g and xg are homogeneous morphisms of Z2 ˚ Z˚2 –degree .0; 0; 0/. Using
Lemmas 3.13 and 3.16 again, we get

(7-7) xg ıg D x' ı xh ı z�0
ı z�1
ı h ı' ' x' ı xh ım.x6�x7/ ı h ı'

D x' ım.x6�x7/ ı xh ı h ı'

' x' ım.x6�x7/ ı'

Dm.x6/ ı x' ı' � x' ım.x7/ ı' � idCN .�1/:
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By Lemma 7.3, we know Homhmf.CN .�0/; CN .�1//ŠHomhmf.CN .�1/; CN .�0//Š0.
So

(7-8) xf ıg ' 0 and xg ıf ' 0:

Now consider the morphisms

CN .�/

0@ xf
xg

1A
//
CN .�0/
˚

CN .�1/
�
f; g

�oo :

From homotopies (7-6), (7-7) and (7-8), we know that, after possibly scaling f and g ,�
xf

xg

�
ı
�
f; g

�
'

�
idCN .�0/ 0

0 idCN .�1/

�
:

Recall that, by Proposition 2.25, hmfR@;w is fully additive. So, by Lemma 2.24, there
exists an object M of hmfR@;w such that

CN .�/Š CN .�0/˚ CN .�1/˚M:

From Lemma 7.2, we know that

gdimR@
M D gdimR@

CN .�/� gdimR@
CN .�0/� gdimR@

CN .�1/D 0:

By Corollary 2.22, this implies that M ' 0. Thus, CN .�/Š CN .�0/˚ CN .�1/.

✒

✻

■

■

✒2

2

1

3

1

fx1; x2g x3

fx4; x5g x6

�1

 

��

g
//

✻

✻

✻

✻

✻

✻

✲

✛
2

1

2

1
1

1

2

1

fx1; x2g x3

fx4; x5g x6

x7

x8

x9

�

xg
oo

z�0
u

��

✻

✲
■
✒
✛

✯❨

✻
2

2

2

11

1

1

3

fx1; x2g x3

fx4; x5g x6

x7

�

x 

OO

h
//

✻

✒

✻

■

✯❨

✻

✲

2

1

2

1

1

2

1

3

fx1; x2g x3

fx4; x5g x6

x7

�

z�1
u

OO

xh

oo

Figure 21
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Corollary 7.4 Let gW CN .�1/! CN .�/ and xgW CN .�/! CN .�1/ be the morphisms
defined by Figure 21. That is, gD z�1

u ı h ı and xgD x ı xh ı z�0
u , where

�  and x are the morphisms associated to the splitting/merging of the lower-left
2–colored edge in �1 defined in Lemma 3.13,

� h and xh are the homotopy equivalences induced by the edge sliding given in
Lemmas 3.9, 3.10 and are homotopy inverses of each other,

� z�0
u and z�1

u are the z�–morphisms associated to the upper half of � and � 0
3

defined in Lemma 3.16.

Then g� g and xg� xg , where g and xg are the morphisms defined by Figure 20.

Proof Similar to the proof of Proposition 7.1, one can check that g and xg are ho-
mogeneous morphisms of Z2 ˚ Z˚2 –degree .0; 0; 0/ satisfying xg ı g � idCN .�1/ .
Thus, g , xg , g and xg are all homotopically non-trivial homogeneous morphisms of
Z2˚Z˚2 –degree .0; 0; 0/. By Proposition 7.1 and Lemma 7.3, we have that

Homhmf.CN .�/; CN .�1//Š Homhmf.CN .�0/; CN .�1//˚Homhmf.CN .�1/; CN .�1//

ŠQ:

This implies that xg � xg . Similarly, we have Homhmf.CN .�1/; CN .�// Š Q, which
implies that g� g .

7.2 Invariance under braid-like Reidemeister III moves

Proposition 7.5 Let T1 and T2 be the tangle diagrams in Figure 22. Then, for N � 0,
CN .T1/' CN .T2/ as chain complexes over the category hmfR@;w , where

R@ DQŒa;x1;x2;x3;x4;x5;x6�;

w D a.xNC1
1

CxNC1
2

CxNC1
3

�xNC1
4

�xNC1
5

�xNC1
6

/:

Let us consider T1 . Its resolutions are listed in Figure 23. We call the three crossings
in T1 the upper crossing, the lower crossing, the right crossing and denote by

� �0
u and �1

u the �–morphisms associated to the upper crossing,

� �0
l

and �1
l

the �–morphisms associated to the lower crossing,

� �0
r and �1

r the �–morphisms associated to the right crossing.
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Then

(7-9) CN .T1/D 0! CN .�111/h3if3; 3N g„ ƒ‚ …
�3

d�3
��!

CN .�110/h3if3; 3N � 1g
˚

CN .�101/h3if3; 3N � 1g
˚

CN .�011/h3if3; 3N � 1g„ ƒ‚ …
�2

d�2
��!

CN .�100/h3if3; 3N � 2g
˚

CN .�010/h3if3; 3N � 2g
˚

CN .�001/h3if3; 3N � 2g„ ƒ‚ …
�1

d�1
��! CN .�000/h3if3; 3N � 3g„ ƒ‚ …

0

! 0;

where

d�3 D

0@ �1
r

��1
l

�1
u

1A; d�2D

0@��1
l
��1

r 0

�1
u 0 ��1

r

0 �1
u �1

l

1A; d�1 D .�
1
u; �

1
l ; �

1
r /:

From Lemma 7.2, we know that CN .�111/ is an object of hmfR@;w . It is straightforward
to verify that CN .�"��/ is also an object of hmfR@;w for any other resolution �"�� of
T1 . Thus, CN .T1/ is a chain complex over hmfR@;w .

✒■ ✒

1 1 1

x1 x2 x3

x4 x5 x6

T1

✒■ ■

11 1

x1 x2 x3

x4 x5 x6

T2

Figure 22

Next, we consider the MOY graphs in Figure 24. It is obvious that

(7-10) �0 D �100 D �010:

By Lemma 3.11, we know that

(7-11) CN .�110/' CN .�0/f0; 1g˚ CN .�0/f0;�1g:

From the proof of Proposition 6.1, we know that homotopy equivalence (7-11) is given
by a pair of morphisms of the form
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(7-12) CN .�110/

0@ x�
P

1A
//
CN .�0/f0; 1g

˚

CN .�0/f0;�1g
;�

J; �
�oo

where � and x� are the morphisms associated to the splitting and merging of the
2–colored edge in �0 . By Proposition 7.1 and the proof of Lemma 3.9, we know that

CN .�111/' CN .�0/˚ CN .�1/:(7-13)

✸❦
✻

✻

✻

✸❦
✻

✻

✻
✲

✛

1 1 1

1 1 1

1
11

2

2

2

x1 x2 x3

x4 x5 x6

x7

x8

x9

�111

✸❦
✻ ✻

✕❦ ✻

✻
✲

1

1 1 1

1

1

1

2

2

x1 x2 x3

x4 x5 x6

x7

x9

�011

✻

✻

✸❦
✻

✻

✻
✲

✛

1 1 1

1

1
11

2

2

x1 x2 x3

x4 x5 x6

x7

x8

�101

✸❦
✻

✻

✻✸❦
✻②

1 1

1 1

11

2

2

1

x1 x2 x3

x4 x5 x6

x7

x8

�110

✻

✲✛
✻

✻ ✻1

11

1

1 2

x1 x2 x3

x4 x5 x6

�001

✸❦
✻

✻✻✻1 1

1 1

2

1

x1 x2 x3

x4 x5 x6

�010

✻✸❦
✻②✿

1 1

1 1

2

1

x1 x2 x3

x4 x5 x6

�100

✻ ✻ ✻

11 1

x1 x2 x3

x4 x5 x6

�000

Figure 23
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From the proof of Proposition 7.1, we know that homotopy equivalence (7-13) is given
by the morphisms

(7-14) CN .�111/

0@ xf
xg

1A
//
CN .�0/
˚

CN .�1/
;�

f; g
�oo

where f , xf and g , xg are the morphisms given by Figures 19 and 20.

Substituting (7-10)–(7-14) into CN .T1/, we get that, as a chain complex over hmfR@;w ,

(7-15) CN .T1/ Š 0!
CN .�0/h3if3; 3N g

˚

CN .�1/h3if3; 3N g„ ƒ‚ …
�3

zd�3
��!

CN .�0/f3; 3N g
˚

CN .�0/f3; 3N � 2g
˚

CN .�101/h3if3; 3N � 1g
˚

CN .�011/h3if3; 3N � 1g„ ƒ‚ …
�2

zd�2
��!

CN .�0/h3if3; 3N � 2g
˚

CN .�0/h3if3; 3N � 2g
˚

CN .�001/h3if3; 3N � 2g„ ƒ‚ …
�1

zd�1
��! CN .�000/h3if3; 3N � 3g„ ƒ‚ …

0

! 0;

where

zd�3 D

0BB@
x� ı�1

r ıf
x� ı�1

r ıg

P ı�1
r ıf P ı�1

r ıg

��1
l
ıf ��1

l
ıg

�1
u ıf �1

u ıg

1CCA; zd�2 D

0@��1
l
ıJ ��1

l
ı� ��1

r 0

�1
u ıJ �1

u ı� 0 ��1
r

0 0 �1
u �1

l

1A;
zd�1 D .�

1; �1; �1
r /;

and the morphism �1 in zd�1 is the �1 –morphism associated to the 2–colored edge
in �0 .

Similar to the proof of Lemma 7.3, one can check that Homhmf.CN .�1/; CN .�0//Š 0

in hmfR@;w . This implies that the entry x� ı�1
r ıg of zd�3 is homotopic to 0. Recall

that by Figure 19, f is defined to be the composition

CN .�0/
�
�! CN .�110/

�0
r
�! CN .�111/:
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✲✛
✻

✻ ✻ ✻11

11

12

x1 x2 x3

x4 x5 x6

�0

✸

❦

✻

✻

✻

❦

✸11 1

11 1

3

x1 x2 x3

x4 x5 x6

�1

Figure 24

So we have that, by Lemmas 3.13 and 3.15,

x�ı�1
r ıf D

x�ı�1
r ı�

0
r ı�'

x�ım.x6�x8/ı�Dm.x6/ıx�ı��x�ım.x8/ı�� idCN .�0/:

Now let us apply the Gaussian elimination of Lemma 5.1 to the homotopy equivalence
x� ı�1

r ıf in zd�3 . Note that since x� ı�1
r ıg' 0, the correction term from Lemma 5.1

is 0 in this case. Thus, as a chain complex over hmfR@;w ,

(7-16) CN .T1/' 0! CN .�1/h3if3; 3N g„ ƒ‚ …
�3

yd�3
��!

CN .�0/f3; 3N � 2g
˚

CN .�101/h3if3; 3N � 1g
˚

CN .�011/h3if3; 3N � 1g„ ƒ‚ …
�2

yd�2
��!

CN .�0/h3if3; 3N � 2g
˚

CN .�0/h3if3; 3N � 2g
˚

CN .�001/h3if3; 3N � 2g„ ƒ‚ …
�1

yd�1
��! CN .�000/h3if3; 3N � 3g„ ƒ‚ …

0

! 0;

where

yd�3 D

0@P ı�1
r ıg

��1
l
ıg

�1
u ıg

1A; yd�2 D

0@��1
l
ı� ��1

r 0

�1
u ı� 0 ��1

r

0 �1
u �1

l

1A; yd�1 D .�
1; �1; �1

r /;

and the morphism �1 in yd�1 is again the �1 –morphism associated to the 2–colored
edge in �0 .

Consider the entries ��1
l
ı� and �1

u ı� in yd�2 . Applying the argument used to estab-
lish homotopies (6-2) and (6-3), we get that ��1

l
ı� � �1

u ı� � idCN .�0/ . Applying
Gaussian elimination (Lemma 5.1) to the homotopy equivalence ��1

l
ı� , we get that
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as a chain complex over hmfR@;w ,

(7-17) CN .T1/' 0! CN .�1/h3if3; 3N g„ ƒ‚ …
�3

Ld�3
��!

CN .�101/h3if3; 3N � 1g
˚

CN .�011/h3if3; 3N � 1g„ ƒ‚ …
�2

Ld�2
��!

CN .�0/h3if3; 3N � 2g
˚

CN .�001/h3if3; 3N � 2g„ ƒ‚ …
�1

Ld�1
��! CN .�000/h3if3; 3N � 3g„ ƒ‚ …

0

! 0

with

Ld�3 D

�
��1

l
ıg

�1
u ıg

�
; Ld�2 D

�
c ��1

r ��
1
r

�1
u �1

l

�
; Ld�1 D .�

1; �1
r /;

where c is a non-zero scalar,5 and the morphism �1 in Ld�1 is once more the �1 –
morphism associated to the 2–colored edge in �0 .

Schematically, we represent chain complex (7-17) by the diagram

(7-18)

�101
//

��

�0

##

�1

==

!!

�000;

�011
//

EE

�001

;;

in which each arrow represents the corresponding entry in the above matrix presentation
of the differential map Ld . The following two lemmas are straightforward adaptations
of [10, Lemmas 26 and 27].

Lemma 7.6 [10, Lemma 27] The composition of any pair of consecutive arrows in
diagram (7-18) is homotopically non-trivial.

Proof Let RDQŒx1;x2;x3;x4;x5;x6� and w1DxNC1
1
CxNC1

2
CxNC1

3
�xNC1

4
�

xNC1
5

� xNC1
6

. The standard quotient map �1W R@ ! R@=.a� 1/ Š R induces a
functor $1W hmfR@;w ! hmfR;w1

that takes an object M of hmfR@;w to the object
M=.a� 1/M of hmfR;w1

. Comparing the definitions in the current paper to those
in [10], one can see that

5The entry c ��1
r in Ld�2 comes from the correction term in Lemma 5.1.
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� for any MOY graph � in this subsection, $1.CN .�// is the matrix factorization
associated to � in [10],

� for any morphism in this subsection, $1 maps it to the corresponding morphism
in [10].

As a functor from hmfR@;w to hmfR;w1
, $1 maps homotopic morphisms to homo-

topic morphisms. From [10, Lemma 27], we know that the image under $1 of the
composition of any pair of consecutive arrows in diagram (7-18) is homotopically
non-trivial. This implies that the composition of any pair of consecutive arrows in
diagram (7-18) is homotopically non-trivial.

Lemma 7.7 [10, Lemma 26] Assume that � and � 0 are two MOY graphs in diagram
(7-18) and that there is an arrow pointing from � to � 0 in diagram (7-18). Then, in the
category hmfR@;w , we have

Homhmf.CN .�/; CN .�
0/f0;�1g/ŠQ:

In particular, this space is spanned over Q by the corresponding arrow in diagram
(7-18).

Proof The arrow pointing from � to � 0 in diagram (7-18) is, by Lemma 7.6, a
homotopically non-trivial element of Homhmf.CN .�/; CN .�

0/f0;�1g/. It follows that
dimQ Homhmf.CN .�/; CN .�

0/f0;�1g/� 1. To complete the proof we now show that
dimQ Homhmf.CN .�/; CN .�

0/f0;�1g/� 1. We only check this for the pair �101 and
�0 . The proofs for the other pairs are similar and left to the reader.

By Definition 3.5 and Proposition 2.16,

CN .�101/'

0BB@
�2;2N x1Cx2�x4�x8

�2;2N�2 x1x2�x4x8

�2;2N x8Cx3�x5�x6

�2;2N�2 x8x3�x5x6

1CCA
R@Œx8�

f0;�2g

'

0@ �2;2N x1Cx2Cx3�x4�x5�x6

�2;2N�2 x1x2�x4.x5Cx6�x3/

�2;2N�2 .x5Cx6�x3/x3�x5x6

1A
R@

f0;�2g;

CN .�0/'

0@ �2;2N x1Cx2�x4�x5

�2;2N�2 x1x2�x4x5

�2;2N x3�x6

1A
R@

f0;�1g:
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So, by Lemma 2.10 and Proposition 2.17,

Homhmf.CN .�101/; CN .�0/f0;�1g/

'H 0;0;0

0BBBBBBB@

0BBBBBBB@

�2;2N x1Cx2�x4�x5

�2;2N�2 x1x2�x4x5

�2;2N x3�x6

�2;2N �.x1Cx2Cx3�x4�x5�x6/

�2;2N�2 �.x1x2�x4.x5Cx6�x3//

�2;2N�2 �..x5Cx6�x3/x3�x5x6/

1CCCCCCCA
R@

h3if3; 3N � 7g

1CCCCCCCA

'H 0;0;0

0@0@ �2;2N 0

�2;2N�2 0

�2;2N�2 0

1A
R0

h3if3; 3N � 7g

1A ;
where R0 DR@=.x1Cx2�x4�x5;x1x2�x4x5;x3�x6/. As a Z2˚Z˚2 –graded
R0–module,0@ �2;2N 0

�2;2N�2 0

�2;2N�2 0

1A
R0

h3if3; 3N � 7g Š .R0h1if1;N�1g˚R0/˝R0 .R
0
h1if1;N�3g˚R0/

˝R0 .R
0
h1if1;N�3g˚R0/;

whose homogeneous component of Z2˚Z˚2 –degree .0; 0; 0/ is 1–dimensional. This
implies that

Homhmf.CN .�101/; CN .�0/f0;�1g/ŠH 0;0;0

0@0@ �2;2N 0

�2;2N�2 0

�2;2N�2 0

1A
R0

h3if3; 3N � 7g

1A
is at most 1–dimensional. Thus, Homhmf.CN .�101/; CN .�0/f0;�1g/ŠQ.

Proposition 7.5 now follows easily.

Proof of Proposition 7.5 Note that diagram (7-18) is invariant under horizontal
reflection of the MOY graphs. So, using a similar argument, we can show that CN .T2/

is also homotopic as a chain complex over hmfR@;w to a chain complex of the schematic
form (7-18) such that arrows in this new chain complex also satisfy Lemma 7.6. By
Lemma 7.7, corresponding arrows in the two schematic forms (7-18) for CN .T1/ and
CN .T2/ are scalar multiples of each other. Using Lemma 7.6, it is easy to verify that
these two chain complexes of schematic form (7-18) are isomorphic to each other
as chain complexes over hmfR@;w . This proves that CN .T1/ ' CN .T2/ as chain
complexes over hmfR@;w .
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8 The decategorification of HN

In this section, we establish the skein description of the decategorification PN of HN

in Theorem 1.8. We start by recalling the “invariant computation tree” constructed
in [7].

Definition 8.1 [7, Definitions 1.1 and 1.3] For an m–strand closed braid B˙ D

ˇ�˙i  , the Conway split of B˙ at the crossing �˙i produces two m–strand braids
B0 D ˇ and B� D ˇ�

�

i  .

An invariant computation tree is a connected rooted oriented binary tree with each node
labeled by a closed braid such that:

(1) If a node is labeled by a braid B and its two children are labeled by B0 and B00 ,
then B0 and B00 are obtained from B by first applying a sequence of transverse
Markov moves6 and then doing a Conway split.

(2) Every terminal node is labeled with a closed braid with no crossings.

Theorem 8.2 [7, Theorem 1.7] For any closed braid B , there exists an invariant
computation tree whose root is labeled by B .

Before proving Theorem 1.8, we establish the following lemma, which will be used to
prove part (3) of Theorem 1.8.

Lemma 8.3 Denote by Utm the m–strand closed braid with no crossings. Define

HN .U
tm/ WDH.H.CN .U

tm/=aCN .U
tm/; dmf /; d�/;

which inherits the Z2˚Z˚3 –grading of CN .U
tm/. Its graded Euler characteristic is

PN .U
tm/ WD

X
.";i;j ;k/2Z2˚Z˚3

.�1/i�"˛j�k dimQ H
";i;j ;k
N

.Utm/

2 ZŒŒ˛; ��� Œ˛�1; ��1; � �=.�2
� 1/:

Then

PN .U
tm/D

�
1C�˛�1��NC1

1��2

�m

:

6Transverse Markov moves are call “invariant Markov moves” in [7].
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Proof Put one marked point on each strand of Utm . Note Utm has no crossings. It
is straightforward to check that

CN .U
tm/=aCN .U

tm/ Š 0 �!

0BBB@
02;2N 0

02;2N 0
:::

:::

02;2N 0

1CCCA
QŒx1;:::;xm�„ ƒ‚ …

0

�! 0;

where the Koszul matrix factorization has m rows and 02;2N is a “homogeneous 0 of
Z˚2 –degree .2; 2N /”. Note that both dmf and d� in CN .U

tm/=aCN .U
tm/ are 0.

So

PN .U
tm/D gdimQ

0BBB@
02;2N 0

02;2N 0
:::

:::

02;2N 0

1CCCA
QŒx1;:::;xm�

D

�
1C�˛�1��NC1

1��2

�m

:

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8 Part (1) is a direct consequence of Theorem 1.2.

Now we consider part (2). From local chain complexes (4-2) and (4-3), one can see
that

PN

�
✒■
�
D �˛�N�1PN

�
✒■
�
� �˛�NPN

�
❨✯

❨✯
✻2
�
;

PN

�
■✒

�
D �˛�1��NC1PN

�
✒■
�
� �˛�1��NPN

�
❨✯

❨✯
✻2
�
:

It follows easily from these equations that

˛�1��NPN

�
✒■
�
�˛�NPN

�
■✒

�
D �.��1

� �/PN

�
✒■
�
:

This proves part (2).

Next, we prove part (3). For m� 2, denote by �˙1
m�1

the closed m–braid with a single
˙ crossing between the .m� 1/th and the mth strands. By part (2), we have

(8-1) PN .U
tm/D

�

��1��
�
�
˛�1��NPN .�m�1/�˛�

NPN .�
�1
m�1/

�
:

From part (1), we know that

(8-2) PN .�m�1/D PN .U
tm�1/:
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By Theorem 1.5 and Lemma 8.3, we have

(8-3) PN .�
�1
m�1/D ˛

�2.PN .U
tm�1/�PN .U

tm�1//

D ˛�2

�
PN .U

tm�1/�

�
1C�˛�1��NC1

1��2

�m�1 �
:

Plugging (8-2) and (8-3) into (8-1), we get that, for m� 2,

(8-4) PN .U
tm/D �˛�1

�
ŒN �PN .U

tm�1/C
�N

��1��

�
1C�˛�1��NC1

1��2

�m�1 �
;

where ŒN � WD .��N � �N /=.��1� �/. From Corollary 1.6, we have

(8-5) PN .U
t1/D PN .U /D �˛

�1

�
ŒN �

1

1�˛2
C

�N

��1��

�
:

Let

fm D
PN .U

tm/

.�˛�1ŒN �/m
:

Then, by (8-4) and (8-5), the sequence ffmg satisfies the recursive relation

(8-6)

8̂̂<̂
:̂
fm D fm�1C

�N

.��N ��N /

�
�˛��1C��N

��N ��N

�m�1

for m� 2;

f1 D
1

1�˛2
C

�N

��N ��N
:

Therefore,

fm D
1

1�˛2
C

�N

.��N � �N /

m�1X
lD0

�
�˛��1C ��N

��N � �N

�l

D
1

1�˛2
C

�N

.��N � �N /
�

1�

�
�˛��1C��N

��N ��N

�m

1�
�˛��1C��N

��N ��N

D
1

1�˛2
C

�
�˛��1C��N

��N ��N

�m

� 1

�˛��N�1C 1
:
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Thus,

(8-7) PN .U
tm/D .�˛�1ŒN � /mfm

D .�˛�1ŒN � /m

0BBB@ 1

1�˛2
C

�
�˛��1C��N

��N ��N

�m

� 1

�˛��N�1C 1

1CCCA :
This proves part (3).

Finally, from Theorem 8.2, it is easy to see that parts (1)–(3) uniquely determine PN .
So part (4) is true.

9 Relation to the sl.N / Khovanov–Rozansky homology

We prove Theorem 1.10 in this section. Let us start with two algebraic lemmas.

Lemma 9.1 Let QŒa� be the graded polynomial ring with grading given by dega aD 2.
Suppose that M is a Z–graded QŒa�–module whose grading is bounded below and
that f .a/D

Pm
jD0 cj aj 2QŒa� satisfies c0 ¤ 0. Then the endomorphism

M
f .a/
���!M

is injective.

Proof Assume the multiplication by f .a/ is not injective on M . Then there is an
element u of M such that u¤ 0 and f .a/uD 0. Write uD

P
j uj , where uj is the

homogeneous part of u of degree j . Since the grading of M is bounded below, there
exists a j0 such that uj0

¤ 0 and uj D 0 if j < j0 . Note that c0ujC
Pm

iD1 cia
iuj�2i

is the homogeneous part of f .a/u of degree j and
P

j .c0uj C
Pm

iD1 cia
iuj�2i/D

f .a/u D 0. So c0uj C
Pm

iD1 cia
iuj�2i D 0 for all j . When j D j0 , this implies

uj0
D 0, which is a contradiction.

The following is a graded version of the well-known structure theorem of a finitely
generated module over a principal ideal domain. With minor modifications, the proof
of the structure theorem still applies in this case.

Lemma 9.2 Suppose that M is a finitely generated Z–graded QŒa�–module. Then, as
a Z–graded QŒa�–module, M Š

�Lm
jD1 QŒa�fsj g

�
˚
�Ln

kD1 QŒa�=.alk /ftkg
�
, where

the sequences fs1; : : : ; smg � Z and f.l1; t1/; : : : ; .ln; tn/g � Z˚2 are uniquely deter-
mined by M up to permutation.
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Proof Let G be a finite homogeneous generating set of M . Denote by � the QŒa�–
module map � W

L
u2G QŒa�fdeg ug ! M which maps the 1 in QŒa�fdeg ug to u.

Since � is homogeneous, ker� inherits the grading of
L

u2G QŒa�fdeg ug. Since
QŒa� is a principal ideal domain, ker� is also a free QŒa�–module. Note that the
gradings on

L
u2G QŒa�fdeg ug and ker� are both bounded below. So, by Lemma 2.2,

both of these admit homogeneous bases over QŒa�. From this, it is easy to verify that
there is a decomposition of chain complexes of graded QŒa� modules

0! ker�„ƒ‚…
�1

,!
M
u2G

QŒa�fdeg ug„ ƒ‚ …
0

! 0

Š

� mM
jD1

0!QŒa�fsj g„ ƒ‚ …
0

! 0

�
˚

� nM
kD1

0!QŒa�f2lk C tkg„ ƒ‚ …
�1

alk

��!QŒa�ftkg„ ƒ‚ …
0

! 0

�
:

(See, for example, [22, Lemma 4.13].) This implies that

M Š

�M
u2G

QŒa�fdeg ug

�
= ker� Š

� mM
jD1

QŒa�fsj g

�
˚

� nM
kD1

QŒa�=.alk /ftkg

�
:

The uniqueness part of the lemma is a slight refinement of the usual uniqueness theorem
of the standard decompositions of finitely generated modules over a principal ideal
domain. Suppose that

M Š

� mM
jD1

QŒa�fsj g

�
˚

� nM
kD1

QŒa�=.alk /ftkg

�

Š

� m0M
jD1

QŒa�fs0j g

�
˚

� n0M
kD1

QŒa�=.al 0
k /ft 0kg

�
:

Define MaD fr 2M j akr D 0 for some k � 0g. Then Ma is a submodule of M and

Ma Š

nM
kD1

QŒa�=.alk /ftkg Š

n0M
kD1

QŒa�=.al 0
k /ft 0kg:

By [22, Lemma 4.14], the sequences f.l1; t1/; : : : ; .ln; tn/g and f.l 0
1
; t 0

1
/; : : : ; .l 0n0 ; t

0
n0/g

are therefore permutations of each other. Moreover, we have

M WDM=Ma Š

mM
jD1

QŒa�fsj g Š

m0M
jD1

QŒa�fs0j g:
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Thus, as a Z–graded Q–space, the graded dimension of M=aM is

gdimQM=aMD
mX

jD1

˛sj D

m0X
jD1

˛s0
j :

This implies that fs1; : : : ; smg and fs0
1
; : : : ; s0m0g are permutations of each other.

Now we are ready to prove Theorem 1.10.

Proof of Theorem 1.10 We prove part (1) first. Fix a marking of B . Assume the
x1; : : : ;xm are all the variables appearing in this marking. Let RDQŒx1; : : : ;xm�. Re-
call that the matrix factorization of each resolution of B is a Koszul matrix factorization
over RŒa�. So each of these matrix factorizations comes with a standard homogeneous
RŒa�–module basis. Therefore, CN .B/ comes with a standard homogeneous RŒa�–
module basis. And the differentials dmf and d� of CN .B/ are represented by matrices
whose entries are homogeneous elements of RŒa�. Let f be the standard quotient
homomorphism f W RŒa�!R .ŠRŒa�=.a�1// given by f .a/D 1. Under this identifi-
cation of the base ring, .CN .B/=.a�1/CN .B/; dmf ; d�/ is a chain complex of matrix
factorization over R. The standard RŒa�–basis of CN .B/ corresponds to the standard
R–basis of CN .B/=.a�1/CN .B/. Matrices of dmf and d� of CN .B/=.a�1/CN .B/

under the standard basis are obtained from those of dmf and d� of CN .B/ by applying
f to each entry. Now compare .CN .B/=.a�1/CN .B/; dmf ; d�/ to the chain complex
.C.B/; dmf ; d�/ constructed in [10] to define the sl.N / link homology HN .B/. It is
easy to see that these two chain complexes are isomorphic as chain complexes of matrix
factorization over R. Moreover, this isomorphism preserves the Z2 –, homological and
x–gradings.

Recall that CN .B/ is a free QŒa�–module. So we have a short exact sequence

0! CN .B/
a�1
���! CN .B/

�1
�! C.B/! 0

preserving the Z2 –, homological and x–gradings, where �1 is the standard quotient
map

CN .B/! CN .B/=.a� 1/CN .B/Š C.B/:

This short exact sequence induces a long exact sequence

� � � �!H ";i;?;?.CN .B/; dmf /
a�1
���!H ";i;?;?.CN .B/; dmf / �!H ";i;?;?.C.B/; dmf /

�!H "C1;i;?;?.CN .B/; dmf /f�1;�N � 1g
a�1
���! � � �
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preserving the x–grading. By Lemma 9.1, the multiplication by a� 1 is an injective
homomorphism. So this long exact sequence gives a short exact sequence

0 �! .H ";?;?;?.CN .B/; dmf /; d�/
a�1
���! .H ";?;?;?.CN .B/; dmf /; d�/

�! .H ";?;?;?.C.B/; dmf /; d�/ �! 0

preserving the homological and x–gradings, which, in turn, induces a long exact
sequence

� � � !H";i;?;k
N

.B/
a�1
���!H";i;?;k

N
.B/!H

";i;k
N

.B/!H";iC1;?;k
N

.B/
a�1
���! � � � :

Again, by Lemma 9.1, the multiplication by a� 1 is an injective homomorphism. So
we get a short exact sequence

0!H";i;?;k
N

.B/
a�1
���!H";i;?;k

N
.B/!H

";i;k
N

.B/! 0;

which implies that H
";i;k
N

.B/ŠH";i;?;k
N

.B/=.a� 1/H";i;?;k
N

.B/. This proves part (1)
of the theorem.

Now we prove part (2). Recall that C";i;?;k
N

.B/ is finitely generated over QŒa� for
each triple ."; i; k/ 2 Z2˚Z˚2 . Since QŒa� is a Noetherian ring, this implies that
H";i;?;k

N
.B/ is a finitely generated Z–graded QŒa�–module. Thus, by Lemma 9.2, there

is a decomposition

H";i;?;k
N

.B/Š

�m";i;kM
pD1

QŒa�fspg

�
˚

� n";i;kM
qD1

QŒa�=.alq /ftqg

�
;

which is unique up to permutation of direct sum components. The only thing remaining
is that m";i;k D dimQ H

";i;k
N

.B/, which follows from part (1) and the simple fact that

QŒa�=.a� 1/ŠQ; .QŒa�=.al//=.a� 1/Š 0:

This completes the proof.
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