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Fiberwise homogeneous geodesic foliations
of hyperbolic and Euclidean 3—spaces

HAGGAI NUCHI

A fibration of a Riemannian manifold is fiberwise homogeneous if there are isometries
of the manifold onto itself, taking any given fiber to any other one, and preserving
fibers. In this paper, we describe all the fiberwise homogeneous fibrations of Euclidean
and hyperbolic 3—space by geodesics. Our main result is that, up to fiber-preserving
isometries, there is precisely a one-parameter family of such fibrations of Euclidean
3—space, and a two-parameter family in hyperbolic 3—space.

53C12; 57R30, 57TM60, 57520

1 Introduction

1.1 Background

The Hopf fibrations of S2"*1 by great circles, S***3 by great 3—spheres, and S'3
by great 7—spheres have a number of interesting properties. For one, their fibers are
parallel, and these fibrations are characterized by this property by work of Gromoll
and Grove [2] and Wilking [8].

The Hopf fibrations are also fiberwise homogeneous.

1.1 Definition Let F be a fibration of a Riemannian manifold (M, g). We say that
F is fiberwise homogeneous if for any two fibers there is an isometry of (M, g) taking
fibers to fibers and taking the first given fiber to the second given fiber.

In another paper [4], the author proves that the Hopf fibrations are characterized by
being fiberwise homogeneous among all fibrations of spheres by smooth subspheres.

But in order for us to really feel what “fiberwise homogeneous” means, we need more
examples. We don’t gain any insight into this property just from knowing that the
Hopf fibrations are the only such fibrations of spheres by subspheres. The point of
this paper is to provide examples. See also the author’s paper [5] for an example of
a fiberwise homogeneous fibration of the Clifford torus S3 x S3 in the 7—sphere by
great 3—spheres which is not part of a Hopf fibration.

The main theorem of this paper is the following:

Published: 10 December 2015 DOI: 10.2140/agt.2015.15.3057


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=53C12, 57R30, 57M60, 57S20
http://dx.doi.org/10.2140/agt.2015.15.3057

3058 Haggai Nuchi

1.2 Theorem The fiberwise homogeneous fibrations of Euclidean 3—space by lines
form a 1-parameter family. The fiberwise homogeneous fibrations of hyperbolic
3—space by geodesics form a 2—parameter family, plus one additional fibration.

1.3 Remark As part of the proof of Theorem 1.2, we construct the fibrations explicitly.
See Figure 1 for pictures of typical examples. Technically, we classify fibrations up to
“equivalence”; we don’t consider eg a fibration by parallel horizontal lines as different
from a fibration by parallel vertical lines.

R3

Figure 1: Typical fiberwise homogeneous fibrations of R3 and H3. In the
pictured fibration of R?, we layer Euclidean space by parallel planes, and
fiber each plane by parallel lines whose direction changes at a constant rate
as we move from plane to plane. In the pictured fibration of H?, geodesics
form nested tunnels over a line in the plane at infinity in the upper half-space
model of H?>.

Here is a rough outline of the classification of the fiberwise homogeneous fibrations of
Euclidean and hyperbolic 3—space by geodesics. Let X denote either E3 or H? (the
proof has a similar form in both cases). Start with a hypothetical fiberwise homogeneous
fibration F of X by geodesics. Let G be a subgroup of Isom(X') which acts transitively
on the fibers of F. For technical reasons, we may assume without loss of generality
that G is connected and closed. The conjugacy classes of closed connected subgroups
of Isom(X') are well understood in the literature. By letting G range across all closed
connected subgroups of Isom(X), we can analyze the action of G to discover which
fiberwise homogeneous fibrations by geodesics it could possibly act on. For example,
1 —parameter groups of isometries are too small to act transitively on F, and the full
isometry group is too large to preserve . Like Goldilocks in her interactions with the
three bears, we check each intermediate group of isometries to see if it is “just right.” In
this way we discover all fiberwise homogeneous fibrations by geodesics. Finally, after
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eliminating redundancies in the list (some may be equivalent to one another), we arrive
at the list of fiberwise homogeneous fibrations of X by geodesics, up to equivalence.

That concludes the outline of the proof. In Section 2, we have some technical prelimi-
naries. In Section 3 and Section 4, we describe the fiberwise homogeneous fibrations
of Euclidean and hyperbolic 3—space, respectively.

The interested reader can consult the bibliography of the author’s paper [4] for a more
detailed list of related papers.
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2 Technical preliminaries

The following definition and lemmas will be useful to us in both of the later sections,
so we gather them here.

2.1 Definition Let F; and F, be two fibrations of a Riemannian manifold (M, g).
We say that F; and F, are equivalent if there exists T € Isom(M, g) such that
Fa=T(F1).

2.2 Lemma If Fy is equivalent to F, and JF is fiberwise homogeneous, then F, is
also fiberwise homogeneous. Moreover, the groups of isometries acting on Fy and F,
are conjugate to one another in the full isometry group of (M, g).

Proof If G C Isom(M, g) acts isometrically and transitively on the fibration F;, and
F, =T (F;),then TGT ™! acts isometrically and transitively on F». a

The following lemma will be quite useful to us. If we have a fiberwise homogeneous

fibration F of a Riemannian manifold M , it will allow us to assume that a group G
acting transitively on F is a connected Lie subgroup of Isom(M ).
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2.3 Lemma Let M be a connected Riemannian manifold, and let G be a subgroup of
Isom(M). Denote by G the identity component of the closure of G . Suppose G acts
transitively on a smooth fibration F of M . Then G acts transitively on F as well.

Proof If G preserves the fibers of F, then so does its closure G ; this is clear by
continuity of the action. Also, G € G; if G acts transitively on F then so does G

Now let G be a closed disconnected Lie subgroup of Isom(M) acting transitively on
F. Let the manifold B be the base of F. Then B has the structure of a connected
homogeneous space, and hence is diffeomorphic to G/H, where H is the isotropy
subgroup of G fixing a point. The identity component Gy of G acts transitively on
G/H by Helgason [3, Chapter II, Proposition 4.3]. a

3 Euclidean 3—space

In order to carry out the classification which was just briefly described, we need a
description of the conjugacy classes of closed connected subgroups of the isometry
group of E3. A full list can be found in Beckers, Patera, Perroud and Winternitz [1].
We reproduce the list in Table 1 and describe each element in detail. After describing
these groups, we will give the list of fiberwise homogeneous fibrations of Euclidean
3—space, followed by the proof that our list is exhaustive.

In Table 1, for the name of the group, we either choose a name from [1] or invent
our own; we try to give descriptive names where possible. In the description of the
group, we choose a concrete representative of the conjugacy class, acting on the usual
coordinates (x, y,z) of E 3 We remark that [1] actually describes the subalgebras of
the Lie algebra of Isom(E?), but these are in one-to-one correspondence with closed
connected subgroups of Isom(E?) via exponentiation.

Now we describe all fiberwise homogeneous fibrations of E* by geodesics. Let F;
(see Figure 1) be the fibration consisting of the integral curves of the vector field

vy = cos(tz) 0 + Sln(tz)

3.1 Theorem The fiberwise homogeneous fibrations of Euclidean 3—space by lines,
up to equivalence, are precisely F; foreach t € R, t > 0, and no others.

Proof First we will show that each F; is fiberwise homogeneous. Then we will show

that no other fibrations are fiberwise homogeneous. Then we will show that no F; is
equivalent to Fy for ¢,/ >0 and t # 1.
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Name Dim Description
{1} 0  The trivial group.

(1) 1 The group of translations along the z—axis.

SO(2) 1 The group of rotations around the z—axis.

SO(2), 1 The group of screw-translations along the z—axis with pitch
t. On the Lie algebra level, this group is generated by
—ty% + tx% + % The notation is meant to remind us
that this group is the universal covering group of SO(2).
These are distinct for different 7, except that SO(2), is
conjugate to SO(2)_, by an orientation-reversing isometry
of E3.

SO(2)xT(1) 2  The group of rotations around and translations along the
z—axis.
T() 2 The group of translations in the x y—plane.

EQ2), A universal covering group of the isometries of the Eu-
clidean plane. It consists of translations in the x y—plane
composed with screw-translations along the z—axis with
pitch 7. It’s generated by 7°(2) and SO(2),. Just as with
SO(2),, these are distinct for different 7, except that E(2),
is conjugate to £(2)_, by an orientation-reversing isometry
of E3.

T(3) 3 The group of translations of Euclidean 3—space.
E(Q2) 3 The group of translations and rotations of the x y—plane.
SO(3) 3 The group of rotations around the origin (0, 0, 0).
EQ2)xT(1) 4  The group generated by translations and rotations of the
xy—plane, and translations in the z—axis.
E(3) 6  The identity component of the full isometry group of E?3.

Generated by translations and rotations.

Table 1: Closed connected groups of isometries of E3
First note that 7°(3) (for example) acts transitively on Fy, and that E(2), acts transi-
tively on F; for ¢ # 0, so that these fibrations really are fiberwise homogeneous.

Now, let F be a fiberwise homogeneous fibration F by geodesics, and let G be a
group of isometries of E3 acting transitively on . Without loss of generality, by
Lemma 2.3 we may assume that G is closed and connected. By replacing F with an
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equivalent fibration if necessary (Lemma 2.2), we may also assume that G is exactly
the representative of its conjugacy class which is listed in the table above. We will now
show that 7 must be F; for some ¢.

e Suppose G = {1}, T(1), SO(2) or SO(2),;. Then the dimension of the group is
too small to act transitively on F, because the image of a single fiber under G will be
either 1- or 2—dimensional. This is a contradiction.

e Suppose G = SO(2) x T(1). Consider the fiber F through the origin. If F is the
z-axis, then G fixes it and hence cannot act transitively on F. If F is not the z—axis,
then a rotation in G which fixes the origin will take F to a different line through the
origin, and hence G does not preserve F. This is a contradiction.

e Suppose G = T(2), and consider the fiber F through the origin. If F lies in
the xy—plane, then G cannot take F' out of the xy—plane and hence does not act
transitively on F. If F is transverse to the xy—plane, then the image of F' under G is
a fibration by parallel straight lines and hence is equivalent to Fj.

e Suppose G = mt. Consider the fiber F' through the origin. If F is transverse
to the xy—plane, then a screw-translation around the origin by an angle of & will take
F to a fiber which intersects F' transversely, and hence G does not preserve F, a
contradiction. If F lies in the xy—plane, then the image of F' under G is equivalent
to the fibration F;: translations move it to its parallel translates in the x y—plane, and
screw-translations move the xy—plane in the z—direction while controlling the angle
of the lines.

e Suppose G = T(3). Let F be any fiber of 7. The image of F under G is
equivalent to Fy, so F = Fy.

e Suppose G = E(2) or G = E(2) x T(1). Consider the fiber F through the origin.
If F is not the z—axis, then a rotation of the xy—plane about the origin takes F to a
line which intersects F transversely, a contradiction. Thus F is the z—axis, and the
image of F under G is equivalent to Fy.

e Suppose G =SO(3) or G = E(3). Consider the fiber F through the origin. Apply
a rotation about the origin which does not fix F. Then the image of F is a line which
intersects F' transversely, and so G does not preserve F, a contradiction.

Thus we conclude that F is equivalent to F; for some ¢ > 0.

Finally we show that no two such fibrations are equivalent. Observe that the unit vector
field v, along F; is an eigenfield for the curl operator on E* with eigenvalue ¢. Curl
eigenfields remain curl eigenfields after an isometry and the eigenvalue is preserved up
to sign (depending on the orientation of the isometry), so no two such fibrations are
equivalent. a
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4 Hyperbolic 3—space

We classify fiberwise homogeneous fibrations of hyperbolic 3—space by geodesics by
the same method as for Euclidean 3—space. We start with a description of the closed
connected groups of isometries of hyperbolic 3—space. The list in Table 2 can be found
in Shaw [6]. Just as with the analogous list for Euclidean 3—space, the one in [6] is
actually of Lie subalgebras of the Lie algebra corresponding to the isometry group of
hyperbolic 3—space. To be precise, the theorem actually discusses the Lie algebra for
the group SO(1, 3), but this group is isomorphic to the isometry group of H?3.

In Table 2, in the description of the group, we choose a concrete representative of
the conjugacy class. We will use some basic facts about the geometry of hyperbolic
3—space; see Thurston [7] for more information. Sometimes it will be useful for us to
use the upper half-space model of hyperbolic 3—space, which we give the coordinates
(z,x) € C xR™, and we denote points on the plane at infinity as (z, 0). Other times
we may use the Poincaré ball model, which we give the coordinates v = (x, y,z) € R3
with ||v|| < 1, and with the sphere at infinity consisting of those v with ||v|| = 1.

We remind the reader that geodesics in either of those models consist of straight lines or
arcs of circles, both of whose endpoints meet the plane at infinity or sphere at infinity
orthogonally. In the upper half-space model, that includes vertical lines (ie sets of the
form {z} x RT). We also take advantage of the extremely useful fact that orientation-
preserving isometries of hyperbolic 3—space extend to Mobius transformations of the
sphere or plane at infinity (again, see [7]); moreover, they are determined by their
extensions. In what follows we will describe a group of hyperbolic isometries by its
effect on the plane or sphere at infinity.

We now describe the fiberwise homogeneous fibrations of hyperbolic 3—space by
geodesics. We use the upper half-space model. To start, there’s one special fibration
which is qualitatively different from the others. Let Foo be the fibration consisting of
vertical lines, ie lines of the form {z} x R*. We will see that the remaining fibrations
are similar to one another. Recall that we have identified the plane at infinity with
C x {0}. Let’s ignore the second coordinate and just identify the plane at infinity
with C.

For each z € C with Imz > 0, we define a fibration F;. Let y, be the geodesic in
hyperbolic 3—space with endpoints at —i and at z on the plane at infinity. Now let the
group (Hyp, Par) act on y,. The image is all of H?3 and thus forms a fibration of H?3,
which we name F,. To see that the image is all of H 3 note that Par translates Yz in
real directions, so the image of y, under Par is an infinitely long tunnel over the real
line in the plane at infinity. The image of this tunnel under Hyp is all of H?3, because
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Name Dim Description

{1} 0  The identity.

Hyp 1 The group of dilations of the plane at infinity in the upper
half-space model (hyperbolic transformations).

Par 1 The group of translations of the plane at infinity in the upper
half-space model by real directions (parabolic transformations).

Ell 1 The group of rotations of the plane at infinity about the origin.
Known as elliptic transformations.

Lox 1 The group of screw-dilations of the plane at infinity about
the origin. There are actually an infinite number of conjugacy
classes of groups of this type, corresponding to different pitches,
or ratios of dilation to rotation. “Lox” is for loxodromic.

T() 2 The group of translations of the plane at infinity.

(Hyp, Par) 2 The group generated by the Hyp and Par: translations of the
plane at infinity in real directions and dilations about points
on the real axis.

(Ell, Hyp) 2 The group of dilations and rotations about the origin in the
plane at infinity.

Hom 3 The homothety group of the plane at infinity, consisting of
translations and dilations.

ScrewHom 3 The screw-homothety group of the plane at infinity, generated
by translations as well as a loxodromic group. As with Lox,
there are infinitely many nonequivalent groups of this type.

E(2) 3 The group of Euclidean transformations of the plane at infinity.
Generated by translations and rotations.

H(2) 3 The identity component of the group of isometries of a to-
tally geodesic hyperbolic plane. Concretely, we choose the
hyperbolic 2—plane in the Poincaré ball model with z = 0.

SO(3) 3 The group of orthogonal transformations of the sphere at infin-
ity in the Poincaré ball model.

Sim 4  The group of similitudes of the plane at infinity. Generated by
translations, rotations, and dilations.

H(3) 6  The identity component of the full isometry group of hyperbolic

3—space.

Table 2: Closed connected groups of isometries of H>
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Hyp consists of dilations of the plane at infinity about the origin. By construction,
(Hyp, Par) acts transitively on the fibration F,. See Figure 1.

There are no more fiberwise homogeneous geodesic fibrations of hyperbolic 3—space
besides the ones we mention here, but it does turn out that some of these are equivalent
to one another.

Define the set S C C by
S={zeC|Imz>1,Rez > 0}.

That is, S is the first quadrant in the complex plane, shifted one unit in the positive
imaginary direction.

4.1 Theorem The fiberwise homogeneous fibrations of hyperbolic 3—space by geo-
desics, up to equivalence, are precisely the fibrations F, for z € S, together with Foo .

Proof We proceed as in the proof of Theorem 3.1. First, note that (Hyp, Par) acts
transitively on each F,, by construction, so they are all fiberwise homogeneous. Note
also that Sim (the group of similitudes of the plane at infinity) acts transitively on Foo,
so it is fiberwise homogeneous as well.

Now let F be a fiberwise homogeneous fibration of H?3 by geodesics, and let G be
a group of isometries acting transitively on F. By Lemma 2.3, we may assume G
is closed an connected. By replacing F by an equivalent fibration if necessary, we
may assume that G appears on the list above of closed connected groups of isometries
of H?.

e Suppose G = {1}, Hyp, Par, Ell or Lox. As in the Euclidean case, the image of a
fiber under G will have dimension only 1 or 2 and hence cannot fill all of H3. This
is a contradiction.

e Suppose G = T'(2), Hom, ScrewHom, E(2) or Sim. Let F be any fiber in F, in
the upper half-space model. Suppose F is a semicircle meeting the plane at infinity
orthogonally. Then its endpoints form a line in the plane at infinity. Apply a short
enough translation to F along this line. Then F' moves to another geodesic which
intersects F transversely, so G does not preserve F. This is a contradiction, so in fact
F must be a vertical line. Now the image of F under G is Fo, 50 F = Foo.

e Suppose G = (Hyp, Par). Let F be any fiber. Suppose F is a vertical line in the
upper half-space model. Then the image of F' under G will fill out only points with
positive imaginary part, or only points with negative imaginary part, or points with only
zero imaginary part, depending on where the endpoint of F is. Thus G does not act
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transitively on F, a contradiction. Thus F must be a semicircle in the upper half-space
model. As we just observed, G preserves the set of points with positive (respectively
negative, respectively zero) imaginary part, so /' must have one endpoint with positive
imaginary part and one endpoint with negative imaginary part on the plane at infinity.
Then the image of F under G fill out H3 and hence F = F, for some z € C. If z is
not in S, then F is equivalent to F, for z’ € S: simply apply to F a rotation of 7
about the origin and/or a reflection in the imaginary line in the plane at infinity.

e Suppose G = (Ell, Hyp). Let F be the fiber of F in the upper half-space model
passing through (0,1) € C x R™. Suppose F is a semicircle. Then a rotation applied
to F moves F to a semicircle intersecting F' transversely. Thus G does not preserve
F, a contradiction. Therefore F' must be a vertical line. But then G fixes F, rather
than acting transitively on F, also a contradiction.

o Suppose G = H(2). Let F be the fiber through 0 € R? in the Poincaré ball model.
The isometry group of the hyperbolic 2—plane consisting of points (x, y,z) € R? with
z = 0 contains the group of rotations about the z—axis. If F is not the portion of the
z—axis with norm less than 1, then these rotations take F' to a line segment which
intersects F' transversely. Thus F is a portion of the z—axis. Now the image of F
under G defines a fibration of H3 consisting of all the geodesics orthogonal to a fixed
hyperbolic 2—plane. Moving from the ball model to the upper half—space model, take
this hyperbolic 2—plane to be the 2—plane over the real line in the plane at infinity. We
see that F is precisely the fibration F;.

e Suppose G = SO(3) or H(3). Consider the fiber F through the origin in the
Poincaré ball model. Apply some rotation of the sphere at infinity which does not fix
F; that moves F to a line which intersects F' transversely, a contradiction.

Thus F is equivalent to some F; for z € §, or F is Foo.

We close out the chapter by showing that no two fiberwise homogeneous fibrations
in our list are equivalent to one another. Whereas in the Euclidean case we made use
of the fact that the unit vector fields along our fibrations were curl eigenfields with
distinct eigenvalues, here we are unable to find so pretty an argument. What follows is
rather technical and unenlightening.

Suppose that F, is equivalent to F,- for z # z’ and both z and z’ in S. It’s clear that
Foo 1s not equivalent to F, for any z, and that F; is not equivalent to F, for z #i;
by the above discussion, they have different symmetry groups. Thus G = (Hyp, Par)
is the identity component of the symmetry group of F, and F,.

Let T be an isometry of H?> taking F, to F,. Then TGT ' (F,) = Fy,s0 T is
in the normalizer of G. If F, equals F,- as fibrations, we’re done, so assume that
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T isnotin G. At the sphere at infinity, G fixes exactly one point (if we identify the
sphere at infinity with the Riemann sphere C U {oo}, with C the plane at infinity in
the half-space model, then G fixes co). Therefore 7" must fix that point as well. Thus
T acts as a similitude of the plane at infinity in the upper half-space model, possibly
orientation-reversing.

The group G also preserves the real line (and no other affine line) in the plane at infinity,
so T must preserve this line as well. The similitudes of the plane which accomplish
this are generated by G and by the following transformations: rotations of the plane
at infinity by m about 0, reflections in the real axis, and reflections in the imaginary
axis. The action of G preserves F,, so we can focus on the effect of the last three
transformations on .

Reflection in the imaginary axis takes the geodesic joining —i to z to the geodesic
joining —i to —z, so it takes F, to F_z. If z and —Z are both in S then we must
have z = —Z = Z/, with z on the imaginary axis.

Consider the line segment joining —i to z in the plane at infinity. The real axis splits
this line segment into two pieces, the ratio of whose sizes (top to bottom) is Imz to 1.

Consider the geodesic fiber F in F, which has one endpoint at i, and call the other
endpoint w. The real axis also cuts the line segment joining i and w, and the ratio
of their lengths (top to bottom) is also Imz to 1. Applying a rotation of the complex
plane by 7 about the origin to F, or applying a reflection in the real axis, moves F
so that one endpoint is now at —i, and w is taken to z’.

Consider the line segment joining the endpoints of the geodesic joining —i to z’.
The ratio of the lengths (top to bottom) is now 1 to Imz, because we have flipped
it upside down. Thus for a rotation by 7 or a reflection about the real axis, we have
Imz' =1/Imz. If z and z’ are both in S, then we must have Imz =Imz' = 1. We
also must have just applied a rotation and not a reflection, because reflection takes z in
S to z’ with nonpositive real part, and we assumed z 7# i . Therefore the angle which
the segment from —i to z makes with the real axis is the same as the angle which the
segment from —i to z’ makes, and we must have z = z’.

Thus no two of the fiberwise homogeneous fibrations by geodesics in the statement of
the theorem are equivalent. a
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