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Geodesic flow, left-handedness and templates

PIERRE DEHORNOY

We establish that for every hyperbolic orbifold of type .2; q;1/ and for every
orbifold of type .2; 3; 4gC 2/ , the geodesic flow on the unit tangent bundle is left
handed. This implies that the link formed by every collection of periodic orbits .i/
bounds a Birkhoff section for the geodesic flow, and .ii/ is a fibered link. We also
prove similar results for the torus with any flat metric. We also observe that the
natural extension of the conjecture to arbitrary hyperbolic surfaces (with non-trivial
homology) is false.

37D40, 57M20; 37D45, 37B50

1 Introduction

In this paper, we investigate the dynamical properties of certain particular 3–dimensional
flows, namely the geodesic flows attached to surfaces and 2–dimensional orbifolds. If
† is a Riemannian surface or, more generally, a Riemannian 2–dimensional orbifold,
that is, a space locally modeled on quotients of surfaces under the action of discrete
rotation groups, the unit tangent bundle T 1† is a 3–manifold, and the geodesics of †
induce a natural complete flow in T 1†. This flow is called the geodesic flow of T 1†,
hereafter denoted by ˆ† . What we do here is to specifically study the way the periodic
orbits of ˆ† may wrap one around the other.

In every 3–dimensional manifold M , the linking number of two disjoint links can be
defined in a non-ambiguous way whenever the links are null-homologous, that is, have
a trivial image in H1.M IQ/ (Kaiser [11]). When the latter group is trivial, that is,
when M is a rational homology sphere, the linking number is always defined, and it
yields a topological invariants of links.

If † is a 2–dimensional orbifold, every geodesic on † can be lifted to T 1† in two
ways, yielding a pair of orbits of ˆ† . It follows from Birkhoff’s results [3] that
the linking number of any two such pairs of orbits is the opposite of the number of
intersections of the geodesics, hence is nonpositive. This implies that, in a geodesic
flow, there are always many pairs of orbits with a negative linking number. By contrast,
there is no simple construction necessarily leading to collections of orbits with a positive
linking number, and it makes sense to raise the following question:
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1526 Pierre Dehornoy

Question 1-1 Assume that † is a Riemannian 2–dimensional orbifold. Let 
; 
 0

be two null-homologous collections of periodic orbits of ˆ† . Does Lk.
; 
 0/ < 0

necessarily hold?

There are two cases when the answer to Question 1-1 is known to be positive, namely
when † is a sphere S2 with a round metric and when † is the modular surface
H2=PSL2.Z/ (Ghys [10]). In the latter article, Étienne Ghys actually proves stronger
results involving the natural extension of the linking number to arbitrary measures.
Namely, he defines a complete flow ˆ in a homology 3–sphere M to be left handed if
the linking number of every pair of ˆ–invariant measures whose supports are disjoint
is always negative, and proves that the above two flows are left handed. It is then
natural to raise this question:

Question 1-2 (Ghys) Assume that † is a Riemannian 2–dimensional orbifold satis-
fying H1.T

1†;Q/D 0. Is the geodesic flow ˆ† on T 1† necessarily left handed?

By definition, a positive answer to Question 1-2 implies a positive answer to Question
1-1. As we shall explain, the converse implication, that is, the fact that the negativity
of the linking number for pairs of periodic orbits implies the negativity of the linking
number for arbitrary invariant measures, is true whenever the flow has sufficiently many
periodic orbits, in particular when the flow is of Anosov type.

The aim of this paper is to provide positive answers to Questions 1-1 and 1-2 in new
cases, namely when † is a hyperbolic orbifold of type .2; q;1/ with q � 3 and when
† is a hyperbolic orbifold of type .2; 3; 4gC 2/ with g � 2.

Theorem A Assume that † is .a/ either an orbifold of type .2; q;1/ with q � 3,
equipped with a negatively curved metric, or .b/ an orbifold of type .2; 3; 4gC2/ with
g � 2, equipped with a negatively curved metric. Then:

.i/ Any two null-homologous collections of periodic orbits of ˆ† have a negative
linking number.

.ii/ The geodesic flow of T 1† is left handed.

In the case of a good orbifold with zero curvature, that is, a quotient of a torus with
a flat metric, the unit tangent bundle always has non-trivial homology. Nevertheless
it makes sense to address Question 1-1. In this case as well, the answer is (almost)
always positive.

Theorem B Assume that † is a quotient of the torus T2 equipped with a flat metric.
Then any two collections 
; 
 0 of orbits of ˆ† whose projections on † intersect have
a negative linking number.
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On the other hand, we give two examples showing that, when † is not a homology
sphere or its curvature has a non-constant sign, Question 1-1 has a negative answer.

Proposition 1-3 .i/ Let † be a hyperbolic surface. Then there exist two null-
homologous collections 
; 
 0 of periodic orbits of ˆ† with Lk.
; 
 0/ > 0.

.ii/ Let † be a sphere with two non-intersecting simple geodesics. Then there exist
two null-homologous collections 
; 
 0 of periodic orbits of ˆ† with Lk.
; 
 0/>
0. The geodesic flow ˆ† is not left handed.

When Questions 1-1 and 1-2 have positive answers, an important consequence is the
existence of many Birkhoff sections. A Birkhoff section for a non-singular flow on a
3–manifold is a compact surface whose boundary is the union of finitely many periodic
orbits of the flow, whose interior is transverse to the flow and intersects every orbit
infinitely many times. The existence of a Birkhoff section for a flow is very useful as,
in this case, studying the dynamics of the flow essentially reduces to studying the first
return map on the section. Therefore, it is natural to wonder whether a flow admits
Birkhoff sections. Now, as explained by Ghys [10], the left-handedness of a flow
implies the existence, for every finite collection of periodic orbits, of a Birkhoff section
bounded by this collection. Thus our current results imply:

Corollary 1-4 If † is one of the orbifolds mentioned in Theorem A, every finite
null-homologous collection of periodic orbits of ˆ† bounds a Birkhoff section.

Next, it is known (Dehornoy [5]) that every link that is the boundary of a Birkhoff
section for a flow is fibered. Therefore, a direct consequence of Corollary 1-4 is:

Corollary 1-5 If † is one of the orbifolds mentioned in Theorem A, every link
in T 1† formed by a null-homologous collection of periodic orbits of the flow ˆ† is
fibered.

Similar statements hold in the case of the flat torus (see Theorem 3-12), with, in
addition, an explicit simple formula for the genus of the involved Birkhoff sections.

Let us give a few hints about proofs. The case of the torus T2 is the most simple
one. It can be solved by elementary means, and it appears as a sort of warm-up.
The key point is to encode every null-homologous collection 
 of periodic orbits
of ˆT2 into some convex polygon Pol
 in the affine plane R2 with integral vertices.
Using Pol
 and Van Horn-Morris’ helix boxes [17], we classify Birkhoff sections up
to isotopy and derive their existence and the explicit formulas for the genus and the
linking number of two null-homologous collections of periodic orbits (Theorem 3-12).
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Once these formulas are available, the negativity of the linking numbers easily follows
(Corollary 3-13).

For Theorem A, the proofs rely on a common principle but require specific ingredients
depending on the orbifold. Our strategy decomposes in two steps. We first develop
a general method for investigating the geodesic flow on a hyperbolic orbifold. A
multitemplate is a geometric 2–dimensional branched surface carrying a flow. This
notion generalizes Birman and Williams’ notion of template [4], that has been introduced
for studying hyperbolic flows. Here we prove that, given an orbifold †, for every
tessellation T of the hyperbolic plane adapted to †, there exists a multitemplate BT
embedded in T 1† such that the set of periodic orbits of ˆ† is isotopic to a subset of
the periodic orbits of BT (Theorem 4-9). Moreover, if the orbifold † has at least one
cusp, we can choose the tessellation T so that the set of periodic orbits of the geodesic
flow is isotopic to the whole set of periodic orbits of the template BT . This result
provides a combinatorial description of the isotopy classes of the periodic orbits of ˆ†
in terms of some finite data specifying the orbifold. Note that the construction of the
multi-template follows the strategy proposed by Birman and Williams for hyperbolic
flows [4]. In one sentence: we choose a Markov partition for the flow and contract the
stable direction.

To complete the proof in the case when † is an orbifold of type .2; q;1/ with q�3, we
start from the fact that T 1† is diffeomorphic to the complement of a certain knot K1
in some lens space, and we choose a particular compactification. Then, choosing
an adapted tessellation of the hyperbolic plane and using the template provided by
Theorem 4-9, we estimate the linking number of an arbitrary pair of collections of
periodic orbits and see that it is always negative. Along the way, we also compute
the linking number of a geodesic with the knot K1 (Proposition 5-7), a function of
interest in number theory.

To complete the proof in the case of the orbifolds †2;3;4gC2 , the most delicate case,
we use a covering of †2;3;4gC2 by some explicit genus-g surface †g . Then we use
the template of Theorem 4-9 to bound the linking number of two collections of periodic
orbits of ˆ†g

in terms of some associated combinatorial data. More precisely, we start
from a tessellation of H2 by .4gC 2/–gons. For every periodic geodesic 
 in †g

and for every pair of edges .ei ; ej / in a tile of the tessellation, we denote by bi;j .
 /

the number of times the projection of 
 goes from ei to ej . Then, for every pair
of geodesics 
; 
 0 , we show that the linking number Lk.
; 
 0/ is bounded above by
a certain bilinear form S4gC2 involving the coefficients bi;j .
 / and bi;j .


0/. The
form S4gC2 is not negative on the whole cone of vectors with positive coordinates (a
manifestation of Proposition 1-3). What we do here is to show that the form S4gC2 is
negative on the subcone of vectors that come from liftings of geodesics of †2;3;4gC2 ,
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which is enough to deduce the main result (Proposition 6-14). The reason why the
proof works in this case, unlike for general families of geodesics on †g , is that a family
of geodesics on †2;3;4gC2 lifts to a family on †g that admits many symmetries, and
that these symmetries force the associated coefficients bi;j to live in a small subcone
where the bilinear form Q4gC2 is negative.

It should be noted that, in the case of orbifolds of type .2; q;1/, a result similar to
Theorem 4-9 has been established by Tali Pinsky [14] in a previous work. Precisely,
when † is the orbifold H=PSL2.Z/, Ghys [9] proved that the periodic orbits of the
geodesic flow can be distorted on a template that coincides with the geometric Lorenz
template, so that periodic orbits are Lorenz knots [4]. His construction corresponds
to ours when † is the orbifold H=PSL2.Z/ (which is of type .2; 3;1/) and T the
tessellation of H2 by ideal triangles. Later, Pinsky [14] generalized Ghys’ construction
to orbifolds of type .2; q;1/. Her construction can be recovered in our setting using a
tiling of H2 by ideal regular q–gons. The presentations of Ghys and Pinsky differ from
ours in the sense that they construct a template by opening the cusp in the associated
orbifold, thus distorting the underlying manifold T 1†, and then contracting the stable
direction of the geodesic flow. The notion of discretization of geodesics (Definition 4-3)
allows us to construct multitemplates even when the considered orbifold has no cusp.

The plan of the article is as follows. First, we recall some basic definitions — linking
number, orbifold, unit tangent bundle, geodesic flow — and prove two general lemmas
on left handed flows in Section 2. We then treat the case of the torus in Section 3.
Next, we turn to hyperbolic orbifolds and construct a template for the geodesic flow
on every orbifold in Section 4, where we prove Theorem 4-9. We then complete the
case of orbifolds of type .2; q;1/ in Section 5. We investigate the geodesic flows on
surfaces of genus g and complete the case of the orbifolds of type .2; 3; 4gC 2/ in
Section 6. Finally, we construct the counter-examples of Proposition 1-3 and discuss
further questions in Section 7.

Acknowledgements I thank my PhD advisor Étienne Ghys for numerous discussions
on left handed flows and templates and for his strong support. I also thank Maxime
Bourrigan for answering many of my topological questions, and Patrick Massot for
presenting to me the content of J Van Horn-Morris article [17]. Finally I thank the two
anonymous referees for pointing out numerous vague points in previous versions.

2 Definition and motivation

Here we set the general context. We recall the needed definitions, and establish some
preliminary results.
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2.1 Orbifolds and their unit tangent bundles

A Riemannian, orientable, 2–dimensional orbifold † is a topological surface locally
modeled on a Riemannian surface modulo actions by finite subgroups of rotations [16].
More precisely † consists of a topological surface X† with an atlas of covering
charts �i W Vi! Ui , where fUig is a collection of open sets of X† closed under finite
intersections, fVig is a collection of open sets of a Riemannian surface, such that to
each Vi is associated a finite group �i of rotations of Vi identifying Ui with Vi=�i ,
and such that every change of charts ��1

i ı�j , when defined, consist of isometries.

In the sequel we will restrict ourselves to orbifolds that are also good, meaning that the
whole underlying space X† admits a finite degree covering by a surface (which needs
not to be compact), say †0 . In this case, the orbifold † can be identified with the
quotient †0=�0 for some discrete subgroup �0 of IsomC.†0/. The universal cover
of †0 is defined as the universal cover of †, hereafter denoted by z†. One can then
identify † with the quotient z†=� for some discrete subgroup � of IsomC.z†/. The
latter subgroup is called the fundamental group of †. If † has a constant curvature,
then z† is either the sphere S2 , the Euclidean plane R2 or the hyperbolic plane H2 .
Accordingly, the orbifold † is said to be spherical, Euclidean or hyperbolic.

By definition, the orbifold structure transports the metrics, so that each point x of a
good 2–orbifold admits a neighborhood of the form Vx=�x , where Vx is an open disc
in z† and �x a finite group of rotations. The order of �x is called the index of x . A
point with index 1 is called regular, otherwise it is called singular. It is important to
note that singular points are isolated.

We now turn to the unit tangent bundle of an orbifold. Let † be a good 2–orbifold
with fundamental group � . Then the action of � on z† by isometries is properly
discontinuous. The unit tangent bundle T 1† of † is defined to be the quotient of the
total space T 1 z† of the unit tangent bundle of z† by the action of � on the tangent
space of z†, ie, T 1†D .T 1 z†/=� .

Let us illustrate this definition with two examples which are important for the sequel.
Assume that D2 is an open disc. Its unit tangent bundle T 1D2 then consists of the set
of unit vectors tangent to D2 . The unit tangent vectors based at a given point form a
circle, so that the manifold T 1D2 is a solid torus.

Consider the action of Z=pZ on D2 by rotations of angles that are multiple of 2�=p .
The action is not free because the center of D2 is fixed. It is the only point with
non-trivial stabilizer. The quotient D2=.Z=pZ/ is then an orbifold. Denote it by D2

p .
Since the action of Z=pZ is by isometries, it can be extended to the unit tangent
bundle T 1D2 . Given a point with polar coordinates .x; �/ on D2 , and a unit tangent
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vector making an angle � with the horizontal direction, an element xk of Z=pZ then
acts by xk � .r; �; �/D .r; � C 2k�=p; �C 2k�=p/. The action on T 1D2 is therefore
free, and the quotient T 1D2=.Z=pZ/ is a manifold. It is the unit tangent bundle T 1D2

p

to D2
p . It is also a solid torus (see Figure 1).

�

�

�

Figure 1: On the top left, the unit tangent bundle T 1D2 to a disc D2 . It is a
solid torus. The action of Z=pZ (here with p D 5) is indicated with a blue
arrow. It is a screw-motion. Thus T 1D2 can be seen as a tower formed of p2

pieces of cheese, where the generator of Z=pZ acts by a vertical translation
plus a 2�=p–rotation. On the bottom left, the boundary of T 1D2 with the
rind of the p2 pieces. A horizontal story of p pieces of cheese is then a
fundamental domain for the action (in the center). The quotient is obtained
by identifying the floor and the ceiling of the story with a �2�=p–rotation.
Every meridian disc intersects each fiber p times, except the central fiber,
which it intersects only once. This model (called the story model) shows
that the unit tangent bundle is a Seifert fibered bundle [12]. The p pieces of
cheese located between two vertical walls form another fundamental domain
(on the right). The quotient is obtained by identifying two vertical walls with
a vertical translation of length 2�=p (assuming the thickness of the cake to
be 2� ). We call this model the slice-of-cake model. Figures 13, 19, 20 and
23 are drawn using this model.
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As every point in an orbifold admits a neighborhood of the form D2 or D2
p for some p ,

the unit tangent bundle of every orbifold is obtained by gluing solid tori of type T 1D2

or T 1D2
p .

2.2 The geodesic flow on the unit tangent bundle

Assume that † is a good 2–dimensional orbifold. The orientation of † defines an
orientation on the tangent planes, whence an orientation on T 1†.

Assume now that 
 is an oriented curve drawn on †. For p lying on 
 , let Tp.
 /

be the unit tangent vector to 
 at p . Then the family of all pairs .p;Tp.
 // is an
oriented curve in T 1†, the lifting of 
 in T 1†. In particular, the oriented geodesics
of † are canonically lifted to T 1†. More precisely, for every point p in † and every
direction v in S1 , there exists a unique geodesic 
p;v of † going through p with the
direction v . Now, for t in R and .p; v/ in T 1†, let us define ˆ†.t; .p; v// to be
.p0; v0/ where x0 is the unique point of 
p;v at distance t from p and v0 is the unit
tangent vector to 
p;v at p0 . Then ˆ† is a continuous map of R � T 1† to T 1†

and, by construction, it is additive in the first coordinate. Hence ˆ† is what is called
a complete flow on T 1†, and it is naturally called the geodesic flow on T 1†. By
construction, the liftings of the geodesics of † in T 1† are the orbits of the geodesic
flow (but they are not geodesic in T 1†, since no metric has been defined there).

2.3 Linking number and left handed flows

Assume that M is a 3–manifold, and that K , K0 are two null-homologous links
in M . Then there exists an oriented surface S (or even a simplicial 2–chain) with
boundary K that is transverse to K0 . The intersection points between S and K0 then
have an orientation, and their sum defines the algebraic intersection number Int.S;K0/.
Adding a closed 2–chain to S does not change the intersection number since K0 is
null-homologous, so that Int.S;K0/ depends on K and K0 only. It is the linking
number of the pair K;K0 , denoted by Lk.K;K0/.

In the last fifty years, several works [1; 2; 7; 15] have emphasized the interest of
considering a vector field as a long knot, or, more precisely, of considering invariant
measures under the flow as (infinite) invariant knots. Following this idea, given a
flow ˆ on a rational homology sphere M , one can generalize the standard definition
of the linking number for pairs of periodic orbits to pairs of invariant measures (see
Arnol’d’s work on asymptotic linking number [1]). Ghys then suggested to look at
those flows for which this linking number is always negative, and called them left
handed flows. We refer to the original article [10] for a discussion about the motivations
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and the properties of these flows. Below we only mention the result explaining that, for
a flow with many periodic orbits, left handedness can be deduced from the negativity of
the linking numbers of pairs of periodic orbits only. A flow ˆ is said knot-shadowable
if, for every ˆ–invariant measure �, there exists a sequence .
n/ of periodic orbits
of ˆ such that the sequence of the Dirac measures on 
n weakly converges to �.

Lemma 2-1 Assume that ˆ is a knot-shadowable flow. If the linking number of every
pair of periodic orbits of ˆ is negative, then ˆ is left handed.

Proof Assume that �;�0 are two invariant measures. Let .
n/; .

0
n/ be two distinct

sequences of knots that converge to �;�0 . Write tn; t
0
n for the lengths of 
n; 


0
n respec-

tively. Then it is known [10] that the sequence 1
tnt 0n

Lk.
n; 

0
n/ converges to Lk.�; �0/,

which is therefore negative.

Lemma 2-1 is useful only for flows that are knot-shadowable. This is the case for flows
of Anosov type, and in particular for the geodesic flows on hyperbolic 2–orbifolds.
Thus a positive answer to Question 1-2 follows from a positive answer to Question 1-1.
In short, if the curvature is negative, we only have to compute linking numbers of pairs
of knots for proving left-handedness.

2.4 Coverings

We complete this introductory section with an observation about the behavior of linking
numbers under quotient. The result is easy, but useful, as it gives new left handed
flows from old ones. It will be crucial for establishing the left-handedness of ˆ†2;3;7

(Proposition 6-14).

Lemma 2-2 Assume that M; �M are two 3–manifolds with a covering map � W �M !
M of index n. Let K;K0 be two null-homologous links in M . Write yK; yK0 for the
� –equivariant lifts of K;K0 in �M . Then the links yK; yK0 are null-homologous, and
we have Lk.K;K0/D 1

n
Lk. yK; yK0/.

Proof Let S be an oriented surface with boundary K . Write yS for its � –equivariant
lift in �M . Then we have �.@ yS/ D K , hence @ yS D yK . Therefore yK is also null-
homologous. Since yS and yK0 are � –equivariant, every intersection point of S with K0

lifts to n intersection points of yS with yK0 , so that Lk.K;K0/D 1
n

Lk. yK; yK0/ holds.

If we have a covering map between two orbifolds y†!†, then the map extends to the
unit tangent bundles and it commutes with the geodesic flow. Lemma 2-2 then implies
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that the sign of the linking numbers in T 1† are the same as those in T 1 y†, so that, if
the geodesic flow ˆy† is left handed, so does ˆ† . For instance, as the geodesic flow
on T 1S2 is left handed [10], we deduce that the same holds for any quotient of S2 ,
such as the Poincaré sphere †2;3;5 .

Corollary 2-3 Let † be a spherical 2–orbifold. Then the geodesic flow ˆ† is left
handed.

3 Birkhoff sections for the geodesic flow on a flat torus

This section is devoted to the geodesic flow ˆT2 on a torus with a flat metric. Our
aim is to establish Theorem B. On the way, we shall completely classify Birkhoff
sections up to isotopy and show that (almost) every collection of periodic orbits bounds
a Birkhoff section (Theorem 3-12 and Corollary 3-13).

We first parametrize the geodesic flow on a flat torus and define the polygon Pol

associated with a finite collection 
 of periodic orbits (Section 3.1). Next, we describe
how Birkhoff sections may look like, first in the neighborhood of so-called regular
levels (Section 3.2), then in the neighborhood of critical levels with the help of helix
boxes (Section 3.3). Finally, pieces are glued together in Section 3.4.

3.1 The polygon associated with a collection of periodic orbits

We show how to encode finite collections of periodic orbits of the geodesic flow ˆT2

in T 1T2 using polygons whose vertices have integral coordinates.

Throughout this section, T2 denotes the torus equipped with a flat metric. By definition,
T2 is a quotient R2=Z2 of the Euclidean plane. For all p;p0 in T2 , the translation
by p0 � p carries the tangent plane at p to the tangent plane at p0 . Therefore, the
unit tangent bundle T 1T2 is T2 � S1 . Next, the geodesics of T2 are induced by
those of R2 . Their liftings in T 1T2 are horizontal, that is, lie in some level T2 � f�g

for some � in S1 . Hence we have ˆT2.t; .x;y; �//D .xC t cos �;yC t sin �; �/. If
tan � is a rational number, then, for every initial value of .x;y/, the associated orbit
goes back to .x;y/ in finite time, and, conversely, every finite orbit of ˆT2 is of this
type. In such a case, we define � to be the slope of the orbit, and the unique pair .p; q/
of coprime numbers verifying tan � D p=q and p is of the same sign as cos � to be
the code of the orbit.

Assume that 
 is a finite collection of periodic orbits of ˆT2 . We define the com-
binatorial type of 
 to be the sequence ..n1; �1;p1; q1/; : : : ; .nk ; �k ;pk ; qk//, such
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that 
 consists of n1 orbits of slope �1 , plus n2 orbits of slope �2 , . . . , plus nk orbits
of slope �k , we have tan �1 D p1=q1; : : : ; tan �k D pk=qk , and �1; : : : ; �k make an
increasing sequence in Œ0; 2�/.

Lemma 3-1 Assume that 
 is a finite collection of periodic orbits in ˆT2 . Let
..n1; ; �1;p1; q1/; : : : ; .nk ; �k ;pk ; qk// be the combinatorial type of 
 . Then the
image of 
 in H1.T

1T2IZ/ is zero if and only if
P

ni.pi ; qi/D .0; 0/ holds.

Proof The image of an orbit with slope .p; q/ in H1.T
1T2IZ/ admits the coor-

dinates .p; q; 0/ in the standard basis. Indeed, the class of a straight line with code
.p; q/ on T2 is .p; q/ in this basis. As the lifts of the geodesics of T2 in T 1T2 are
horizontal, the third coordinate of the lift of a geodesic in T 1T2 is constant. Therefore
the third coordinate of its image in H1.T

1T2IZ/ is zero. The result then follows from
the additivity of homology.

Here comes the main definition of this section.

Definition 3-2 (See Figure 2.) Assume that 
 is a null-homologous collection of peri-
odic orbits in ˆT2 with combinatorial type ..n1; �1;p1; q1/; : : : ; .nk ; �k ;pk ; qk//. The
polygon Pol
 of 
 is the k –vertex polygon of R2 whose j th vertex is

Pj
iD1

ni.pi ; qi/

for j D 1; : : : ; k .

v1

v3

.p
4
1
; q

4
1
/

.p12
; q12

/

Figure 2: A null-homologous family 
 of periodic orbits of the geodesic
flow, and the associated polygon Pol


Owing to the order condition on the slopes in the combinatorial type, Pol
 is a convex
polygon and, as pi and qi are coprime for every i , the only points on the boundary
of Pol
 that have integral coordinates are the vertices plus the intermediate points of
the form

Pj�1
iD1

ni.pi ; qi/Cm.pj ; qj / with m< nj .
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3.2 Transverse surfaces and regular levels

We now turn to surfaces in T 1T2 transverse to ˆT2 , with the aim of connecting
the existence of such a surface with boundary 
 with the properties of the associated
polygon Pol
 .

Hereafter, for every � in R=2�Z, the subset of T 1T2 made of the points whose last
coordinate is � will be called the � th level of T 1T2 , denoted by L� . As T 1T2 is
trivial, every level is a copy of T2 . If 
 is a null-homologous collection of periodic
orbits in ˆT2 with combinatorial type ..n1; �1;p1; q1/; : : : ; .nk ; �k ;pk ; qk//, the k

angles �i , as well as the associated levels of T 1T2 , will be called 
 –critical, whereas
the other angles will be called 
 –regular.

Lemma 3-3 Assume that 
 is a null-homologous collection of periodic orbits of ˆT2

and S is a surface with boundary 
 whose interior is transverse to ˆT2 . For �
in R=2�Z, let S� be the intersection of S with the level L� . Then, if � is 
 –regular,
S� is a union of disjoint circles. If �; � 0 are 
 –regular and the interval .�; � 0/ contains
no 
 –critical angle, S� and S� 0 are homologous.

Proof By construction, the geodesic flow ˆT 1T2 is tangent to L� whereas, by
assumption, S is transverse to ˆT 1T2 . Hence S and L� are transverse. Therefore
their intersection is a closed 1–dimensional submanifold of L� , hence a union of
parallel disjoint circles. The family .St /t2Œ�;� 0� provides an isotopy between S�
and S 0

�
. These (multi)-curves are therefore homologous.

In the above context, the multicurve S� is called a stratum of S . For every 
 –regular
value � , the stratum S� is cooriented by the geodesic flow. By convention, we orient
it so that the concatenation of the chosen orientation and the orientation of the flow
gives the standard orientation on the torus L� . With this choice, the class ŒS� � is a
well-defined element of the group H1.L� IZ/, the latter being canonically identified
with H1.T

2IZ/. Then, Lemma 3-3 implies that ŒS� � is constant when � describes an
interval of 
 –regular values. Our goal now is to understand how ŒS� � evolves when �
passes a 
 –critical value.

3.3 Packing into helix boxes

Van Horn-Morris [17] constructed open book decompositions of the torus bundles over
the circle by using special boxes and controlling how they match with each other. We
use now the same elementary boxes for decomposing and describing the surfaces whose
boundary is transverse to ˆT2 around critical levels.
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Definition 3-4 A positive (resp. negative) helix box is a cube containing an oriented
surface isotopic to the surface depicted on Figure 3, called the helix. The oriented
boundary of the helix is made of seven oriented segments lying in the faces of the
cube, plus one segment, called the binding, lying inside the cube and connecting two
opposite faces of the cube.

Figure 3: A positive helix box on the left, a negative helix box on the right.
The bindings are in bold. The orientations of the helices are represented by
dotted and crossed circles. The interiors of the helices are transverse to the
direction of the binding, positively or negatively oriented according to the
sign of the box.

The next result asserts that almost every surface transverse to ˆT2 is locally made of
helices.

Lemma 3-5 (See Figures 3 and 4.) Assume that 
 is a null-homologous collection
of periodic orbits of ˆT2 and S is a surface with boundary 
 whose interior is
transverse to ˆT2 . Let 
i be an element of 
 . Denote by L�i

the 
 –critical level
containing 
i . Then there exists a small tubular neighborhood N
i

of 
i of the
form �
i � �; 
i C � Œ� ��i � �; �i C �Œ in T2 �S1 such that:

.i/ If the interior of S does not intersect the level L�i
, then the surface S is

negatively transverse to ˆT2 and is locally isotopic to 
i � Œ�; � C � Œ or to

i � �� � �; � �.

.ii/ Otherwise N
i
can be decomposed as the union of a positive number t
i

of helix
boxes, which are all positive (resp. negative) if S is positively (resp. negatively)
transverse to ˆT2 , and such that 
i is identified with the union of the bindings,
S is the union of the helices, and the horizontal and vertical faces of N
i

are
identified with the horizontal and vertical faces of the helix boxes.
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Figure 4: Case .i/ of Lemma 3-5 when the surface S is negatively transverse
to the flow and the vector Enp always points in the same half-space. The
boundary @S is in bold.

Proof We write N�;� for the tubular neighborhood �
i � �; 
i C � Œ� ��i � �; �i C �Œ

of 
i in T2 �S1 . For every point p on 
i , we denote by Enp the unique unit vector
orthogonal to 
i , tangent to S , and pointing inside S . If � and � are small enough,
then the intersection of S with N�;� is isotopic to the surface generated by pC t Enp

when p describes 
i and t is non-negative. We choose for N
i
such a neighborhood.

The surface L�i
induces a trivialization of the unit normal bundle �p.
i/ of 
i , so that

we can define  .p/ to be the angle between Enp and L�i
. We then set d
i

to be the
degree of the map  W 
i ' S1! �p.
i/' S1 .

If S is positively transverse to ˆT2 , then  .p/ increases as p describes the curve 
i .
Therefore the degree d
i

of  is positive. We then obtain the helix boxes by cutting N
i

at each point where Enp points upward. This happens d
i
times, thus yielding d
i

positive helix boxes. The result when S is positively transverse follows with t
i
D d
i

.

If S is negatively transverse to the flow, then  is a non-increasing function. Indeed,
since the geodesic flow is not parallel to 
i , but rotates when level changes, the vector Enp

can be constant and the application  can be of degree 0; see Figure 4. If so, the
surface S lies on one side of L�i

only. It is therefore isotopic to 
i � Œ�i ; �i C � Œ or
to 
i � ��i � �; �i �, and we are in case .i/ of the statement. Otherwise, the degree d
i

of  is negative, and the situation is similar to that in the positive case. The only
difference is that the negativity of the intersection of S with ˆT2 forces S to wind
in the other direction, so that we obtain �d
i

negative boxes. The result then follows
with t
i

D�d
i
.

In the above context, the tubular neighborhood N
i
of 
i is called a product-neighbor-

hood of 
i . If the interior of S does not intersect the level L�i
(Case .ii/), then N
i

is assumed to be decomposed as a union of t
i
helix boxes.

Lemma 3-5 gives the structure of a surface transverse to the flow around its boundary.
The next result decomposes such a surface around an entire critical level.
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Lemma 3-6 Assume that 
 is a null-homologous collection of periodic orbits of ˆT2

with combinatorial type ..n1; �1;p1; q1/; : : : ; .nk ; �k ;pk ; qk//, and S is a surface
with boundary 
 whose interior is transverse to ˆT2 . Let i be an element of f1; : : : ; kg.
Call 
i;1; : : : ; 
i;ni

the nk elements of 
 lying in the 
 –critical level L�i
, and suppose

that N
i;1
; : : : ;N
i;ni

are the associated product-neighborhoods. Then all the curves

i;1; : : : ; 
i;n are parallel, and all the numbers t
i;1

; : : : ; t
i;ni
are equal to some number,

say t�i
. Moreover, if t�i

is not zero, there exists a neighborhood of L�i
of the form

�L�i��;L�iC� Œ, which is tiled by ni � t�i
helix boxes such that, in each helix box, the

surface S coincides with the helix.

Proof By definition of ˆT2 , every orbit in the level L�i
has direction �i . At the

expense of possibly restricting some of them, we can suppose that all rectangular
tubular neighborhoods N
i;j

have the same height 2�. Then the complement of their
union N
i;1

[� � �[N
i;ni
in the horizontal thick torus �L�i��;L�iC� Œ is also the union

of ni solid tori admitting a rectangular section. We denote these tori by Mi;1; : : : ;Mi;ni
.

At the expense of possibly permuting the names, we can suppose that, for every j , the
torus Mi;j lies between the tori N
i;j

and N
i;jC1
. Since S is transverse to the flow,

its intersection with Mi;j is transverse to the direction �i . Therefore it is the union of
a certain number, say si;j , of discs whose boundaries are meridian circles in the solid
torus Mi;j .

If, for some j , the number t
i;j
is zero, then the two vertical boundaries of N
i;j

do
not intersect S . Therefore, the intersection of S with Mi;j is empty, which implies
si;j D 0. Considering the other boundary of Mi;j , we get t
i;jC1

D 0. By induction,
we get t
i;j

D 0 for every j .

If, for some j , the number t
i;j
is not zero, then N
i;j

is tiled into t
i;j
helix boxes.

Therefore the boundary between Mi;j and N
i;j
is an annulus that intersects S along

t
i;j
vertical segments, and we deduce si;j D t
i;j

. Considering the other vertical
boundary of Mi;j , we get si;j D t
i;jC1

, and therefore t
i;jC1
D t
i;j

. By induction,
all numbers t
i;j

are equal to some fixed number, say t�i
. Finally, since the intersection

of S with Mi;j consists of discs only, we can extend the solid tori N
i;j
so that their

union covers the whole neighborhood �L�i��;L�iC� Œ. Since every N
i;j
is tiled by t�i

helix boxes, the thick torus �L�i��;L�iC� Œ is tiled by ni � t�i
helix boxes.

Considering for a moment the angular parameter � as a (periodic) time, a surface
transverse to ˆT2 can be seen as the movie of its strata. By Lemma 3-3, the strata
vary continuously as long as � is regular. Using Lemma 3-6, we can now describe how
the strata evolve when � crosses a critical value.
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Lemma 3-7 In the context of Lemma 3-6, if the surface S is negatively transverse
ˆT2 , then for every 
 –critical angle �i , the homology classes of the strata S�i�� and
S�iC� are related by the relation

(3-8) ŒS�iC��D ŒS�i���C ni.pi ; qi/:

If S is positively transverse to ˆT2 , then we have

(3-9) ŒS�iC��D ŒS�i���� ni.pi ; qi/:

L�iC�

L�i

L�i��

Figure 5: On the left, a surface S with boundary 
 transverse to ˆT2 in a
neighborhood of a 
 –critical level L�i

of the form �L�i
� �;L�i

C �Œ . It is
tiled by five negative helix boxes. Here, there is only one component, say 
i;1 ,
of 
 in L�i

(in red), that is, we have ni D 1 . The intersection of S with
one of the five helix boxes is depicted. Its boundary consists of one fifth of
the curve 
i;1 , one fifth of the stratum S�iC�

(on the top, in blue), one fifth
of S�i��

(on the bottom, in green), and of vertical segments which are glued
to the four other boxes. On the top right is the projection on a horizontal torus.
On the bottom right is the homological relation between ni.pi ; qi/ , ŒS�i��

�

and ŒS�iC�
� stated in Lemma 3-7, here with ni D 1 , .pi ; qi/ D .�1; 2/ ,

ŒS�i��
�D .2; 1/ and ŒS�iC�

�D .1; 3/ . According to Lemma 3-11(ii), the area
of this homological triangle 5

2
is half the number of helix boxes involved in

the tiling of the neighborhood of the 
 –critical level L�i
.

Proof We continue with the notation of Lemma 3-6. In particular, we assume that the
neighborhood �L�i��;L�iC� Œ of L� is tiled with ni�t�i

helix boxes. The boundary of
the intersection of the surface S with �L�i��;L�iC� Œ consists of pieces of three types:
the curves 
i;1; : : : ; 
i;ni

, the stratum S�i�� and the stratum S�iC� . Therefore, the
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sum of these curves, with the orientations induced by the surface S , is null-homologous
in T 1T2 . After projection on T2 , this sum is still zero.

When S is negatively transverse to ˆT2 , then the two orientations on S�i�� given
by S and by ˆT2 agree, whereas the two orientations on S�iC� are opposite. We
thus get ni.pi ; qi/C ŒS�i���� ŒS�iC��D 0. Similarly, when S is positively transverse
to ˆT2 , the two orientations on S�i�� are opposite, whereas the two orientations
on S�iC� agree, yielding Equation (3-9).

3.4 Correspondence between pointed polygons and transverse surfaces

We can now associate with every surface transverse to ˆT2 a polygon in the lat-
tice H1.T

2IZ/ that encodes the homology classes of all strata simultaneously.

Definition 3-10 Assume that 
 is a null-homologous collection of periodic orbits of
ˆT2 and S is a surface with boundary 
 whose interior is transverse to ˆT2 . The
pointed polygon PolıS of S is the polygon of R2 whose vertices are the points ŒS� �
for � a 
 –regular angle.

Lemma 3-11 .i/ In the above context, let ..n1; �1;p1; q1/; : : : ; .nk ; �k ;pk ; qk// be
the combinatorial type of 
 and Pol
 be the polygon associated with 
 . If S is
negatively transverse to ˆT2 , then the polygon PolıS is a pointed copy of Pol
 . If S is
positively transverse to ˆT2 , then PolıS is obtained from Pol
 by a reflection.

.ii/ For every 
 –critical angle �i , the number of helix boxes used for tessellating a
neighborhood �L�i��;L�iC� Œ is equal to the area of the parallelogram spanned by the
vectors ŒS�i��� and ŒS�iC��.

Proof By Lemma 3-3, the polygon PolıS has at most k vertices. Now if S is negatively
transverse to ˆT2 , then (3-8) implies that, for every i , the two vertices ŒS�i��� and
ŒS�iC�� of PolıS differ by the vector ni.pi ; qi/. On the other hand, if S is positively
transverse to ˆT2 , then ŒS�i��� and ŒS�iC�� differ by �ni.pi ; qi/. This proves .i/.

For .ii/, we see on Figure 5 that, for every i , every helix box used in the tiling
of the neighborhood �L�i��;L�iC� Œ of L�i

is above an intersection point between
the projection of the curve S�iC� and the projection of one component of 
 in L�i

.
Therefore the number of helix boxes in the tiling is the absolute value of the intersection
number of the classes ŒS�iC�� and ni.pi ; qi/ in H1.T

2IZ/. As depicted in Figure 5
(right), this number coincides with the absolute value of the intersection number of
ŒS�i��� and ŒS�iC��, which is the area of the parallelogram spanned by these two
vectors.
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Assume that S is a surface transverse to ˆT2 and L� is a regular level of T 1T2 for S ,
so that the stratum S� is a smooth multicurve. Then we obtain another surface S 0

transverse to ˆT2 by cutting S along S� , gluing a copy of L� and smoothing. We
say that S 0 is obtained from S by horizontal surgery. It is easy to check that the
polygons PolıS and PolıS0 coincide, although the surfaces S and S 0 are not isotopic.
Therefore pointed polygons do not encode all information about the isotopy type of
transverse surfaces. Nevertheless, we will see that horizontal surgeries are the only
freedom left by polygons.

For 
 a null-homologous collection of periodic orbits of ˆT2 with associated poly-
gon Pol
 , we write A.
 / for the area of Pol
 (which is an integer by Pick’s formula)
and I.
 / for the number of integer points in the strict interior of Pol
 . We can now
state and establish the main result.

Theorem 3-12 .i/ The map S 7! PolıS induces a one-to-one correspondence be-
tween surfaces negatively transverse to the flow ˆT2 with boundary made of
periodic orbits, up to isotopy and horizontal surgeries, and convex polygons with
integer vertices in R2 containing the origin in their interior or on their boundary.

.ii/ The map S 7! PolıS induces a one-to-one correspondence between negative
Birkhoff sections for the flow ˆT2 and convex polygons with integer vertices
in R2 containing the origin their (strict) interior.

.iii/ There is no surface positively transverse to ˆT2 with boundary made of periodic
orbits.

.iv/ Assume that 
 is a null-homologous collection of periodic orbits of ˆT2 with
associated polygon Pol
 . Then for every surface S transverse to ˆT2 with
boundary 
 , the Euler characteristic of S is �2A.
 / and the genus of S is I.
 /.

.v/ Assume that 
; 
 0 are two null-homologous collections of periodic orbits of ˆT2 .
Then their linking number Lk.
; 
 0/ is equal to A.
 /CA.
 0/�A.
 [ 
 0/.

Proof .i/ (See Figure 6.) Assume that S is a surface negatively transverse to ˆT2 .
Let 
 be its boundary and ..n1; �1;p1; q1/; : : : ; .nk ; �k ;pk ; qk// be the combinatorial
type of 
 . For every 
 –regular angle � , the stratum S� is transverse to the direction
� . Therefore, if S� is non-empty and with the orientation of S� defined in Section 3.2,
the basis formed by a vector tangent to S� and a vector with direction � is direct.
Hence the basis formed by the direction of ŒS� � and the direction � is also direct. Let
D� be the line oriented by � passing through the vertex S� of PolıS . The previous
observation implies that the point .0; 0/ is on the left of D� . Let �i be the smallest

 –critical angle larger than � . Then, when � tends to �i , the line D� tends to the
line supporting the edge of PolıS with direction �i . Therefore, the point .0; 0/ is also
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on the left of the edge of PolıS with direction �i (the boundary of PolıS being oriented
trigonometrically). If the stratum S� is empty, we have ŒS� �D 0, and .0; 0/ is also
on the left the line D� . Taking all critical values of � into account, we deduce that
the point .0; 0/ is on the left of all oriented edges of PolıS , and therefore lies in the
interior or on the boundary of PolıS . Thus the map Polı associates with every surface
transverse to ˆT2 a polygon in H1.T

2IZ/ containing .0; 0/ in its interior.

.0; 0/

.p
i ; q

i /

Ii

� 2 Ii

IiC1

vi1

Figure 6: The Polygon PolıS for a surface S negatively transverse to the
geodesic flow. For a 
 –regular angle � , the directions ŒS� � (indicated by
a red arrow) and � (indicated by a green arrow) form a direct basis. The
point .0; 0/ is on the left of all edges of PolıS , and therefore in the interior or
on the boundary of PolıS .

For the surjectivity of the map Polı , suppose that a convex polygon P containing .0; 0/
is given. Let �0 be a 
 –regular angle. Let V be the unique vertex of P such that the
line of slope �0 passing through V lies on the right of P . Then construct a surface S

a follows. Start with a stratum S�0
that is transverse to the �0 –direction and whose

homology class is V . Let .p1; q1/ denote the edge of P starting at V . Then erect
helix boxes whose bindings have direction .p1; q1/ so that their bottom faces match
with S�0

. By Lemma 3-7, the boundary of the helices in the top faces form a curve
whose homology class is V C .p1; q1/, so that the stratum corresponds to the second
vertex of P . By continuing this procedure of gluing helix boxes whose direction is
prescribed by the edges of P and whose number is dictated by the strata that have
been constructed previously, we erect a surface which is negatively transverse to ˆT2

and whose associated polygon is P .

For the injectivity, note that the surface S can be recovered from PolıS by the above
procedure. The only choice arises when � has described the whole circle S1 and
comes back to �0 : we have to glue the last floor of helix boxes to the stratum S� . This
gluing is not unique, but two such gluings precisely differ by a horizontal surgery.
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.ii/ Assume that S is a negative Birkhoff section for ˆT2 . As S is transverse to the
flow, we can apply the result of .i/ and deduce that the polygon PolıS contains .0; 0/
in its interior or on its boundary. Since S is a Birkhoff section, it intersects all orbits
of ˆT2 . In particular, this implies that for every 
 –regular value of � , the stratum S�
is non-empty. This excludes the case where .0; 0/ lies on the boundary of PolıS .

.iii/ Assume that S is a surface with boundary positively transverse to ˆT2 . Then
we can apply the same argument as in the negative case .i/. The only difference is that,
for every 
 –regular angle � , the basis formed by ŒS� � and � is indirect. Therefore, the
point .0; 0/ lies on the right of the line with direction � passing through the vertex ŒS� �.
Thus .0; 0/ is on the right of all edges of PolıS , whereas the boundary is oriented
trigonometrically, a contradiction.

.iv/ In every helix box, the helix surface consists of a topological disc, of eight edges,
seven of them being on the boundary of the box, and of eight vertices, two of them
being in the center of a face of the box and the six others in the middle of an edge
of the box. Therefore, the contribution of a helix box to the Euler characteristic is
1� .1C 7

2
/C .2

2
C

6
4
/ D �1. Assume that S is a surface transverse to ˆT2 with

boundary 
 , and let PolıS be the associated polygon. Let �; � 0 be two 
 –regular
angles such that there is exactly one 
 –critical value in ��; � 0 Œ. Then, according to
Lemma 3-11, the number of helix boxes used for tiling the thick torus lying between
the two levels L� and L� 0 is twice the area of the triangle whose vertices are .0; 0/,
ŒS� � and ŒS� 0 �. By summing over all 
 –critical levels, we obtain that the total number
of helix boxes in twice the area of PolıS , hence twice the area of Pol
 . As the genus
of S is given by the formula �.S/D 2� 2g.S/�

P
ni , Pick’s formula for the area

of a polygon with integral vertices gives the formula for the genus.

.v/ By definition, the linking number Lk.
; 
 0/ is the intersection number of a surface
with boundary 
 and the collection 
 0 . It is well-defined when 
 is null-homologous,
since, in this case, the intersection number does not depend on the choice of the
surface. Here, let us pick a Birkhoff section for ˆT2 with boundary 
 , and call it S
 .
Let ..n0

1
; � 0

1
;p0

1
; q0

1
/; : : : ; .n0

k
; � 0

k
;p0

k
; q0

k
// be the combinatorial type of 
 0 . Then the

intersection number of S
 with a periodic orbit of ˆT2 of slope .p0i ; q
0
i/ is the opposite

of the area of the parallelogram spanned by the vectors ŒS� 0
i
� and .p0i ; q

0
i/. Since the

area of PolıS equals the area of Pol
 , the jigsaw puzzle depicted on Figure 7 shows that
the sum of the areas of these parallelograms is equal to A.
 [ 
 0/�A.
 /�A.
 0/.

Corollary 3-13 (Theorem B) Assume that † is a quotient of T2 on which any two
geodesics intersect. Then for every pair 
; 
 0 of periodic orbits of ˆ† , the inequality
Lk.
; 
 0/ < 0 holds.
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Figure 7: On the left, the polygon PolıS associated to a Birkhoff section S

of ˆT2 , and the homology classes of the elements of a family 
 0 , each of
them based at the vertex of PolıS corresponding to the class of the intersected
stratum of S . In gray, the parallelograms whose areas add up to the intersec-
tion number of S with the collection 
 0 . On the right, the polygon Pol
[
 0
is decomposed into three parts whose areas respectively are the area of the
gray zone, the area of PolıS and the area of Pol
 0 .

Proof By Lemma 2-2, it is enough to shows that the lifts y
 ; y
 0 of 
; 
 0 in T 1T2 have
a negative linking number. As the projections of 
; 
 0 on † intersect, the projections
of y
 ; y
 0 on T2 also intersect. Theorem 3-12(v) shows that the linking number of two
collections is zero if and only if the latter consists of parallel lifts of one geodesics
on T2 . The hypothesis on the intersection then discards this situation.

Theorem 3-12(ii) implies that almost every null-homologous collection of periodic
orbits of ˆT2 bounds a Birkhoff section. The exceptions are the collections whose
associated polygon contains no point with integral coordinates.

For example, let 
 be an unoriented periodic geodesics on T2 . Let .p; q/ be its code.
Denote by 
C; 
� its two lifts in T 1T2 (one for each of the two possible orientations
of 
 ). Then 
C and 
� are periodic orbits of ˆT2 , and their sum is null-homologous.
The associated polygon is made of one segment with coordinates .p; q/ only. As
predicted by Theorem B(i), the union of 
C and 
� bounds two non-isotopic surfaces
that are transverse to ˆT2 , namely the two vertical ribbons in T 1T2 consisting of the
unit tangent vectors which are based on 
 and which point into one of the two sides
of 
 . None of these two ribbons is a Birkhoff section for ˆT2 since each of them only
intersect half of the orbits.
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For another example, consider the three orbits with respective slopes .1; 0/, .0; 1/ and
.�1;�1/. They bound three non-isotopic surfaces transverse to ˆT2 , but they do not
bound any Birkhoff section, since the associated polygon is a triangle whose interior
contains no point with integral coordinates.

A last example, which was a surprise for us, is given by the four orbits with slopes
.˙1; 0/ and .0;˙1/, in which case the associated polygon is the unit square, again
containing no integral point inside.

As explained in the introduction, Birkhoff sections give rise to open book decomposi-
tions for the underlying 3–manifold, here for unit tangent bundle T 1T2 , a 3–torus.
Planar open book decompositions, that is, decompositions where the pages are of genus
0, have been often investigated. Theorem B(iv) implies that none of them comes from
Birkhoff sections of the geodesic flow on the torus.

Corollary 3-14 The geodesic flow on T 1T2 contains no Birkhoff section of genus 0.

Since helix boxes contribute �1 to the Euler characteristics, and since every helix box
involves one boundary component, Birkhoff sections with genus 1 are very peculiar.

Corollary 3-15 A Birkhoff section of genus 1 for ˆT2 is made of exactly one helix
box per boundary component.

In the article where he introduced what are now called Birkhoff sections [3], Birkhoff
gave examples by constructing sections for the geodesic flow on the unit tangent bundle
of every surface †. More precisely, a collection of periodic orbits of ˆ† is said to
be symmetric if, for every element of the collection, the orbit corresponding to the
opposite orientation of the underlying geodesics also belongs to the collection. Birkhoff
showed that every large enough symmetric collection 
 of periodic orbits of ˆT2

bounds a section. In the case when † is a torus with a flat metric, the symmetry
hypothesis implies that the polygon Pol
 is symmetric. The section constructed by
Birkhoff corresponds to the surface S whose associated polygon PolıS is pointed in
the center, that is, contains .0; 0/ as symmetry center.

4 Templates for the geodesic flow of a hyperbolic orbifold

We turn to hyperbolic orbifolds. The aim of this section is to show how the geodesic
flow associated with an arbitrary hyperbolic 2–orbifold † can be distorted onto a
certain multitemplate (Definition 4-6) lying inside T 1†. The important property of
this distortion is that its restriction to periodic orbits is an isotopy (Theorem 4-9), so
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that the topological properties of the periodic orbits of the geodesic flow can be studied
using this multitemplate. What makes the construction possible is that distinct periodic
geodesics on a hyperbolic orbifold never point in the same direction at infinity. Our
strategy is similar to that of Birman and Williams [4], who contract the stable direction
of a hyperbolic flow. The characteristic here is that the explicit nature of the geodesic
flow makes it possible to perform the construction in full detail.

Let † be a good hyperbolic 2–orbifold, and let � denote its fundamental group. Our
strategy for constructing the template adapted to the geodesic flow ˆ† is as follows.
We first choose an adapted tessellation of the universal cover H2 of †, namely, a
� –invariant tesselation such that every tile contains at most one point whose stabilizer
has order larger than 2. We also choose in every tile a smooth immersed graph pairwise
connecting the sides in such a way that the graphs associated with adjacent tiles match
on their common side. We then distort all geodesics in the hyperbolic plane into
quasi-geodesics consisting of edges of the graphs so constructed (Section 4.1). Next,
we lift this deformation in the unit tangent bundle T 1† by forcing every tangent vector
to always point toward its initial direction at infinity (Section 4.2). Then the image of
the deformation at time 1 provides the expected (multi)template. It naturally carries a
flow, namely the image of the geodesic flow by the deformation (Section 4.3).

4.1 Discretization of geodesics

The construction starts with a tessellation of the hyperbolic plane that behaves nicely
with respect to the orbifold.

Definition 4-1 Assume that � is a Fuchsian group. Let † denote the orbifold H2=� .
A tessellation T of H is adapted to † if:

.i/ T is � –invariant.

.ii/ Every tile of T is a convex polygon (with possibly some vertices on @H2 ).

.iii/ Every tile of T contains at most one singular point in its interior, and points of
index at most 2 on its boundary.

.iv/ Every tile of T has a finite stabilizer in � .

.v/ If T;T 0 are adjacent tiles of T separated by a side e0 , then, for all other sides
e of T and e0 of T 0 not both adjacent to e0 , the two geodesics respectively
containing e and e0 do not intersect.

For example, assume that † is a hyperbolic compact surface. Consider a convex
polygonal fundamental domain D for the action of �1.†/ on H2 . Then the tessellation
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formed by the images of D under the action of �1.†/ is adapted to †. Note that
condition .iii/ prevents fundamental domains from providing tessellations adapted
to arbitrary orbifolds. However, it is easy to see that, when a Fuchsian group � and
a � –invariant tessellation T are given, one can always subdivide T and adapt it to
H2=� . Condition .v/ in Definition 4-1 may look strange. It is nevertheless important
in order to guarantee that the ribbons of the template we will subsequently construct
do not intersect (Lemma 4-8).

It would be natural to add a sixth constraint, namely that no periodic geodesic goes
through a vertex (see Definition 4-3 below). However this is not always possible, in
particular for the triangle groups we will be interested in Sections 5 and 6.

We now define, for every tessellation that is adapted to some orbifold, a graph that
is dual to the tessellation, and on which we will then distort the geodesics of H2 .
We have to choose some additional data, namely to pick points on the sides of the
tessellation and to choose edges connecting them, but the construction will not depend
on these choices, ie, the templates we will eventually associate to two such choices
will be isotopic. In the sequel, we use the word “side” when referring to the tiles of a
tessellation, and “edge” when referring to a graph.

Assume that P is a polygon in H2 with finitely many sides e1; : : : ; en , and suppose
that v1; : : : ; vn are points on e1; : : : ; en respectively. Let G0

P
be a complete unoriented

graph with vertices v1; : : : ; vn , which is immersed in P so that its edges are orthogonal
to the sides of P , and such that two edges intersect at most once (see Figure 8). Call
internal graph of P associated to v1; : : : ; vn the orientation cover GP of G0

P
, that is,

the oriented graph with twice as many edges as G0
P

, each of them corresponding to an
edge of GP oriented in one of the two possible ways. If ei ; ej are two distinct sides of
P4gC2 , we denote by c

ej

ei
the oriented edge of GP connecting ei to ej .

Assume now that � is a Fuchsian group, and that T is a tessellation adapted to H2=� .
A set V of points in H2 is called a T –marking if every point in V lies on the common
boundary between two tiles of T , every side between two tiles of T contains exactly
one element of V , and V is � –invariant.

Definition 4-2 Assume that � is a Fuchsian group, that T is a tessellation of H2

adapted to H2=� and that V is a T –marking. Suppose that in every tile T of T ,
there is an internal graph GT associated to V , and that the set of internal graphs is
� –invariant. Then the union GT of all internal graphs GT is said to be a graph dual to
T and associated with V .

It is easy to see that dual graphs exist for every tessellation. In the sequel, we will
omit to mention the set V of marked points, since its choice does not influence the
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ei

c
ej
ei

ej

Figure 8: An internal graph. On the left, the unoriented graph G0
P

. On the
right, an oriented edge of GP .

construction. A graph dual is a sort of discretization of the hyperbolic plane adapted
to a given Fuchsian group. If the Fuchsian group is of the first kind, that is, when its
limit set is the whole boundary at infinity @1H2 , the limit set of any graph dual to any
adapted tessellation is also the whole circle @1H2 . We now introduce a procedure
that distorts the geodesics of H2 to curves included in the dual graph GT .

Definition 4-3 Assume that � is a Fuchsian group of the first kind, and that T is a
tessellation adapted to H=� . Let GT be a graph dual to T . Then a discretization of
geodesics on GT is a family consisting, for every geodesics 
 in H2 , of:

.i/ A curve 
 T embedded in GT that crosses the same tiles of T as 
 (or a small
perturbation of 
 in case 
 goes through a vertex of GT ).

.ii/ An isotopy fT ;
 W Œ0; 1��R!H2 between 
 and 
 T , ie a smooth map such
that f 0

T ;
 .t/ describes 
 when t describes R, f 1
T ;
 .t/ describes 
 T when t

describes R and, for every s in Œ0; 1�, the curve f 0
T ;
 .R/ is a smooth embedded

curve in H .
In addition, the family is supposed to be � –invariant in the sense that, if g.
 /D


 0 holds for some g in � , then g.
 T /D 

0
T and g.f s

T ;
 .t//D f
s
T ;
 0.t/ hold

for every .s; t/ in Œ0; 1��R.

The invariance condition implies in particular that, if 
 is the lift of periodic geodesics
on H=� , then 
 T projects on a periodic curve on H=� . More generally, it implies
that all choices commute with the covering map H!H=� .
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Also, assume that a geodesic 
 enters a tile T by a side ei and leaves it by ej , then its
discretization 
 T visits the same tiles as 
 before and after T . Therefore 
 T contains
the edge c

ej
ei

of GT .

Given a hyperbolic 2–orbifold and an adapted tessellation, the existence of discretization
of geodesics easily follows from the definition.

A discretization of geodesics contracts many geodesics together. Indeed, if two oriented
geodesics 
 ; 
 0 have one end in common, their discretization will necessarily coincide
on some neighborhood of their positive end. Discretization will nevertheless be useful
for studying � –periodic geodesics.

4.2 Lifting the discretization to the unit tangent bundle

Given an orbifold H2=� and some additional data, using the discretization procedure
of Definition 4-3, we distorted the geodesics of H2 onto some discrete graph. We now
lift this procedure to the unit tangent bundle, in view of subsequently constructing the
expected template for ˆH=� .

Definition 4-4 Assume that � is Fuchsian group of the first kind, that T is an adapted
tessellation of H2 , that GT is a graph dual to T and that a discretization of geodesics on
GT has been chosen. Then the associated tearing map of the unit tangent bundle is the
map FT from Œ0; 1��T 1H2 to T 1H2 defined as follows. For .p; v/ in T 1H2 , let 

denote the geodesics containing p and oriented by v , let f
 ;T denote the associated
isotopy, let tp be the real parameter such that pD f 0


 ;T .tp/, and let 
C be the positive
extremity of 
 in @H2 . Then F s

T .p; v/ is defined to be the unique unit tangent vector
based at f s


 ;T .tp/ and pointing in the direction of 

C

.

Note that a tearing map is not continuous. Indeed, since the graph GT is discrete, there
are pairs of arbitrarily close tangent vectors that are mapped to different edges of GT .
Also, a tearing map can be injective when the time s is close to 0, but its time-1 map
may, for instance, collapse some horocyle. For these two reasons, a tearing map is not
an isotopy. Nevertheless, if we restrict to � –periodic geodesics, that is, to geodesics
which are g–invariant for some g in � , we have:

Lemma 4-5 In the above context, the restriction of FT to vectors tangent to � –
periodic geodesics is an isotopy.

Proof Suppose that F s
T .p1; v1/D F s

T .p2; v2/ holds for some s in Œ0; 1�. Let 
 1; 
 2

denote the two geodesics tangent to v1 and v2 at p1 and p2 , respectively. As the
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vectors F s
T .p1; v1/ and F s

T .p2; v2/ point in the directions .
 1/C and .
 2/C , their
equality implies .
 1/C D .
 2/C . Therefore 
 1 and 
 2 get closer with an exponential
rate. By hypothesis, both are �–periodic, hence compact in H=� . Therefore they
coincide. By definition of FT , the equality F s

T .p1; v1/D F s
T .p2; v2/ implies

f s
T ;
1

.p1/D f
s
T ;
1

.p2/:

Since fT ;
1
is an isotopy, we deduce p1 D p2 . Finally, since the vectors v1; v2 point

in the same direction, they also coincide.

4.3 Multitemplates for the geodesic flow

We have now constructed a deformation of the unit tangent bundle that preserves
the topology of periodic geodesics. Our task is now to determine the image of the
deformation. In particular, we want to show that it lies inside some specific object that
we call a multitemplate.

Definition 4-6 (See Figure 9.) Assume that M is a 3–manifold. A ribbon in M is
an embedded surface in M diffeomorphic to Œ0; 1�2 equipped with the horizontal flow
generated by @

@x
. If Rib is a ribbon, we denote by XRib the vector field on it.

A multitemplate S in M is a branched surface equipped with a vector field XS that is
locally a union of finitely many ribbons, and is such that:

.i/ Two distinct ribbons Rib1;Rib2 of S can only intersect along their vertical
edges, which are then called branching segments.

.ii/ At every point on a branching segment, there are finitely many ribbons, and the
associated vector fields all coincide.

.iii/ For every ribbon Rib of S , the vector field XRib coincide with XS on Rib.

An orbit of a multitemplate S is a complete immersion of the real line R is S that is
everywhere tangent to XS .

The difference with the usual notion of a template [4; 8] is that there is no uniquely
defined semi-flow, but a multiflow. Indeed, at a point of a branching segment, there may
be several escaping ribbons, and therefore several possible futures. If there were at most
one escaping ribbon at every branching point, we would speak of a template. This will
only happen in our construction when the starting tessellation consists of ideal polygons.
Note also that there may be points that are visited by no orbit of the multitemplate, as
for instance the points on the right of the branching segment on Figure 9.
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Figure 9: A multitemplate in R3 . Along the branching segment, there are,
from left to right, 1 , then 2 , then 1 and then 0 escaping ribbons.

ei

ej

ek

el

Visel
ek

Vis
ej
ei

Figure 10: The visual intervals Vis
ej
ei

, Visel
ek

associated to two intersect-
ing edges of GT . Since Vis

ej
ei

and Visel
ek

are disjoint, the associated ribbons
Rib

ej
ei

, Ribel
ek

do not intersect.

Let us go back to the construction. In order to specify the ribbons making the expected
multitemplate, we describe the set of directions at infinity that are pointed in by elements
in the image of a deformation F1

T .

Definition 4-7 (See Figure 10.) Assume that � is Fuchsian group of the first kind,
that T is an adapted tessellation of H2 , and that GT is a graph dual to T . Let T be a
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tile of T , and ei ; ej be two sides of T . Then the visual interval associated to .ei ; ej /

is the interval consisting of the positive extremities of geodesics connecting a point
of ei to a point ej in @1H2 . We denote it by Visej

ei
. The associated product-ribbon is

the product of the oriented edge c
ej
ei

connecting ei to ej in GT by the interval Visej
ei

in
T 1H2 , seen as the product H2 � @1H2 . We denote it by Ribej

ei
. It is equipped with

the horizontal vector field whose flow goes along the curves c
ej
ei
� f�g at speed 1.

In the above context, we denote by zBT the union in T 1H2 of the product-ribbons
associated with all oriented edges of GT . Its quotient under the action of � is denoted
by B�;T .

Lemma 4-8 In the context of Definition 4-7, zBT is a multitemplate in T 1H2 .

Proof By definition, the set zBT is the union of several ribbons, which are in one-to-one
correspondence with the oriented edges of the graph GT . Let T1;T2 be two adjacent
tiles of T . Call e the common side of T1 and T2 , and let p be a vertex of GT lying
on e . Since the tiles of T are supposed to have finitely many sides, there are finitely
many ribbons that intersect the fiber T 1fpg of p . Since all the edges of GT with p

as an extremity are orthogonal to e , the associated product-ribbons all are tangent in
T 1fpg. Now the product-ribbons that have an extremity in T 1fpg decompose into
four classes depending on whether they lie above T1 or above T2 , and on whether they
correspond to edges of GT starting at p or ending at p . Let .p; v/ be a tangent vector
based at p . Suppose that v points into T1 . Then the only ribbons that may contain
.p; v/ are those coming from geodesics with a positive extremity on the same side of
e as T2 . In this case, the vector field on any such ribbon at .p; v/ is the unit vector
orthogonal to e , and pointing into T1 . Therefore the vector fields on all such ribbons
coincide. Similarly, if v points into T2 , the vector fields of all ribbons that contain
.p; v/ are equal at .p; v/ with the unit vector orthogonal to e and pointing into T2 .

It remains to show that product-ribbons are disjoint outside the fiber of the vertices
of GT . Since product-ribbons are in the fibers of edges of GT , this is equivalent to
showing that, if two edges c

ej
ei
; c

el
ek

of GT intersect inside a tile, say T , of T , then the
associated visual intervals Visej

ei
and Visel

ek
are disjoint. Indeed, in this situation, at

the expense of possibly exchanging the indices and performing a symmetry, we can
suppose that the edges ei ; ek ; ej ; el are cyclically ordered. Let 
 l

i;j be the geodesics
joining the right extremity of ei to the left extremity of ej , and 
 r

i;j be the geodesics
connecting the left extremity of ei to the right extremity of ej . Define 
 l

k;l
and 
 r

k;l

similarly. Then Visej
ei

is the interval Œ.
 r
i;j /C; .


l
i;j /C�, and Visel

ek
is Œ.
 r

k;l
/C; .


l
k;l
/C�

(see Figure 10). The geodesics 
 l
i;j and 
 r

k;l
intersect inside T , so that .
 r

k;l
/C lies

on the left of .
 l
i;j /C on @1H2 . Therefore Visej

ei
and Visel

ek
are disjoint.

Algebraic & Geometric Topology, Volume 15 (2015)



1554 Pierre Dehornoy

Figure 11: Some ribbons of a template above a tile that is not an ideal
polygon. Both incoming ribbons (on the left) and outgoing ribbons (on the
right) overlap, since the associated visual intervals overlap.

Assume now that the tiles of T all are ideal polygons. Let p be a vertex of GT . Then
all visual intervals associated with the edges of GT ending at p are disjoint. Hence,
for every tangent vector v in the fiber T 1fpg, there is at most one escaping ribbon.
Therefore zBT is a template, and so is B�;T .

In the above context, since all steps in the construction of zBT are �–invariant, the
quotient B�;T is also a multitemplate. We can now state the main result of this section.

Theorem 4-9 Assume that � is Fuchsian group of the first kind, T is an adapted
tessellation of H2 , GT is a graph dual to T , and a discretization of geodesics on GT
has been chosen. Let FT denote the associated tearing map of T 1H2 , and B�;T denote
the associated multitemplate in T 1H2=� . Then the action of FT on T 1H=� induces
an isotopy of every collection of periodic orbits of the geodesic flow ˆH2=� onto a
collection of periodic orbits of BT . Moreover, if all tiles of T are ideal polygons, then
B�;T is a template, and FT is a one-to-one correspondence between the periodic orbits
of ˆH2=� and the periodic orbits of B�;T that do not lie in the boundary of B�;T .

Proof Let 
 be a geodesic of H2 . Then its discretization 
 T is included in the
graph GT . Let p be point on 
 and v be the tangent vector to 
 at p . Then the
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Figure 12: Some ribbons of a template above a tile that is an ideal polygon.
The ribbons emerging from the same side do not overlap, since the associated
visual intervals are disjoint.

vector F1
T ..p; v// lies in a fiber over GT . By construction, for every edge c

ej
ei

of GT
contained in 
 T , the direction 
C belongs to the visual interval Visej

ei
, so that the

part of the curve F1
T .
 / above c

ej
ei

lies in the ribbon Ribej

ei
and points towards 
C .

Therefore F1
T .
 / sits in the multitemplate zBT , and is everywhere tangent to the vector

field XzBT
. By Lemma 4-5, the restriction of FT to � –invariant geodesics is an isotopy.

Since everything commutes with the action of � , we can mod out by � , so that the
projection of FT realizes an isotopy between the periodic orbits of the geodesic flow
ˆH2=� and their images.

Suppose now that all tiles of T are ideal polygons. Let 
 .t/ be an orbit of XzBT
not

lying in the boundary of zBT and g–invariant for some g in � . Let 
0 be its projection
on H2 . It is a g–invariant curve in GT . Since all tiles of T are ideal polygons,

0 is a simple curve. The assumption that 
 .t/ does not lie in the boundary of zBT
implies that the two extremities of 
0 are distinct. Let 
1 be the unique geodesics in
H connecting .
0/� to .
0/C . Then 
1 is also g–invariant. It turns out that 
0 is
then the discretization of 
1 . Therefore, FT maps the vectors that are tangent to 
1 to
vectors that are tangent to 
 .t/.

To conclude this section, we introduce some terminology that will be useful when
Theorem 4-9 is applied in the sequel. Assume that T is a tessellation of the hyperbolic
plane, and that GT is an associated graph. Let T0 be a tile of T with n sides. Then the
part of the template zBT that lies above T0 , that is, the intersection of zBT with T 1T0 ,
consists of n.n� 1/ ribbons, as depicted in Figures 11 and 12. In particular, there
are n branching segments on which the template flow enters the solid torus T 1T0 ,
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Figure 13: A simplified version of some ribbons of a template above some
tile with an order 5 symmetry. On the left we displayed only 4 of the 20

ribbons, and only one orbit per ribbon; the other ribbons are obtained by
iterating a screw-motion (remember Figure 1). On the right is the quotient
of the unit tangent bundle by the order 5 symmetry, in the story model. This
is what we call an elevator. For example the red ribbon on the left goes one
floor up (that is, it goes in the next fundamental domain for the story model),
so we see it crossing once the horizontal disc in the story model.

which we call incoming segments, and n branching segments where the template flow
escapes T 1T0 , which we call outgoing segments. We call such a part of a template
a switch tower. If T0 has a trivial stabilizer in � , then the part of the template B�;T
above the quotient of T0 by � is also a complete star.

Suppose now that T0 has a non-trivial stabilizer, say �T0
, in � . Then the part of B�;T

above T0=� is the quotient of zBT by �T0
. If �T0

has order d , then the part of the
template has n.n� 1/=d ribbons. In particular, if T0 is a regular n–gon and if its
stabilizer �T0

is of order n, then there are only n� 1 ribbons in the quotient, all of
them joining a unique incoming segment to a unique outgoing segment, see Figure 13.
We call such a part of a template an elevator.

5 Geodesic flow for the orbifolds of type .p; q; 1/

We now turn to the linking properties of orbits associated with hyperbolic orbifolds
of type .2; q;1/ with q � 3. The goal of this section is to prove the first case of
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Theorem A, that is, to prove that the linking number of every two orbits of ˆ†2;q;1

is negative.

The idea is to apply the construction of Section 4, thus obtaining a template that
describes the topology of the periodic orbits of ˆ†2;q;1

(Section 5.1), and then to
compute the linking number of a pair of periodic orbits. Actually, we do more and
first compactify the unit tangent bundle into a lens space (Section 5.2). As a lens
space is a rational homology sphere, the linking number is defined for every pair of
links. We then show that the linking number of every pair of periodic orbits of the
template is negative (Proposition 5-9 and case .a/ of Theorem A). By the way, we
consider a slightly more general context and construct a template for every orbifold
of type .p; q;1/ with p � 2. The advantage of this approach is to also provide a
precise formula for the linking number of a periodic orbit of ˆ†p;q;1

with the fiber of
the cusp in the unit tangent bundle, that is, with the link that has been added for the
compactification (Proposition 5-7).

5.1 A template for ˆ†p;q;1

Here we introduce orbifolds of type .p; q;1/, choose adapted tessellations of the
hyperbolic plane, and describe the associated templates. As we will recall, the space
T 1†p;q;1 is obtained by gluing two solid tori along their boundary, and what we
will do is to describe a template that lies in a neighborhood of the gluing torus. In
the case p D 2; q D 3, we recover Ghys’ template for the geodesic flow on the
modular surface [9], and, in the more general case p D 2; q � 3, we recover Pinsky’s
template [14].

Until the end of Section 5, we assume that p; q are fixed integers satisfying p � 2

and q � 3. Since 1=pC 1=q < 1 holds, there exists a hyperbolic triangle PQZ in
H2 , with the two vertices P;Q inside H2 with respective angles 2�=p and 2�=q ,
and the vertex Z lying on @H2 . For convenience, we also suppose P;Q;Z are
trigonometrically ordered. Let ��p;q be the group generated by the symmetries around
the sides of PQZ , and let �p;q be its index 2 subgroup consisting of orientation
preserving isometries, often called the Hecke triangular group. The group �p;q acts
properly and discontinuously on H2 . The action is not free since, for example, P and
Q have stabilizers of order p and q respectively. The quotient H2=�p;q is then an
orbifold, with two singular points of order p and q , and one cusp. We call it †p;q;1 .

For k D 1; : : : ; q� 1, let Zk
q be the image of Z by a rotation of center Q and of

angle 2k�=q (see Figure 15). Then Z;Z1
q ; : : : ;Z

q�1
q are the vertices of an ideal

q–gon, say �Q . Let �Q be the stabilizer of Q in �p;q . Then �Q is invariant under
the action of �Q .
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Figure 14: The tessellation of H2 by copies of the ideal polygons �P and
�Q , here with p D 3 and q D 5

Assume now p > 2. Define similarly the points Z1
p; : : : ;Z

p�1
p on @1H2 and the

polygon �P . Note that the points Z1
q and Z

p�1
p coincide. Call e the geodesics ZZ1

q .
Then the polygons �P ; �Q lie on different sides of e , hence they are distinct. One
easily sees that the images of �P and �Q under �p;q cover the whole hyperbolic
plane, and therefore form a tessellation (Figure 14). We denote it by TP;Q . The sides
of the tiles of TP;Q exactly are the images of e under �p;q . Since all tiles are ideal
polygons, no two sides in the tessellation intersect inside H2 . Also, every tile is a copy
of either �P or �Q , and therefore contains exactly one singular point in its interior.

The unit tangent bundles to �Q=�Q and �P=�P are both non-compact solid tori
(remember Figure 1). The unit tangent bundle T 1†p;q;1 is then obtained by identifying
the tangent vectors that constitute the boundaries of the unit tangent bundles to �Q=�Q

and �P=�P . These are exactly the images in the quotient of the tangent vectors based
on e , that is, the image of T 1e in the orbifold †p;q;1 .

We still assume p > 2. Let M be the intersection of the segment PQ with e , let
BSP!Q be the set of all tangent vectors at M pointing into �Q , and let BSQ!P be
the set of all tangent vectors at M pointing into �P . Then the template B�p;q ;TP;Q

given by Theorem 4-9 consists of two parts: one elevator (Figure 13) sitting inside
the solid torus T 1�Q=�Q with q� 1 ribbons, say Rib1

q; : : : ;Ribq�1
q , all connecting

BSP!Q to BSQ!P , and one elevator sitting inside T 1�P=�P with p� 1 ribbons,
say Rib1

p; : : : ;Ribp�1
p , all connecting BSQ!P to BSP!Q .
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Figure 15: On the left are the tiles �P and �Q , with p D 3 and q D 5 . On
the right is a fundamental domain for the action of �p;q on H2 . The curves
cp , cq and T 1fZg are also depicted. They lie on the common boundary T 1e

of the two solid tori T 1�P=�P and T 1�Q=�Q .

If p D 2, then, with the above definition, �P is a bigon with an empty interior. In
this case, the tessellation TP;Q consists of copies of �Q only. In the quotient of
H2 by �p;q , the edges of �Q are quotiented by order 2 rotations, so that the unit
tangent bundle of †2;q;1 is obtained by considering the solid torus T 1�Q=�Q , and
identifying pairs of points on the boundary with the order 2 rotation around P .

For convenience (especially in view of the pictures in Section 5.4), we slightly modify
the tessellation in this case. We consider a tile �0

P
, that is the �–neighborhood of �P ,

and we change �Q accordingly. If � is positive, the sides of the tiles are no longer
geodesic, so that the construction of Section 4 does not apply. We rather see � as
infinitely small. The unit tangent bundle of †2;q;1 is then the union of T 1�0Q=�Q ,
which is infinitesimally smaller than T 1�Q=�Q , with the infinitesimally small solid
torus T 1�0

P
=�P . The role of the latter solid torus is to identify pairs of points on the

boundary of T 1�0
Q
=�Q .

Mimicking the case p > 2, we denote by M the point on the segment ŒPQ� that is at
distance � from P , by BSP!Q the set of all tangent vectors at M pointing into �0

Q

and by BSQ!P the set of all tangent vectors at M pointing into �0
P

. Then B�2;q ;TP;Q

consists of one elevator in T 1�0
Q
=�Q with q� 1 ribbons, say Rib1

q; : : : ;Ribq�1
q , all
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connecting BSP!Q to BSQ!P , and one ribbon in T 1�0
P
=�P connecting BSQ!P

to BSP!Q .

In the sequel, it will be imported to visualize how the ribbons Rib1
p; : : : ;Ribp�1

p can be
distorted on the torus @T 1�P=�P D@T

1�Q=�Q (and similarly for Rib1
q; : : : ;Ribq�1

q ).
Figure 16 shows two ways of deforming every such ribbon by pushing it to the left or
to the right.

Rib1
5

Rib4;l
5

Rib1;r
5

Rib4;r
5

Rib1;l
5

Rib4;l
5

Rib1;r
5

Rib4;r
5

Rib1
5

Figure 16: The two possible deformations Ribi;l
p and Ribi;r

p of a ribbon of
type Ribi

p on @T 1�P=�P . On the left, with p D 5 , the ribbon Ribp�1
p (in

blue) can be pushed in T 1�P either to the right (in light blue) or to the left
(in orange). Another ribbon (here Rib1

p in red) and one of its images under the
Z=pZ–action are shown. Since the rightmost ribbon (here the blue one) goes
the lowest, when distorting the ribbons on @T 1�P , all crossings that appear
are positive. On the right, the two projections of all ribbons Rib1

p; : : : ;Ribp�1
p

on @T 1�P=�P , seen in the slice-of-cake model (the one whose fundamental
domain is the space located between two vertical walls). The blue ribbons are
obtained when pushing to the right, and the orange ones when pushing to
the left.

5.2 Compactification and coordinates

The unit tangent bundle T 1†p;q;1 is a non-compact 3–manifold with first homology
group Z. This can be seen in the previous discussion by considering a loop of tangent
vectors based along a horocycle centered at Z , and checking that this loop is not
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null-homologous. For addressing Question 1-1, we want to compute linking numbers
in T 1†p;q;1 .

As stated in the introduction, we will make a more general computation by first
compactifying T 1†p;q;1 into a rational homology sphere, and then compute linking in
the resulting manifold. Since †p;q;1 has one cusp, a natural compactification that does
not change the homology type consists in adding a boundary-circle. For T 1†p;q;1 ,
this corresponds to the addition of a boundary-torus. As we want a compactification
with trivial first rational homology group, we need to fill this torus. A natural choice
is to fill the boundary-circle with a disc and to lift this filling. But this choice is not
appropriate for the hyperbolic structure, and a more adapted choice is to force all
vectors tangent to a given horocycle to bound a disc in the compactification. These two
compactifications are defined according to whether we see the boundary circle as a hole
or a cusp. Actually, there is one filling of the torus, and therefore one compactification
by a circle for every choice of a Euler number, thus leading to a fiber bundle with the
chosen Euler class (as explained by Pinsky [14]). The hole-like filling corresponds to
Euler number 0, while the cusp-like filling has Euler number �1. This leads to the
following:

Definition 5-1 The hyperbolic compactification T 1†p;q;1 of T 1†p;q;1 is obtained
by adding a fiber associated to the cusp Z , that is, by considering the topology induced
by the compactification of †p;q;1 in the hyperbolic disc.

The compactification T 1†p;q;1 is obtained by gluing the two solid tori T 1�Q=�Q

and T 1�P=�P (with �0 instead of � in the case p D 2) along their boundaries.
It is then a lens space. In order to describe it, let us introduce some notation (see
Figure 15). We write T 1e for the 2–torus that is the boundary between T 1�Q=�Q

and T 1�P=�P . We define aZ to be the loop in T 1e describing the fiber T 1fZg with
the trigonometric orientation, and cP to be the curve consisting of tangent vector based
on e and oriented by the geodesics going through P . We define cQ in the same way.
We also consider the set yDP of all vectors based on points of �P and pointing in
the direction of Z , and its quotient DP under the projection T 1�P ! T 1�P=�P

with the induced orientation (see Figure 17). We write @DP for the oriented boundary
of DP . We define DQ and @DQ in the same way.

Lemma 5-2 .i/ The set DP is a meridian disc of the solid torus T 1�P=�P .

.ii/ The homology classes ŒcP � and ŒcQ� form a basis of H1.T 1eIZ/. In this
basis, we have the decompositions ŒaZ � D .1; 1/, Œ@DP � D .p � 1;�1/ and
Œ@DQ�D .�1; q� 1/.
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Proof (i) The disc yDP is contractible in T 1�P and its boundary belongs to the
boundary T 1.@�P /. Therefore its quotient DP is also contractible in T 1�P=�P ,
and its boundary @DP belongs to the boundary T 1.@�P=�P /, which is, by definition,
the 2–torus T 1e . The loop @DP is not contractible in T 1e because its projection on
the basis is not. Therefore DP is a meridian disc in T 1e .

Q1 Q2

P

Figure 17: On the left is the meridian disc yDP , with p D 5 . It is the set
of all vectors pointing at Z . On the right is the union of its iterated images
under the rotation of angle 2�=p . It is the set of all vectors pointing at one
of the p vertices of �P . The meridian disc DP (Lemma 5-2) is obtained
by restricting to a fundamental domain, for example the tinted part. On the
bottom, the p�1 intersection points between cQ and @DP (the leftmost and
the rightmost vectors are identified in the quotient). The unique intersection
point between cP and @DP is the vector based at Z with a squared origin.

.ii/ We write � for the intersection form on the torus H1.T 1eIZ/. By definition,
and as indicated on Figure 15, the three curves cP , cQ and aZ have one point in
common, namely the unit tangent vector based at Z and oriented by outgoing geodesics.
Therefore, we have

jŒcP � � ŒcQ�j D jŒaZ � � ŒcP �j D jŒaZ � � ŒcQ�j D 1;
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so that the classes ŒcP � and ŒcQ� form a basis of H1.T 1eIZ/. We orient the 2–torus
T 1e in such a way that the basis .ŒcP �; ŒcQ�/ is positive. The signs of the intersections
ŒaZ � � ŒcP � and ŒaZ � � ŒcP � can be determined by checking that the concatenation of
the loops cP and cQ is homotopic to aZ , so that, in the basis .ŒcP �; ŒcQ�/, we have
ŒaZ �D .1; 1/.

In order to determine the coordinates of Œ@DP �, we compute the intersection numbers
with the basis vectors. For the intersection between Œ@DP � and ŒcP �, we see on Figure 17
that there is only one vector in Œ@DP �\ ŒcP �, namely the vector based at Z and oriented
by outgoing geodesics. For the intersection between Œ@DP � and ŒcQ�, we have to count
the vectors emerging from Q and pointing into one of the vertices Zk

p . There are
p� 1 such vectors, depicted on Figure 17. Once again, the signs can be determined by
checking that the loop @DP is isotopic to the concatenation of p times cP and one
time aZ , taken backwards, whence the relation Œ@DP �D .p� 1;�1/.

The coordinates of Œ@DQ� are determined in the same way.

cq

@DP

aZ

cp

@DQ

Figure 18: The median torus T 1e , in the basis .cp; cq/ , is shown here with
pD 5 and qD 3 . The hyperbolic compactification T 1†p;q;1 is obtained by
gluing two solid tori T 1�P=�P and T 1�Q=�Q , with respective meridian
@DP and @DQ , along T 1e . The fibers of the points of e are the curves on
T 1e that are parallel to aZ .

We can now deduce the topology of T 1†p;q;1 .

Lemma 5-3 The hyperbolic compactification T 1†p;q;1 of the unit tangent bundle
to the orbifold †p;q;1 is diffeomorphic to the lens space Lpq�p�q;p�1 , the cir-
cle added when compactifying being a .p; q/–torus knot drawn on a median torus
of Lpq�p�q;p�1 .
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Proof (See Figure 18.) We continue with the same notation. Since T 1†p;q;1 is
obtained by gluing the two solid tori T 1�P=�P and T 1�Q=�Q , it is a lens space.
By Lemma 5-2, the two curves @DP ; @DQ are respective meridians in the two solid
tori. Using their coordinates, we deduce that their intersection number isˇ̌̌̌

p� 1 �1

�1 q� 1

ˇ̌̌̌
D pq�p� q:

As the curve cQ intersects @DQ once, it is a parallel for the solid torus T 1�Q . As cQ

intersects p�1 times @DP , the 3–manifold T 1†p;q;1 is the lens space Lpq�p�q;p�1 .

The circle that has been added when compactifying is the fiber aZ of the point Z . By
Lemma 5-2, it intersects p times the circle @DP , and q times @DQ . Therefore it is a
.p; q/–torus knot.

Remark 5-4 Since .p � 1/.q � 1/ � 1 mod pq � p � q , Brody’s theorem asserts
that the lens spaces Lpq�p�q;p�1 and Lpq�p�q;q�1 are diffeomorphic. This can be
seen in the above proof by exchanging p and q .

Remark 5-5 One can check that the alternative compactifications of T 1†p;q;1 as-
sociated with other Euler numbers can be obtained by cutting along T 1e , making a
transvection along the curve aZ , and gluing back. This changes the manifold into
Lkpq�p�q;kp�1 for some k in Z (see Pinsky [14] for more detail).

We now have a full description of the template B�p;q ;TP;Q
and of how it embeds into

T 1†p;q;1 (see also Figure 19). It is worth noting that in the case p D 2; q D 3, the
compactification T 1†p;q;1 is the 3–sphere, the fiber aZ of the cusp is a trefoil knot,
and the template B�p;q ;TP;Q

is Lorenz’ template, as stated by Ghys [9].

5.3 Linking with the fiber of the cusp

For p�2; q�3, we use now the template B�p;q ;TP;Q
for computing the linking number

in T 1†p;q;1 between a periodic orbit of ˆ†p;q;1
and the .p; q/–torus knot aZ that

has been added when compactifying T 1†p;q;1 (Proposition 5-7). This computation
has been done in the case p D 2, q D 3 by Ghys [9]. In this case, the linking number
equals the Rademacher function of the underlying geodesics; a function of interest in
number theory [13]. As before, we assume that we are given a triangle PQZ in H2 ,
that �p;q is the associated Hecke triangular group, that TP;Q is the associated adapted
tessellation of H2 , and that B�p;q ;TP;Q

is the associated template.

Let 
 be a geodesic of H whose extremities are not lifts of the cusp of †p;q;1 , that is,

C and 
� are not in the orbit �p;q.Z/. Then picking an arbitrary starting point on it,
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@DP

cP aZ

cQ

@DQ

BSP!Q

BSQ!P

Figure 19: The projection of the template B�p;q ;TP;Q
on the 2–torus T 1e

is shown here with p D q D 4 . The sources of the projection are the fibers
T 1fPg for the part that lies inside the solid torus T 1�P=�P , and T 1fQg

for what lies inside T 1�Q=�Q . On the top left: the part of B�p;q ;TP;Q
lying

inside T 1�Q=�Q . On the top right: the part of B�p;q ;TP;Q
lying inside

T 1�P=�P . The two pictures differ by a transvection. This is due to the
choice of the compactification. Changing the compactification of T 1†p;q;1

leads to another transvection for the identification. Since the two solid tori are
glued outgoing normal vs. incoming normal, the two pictures have opposite
orientations, namely the front/back order of the ribbons is reversed. On the
bottom left are the vectors ŒcP �; ŒcQ�; ŒaZ �; Œ@DP � and Œ@DQ� in H1.T 1eIZ/ .
The slope �1 of ŒcP � explains the transvection on the top right picture. On the
bottom right: The directions of the two possible deformations of the ribbons
that constitute B�p;q ;TP;Q

on T 1e . Each of the four colors corresponds to
one to the four types Ribi;g

p , Ribi;d
p , Ribi;g

q and Ribi;d
q . The key point for

proving the negativity of linking numbers (Proposition 5-9) is that, in each of
the two vertical intervals between BSP!Q and BSQ!P , all ribbons go in
the same direction.
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 is determined by a starting tile T0 and a bi-infinite code � � �ui�1vj�1ui0vj0ui1vj1 � � �

describing how 
 behaves in each tile of the tessellation TP;Q . Precisely, if 
 enters a
copy of �P by a side, and goes out by another side that is obtained from the entering
one by a rotation of angle 2i�=p , then the corresponding letter is ui . Similarly, when

 enters a copy of �Q , the corresponding letter vj describes how to pass from the
entering side to the outgoing side. As �P has p sides, every index ik is between 1

and p� 1. Similarly, every index jk lies between 1 and q� 1. Considering another
starting tile induces a shift of the code. If two geodesics are obtained one from the
other by the action of an element g of �p;q , then their starting tiles are also obtained
from one another by g , and their codes coincide. Therefore, there is a one-to-one
correspondence between codes up to shift and geodesics on the orbifold †p;q;1 not
pointing into the cusp. Moreover, if a geodesic on †p;q;1 is periodic, then its code is
periodic, that is, of the form .ui1 � � � vjm/Z . In this case, we call the word ui1 � � � vjm ,
which is assumed to be of minimal possible length, a reduced code of the periodic
geodesic. Different reduced codes for a given periodic geodesic differ by a cyclic
permutation of the letters.

We now define an invariant of periodic geodesics that will be useful for expressing the
linking number of their liftings in T 1†p;q;1 with the fiber of the cusp. Assume that

 is a geodesic in H2 with code � � �ui�1vj�1ui0vj0ui1vj1 � � � . For a more symmetric
expression, we set i 0

k
D ik �p=2 and j 0

k
D jk � q=2. Then the discretization 
 TP;Q

of 
 lies in the tree depicted in Figure 14. By definition, for every index k , the
discretization 
 TP;Q

turns by an angle 2� i 0
k
=p in the corresponding copy of �P and

by an angle 2�j 0
k
=q in the corresponding copy of �Q .

Definition 5-6 Assume that 
 is a periodic geodesic on †p;q;1 . Let ui1vj1ui2 � � � vjm

be a reduced code of 
 . Then the wheel turn ‚wheel.
 / of 
 is the rational numberPm
iD1 i 0

k
=pC j 0

k
=q .

Here is the expected evaluation of the linking number between a geodesic of ˆ†p;q;1

and the fiber of the cusp in terms of an analog of the Rademacher function.

Proposition 5-7 Assume p � 2, q � 3. Then, for every periodic orbit 
 of the
geodesic flow ˆ†p;q;1

, we have

Lk.
; aZ /D
pq

pq�p� q
‚wheel.
 /;

where 
 is the projection of 
 on †p;q;1 .

The principle of the proof is as follows. Write r for the number pq�p� q . Since the
first homology group of Lpq�p�q;p�1 is Z=rZ, we know that for every element Œc�

Algebraic & Geometric Topology, Volume 15 (2015)



Geodesic flow, left-handedness and templates 1567

of H1.Lpq�p�q;p�1IZ), the cycle r Œc� is a boundary of an integral 2–chain. The
idea will be to construct a 2–chain with boundary r Œ
 � that is transverse to aZ , and
then to count the intersection number with aZ . Since 
 is isotopic in the complement
of aZ in an orbit of the template B�p;q ;TP;Q

, we can then make use of the available
information about the position of the latter in T 1†p;q;1 .

In order to implement the argument, let us write h for the orbit of B�p;q ;TP;Q
whose

code is .u1v1/Z . Note that h is one of the two periodic orbits of B�p;q ;TP;Q
that is not

isotopic to a periodic orbit of the geodesic flow, but to a periodic orbit of the horocyclic
flow. Write aP for the curve that describes the fiber T 1P . It is the core of the solid
torus T 1�P=�P . Similarly, write aQ for curve describing the fiber T 1Q. We begin
with a preliminary computation. Remember that ui1vj1ui2 � � � vjm denotes a reduced
code of 
 .

Lemma 5-8 In the above context, the cycle Œ
 � is homologous in T 1†p;q;1 to the
1–cycle

mX
kD1

�
Œh�C .ik � 1/ŒaP �C .jk � 1/ŒaQ�

�
:

Proof Let 
 1 be the image of 
 under the deformation F1
TP;Q

. Then 
 1 is an orbit of
the template B�p;q ;TP;Q

. Suppose that 
 first travels along the ribbon Rib1
p , and then

along Rib1
q . Then it is homologous to h in T 1†p;q;1 during the corresponding interval

of time, and its code starts with u1v1 . Otherwise, the homology class of 
 in the
complement of aZ during one period is obtained by adding to h the cycles consisting
in traveling along Ribi

p backwards and then along RibiC1
p frontwards, for every i

between 1 and ik , and by also adding the cycles consisting in traveling along Ribj
q

backwards and then along RibjC1
q forwards, for every j between 1 and jk . Every

cycle in the first category is actually equal to ŒaP �. Indeed, the ribbons are not the same,
but the annuli of the form RibjC1

p �Ribj
p are homologous in the quotient T 1†p;q;1 :

they correspond to curves turning once around the point P on †p;q;1 . So ŒaP � is
added ik � 1 times. Similarly, every cycle in the second category is equal to ŒaQ�, so
ŒaQ� is added jk � 1 times.

We can then complete the argument.

Proof of Proposition 5-7 In T 1†p;q;1 , the cycle h bounds a disc whose intersection
number with aZ equals �1. Indeed, since h is homologous to a horocyle, the latter
bounds a horodisc, say dh , which is foliated by horocycles parallel to h. By definition of
the compactification, the family of all vectors tangent to these horocycles extends to the
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fiber of the cups, and therefore form a disc in T 1†p;q;1 that intersects aZ in exactly
one point, namely the limit of the tangent vectors. Hence we have Lk.h; aZ /D�1=r .

Let us turn to Lk.h; aZ /. Write

cCP ; @DCp and @DCq

for the curves cP , @Dp and @Dq slightly pushed away from T 1e in T 1�P=�P , so
that they do not intersect aZ . As cQ is a parallel for the solid torus T 1�P=�P , the
cycle r ŒaP � is homologous in T 1†p;q;1 to r ŒcC

P
�. The latter has coordinates

.pq�p� q; 0/

in the basis .ŒcP �; ŒcQ�/ of H1.T 1eIZ/. By Lemma 5-2, the cycles Œ@DCp � and Œ@DCq �
have coordinates .p� 1;�1/ and .�1; q� 1/, so that r ŒcC

P
� equals

.1� q/Œ@DCp �� Œ@D
C
q �:

On the one hand, Œ@DCp � bounds a meridian disc for T 1�P=�P that does not intersect
aZ . On the other hand, since @Dq and aZ intersect q times on T 1e , the curve @DCq
bounds a meridian disc for

T 1�Q=�Q

that intersects �q times aZ . Therefore we have Lk.aP ; aZ /D q=r . We obtain in the
same way Lk.aQ; aZ /D p=r . The result then follows from Lemma 5-8.

5.4 Linking number between collections of geodesics

We now restrict to the case pD2, and study the linking number between two collections
of periodic geodesics of ˆ†2;q;1

. Our goal is to show:

Proposition 5-9 (Case .a/ of Theorem A) Assume q � 3. Then, for all collections
of periodic orbits 
; 
 0 of the geodesic flow ˆ†2;q;1

in T 1†2;q;1 , the linking number
between 
 and 
 0 is negative.

The proof of this statement will occupy the rest of Section 5. The strategy is as follows.
Owing to Theorem 4-9, it is enough to show that the linking number of every pair 
; 
 0

of collections of periodic orbits of the template B�2;q ;TP;Q
is negative. By Lemma 5-3,

the first homology group of T 1†2;q;1 is Z=.q� 2/Z, so that the 1–cycle .q� 2/Œ
 �

is the boundary of some 2–chain. What we shall do is to explicitly construct a 2–chain
S whose boundary is .q�2/Œ
 �, and show that the intersection number of S with 
 0 is
negative. As the family 
 0 lies in the template B�2;q ;TP;Q

, working with the 1–skeleton
of the template as in the proof of Proposition 5-7 is impossible. Instead, we shall choose
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a particular projection of B�2;q ;TP;Q
on T 1e and reduce the problem to computing

intersection numbers onT 1e . Practically, we shall construct the 2–chain S as the union
of three parts, namely a 2–chain S



Q lying inside the solid torus T 1�0

Q
=�Q , a 2–chain

S


2

lying inside the solid torus T 1�0
P
=�Q , and a 2–chain S



e in the torus T 1e . Then

we shall show that the intersection number between S



Q and 
 0 is slightly positive, that
the intersection number between S



2

and 
 0 is zero, and that the intersection number
between S



e and 
 0 is very negative, so that the sum of these three numbers is negative,

as expected.

Let us turn to the construction of the 2–chains S


2

, S


Q and S



e . They will be defined

by gluing discs whose boundaries will consist of elementary arcs, some particular
segments drawn inside the ribbons of the multitemplate B�2;q ;TP;Q

.

As depicted in Figure 19, every ribbon Ribj
q of B�2;q ;TP;Q

can be distorted in two
ways on T 1e , according to whether the ribbon is pushed on its right or on its left (see
Figure 13). We denote by Ribi;l

q and Ribi;r
q the two ribbons in T 1e produced that

way. Similarly, the ribbon Ribp can be pushed on the right or on the left, and can
thus be distorted on two ribbons on T 1e . We denote them by Ribl

p and Ribr
p . What

we shall do is to decompose the orbits of B�2;q ;TP;Q
into pieces lying inside a ribbon,

and choose for every such piece a combination of the two possible projections, so that
the sum of these projections is null-homologous in T 1e (see Figure 20). Here is the
precise notion.

Definition 5-10 We say that ˛ is an elementary arc (of B�2;q ;TP;Q
) if ˛ is

� (type 1) either a segment of an orbit in B�2;q ;TP;Q
that goes from a point A0

of BSP!Q to a point A1 of BSQ!P and travels along the ribbon Ribi
q for

some i between 1 and q�1; then we write ˛l and ˛r for the segments of T 1e

that connect A0 to A1 and are orbits in the ribbons Ribi;l
q ;Ribi;r

q respectively,

� (type 2) or a segment of an orbit in B�2;q ;TP;Q
that goes from BSQ!P to

BSP!Q by traveling along Ribp ; then we write ˛l and ˛r for the deformations
of ˛ that are orbits of the ribbons Ribl

p and Ribr
p .

We now choose a canonical projection of every elementary arc to a convenient mul-
ticurve. So assume that ˛; ˛0 are elementary of type 1 and 2 respectively, and that
the end of ˛ coincides with the origin of ˛0 . Note that the condition about the ends
implies that ˛0 is uniquely determined by ˛ . Then we denote by ˛� the multicurve
consisting of i times ˛l and q�2� i times ˛r , followed by i times ˛0l and q�2� i

times ˛0r . The reason for this particular choice is the following:
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Ribi;d
q

Ribj ;g
q

Figure 20: The two projections of B�2;q ;TP;Q
on T 1e , with q D 5 , in the

slice-of-cake model. The curve aZ is the vertical boundary of the depicted
square, while the curve cQ is the horizontal boundary. The solid torus
T 1�0P=�P is in front of the picture, so that we see on the front the two
projections of the ribbon Rib1

2 . On the back are the two projections of each
of the four ribbons Rib1

q; : : : ;Rib4
q .

Lemma 5-11 Let ˛1; ˛
0
1
: : : ; ˛n; ˛

0
n be the decomposition of 
 into a concatenation

of elementary arcs of type 1 and 2 alternately. Then the union 
� of the multicurves
.˛1/� ; .˛

0
1
/� ; : : : ; .˛n/� ; .˛

0
n/� is a multicurve on T 1e that is trivial in homology.

Proof We see on Figure 20 that, for every i , the ribbon Ribi;r
q (blue on the picture)

cuts the curve aZ (the vertical boundary on the picture) i times and the curve cQ (the
horizontal boundary) �1 times. Similarly, Ribi;l

q (orange) cuts aZ (vertical) q � i

times and cQ zero times. In the same way, Ribr
p cuts aZ negative one times and cQ

one time, whereas Ribl
p cuts aZ one time and cQ zero times.

Suppose that ˛; ˛0 are two consecutive elementary arcs of 
 , with ˛ lying on the
ribbon Ribi

q for some i and ˛0 lying on Ribp . Then the above remark implies that the
(non-closed) multi-curve ˛[˛0 has zero-intersection with both aZ and cQ . By adding
the contributions of all elementary arcs of 
 , we deduce that 
 is null-homologous
in T 1e .
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We are now going to define the 2–chains S


2

and S


Q . If ˛ is an elementary arc of

type 1, we denote by S˛q the 2–cycle consisting of i times a disc in T 1�0Q=�Q with
boundary ˛[�˛l plus q�2�i times a disc with boundary ˛[�˛r . Symmetrically, if
˛ is of type 2, we denote by S˛p the 2–cycle consisting of i times a disc in T 1�0

P
=�P

with boundary ˛[�˛l plus q� 2� i times a disc with boundary ˛[�˛r .

Definition 5-12 With the above notation, we define S



Q to be the union of the 2–cycles
S
˛1
q ; : : : ;S

˛n
q , and S



2

to be the union of the 2–cycles S
˛0

1
p ; : : : ;S

˛0n
p .

The next step is to complete S


2
[ S



Q into a 2–chain with boundary 
 . Owing

to Lemma 5-11, this can be done inside T 1e . Indeed, the multi-curve 
� divides
T 1e into a finite number of regions, say R1; : : : ;Rn , that can be seen as 2–chains.
Since Œ
� � is zero in H1.T 1eIZ/, there exists an integral linear combination

P
�k ŒRK �

with boundary 
� . In fact, the coefficients �k are defined up to a constant only. With
our particular choice of the projection 
� , at every point of BSP!Q or BSQ!P , the
number of segments of 
� that come from the left (resp. right) equals the number of
segments that leave to the left (resp. right).

Definition 5-13 Let us choose numbers �k so that, for every region Ri intersecting
BSQ!P , the associated coefficients �i is zero. Then we define S



e to be the 2–chainP

�kRk .

Note that, by construction, the boundary of the 2–chain S


e is the multicurve 
� .

At this point, we have associated with the first collection of periodic orbits 
 a certain
2–chain S



2
[S



Q[S



e that, by construction, has boundary 
 . Let us now consider the

second collection of periodic orbits 
 0 , which is assumed to be disjoint from 
 . We shall
estimate the intersection number between 
 0 and each of the 2–chains S



2

, S


Q and

S


e , and prove that their sum is negative. For this, we introduce specific combinatorial

data encoding the position of the collections 
 and 
 0 inside the template B�2;q ;TP;Q
.

Lemma 5-14 The collection 
 0 does not intersect the 2–chain S


2

, and the intersection
number between 
 0 and S



Q is at most

(5-15)
X

1�i<j�q�1

�jj � i

2

k
C1
�
.i�1/ bib

0
jC

X
1�j<i�q�1

�j i � j

2

k
C1
�
.q�1�i/ bib

0
j ;

where, for every i between 1 and q� 1, bi (resp. b0i ) is the number of elementary arcs
of 
 (resp. 
 0 ) lying in the ribbon Ribi

q .
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Figure 21: An elementary arc of 
 0 (red) may intersect the 2–chain S


Q

(green) only if it lies on a ribbon under the ribbon containing 
 (blue). Since
the projection of this intersection point corresponds to a positive crossing (see
Figure 20), the intersection number is C1 .

Proof Every intersection point between 
 0 and the 2–chains S


2
;S


Q is the intersection

between one of the discs bounded by an elementary arc, say ˛ , of 
 and one of its
two projections ˛l or ˛r , and an elementary arc, say ˛0 , of 
 0 . This implies (see
Figure 21) that ˛; ˛0 project on T 1e on a double point, and that the ribbon containing
˛0 is between T 1e and the ribbon containing ˛ . In particular, these two ribbons have
to be different.

On Figure 20, one sees that all intersections between projected ribbons on T 1e corre-
spond to two ribbons of type Ribi;l

q and Ribj ;l
q , or to two ribbons of type Ribi;r

q and
Ribj ;r

q . Therefore no intersection point comes from Ribl
p or Ribr

p , so that 
 0 does
not intersect S



2

. We also see that, for every i; j , the two projected ribbons Ribi;l
q

and Ribj ;l
q intersect bji � j j=2c times transversely, and overlap just before the gluing

segment BSQ!P .

The collection of the numbers bi does not determine the position of the orbit 

on B�2;q ;TP;Q

completely. In particular, it does not say whether two orbits on Ribi;l
q

and Ribj ;l
q respectively will overlap before BSQ!P . Nevertheless, since all projected

crossings are positive, we obtain an upper bound for the intersection number when
assuming that two such elementary arcs always overlap before BSQ!P .

By construction, there are i bi elementary arcs of 
� on Ribi;l
q , and .q� 2� i/ bi on

Ribi;r
q . Each elementary arc of type 1 yields at most .b.j � i/=2cC 1/b0j intersection

points with elementary arcs of 
 0 lying on Ribj
q if j > i , and no intersection point for

j � i . Similarly, for j < i , each elementary arc of type 2 yields at most .b.j �i/=2cC

1/b0j intersection points with elementary arcs of 
 0 lying on Ribj
q . All intersection

points are positive, and (5-15) follows.

We now compute the contribution of S


e to the linking number of 
 and 
 0 . For

convenience, we set �D
P

1�i�q�1.i � 1/.q� 1� i/ bi .
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Lemma 5-16 The intersection number between 
 0 and S


e is at most

(5-17)
X

j�q=2

�
��C

X
k�j

.k � 1/ bk

�
b0j C

X
j>q=2

�
��C

X
k>j

.q� 1� k/ bk

�
b0j :

Proof Since 
 0 intersects the torus T 1e on BSP!Q and BSQ!P only, we have to
estimate the coefficients �k of the associated regions in the 2–chain S



e . By definition

of S


e , the coefficient of every region intersecting BSQ!P is zero. Since every

elementary arc of 
 0 that intersects BSP!Q goes from the solid torus T 1�0Q=�Q

into T 1�0
P
=�P , the intersection number between 
 0 and S



e is exactly the sum of the

levels of the intersection points of 
 0 with BSP!Q . Let us cut the segment BSP!Q

into q�1 segments, say ŒM1M2�; : : : ; ŒMq�1Mq �, corresponding to the origins of the
ribbons Rib1

q; : : : ;Ribq�1
q .

We claim that the level of the points M1 and Mq is ��. Indeed, starting from Mq

(the top point in the segment BSP!Q on Figure 20), and following the fiber until we
reach BSQ!P , we intersect the projections of all several ribbons of type Ribi;l

q . For
every i , there are q � 1� i such intersections, all positive. Since the ribbon Ribi;l

q

contains i bi elementary arcs of 
 , we cross 
 exactly � times along the path. The
same argument works for M1 .

Now we claim that, for i � q=2, the level at every point of ŒMiMiC1� is at most
�C

P
k�i.k � 1/ bk . Indeed, when starting from M1 and following BSP!Q , the

level changes when we cross an intersection point of 
 with BSP!Q . Let B be such
a point. Then there are q�2 elementary arcs of 
 arriving at B from the ribbon Ribp .
Depending on the ribbon Ribj

q followed before Ribp , the q� 2 elementary arcs of the
projection 
� arriving at B decompose into l � 1 of them arriving from the left along
Ribj ;r

q , and q� 1� l arriving from the right along Ribj ;l
q . Similarly, since 
 leaves

B along Ribi
q , there are q� 2 elementary arcs of 
� that leave B , i � 1 of them on

the left along Ribi;l
q , and q � 1� i of them on the right along Ribi;r

q . Therefore the
difference of level under and above B is i � l . In particular, it is at most i . Using an
induction on i , we deduce that the level is at most �C

P
k�i.k�1/ bk at MiC1 , and

a fortiori at every point on ŒMiMiC1�. We get a similar result for i larger that q=2.
Equation (5-17) easily follows.

We are now able to complete the argument.

Proof of Proposition 5-9 (Case .a/ of Theorem A) We continue with the same
notations. Equation (5-17) bounding the intersection number between 
 0 and S



e
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expands into

�

X
1�j�q=2

�X
i�j

.i � 1/.q� 2� i/ bi C

X
i>j

.i � 1/.q� 1� i/ bi

�
b0j

�

X
q=2<j�q�1

�X
i<j

.i � 1/.q� 1� i/ bi C

X
i�j

.i � 2/.q� 1� i/ bi

�
b0j :

By adding Equation (5-15), we obtain the expressionX
1�j�q=2

�X
i<j

�.i � 1/.q� 2� i �b.j � i/=2c� 1/ bi

C

X
i>j

�.q� 1� i/.i �b.i � j /=2c� 1/ bi

�
b0j

C

X
q=2<j�q�2

�X
i<j

�.i � 1/
�
q� 1� i �b.j � i/=2c� 1

�
bi

C

X
i>j

�.q� 1� i/
�
i � 2�b.i � j /=2c� 1

�
bi

�
b0j

plus some terms in bib
0
j whose coefficients all are negative. Therefore, the intersection

number between 
 0 and S is bounded from above by a quadratic form in the families
.bi;j /; .b

0
i;j /, all of whose coefficients are negative. Therefore, the linking number

Lk.
; 
 0/ is negative.

6 Surfaces and orbifolds of type .2 ; 3; 4gC2/

We now turn to the hyperbolic 2–orbifolds †2;3;4gC2 and to case .b/ in Theorem A,
namely the result that every two collections of periodic orbits of the geodesic flow
on †2;3;4gC2 are negatively linked. We recall from the introduction that, as the unit
tangent bundle T 1†2;3;4gC2 is a quotient of the unit tangent bundle of a specific
hyperbolic surface †g of genus g , our strategy will be to lift the question to T 1†g ,
estimate the linking number between lifts of orbits of ˆ†2;3;4gC2

, and eventually use
Lemma 2-2.

In the whole section, g denotes a fixed integer larger than or equal to 2. The successive
steps are as follows. We start in Section 6.1 with a 4g C 2–gon in the hyperbolic
plane and consider the multitemplate B4gC2 provided by Theorem 4-9. Mimicking
the method of the previous section, we bound in Section 6.2 the linking number of a
pair of collections of periodic orbits of B4gC2 by a quadratic form Q4gC2 in terms
of the number of arcs that travel along every ribbon of B4gC2 . The form Q4gC2 is
not negative on the cone of admissible coordinates for geodesics on †g , but, using
symmetries to reduce the set of possible coordinates, we introduce a refined form
S4gC2 in Section 6.3, and show that the linking form is negative on the reduced cone.
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6.1 A template for ˆ†g

From now on, we fix a regular 4gC 2–gon P4gC2 in the hyperbolic plane whose
angles all are equal to 2�=.2gC 1/. We write e1; : : : ; e4gC2 for the sides of P4gC2 .
For every side ei , we write el

i for its left extremity (when looking at ei from inside
P4gC2 ), and er

i for its right extremity. We also write e{ for the side opposite to ei

(that is, we set {D iC2gC1 mod 4gC2). We call †g the genus-g surface obtained
by identifying opposite sides of P4gC2 . The vertices of type er

2k
then project to one

point of †g , say V0 . Similarly, the vertices of type el
2k

project to one point, say V1 .
The unit tangent bundle to P4gC2 is the product P4gC2 � @1H2 , where a tangent
vector is identified with its direction on @1H2 . Then T 1P4gC2 is a solid torus whose
boundary is made of the 4gC 2 annuli T 1e1; : : : ;T

1e4gC2 . The unit tangent bundle
T 1†g is obtained from T 1P4gC2 by identifying opposite annuli via homographies
of H2 . Precisely, if gi;{ denotes the isometry that maps ei to e{ , then gi;{ extends
to @1H2 , and the fibers of two paired points of ei and e{ are identified using the
extension of gi;{ to @1H2 . We also introduce two small discs D0;D1 on †3 centered
at V0;V1 respectively. We write yP4gC2 for the complement of D0 [D1 in P4gC2 .
This is a domain whose boundary is made of 4gC 2 geodesic segments and 4gC 2

arcs of circle are small radius.

e12

e13

e14

el
1

e1 er
1 D el

2

e2
er

2
D el

3

e3

e5 D e12

V1

V0 V0

Figure 22: On the left, the regular 14–gon P14 . The surface †3 is obtained
by identifying opposite sides. On the right, the unit tangent bundle is obtained
in the standard coordinates P4gC2 � @1H2 by gluing opposite walls using
homographies.
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The fundamental group �1.†g/ is generated by the isometries g1;x1; : : : ;g4gC1;4gC1 .
We write Tg for the tessellation of H2 induced by the images of P4gC2 under �1.†g/.
One easily checks that Tg is adapted to †g (only point .v/ in Definition 4-1 requires
some attention). Finally, we choose a graph GTg

dual to Tg and an associated discretiza-
tion of geodesics. We then write B4gC2 for the corresponding template in T 1†g . By
definition, it consists of .4gC 2/.4gC 1/ ribbons connecting every pair of distinct
boundary annuli. For every i; j , we denote by Ribi;j the ribbon that connects T 1ei to
T 1ej . Above every side of P4gC2 , there are two branching segments, corresponding
to geodesics crossing the side in both directions. The length of each branching segment
is half the length of the fiber. Since we are interested in the topology of B4gC2 only, we
can distort it using an isotopy, so that each branching segment has a small length, say � ,
and consists of vectors that are almost orthogonal to ei . We then obtain a template
similar to the one depicted on Figure 23. For every edge ei of P4gC2 , we denote by
BSi;{ the branching segment that contains the orbits arriving on the side ei and leaving
from the side e{ , and by BS{;i the other branching segment that contains the orbits
arriving on the side e{ and leaving from the side ei .

C
3�
14

�
3�
14

�
10�
14

Figure 23: On the left, a ribbon Ribl
i;j and its projection Ribl

i;j on
T 1@P4gC2 . By definition, it is horizontal in every wall of type T 1ei . As
stated in Lemma 6-9, it goes down around every vertex. This long descent
(which is reminiscent of a picture by Escher) stems from the observation that
a vector traveling along the left boundary of P4gC2 and staying tangent to
@P4gC2 has to turn right at every vertex. On the right, the two projections of
the whole template B4gC2 on T 1@P4gC2 (with 5 instead of 4gC 2): every
ribbon has a blue and an orange projection.
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In the sequel, we need two particular deformations of B4gC2 on T 1@ yP4gC2 that we
describe now. Assume that Ribi;j is a ribbon of B4gC2 . We isotope Ribi;j to the
boundary of T 1 yP4gC2 without changing the extremities in two ways. For the first
deformation, we push Ribi;j to the left until reaching T 1 yP4gC2 (see Figure 23 left).
The image is denoted by Ribl

i;j . Moreover, we choose the isotopy so that

� the part of Ribl
i;j lying in T 1ei has width � and consists of vectors almost

orthogonal to ei ,

� for every c satisfying j < c < i in the cyclic order, the part of Ribl
i;j lying in

T 1ec has width � and consists of vectors almost parallel to ec ,

� the part of Ribl
i;j lying in T 1ej has width � and consists of vectors almost

orthogonal to ei .

We construct Ribr
i;j similarly by pushing Ribi;j to the right in T 1 yP4gC2 . We write

Bl
4gC2

for the union of all left projections of ribbons of B4gC2 , and Br
4gC2

for the
union of all right projections (see Figure 23 right).

6.2 Bounds for the linking number of orbits in ˆ†g

Our goal is now to estimate and to bound the linking number between two null-
homologous collections of periodic orbits of B4gC2 . We will do that by considering
the number of times the given collections travel along every ribbon of B4gC2 . The
formula may look convoluted, but hopefully the meaning of every term should be clear
from the proof. The key point is that the bound we establish is bilinear in the number
of times each collection travels along every ribbon, so that it can be easily estimated.
We use Knuth’s convention and write f � g for the characteristic function of a property.
Also the inequality signs refer to the cyclic order in Z=.4g C 2/Z. The functions
v0; v1; h0; h1 will be defined in Definitions 6-10 and 6-11 below.

Definition 6-1 For every i; j ; k; l in f1; : : : ; 4gC2g with i ¤ j and k¤ l , we define
the real number qi;j ;k;l by

1

2

�
fi < k < l � j gC fk < i < j � lg

�
�

1

8

�
fk ¤ i; j gC fk ¤xi ; xj g

�
Cv0.i; j /h0.k; l/Cv1.i; j /h1.k; l/C

1

2g�2
.v0.i; j /Cv1.i; j //.v0.k; l/Cv1.k; l//I

we write Q4gC2 for the bilinear form on R.4gC2/.4gC1/ whose coefficients are
the qi;j ;k;l .
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Definition 6-2 Assume that 
 is a null-homologous collection of periodic orbits of the
template B4gC2 . For every i; j in f1; : : : ; 4gC 2g, let bi;j denote the number of arcs
of 
 that travel along the ribbon Ribi;j , respectively. The family .bi;j /1�i¤j�4gC2

consists of .4gC 2/.4gC 1/ non-negative integers; it is called the linear code of 
 .

Proposition 6-3 Assume that 
; 
 0 are two null-homologous collections of periodic
orbits of the template B4gC2 . Denote by .bi;j / and .b0i;j / their linear codes. Then the
linking number Lk.
; 
 0/ is at most

P
1�i;j ;k;l�4gC2 qi;j ;k;lbi;j b0

k;l
.

Note that, in the expression for qi;j ;k;l given in Definition 6-1, the roles of 
 and

 0 are not symmetric. This is connected with our subsequent choice of a particular
2–chain, and with the fact that the coefficients bi;j satisfy some linear constraints, so
that the above formula is one among many other possible expressions.

The idea of the proof of Proposition 6-3 is to construct a rational 2–chain S
 with
boundary 
 , and to bound its intersection number with 
 0 . The 2–chain S
 will
consist of four parts, denoted by S



� ;S




@
;S



V0

and S


V1

, each being a combination of
several rational 2–cells.

We now establish several intermediate results consisting in evaluating various intersec-
tion numbers. First, we consider the above defined projections Bl

4gC2
and Br

4gC2
of

B4gC2 . We write 
 l
� for the image of 
 that lies in Bl

4gC2
, and 
 r

� for the image that
lies in Br

4gC2
.

Definition 6-4 Let 
� be the combination 1
2

 l
� C

1
2

 r
� . Then we define S



� to be the

sum, for each elementary arc ˛ of 
 , of a (rational) disc d l
˛ with boundary 1

2
.˛[�˛l

�/

and of a (rational) disc dr
˛ with boundary 1

2
.˛[�˛r

�/.

It follows from the definition that S


� connects 
 to 
� .

Lemma 6-5 The intersection number between the collection 
 0 and the rational 2–
chain S



� is at most

P
i;j ;k;l

1
2
.fi < k < l � j gC fk < i < j � lg/ bi;j b0

k;l
.

Proof We have to estimate, for every pair of elementary arcs .˛; ˛0/ of 
 and 
 0

respectively, whether ˛0 intersects the discs d l
˛ and dr

˛ defined above, how many times
it possibly does, and what is the sign of the intersection points. Let Ribi;j denote the
ribbon containing ˛ , and let Ribk;l the ribbon containing ˛0 .

First, suppose i ¤ k and j ¤ l . Figure 23 right then shows that ˛0 intersects dr
˛ if

and only if i < k < l < j in the cyclic order. In this case, there is only one intersection
point, and its sign is positive (Figure 21 is also relevant here). Since the disc dr

˛ has a
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coefficient 1
2

, the contribution of this intersection point to the total intersection number
is C1

2
. Similarly, ˛0 intersects d l

˛ if and only if i < j < l < k in cyclic order, and the
contribution is then C1

2
.

Second, suppose i ¤ k and j D l . Then ˛0 may intersect d l
˛ or dr

˛ or not, depending
on which arc is above the other on BSj ;j , and which arc comes from the right or the
left before reaching T 1ej . Since we look for an upper bound on the linking number,
and since the sign of the intersection, if any, is positive, we can assume that there is
always an intersection, so that the contribution is C1

2
. This happens if i < k < l D j or

i < j D l < k in the cyclic order. (Note that this is the only approximation that makes
our computation of the linking number not exact. It will be refined for symmetric
collections of orbits in the next section.)

Third, suppose i D k and j ¤ l . Then, as in the previous case, the arc ˛0 may intersect
d l
˛ or dr

˛ or not. But, unlike the previous case, we can ignore this potential intersection
point. Indeed, let A;B denote the respective starting points of ˛ and ˛0 , which are
located in the branching segment BS{;i . Then there is an intersection point if A is
under B and at the same time we have j > l , or if A is above B and we have j < l .
At the expense of possibly performing a symmetry, we may restrict to the first case.
A under B means that ˛ points on the right of ˛0 on @1H2 , whereas j > l means
that ˛ escapes on the left of ˛0 . This is possible for j D l C 1, but this implies that
the geodesics of H2 that have been distorted onto 
 and 
 0 intersect after crossing ei .
As they are geodesics, they cannot intersect twice, so that they did not intersect before
crossing ei . Therefore there was a pair of arcs that lie before ˛ and ˛0 on 
 and 
 0

that was counted in the previous paragraph (since i D k ) and should not have. So we
can compensate this factor C1

2
by ignoring the current intersection.

Fourth, suppose i D k and j D l . Then ˛; ˛0 lie on the same ribbon, and ˛0 does not
intersect the discs dr

˛ and d l
˛ .

Summing up, we obtain the announced upper bound.

The second part of S
 will lie in the 2gC 1 annuli T 1ec with 1 � c � 2gC 1 (we
recall that ec is identified with ecC2gC1 ). Its boundary will be made of 
� plus some
curves lying in T 1@D0 and T 1@D1 . Before describing it, we must describe 
� in
more detail.

Lemma 6-6 (See Figure 23 left.) Let ec be a side of P4gC2 . Then the part of 
� that
lies in T 1ec consists of

.i/ 1
2

P
i¤c bi;c arcs joining the fiber T 1el

c to the branching segment BSc;c , plus
another 1

2

P
i¤c bi;c arcs joining T 1er

c to BSc;c , plus 1
2

P
j¤c bc;j arcs join-

ing BSc;c to T 1el
c , plus 1

2

P
j¤c bc;j arcs joining BSc;c to T 1er

c , all these
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arcs lying at a height that corresponds to vectors escaping from P4gC2 almost
orthogonally,

.ii/ 1
2

P
i¤c bi;c arcs joining T 1el

c to BSc;c , plus 1
2

P
i¤c bi;c arcs joining T 1er

c to
BSc;c , plus 1

2

P
j¤c bc;j joining BSc;c to T 1e l

c , plus 1
2

P
j¤c bc;j arcs joining

BSc;c to T 1er
c , all these arcs lying at a height that corresponds to vectors entering

P4gC2 almost orthogonally,

.iii/ 1
2
.
P

i<c<j<i bi;j C
P

i<j<c<i bi;j / arcs joining the fiber T 1er
c to T 1el

c , all
these arcs lying at a height that corresponds to vectors almost tangent to ec and
pointing toward el

c ,

.iv/ 1
2
.
P

i<j<c<i bi;j C
P

i<c<j<i bi;j / arcs joining the fiber T 1el
c to T 1er

c , all
these arcs lying at a height that corresponds to vectors almost tangent to ec and
pointing toward er

c .

Figure 24: The templates Bl
4gC2

and Br
4gC2

inside a wall of type T 1ei .
Between the two branching segments, all ribbons have the same orientation.
If 
 is a null-homologous collection of orbits of B4gC2 , then there are as
many arcs of 
� traveling from left to right (along the pink ribbons) as arcs
of 
� traveling from right to left (along the green ribbons).

Proof Let Ribi;j be a ribbon of B4gC2 . Then every arc of 
 \Ribi;j projects on an
arc of 
 l \Ribl

i;j and on an arc of 
 r \Ribr
i;j . First suppose that the index c differs

from both i and j . If ec lies on the right of Ribi;j , then the arcs of 
 r \Ribr
i;j travel

along T 1ec , from T 1er
c to T 1el

c . By construction of Ribr
i;j , they are at the height of

vectors almost tangent to ec . Therefore they contribute to .iii/. Similarly, if ec is on
the left of Ribi;j , then the arcs of 
 l \Ribl

i;j travel along T 1ec , and contribute to
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.iv/. In the same vein, we obtain the two others terms of .iii/ and .iv/ by recalling
that T 1ec is identified with T 1ec , so that, if c differs from both i and j , the arcs of

 \Ribi;j also project on T 1ec in the same way.

Suppose now c D j . Then the arcs of 
 l \Ribl
i;j finish their travel by connecting

T 1el
c to BSc;c , and the arcs of 
 r \ Ribr

i;j connect T 1er
c to BSc;c . Thus they all

contribute to .i/. Similarly if c D i , then the arcs of 
 l \Ribl
i;j begin their travel by

connecting BSc;c to T 1er
c D T 1el

c to, and the arcs of 
 r \Ribr
i;j connect BSc;c to

T 1er
c , thus all contributing .i/. Similarly, we get the expression for .ii/ by considering

the cases c D i and c D j .

As the collection 
 is null-homologous, the collection 
� is also null-homologous, so
that for every side ec of P4gC2 , the number of arcs of 
� that travel along ec in one
direction is equal to the number of arcs in the other direction. This implies that the
numbers of arcs given by Lemma 6-6(iii) and (iv) are equal. We then define �c to be
their common value, which then admits the more symmetric expression

1

4

� X
i<c<j<i

bi;j C

X
i<j<c<i

bi;j C

X
i<j<c<i

bi;j C

X
i<c<j<i

bi;j

�
;

or simply 1
4
.
P

i;j¤c bi;j C
P

i;j¤c bi;j /. Also, since every arc of 
 that arrives on
BSc;c is followed by an arc that leaves BSc;c , the numbers

P
i¤c bi;c and

P
j¤c bc;j

are equal. Hence it is possible to choose a 2–chain in T 1ec whose boundary is

� \T 1ec , plus some arcs in the fibers T 1el

c and T 1er
c . This 2–chain is unique up to

adding multiples of T 1ec , so that we can make a specific choice that will be convenient
for estimating the contributions of the last two components S



V0

and S


V1

of S
 .

Definition 6-7 (See Figure 24.) With the above notation, we define S



@
to be the

2–chain consisting, for every side c of P4gC2 , of �c cells in T 1ec whose oriented
boundary consists of the �c arcs of 
� that join T 1el

c to T 1er
c , plus the �c arcs

of 
� that join T 1er
c to T 1el

c , plus �c=2 arcs that go up and �c=2 arcs that go
down in the fiber T 1el

c , plus �c=2 arcs that go up and �c=2 arcs that go down in the
fiber T 1er

c .

Lemma 6-8 The intersection number between the collection 
 0 and the rational 2–
chain S




@
is equal to

�

X
i;j ;k;l

1
8
.fi ¤ k and j ¤ kgC fi ¤ k and j ¤ kg/ bi;j b0k;l :
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Proof The collection 
 0 intersects S



@
only on branching segments. Figure 24 then

shows that all intersection points have negative sign. For every side ek of P4gC2 ,
there are

P
l¤k b0

k;l
arcs of 
 0 that cross T 1ek in each direction. Every such arc then

intersects �k=2 cells of S



@
negatively, so that the total contribution of T 1ek to the

intersection number is �k

P
l¤k b0

k;l
. Therefore the total intersection number is the

sum over all sides ek of P4gC2 of the terms �k

P
l¤k b0

k;l
. As the sides ek and e

k

coincide, the latter sum admits the more symmetric expression 1
2

P
k�k

P
l¤k b0

k;l
.

We then find the expected value by expanding �k .

The boundary of the 2–chain S


� [S




@
that was constructed above is 
 , plus some

multiples of the fibers T 1V0 and T 1V1 that we now determine.

Lemma 6-9 Assume that Ribi;j is a ribbon of B4gC2 . Then:

.i/ The part of Ribl
i;j that lies in the neighborhood of T 1el

i goes down by a height
.2g � 3/�=.4gC 2/, the part of Ribl

i;j that lies in the neighborhood of T 1er
j

goes down by a height .2g� 3/�=.4gC 2/, except if j D i C 1, in which case
the part of Ribl

i;j that lies in the neighborhood of T 1el
i D T 1er

j goes up by a
height 4�=.4gC 2/.

.ii/ The part of Ribl
i;j that lies in the neighborhood of T 1el

c , for j C1< c < i , goes
down by a height .4g� 2/�=.4gC 2/.

.iii/ The part of Ribr
i;j that lies in the neighborhood of T 1er

i goes up by a height
.2g � 3/�=.4gC 2/, the part of Ribr

i;j that lies in the neighborhood of T 1el
j

goes up by a height .2g� 3/�=.4gC 2/, except if j D i � 1, in which case the
part of Ribr

i;j that lies in the neighborhood of T 1er
i D T 1el

j goes up by a height
4�=.4gC 2/.

.iv/ The part of Ribr
i;j that lies in the neighborhood of T 1er

c , for i < c < j �1, goes
up by a height 4�=.4gC 2/.

Proof The proof is illustrated in Figures 23 and 25. It relies on the assumption that
the angle between adjacent sides of P4gC2 is 2�=.2g C 1/, and on the height we
chose for the parts of the ribbons Ribl

i;j and Ribr
i;j above each edge of yP4gC2 . The

values follow from the equalities �=2 � 2�=.2g C 1/ D .2g � 3/�=.4g C 2/ and
� � 2�=.2gC 1/D .4g� 2/�=.4gC 2/.

Definition 6-10 For i; j in the range f1; : : : ; 4gC 2g, we define v0.i; j / to be the
sum over all even vertices of P4gC2 of the increases of Ribl

i;j and of Ribr
i;j around

this vertex.
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For example, if i D 1 and j D 2, then Ribl
1;2 contributes 4�=.4gC2/ to v0.0; 1/ and

0 to v1.0; 1/. On the other hand, Ribr
1;2 contributes 2g times C.4g� 2/�=.4gC 2/

to v0.0; 1/ and 2 times .2g� 3/�=.4gC 2/ plus 2g� 1 times .4g� 2/�=.4gC 2/

to v1.0; 1/. Therefore we have v0.0; 1/D .8g2� 4gC 4/�=.4gC 2/ and v1.0; 1/D

.8g2 � 4g � 4/�=.4gC 2/. With the above notation, the boundary of the 2–chain
S


� [S




@
consists of the union of 
 , of �

P
i;j v0.i; j /bi;j times the fiber T 1V0 and

of �
P

i;j v1.i; j /bi;j times the fiber T 1V1 .

Figure 25: The templates Bl
4gC2

and Br
4gC2

on the neighourhood of a vertex
Vi . For Bl

4gC2
, most of the ribbons go down by .4g � 2/�=.4gC 2/ (in

blue), or they are close to a branching segment and they go down by .2g�

3/�=.4gC 2/ (in yellow), unless they are close to both branching segments
and they go up by 4�=.4gC 2/ (in pink). For Br

4gC2 , the signs are reversed.

In order to complete the chain S
 , it suffices that we add a 2–chain whose boundary is
.
P

i;j v0.i; j /bi;j /T
1V0 and a 2–chain whose boundary is .

P
i;j v1.i; j /bi;j /T

1V1 .
Since †g has Euler characteristic 2� 2g , there exists a vector field on †g with only
one singularity at V0 , the index of the latter being 2� 2g . By lifting this vector field
in T 1†g , we obtain a surface with boundary .2g� 2/T 1V0 . We then define S



V0

to
be 1

2g�2
.
P

i;j v0.i; j /bi;j / times this surface. Similarly, we can construct a surface
with boundary .2g� 2/T 1V1 , and we then define S



V1

to be 1
2g�2

.
P

i;j v1.i; j /bi;j /

times the latter surface. We have now only to determine the intersection number of 
 0

with both S


V0

and S


V1

. For this it is enough to determine the linking number of 
 0
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with the fibers T 1V0 and T 1V1 , and then to multiply by 1
2g�2

.
P

i;j v0.i; j /bi;j / and
1

2g�2
.
P

i;j v1.i; j /bi;j / respectively.

Definition 6-11 For i; j in the range f1; : : : ; 4g C 2g, we define h0.i; j / as the
number of even vertices of P4gC2 on the left of Ribi;j , minus the number of even
vertices on the right of Ribi;j , divided by 2gC 1. Similarly, we define h1.i; j / as
the number of odd vertices of P4gC2 on the left of Ribi;j , minus the number of odd
vertices on the right, divided by 2gC 1.

The precise expressions for h0.i; j / and h1.i; j / are ..j � i/Œ4gC 2�� .2gC 1/C

j Œ2��i Œ2�/=.2gC1/ and ..j�i/Œ4gC2��.2gC1/�j Œ2�Ci Œ2�/=.2gC1/, respectively.
Moreover, we fix two arbitrary points V 0

0
and V 0

1
on the boundaries of D0 and D1

respectively. We also choose two meridians m0 and m1 of the solid tori T 1D0

and T 1D1 .

Lemma 6-12 The collection 
 0 is homologous, in the complement of T 1V0[T 1V1 , to�X
k;l

v0.k; l/b
0
k;l

�
T 1V 00C

�X
k;l

v1.k; l/b
0
k;l

�
T 1V 01

C

�X
k;l

h0.k; l/b
0
k;l

�
m0C

�X
k;l

h1.k; l/b
0
k;l

�
m1:

Proof A construction similar to the construction of the 2–chain S


� [S




@
, applied

to 
 0 instead of 
 , realizes a cobordism between 
 and the announced collection of
curves.

Lemma 6-13 The intersection number between S


V0
[S



V1

and 
 0 is equal toX
i;j ;k;l

h
v0.i; j /h0.k; l/C v1.i; j /h1.k; l/

C
1

2gC1
.v0.i; j /C v1.i; j //.v0.k; l/C v1.k; l//

i
bi;j b0k;l :

Proof The curve m0 bounds a meridian disc for T 1D0 , so that its linking numbers
with T 1V0 and T 1V1 are 0 and 1 respectively. Similarly one has Lk.m1;T

1V0/D 0

and Lk.m1;T
1V1/D 1. The lift of the vector field on †3 with only one singularity

p defines a surface in T 1†g whose boundary is .2g� 2/T 1p and which intersects
every other fiber once. Therefore, Lk.T 1p;T 1p0/D 1

2g�2
holds for every point p0

distinct from p .
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Proposition 6-3 now follows from Lemmas 6-5, 6-8 and 6-13, which together give the
expected bound for Lk.
; 
 0/ directly.

The set of linear codes .bi;j / that correspond to geodesics on †g is a subset of
R.4gC2/.4gC1/ . Actually, it is a cone included in R.4gC2/.4gC1/

C that we denote
by Cg . It is not hard to see that Cg is a proper subset of R.4gC2/.4gC1/

C , ie, that
there are more constraints on the possible values of .bi;j / than the positivity of the
coefficients. For example, there are linear equality constraints coming from the fact that
every arc of the associated collection that crosses a side of P4gC2 continues on the other
side, as well as linear equalities coming from the fact the collection is null-homologous.
There are also inequality constraints coming from the fact that the collection consists of
geodesics, so that it cannot always wind around a vertex. Precisely, some coefficients of
the form bi;j with ji�j j � 2 cannot be too small when compared with the coefficients
of the form bi;iC1 .

Implementing the above constraints in a computer program leads to numerical bounds
for the linking numbers of orbits of ˆ†g

. However, as we shall see in Section 7, some
collections of orbits have a positive linking number, so there is no hope of proving a
uniform negativity result.

6.3 Linking of geodesics on the orbifolds †2 ;3;4gC2

We now consider the case of the orbifold †2;3;4gC2 . Our goal is to establish upper
bounds for the linking numbers of pairs of orbits in the associated geodesic flow. We
shall prove:

Proposition 6-14 (Case .b/ of Theorem A) Let 
; 
 0 be two orbits of ˆ†2;3;4gC2
in

T 1†2;3;4gC2 . Then we have Lk.
; 
 0/ < 0.

The proof relies on a more precise study of the template B4gC2 and refinement of
Proposition 6-3. The starting point is that †2;3;4gC2 admits a covering of index 3.4gC

2/ by a genus-g surface †g obtained by identifying sides of a regular 4gC 2–gon
(see Figure 26). So, by the behavior under quotient of the linking number (Lemma 2-2),
in order to establish Proposition 6-14, it is enough to prove that �2;3;4gC2 –invariant
geodesics of †g have a negative linking number. These �2;3;4gC2 –invariant geodesics
have three advantages that are needed in the proof. First, their symmetry properties
allow to use reduced linear codes with 4gC1 coordinates instead of .4gC2/.4gC1/,
thus also simplifying the matrix Q4gC2 , bounding the linking number to a more simple
.4gC 1/� .4gC 1/ matrix (Lemma 6-15). Second, it is possible to refine the bounds
on the linking number by refining the intersection number between the 2–chain S



� and
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Figure 26: On the left, the covering of †2;3;4gC2 by a genus-g surface, for
g D 3 . A fundamental domain for †2;3;4gC2 is obtained by taking the union
of any white triangle with a neighboring orange triangle. On the right the
intermediate tiling T4gC2 of the hyperbolic plane by equilateral triangles
with angles �=.2gC 1/ . Each triangle is a 3–fold cover of †2;3;4gC2 . The
polygon P4gC2 (and therefore the surface †g ) is obtained by gluing 4gC 2

triangles that are adjacent to a vertex.

the curve 
 0 , thus refining the first term in Definition 6-1. The price to pay is to add 2g

coordinates to the reduced linear code that describes how many consecutive times the
family takes the rightmost and leftmost ribbons of the template. These two first steps
then associate to every collection of �2;3;4gC2 –invariant geodesics a reduced linear
code with 6gC 1 coordinates, so that the linking number between two collections in
bounded by a bilinear form S4gC2 in the reduced linear code. Third, we determine a
cone C2;3;4gC2 in R6gC1 that (strictly) contains all reduced linear codes, and whose
extremal rays are easy to determine. The proof of Proposition 6-14 then consists of
proving that the form S4gC2 is negative on all pairs of extremal rays of C2;3;4gC2 .

So, let 
; 
 0 be two orbits of ˆ†2;3;4gC2
. Let y
 ; y
 0 be the images in the template B4gC2

of the �2;3;4gC2 –invariant lifts of 
 and 
 0 in T 1†g . Denote by bi;j and b0i;j their
linear codes, as defined in Definition 6-2. Since the collection y
 is invariant under an
order 4gC 2 rotation around the center of P4gC2 , we have bi;j D biC1;jC1 for every
i; j . Therefore, one can consider a simpler code ybi;j defined for j D 1; : : : ; 4gC 1

by ybj D
P

iD0;:::;4gC1 bi;iCj . Similarly, we introduce a reduced form yQ2;3;4gC2 on
R4gC1 whose coefficients yqj ;l are defined by yqj ;l D

P
i;kD0;:::;4gC1 qi;iCj ;k;kCl .

Lemma 6-15 With the above definitions, for j ; l D 1; : : : ; 4gC 1, we have

(6-16) yqj ;l D .2gC 1/jj � l j � 2g.2gC 1/C
1

2g�2
.j � 2g� 1/.l � 2g� 1/:
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Proof We start from the formula for qi;j ;k;l given by Definition 6-1 with replacing j

by i C j and l by kC l . The first term

�
1
2
.fi < k < kC l � i C j gC fk < i < i C j � kC lg/

equals 1
2

if the two chords connecting the edges ei to eiCj , and ek to ekCl do not
intersect and are parallel, or if they have a common head (see Figure 27). When the
differences j and l are fixed, they are 4gC 2 possible choices for the first chord, and
then there are jj � l j positions for the second chord that give an admissible position.
This gives the first term of Equation (6-16).

i C j

i

Figure 27: Once the chord connecting ei to eiCj is chosen (with j D 4 on
the picture), there are jl � j j choices for k , so that the chord connecting ek

to ekCl contributes to fi < k < kC l � iCj g or to fk < i < iCj � kC lg

(with l D 11 on the picture).

For the second term, we note that when i; iCj are fixed, there are 4g values of k that
add 1

8
to the sum, and 4g values of xk that also add 1

8
. So this yields a contribution of

g when i is fixed. By summing over all i , we obtain the second term.

The third term in Definition 6-1 depends of the parity of i; i C j ; k; k C l , because
we are considering the rotation amount of the chord with respect to the two different
vertices of P4gC2 . When summed over all i; j , these two rotation amounts are
equal, so that we only consider the mean rotation of the chords. These are equal to
j � 2g� 1 and l � 2g� 1 respectively. Then the contribution to yqj ;l is a multiple of
.j � 2g� 1/.l � 2g� 1/. The constant is given by Lemma 6-9.

The symmetry of the families y
 ; y
 0 now allows us to refine Lemma 6-5, at the expense
of expanding the code. The idea is that if several consecutive arcs of y
 all travel along
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the rightmost ribbon, then they cannot cross as many arcs of y
 0 as the bound (and the
proof) of Lemma 6-5 suggests. For the sequel, it is important to remember that the
families y
 and y
 0 are invariant by a rotation of order 4gC 2 of P4gC2 .

Definition 6-17 For mD 1; : : : ; 2g , let cm (resp. dm ) denote the number of arcs of
y
 that travel exactly m consecutive times along Rib0;1 (resp. Rib0;4gC1 ). Define c0m
and d 0m similarly. The set ..bj /jD1;:::;4gC1; .cm/mD1;:::;2g; .dm/mD1;:::;2g/ is called
the linear reduced code of y
 .

For m; nD 1; : : : ; 2g , define rm;n to be �2g� 1 if i D j ¤ 1 and 0 otherwise. Let
R4gC2 denote the bilinear form on R2g with coefficients rm;n , and let S4gC2 denote
the bilinear form on R8gC1 that is the direct sum yQ4gC2˚R4gC2˚R4gC2 .

Note that if an arc travels m consecutive times along a ribbon, then it travels m� 1

times at it next move. Thus we have cm�1 � cm and dm�1 � dm for every m. Note
also that some orbits of the template could travel more than g times along the leftmost
ribbon, thus making more than one half-turn around the corresponding vertex of P4gC2 .
These orbits do not interest us, since they cannot come from geodesics.

Lemma 6-18 With the above notation, the intersection number between y
 0 and the
2–chain S



� is at most

4gC1X
j ;lD1

.2gC 1/jj � l jbj b0l � .2gC 1/

gX
mD2

.cmc0mC dmd 0m/:

The linking number Lk.y
 ; y
 0/ is smaller than

S4gC2

�
..bj /; .cm/; .dm//; ..bj /; .cm/; .dm//

�
:

Proof (See Figure 28.) We use the notation introduced in the proof of Lemma 6-5.
In the second case of this proof (i ¤ k; j D l ), we assumed that there was always an
intersection between the considered arc ˛0 on Ribk;l and any elementary piece d l

˛

or dr
˛ of the 2–chain S



� . Actually, if ˛0 is an arc that lies in the rightmost ribbon

RibjC1;j there is an intersection point with d l
˛ or dr

˛ if and only if ˛ does not lie
in RibjC1;j and the head of ˛0 in the vertical branching segment BSj ;j is under the
head of ˛ . In particular, we know that there are c0

2
elementary arcs of y
 0 in RibjC1;j

whose heads are above all tails of arcs of y
 that will travel more than one time along
the rightmost ribbon. Indeed, if an arc travels two or more times along the rightmost
ribbon, then its direction at infinity is on the right of the direction of an arc travels only
once on the rightmost ribbon (see Figure 28). Since there are at least d2 such arcs
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RibjC1;j

BSj ;j

Ribj ;j�1

Figure 28: A neighborhood of a branching segment BSj ;j in T 1†g . Both
ribbons RibjC1;j and Ribj ;j�1 are subdivided into subribbons containing
arcs that travel 1; 2; 3; : : : consecutive times respectively along the rightmost
ribbon. For a family of orbits of the template that is invariant by rotation of
P4gC2 , the arcs on RibjC1;j and on Ribj ;j�1 are in one-to-one correspon-
dence.

in y
 at each branching segment, we can add a term �1
2
.4gC 2/d2d 0

2
to the previous

bound on the intersection number between S


� and y
 0 . Similarly, we can consider the

d 0
3

arcs of y
 0 that reach BSj ;j along the rightmost arc and that will travel along it two
more times. Their heads cannot be above the tails of the d3 arcs of y
 that arrive at
BSj ;j from a different ribbon and that travel two or more times along the rightmost
ribbon. At the end, we can then add a term �.2gC 1/.d2d 0

2
C d3d 0

3
C � � � C dgd 0g/.

Considering also the leftmost ribbons gives the announced extra-term.

The formula for total linking number then follows by replacing the first term in
Equation (6-16) by the above one.

The goal is now to bound the value of the quadratic form S4gC2 on the set of linear
reduced codes that come from geodesics of †2;3;4gC2 . In order to do this, we first
determine a cone in R6gC1 that contains the set of linear reduced codes.
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Definition 6-19 For x;y in f1; : : : ; 2gg, let Vx;y be the vector in R4gC1˚Rg˚Rg

with coordinates
..x� 1; 0; : : : ; 0; 1; 0; : : : ; 0; 1; 0; : : : ; 0;y � 1/; .2; : : : ; 2; .1/; 0; : : : ; 0/;

.2; : : : ; 2; .1/; 0; : : : //;

where the two 1 in the first block are in position yC 1 and 4g�xC 1, where there
are b.x� 1/=2c coefficients 2 in the second block, one 1 if x is even, and there are
b.y � 1/=2c coefficients 2 in the last block, and one 1 if y is even.

Let C4gC2 be the conway hull in R6gC1 of the rays generated by the 4g2 vectors Vx;y .

Lemma 6-20 With the above definition, the reduced linear code of every collection of
�2;3;4gC2 –periodic geodesics belongs to C4gC2 n f0g.

RL6R

LR3L

RL2R

R2

Figure 29: Some dynamical codes. The length of the code equals the number
of crossed triangles.

Proof (See Figure 29.) Let T4gC2 denote the �2;3;4gC2 –invariant tessellation of H2

by equilateral triangles with angles 2�=.4gC 2/. Note that a fundamental domain for
the action of �2;3;4gC2 on H2 is given by a third a tile of T4gC2 . Note also that by
considering the 4gC 2 triangular tiles that are adjacent to a given vertex, we obtain a
fundamental domain P4gC2 for the surface †g .

As before, let y
 be a �2;3;4gC2 –periodic geodesics, considered in H2 . We associate
to it a dynamical code in the following way. Starting from an arbitrary intersection
point between y
 and an edge of T4gC2 , we follow the geodesics y
 . Every time we
cross a triangle of T4gC2 , we add a letter L to the dynamical code if y
 goes to the
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left in this triangle, a letter R if it goes to the right. Of course we stop after one period.
At the expense of a cyclic permutation, the dynamical code can then be assumed to be
of the form Lx1Ry1Lx2 � � �Ryn .

The key point is that 1� xk � 2g and 1� yk � 2g hold for every k . Indeed, a curve
that goes more than 2g consecutive times on the left crosses one of the geodesics
containing edges of the tiling more than once, and therefore it cannot be a geodesic.

The second point is that the linear reduced code depends linearly of the exponents
xk ;yk in an explicit way. Indeed, every arc ˛ of y
 in P4gC2 is associated to a unique
position in the dynamical code that describes the dynamical code when starting at the
tail of ˛ . Conversely, to every position in the dynamical code are associated 4gC 2

arcs of y
 that are obtained one from another by a rotation about the center of P4gC2 .

Now, if an arc ˛ goes from an edge ei to the edge eiCj in P4gC2 with 2� j � 2gC1,
then the corresponding dynamical code is LRj�1L, while the linear reduced code
contains only a 1 in j � 1st position. Similarly if an arc goes from ei to eiCj

with 2gC1� j � 4g , then the dynamical code is RL4gC1�j R and the linear reduced
code contains only a 1 in j�1st position. (There is an ambiguity in the case j D 2gC1

for the dynamical code, depending on which side of the center of P4gC2 the geodesics
go. But both give rise to the same the linear reduced code, so that this ambiguity is of
no consequence.)

In the remaining case, if an arc goes from ei to eiC1 , then the dynamical code begins
with L2 , and the linear reduced code begins with a 1 in 1st position. However, the
second block of coordinates (that corresponds to the vector .cm/) can be non-zero,
depending on how many times the geodesics y
 will go on the left after escaping P4gC2 .
The point here is that the dynamical code actually begins with LxR, and the number
of times that y
 will travel along the leftmost ribbon is bx=2c. Therefore the second
block there contains a 1 in bx=2cth position. The case j D 4gC 1 is treated similarly.

Finally, we truncate the dynamical code of y
 into the n blocks

RLx1Ry1�1; RLx2Ry2�1; : : : ; RLxnRyn�1:

The linear reduced code that corresponds to a block RLxk Ryk�1 is the sum of the
linear codes corresponding to each of the xkCyk letters, which turns out to be Vxk ;yk

by the above discussion. Therefore the linear code associated to y
 is the sum of n

such vectors. Thus it belongs to C4gC2 n f0g.

Lemma 6-21 The form S4gC2 is negative on C4gC2 n f0g.

Algebraic & Geometric Topology, Volume 15 (2015)



1592 Pierre Dehornoy

Proof The form S4gC2 is bilinear, so that it is enough to show that it is negative
when evaluated on every pair .Vx;y ;Vx0;y0/ of extremal vectors. Now we note that
S4gC2.Vx;y ;Vx0;y0/ is a function of x;x0;y;y0 which is almost linear in each of
the coordinates. Indeed, we can expend Equation (6-16) corrected with the term of
Lemma 6-18 and obtain for S4gC2.Vx;y ;Vx0;y0/ the value

.2gC 1/
�
.x� 1/.y0C 4g�x0/C .y � 1/.4g�y0Cx0/C .x0� 1/.yC 4g�x/

C .y0� 1/.4g�yCx/C 4g.x� 1/.y0� 1/

C 4g.x0� 1/.y � 1/Cjy �y0jC jy � 4gCx0jC jx�x0jC jy0� 4gCxj
�

� .2gC 1/
�
4 min

�j
x�1

2

k
;
j

x0�1

2

k�
C 4 min

�j
y�1

2

k
;
j

y0�1

2

k�
C � � �

�
� 2g.2gC 1/.xCy/.x0Cy0/

C
2g� 1

2g� 2

�
�2g.x� 1/C .y � 2g/C .2g�x/C 2g.y � 1/

�
�
�
�2g.x0� 1/C .y0� 2g/C .2g�x0/C 2g.y0� 1/

�
:

The second term — which corresponds to the correction that we added — contains an
extra term dealing with the parity of x and y . Since it is negative, forgetting it can
only increase the result.

The observation here is that, except for what concerns the integer part operation in
the second term, the above formula is linear in the variables x;x0;y;y0 on the four
regions fx < x0;y < y0g, fx < x0;y > y0g, fx > x0;y < y0g and fx > x0;y > y0g.
By replacing b.x�1/=2c by .x�1/=2, thus slightly increasing the result, we obtain a
formula that is linear is all four variables.

Therefore, in order to prove that S4gC2.Vx;y ;Vx0;y0/ is negative, we only have to
evaluate the above formula on the extremal points of the four connected components
of the domain that we are considering. These turn out to be 16 vertices of the cube
Œ1; 2g�4 . Using symmetries, we can actually reduce the computation to six points,
namely to .1; 1; 1; 1/, .1; 1; 1; 2g/, .1; 1; 2g; 2g/, .1; 2g; 1; 2g/, .1; 2g; 2g; 1/ and
.2g; 2g; 2g; 2g/. It is then easy to check that the form is negative on these points.

Note that for all six points except .1; 1; 2g; 2g/, the correction term provided by
Lemma 6-18 is useless. However, at .1; 1; 2g; 2g/, the uncorrected form is positive,
while the corrected one is negative. This vertex corresponds to the linking number of
two collections that go as right as possible, that is whose dynamical code is LR2g . It
is not a surprise that this vertex is where the form is the least negative, as the linking
number of two (non-geodesic) collections whose dynamical code contains only R is
positive (such collections are isotopic to a multiple of a fiber in T 1†2;3;4gC2 , and two
such fibers are positively linked).
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Proof of Proposition 6-14 (Case .b/ of Theorem A) Since T 1†g is a finite cover
of T 1†2;3;4gC2 , it is enough by Lemma 2-2 to show that the invariant lifts of the
families 
 and 
 0 have negative linking number in T 1†g . By the construction of the
template B4gC2 and by Theorem 4-9, these lifts are isotopic to two families y
 ; y
 0 of
periodic orbits of B4gC2 . By Lemma 6-20, the reduced linear codes of y
 ; y
 0 belong
to the cone C4gC2 n f0g, and, by Lemma 6-21, the form S4gC2 is negative on the pair
formed by the two codes. By Lemma 6-18, the linking number between Lk.y
 ; y
 0/ is
then negative, and so is Lk.
; 
 0/.

Thus the proof of Theorem A is complete.

7 Further questions

We conclude with a few remarks and questions about extensions of the above results.
Here we shall both construct counter-examples showing some limitations for possible
generalizations and discuss a few plausible conjectures.

7.1 Left-handed flows

We exhibited in Theorem A some hyperbolic orbifolds with no rational homology on
which any two orbits of the geodesic flow have a negative linking number. It is natural
to ask for further examples of orbifolds with the same property. One could even wonder
whether the property could be true for every hyperbolic orbifold. This is not the case,
and there exist counter-examples on every hyperbolic surface.

Proposition 7-1 Let †2 be a genus two hyperbolic surface. Then there exist two
null-homologous collections 
; 
 0 of periodic orbits of ˆ†2

satisfying Lk.
; 
 0/ > 0.

Proof Let 
 be the lift of the green collection and 
 0 be the lift of the orange collection
in Figure 30.

Figure 30

Then the lift of the green vector field is a surface whose boundary is the union of 

and twice the fiber of a point, and which does not intersect 
 0 . The same vector field
on the other pair of pants connects 
 0 to twice another fiber. Then one checks that the
linking number between two fibers is C1

2
, and we thus obtain Lk.
; 
 0/DC2.
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Figure 31

However, let us mention that such counter-examples are rare. Indeed, using the tech-
niques of Section 6 and a computer, we have explored the possible linking numbers
of periodic orbits of ˆ†2

and ˆ†3
. In a vast majority of cases, the linking number

is negative, and the situation of Proposition 7-1 is exceptional. So far we have no
explanation for this rarity.

Question 7-2 Let †g be a genus-g hyperbolic surface. Characterize those pairs of
collections of periodic orbits of ˆ†g

that have a positive linking number.

We note that the counter-examples of Proposition 7-1 involve parallel collections of
geodesics. A more specific, and maybe more accessible question, could be:

Question 7-3 Let †g be a genus-g hyperbolic surface. If 
; 
 0 are two collections
of periodic orbits of ˆ†g

whose projections are not parallel and intersect, do we have
Lk.
; 
 0/� 0?

In another direction, it is natural to wonder whether the assumption of a negative
curvature can be dropped. Corollary 2-3 shows that the geodesic flow is also left
handed on orbifolds with constant positive curvature, and, although their unit tangent
bundle is not a homology sphere, orbifolds with constant zero curvature also yields
flows that are left handed in some weak sense (see Theorem B and its corollaries).
Nevertheless, one cannot hope for the geodesic flow on every sphere to be left handed.

Proposition 7-4 If a surface † admits at least two separating geodesics that do not
intersect, then the geodesic flow ˆ† is not left handed.

Proof Figure 32 corresponds to the case of a sphere whose curvature has a non-
constant sign. The lifts of the two drawn curves are cohomologous, in the complement
of the other curve, to a fiber and the opposite of a fiber respectively. Their linking
number is C1

2
. The argument is similar in the general case.
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Figure 32

The situation of Proposition 7-4 cannot happen for a sphere with a positive curvature,
and we propose:

Conjecture 7-5 Assume that † is a 2–sphere with a variable positive curvature. Then
the geodesic flow ˆ† is left handed.

The particular case of an ellipsoid could be accessible as, in this case, the geodesic
flow is integrable.

On the other hand, the counter-example of Proposition 7-1 heavily relies on the fact
that the homology of †2 is non-trivial. Therefore the conjecture of Ghys claiming that,
if † is a hyperbolic 2–orbifold with H1.†;Q/D 0, then the geodesic flow ˆ† is left
handed remains open and plausible.

So, in view of the known results and the above conjectures, the only cases for which
the situation is totally unclear are those of orbifolds whose curvature has a non-constant
sign and in which any two geodesics intersect, typically a pair of pants capped with
three round hemispheres and slightly distorted so that the circles bounding the pants
are not geodesic.

7.2 Template knots

The construction of Section 4 associates a (multi)-template with every regular tessella-
tion of H2 . Among all templates arising in this way, it is natural to pay special attention
to those associated with the orbifolds †p;q;1 of Section 5. In this case, the tiles
exclusively are ideal polygons and, therefore, there exists a one-to-one correspondence
between the periodic orbits of the template and the periodic geodesics on the orbifold.
The knots appearing in this approach generalize Lorenz knots, which correspond to the
special case p D 2, q D 3. Lorenz knots have many interesting properties, and one
can wonder whether similar properties could be true for those knots that appear in the
above more general setting.

Question 7-6 Which knots appear as periodic orbits of ˆ†p;q;1
?
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In this direction, Pinsky announced [14] that every periodic orbit of ˆ†2;q;1
is a prime

knot (in the non-compact manifold T 1†p;q;1 ). Also, our current results show that
these knots are fibered in T 1†p;q;1 . So, in particular, all knots cannot appear in this
way.

7.3 Gauss linking forms

Let M be 3–manifold. A Gauss linking form on M is a differential .1; 1/–form
whose integral along every pair of null-homologous curves equals their linking number.
Gauss linking forms exist on arbitrary 3–manifolds, but explicit formulas are known in
very few cases: essentially, the only known examples are the those of [6] for the cases
of S3;R3 and H3 .

Now, Ghys’ theorem [10] states that a flow is left handed if and only if there exists
a Gauss linking form that is negative on the flow. Therefore, Theorem A implies the
existence, for the considered orbifolds †, of a Gauss linking form in T 1† that is
negative along ˆ† . However, our proof of Theorem A gives no indication about the
involved Gauss linking forms.

Question 7-7 Are there explicit formulas for the Gauss linking forms implicitly
involved in Theorem A?

More generally, better understanding Gauss linking forms appears as a plausible way
to address Question 1-2 and Conjecture 7-5.
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