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Fat sub-Riemannian symmetric spaces:
the nilpotent case

D.M. Almeida and E. Falbel

Abstract. In this paper we start the classification of strongly bracket-generated sub-
symmetric spaces. We prove a structure theorem and analyze the nilpotent case.

1. Introduction

Sub-Riemannian manifolds are manifolds equipped with a non-integrable dis-
tribution which, in its turn, is equipped with a metric. Symmetric spaces have an
important role in Riemannian geometry and therefore it is interesting to consider
a generalization of them in the context of sub-Riemannian geometry as given in
[18]. One hopes to obtain classification results by imposing restrictions on the dis-
tribution underlining the sub-Riemannian structure. For instance, in the case of
sub-Riemannian structures on contact manifolds, sub-symmetric spaces were ana-
lyzed in [5], [10].

A natural and simplifying condition on the distribution is that of strongly
bracket generation. It means that given a non-vanishing horizontal vector field
(that is, at each point the vector field belongs to the distribution), its brackets
with other horizontal vector fields generate the full tangent space of the manifold.
Strongly bracket generating distributions are also called fat distributions and the
first author started a study of the corresponding sub-symmetric spaces in [1]. In
particular, from the class of Riemannian symmetric spaces called Wolf spaces it
is constructed in [1] a class of sub-symmetric spaces with a distribution which is
strongly bracket generated and of codimension three. But the full classification of
sub-symmetric spaces with fat distributions of codimension three is not yet achieved.

Key words and phrases: sub-Riemannian geometry, sub-symmetric space, fat distribution,
two-step nilpotent Lie algebra.
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The simplest Riemannian symmetric space is Euclidean flat space and it also
appears as the tangent space of all symmetric spaces. The analogue of that flat space
in the case sub-Riemannian geometry is given by nilpotent groups. For a general
theory of tangent spaces in sub-Riemannian geometry see [2]. The understanding
of nilpotent symmetric spaces is, therefore, a preliminary step to the classification
of general sub-symmetric spaces. Strongly bracket generated nilpotent groups are
also called fat or regular. In this paper we classify regular nilpotent sub-symmetric
spaces satisfying certain natural conditions.

The results in the paper include a structure theorem (Theorem 3) for sub-sym-
metric spaces and Theorem 4 which states that nilpotent fat sub-symmetric spaces
are always two step nilpotent groups. The classification is therefore reduced to
2-step nilpotent algebras where a description is given in Example 1. But their
classification is incomplete, see [16] for an up to date on fat 2-step nilpotent Lie
algebras. In particular, a complete classification exists when the center of the
nilpotent group is two dimensional (see [11], [16]).

Two step nilpotent groups with a left invariant metric have been studied in the
context of Riemannian geometry. In particular, writing a two step nilpotent Lie
algebra with an invariant metric <·, ·> as n=z⊕z⊥ with z central we introduce, as
in [13], the following operator

J : z → so(z⊥, <·, ·>|z⊥),(1)

defined by

<JZX,Y >|z⊥=<Z, [X,Y ]>|z, ∀X,Y ∈ z⊥, ∀Z ∈ z.

Two special cases are worth mentioning. The first one arises when JZ
2=

−|Z|2Id (∀Z∈z) and, in this case, the Lie algebra is called of H-type. The sec-
ond one arises when J is a Lie algebra homomorphism for a certain compact Lie
algebra structure on z and, in this case, the Lie algebra is called of Rep-type (see
[9], [15], [16]). Nilpotent algebras of H-type are classified in [3], [4], [13]. The case
of fat nilpotent Rep-type are also easily classified. It turns out that they all have
either one dimensional or three dimensional center (see [16]). The intersection of
these two classes of 2-step nilpotent groups corresponds to Heisenberg groups and
its quaternionic analogues.

The Riemannian geometry of these two step nilpotent groups (see [8] for a
clear account) can be related to their sub-Riemannian geometry. We compute an
adapted connection as defined in [1] and show that these symmetric spaces with the
fat condition are flat in the sense of sub-Riemannian geometry.
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As a final remark we recall the result in [7] that every fat 2-step 7-dimensional
nilpotent group with center of dimension 3 is, in fact, the Quaternionic Heisen-
berg group thus providing a classification of fat nilpotent sub-symmetric spaces of
dimension seven with codimension three distributions.

2. Sub-symmetric spaces

2.1. Sub-Riemannian manifolds

In this short section, we define the geometric objects motivating the study of
certain Lie algebras with symmetry.

Let M be a smooth manifold, and TxM denote the tangent space at a point
x∈M . A distribution D defined on M is called fat or strongly bracket generated if
for each x∈M and each local section Z of D near x with Z(x) �=0, we have

TxM =Dx+{[Z,W ]x :W varies over all sections of D}.

In terms of the Levi form

L :D×D−→TM/D, defined by Lx(v, w)= [V,W ]x mod Dx

where V , W are extensions of v, w to sections of D, the fat condition means that for
each x∈M and each nonzero vector v∈Dx the linear operator Lx(v, ·) is surjective.
If the distribution has codimension one, the fat condition is equivalent to the contact
condition.

A sub-Riemannian manifold is a triple (M,D, g) where M is a smooth manifold,
D is a smooth distribution defined on M (i.e. D is a subbundle of the tangent bundle
TM) and g is a Riemannian metric defined on D.

A local isometry between two sub-Riemannian manifolds (M,D, g) and (M ′,D′,

g′) is a diffeomorphism between open sets ψ :U⊂M→U ′⊂M ′ such that ψ∗(D)=D′

and ψ∗g′=g. If ψ is globally defined, we say that ψ is an isometry.
A sub-Riemannian homogeneous space is a sub-Riemannian manifold (M,D, g)

which admits a transitive Lie group of isometries acting smoothly on M .
The general definition of sub-Riemannian symmetric spaces was given in [18].

Definition 1. A sub-Riemannian symmetric space or sub-symmetric space, for
short, is a homogeneous sub-Riemannian manifold (M,D, g) such that, for every
point x0∈M , the isotropy is compact and, moreover, there is an involution which
is an isometry [resp., a local isometry] ψ, called the sub-symmetry at x0, with
ψ(x0)=x0 and ψ∗|Dx0

=−1.
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Remark 1. If D is a fat distribution we do not need the homogeneity condition
in the definition of sub-symmetric spaces. This follows from the existence of the
sub-symmetry at all points (see [1]).

2.2. Sub-symmetric Lie algebras

In this section we set the description of sub-symmetric spaces in the Lie algebra
level. The relation to sub-Riemannian and sub-symmetric spaces will be given in
the next section. We recall first the definition of involutive algebras which appear
in the study of symmetric spaces (see [14] for an overview):

Definition 2. An involutive Lie algebra (IL-algebra, for short) is a pair (g, σ)
where g is a (real) Lie algebra and σ is an involutive automorphism of g. Then
there is a canonical decomposition g=g+⊕g− into the ±1-eigenspaces of σ.

In the case of sub-Riemannian geometry we specify more conditions.

Definition 3. A sub-orthogonal IL-algebra (sub-OIL algebra, for short) is given
by the data (g, σ, p, k, B) where

1. g is a (real) Lie algebra and σ is an involutive automorphism of g. We note
the canonical decomposition g=g+⊕g− into the ±1-eigenspaces of σ.

2. p⊂g−.
3. k⊂g+ is a compact subalgebra and B is an adk-invariant inner product on p.
4. g is generated as a Lie algebra by p and k.
5. The adjoint action of k on p is effective.

We define next the Levi form

Definition 4. Consider a sub-OIL-algebra (g, σ, p, k, B). The Levi form Θ:p×
p→g+/k is defined by

Θ(X,Y )= [X,Y ]/k

We will consider in the following algebras such that Θ is surjective. From now
on we prefer to write h=g+. We will also impose that p=g−, although this follows
from definitions in some situations. In this case we prefer to drop the p in the
notation of the sub-OIL-algebra.

Definition 5. Consider a sub-OIL-algebra (g, σ, p, k, B). We say the algebra is
fat if

ιX ¨Θ : p−→ h/k

is surjective for every non-zero X∈p.
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Remark 2. We observe that the requirement that ιX ¨Θ be surjective in Defini-
tion (5) imposes a restrictive condition on the dimension of p. Let d=dim h/k, then
if d=1 this is the contact condition and then dimension of p is even [10]; if d≥2,
from ([17], Proposition 5), we have that the dimension of p is a multiple of 4 and
greater than or equal to d+1.

Example 1. Let (p, B) be a real vector space with inner product, h a real vector
space, and let [·, ·]:p×p→h be a skew-symmetric surjective bilinear map. Then
(g=p⊕h, σ, k=0, B) is a two-step nilpotent sub-OIL algebra where the bracket of
vectors on g is the extension of the bilinear map [·, ·] given by [p, h]=0, [h, h]=0,
and the involution σ :g→g is defined by σ(X)=−X for X∈p, σ(X)=X for X∈h.
The condition such that iX ¨[·, ·]:p→h is onto for all X �=0∈p defines then that
(g=p⊕h, σ, k=0, B) is a two-step nilpotent sub-OIL fat algebra.

2.3. Correspondence between fat sub-symmetric space and sub-OIL-
algebra

Now, we show the relation between the Lie algebra to the homogeneous space
with a sub-Riemannian structure [1].

As in the contact case, to a point x0 in a sub-symmetric space (M,D, g)
equipped with a fat distribution we may associate a linear object, its fat sub-
orthogonal Il-algebra. In fact, we take g to be the Lie algebra of the group of
all sub-Riemannian isometries of M , k to be the subalgebra corresponding to the
isotropy subgroup at x0, σ=Adψ, where ψ is the sub-symmetry at x0. Now the
differential of the projection π :G→M , given by π(ϕ)=ϕ(x0), identifies Dx0 with
p, and we take B to be the inner product gx0 lifted to p by π∗. Moreover, the fat
condition is equivalent to the surjection of the linear map ΘX for X∈p. Since M

is homogeneous, its sub-OIL algebra is the same at all points.
Conversely, given a fat sub-OIL algebra (g′, σ′, k′, B′) it defines a simply-con-

nected sub-symmetric space with a strongly bracket generating distribution as fol-
lows. Let G̃ be the simply-connected group with Lie algebra g′, g′=h

′⊕p′ the
decomposition into ±1-eigenspaces of σ′ and K̃⊂G̃ the connected subgroup for
k
′⊂g′. Let M denote the simply-connected manifold G̃/K̃. We have a projection
π :G̃→M given by π(ϕ)=ϕK̃=ϕ(x0) where x0 is the coset K̃. Then the subspace
Dx0 =π∗(p′)⊂Tx0M and the inner product B′ on p′ projected to Dx0 by π∗, de-
noted by gx0 , are invariants under K̃, since π∗(AdkX)=(dLk)x0(π∗X) for k∈K̃
and X∈p′ where Lk :M→M , Lk(ϕK̃)=kϕK̃. Hence Dx0 and gx0 translate respec-
tively to a G̃-invariant distribution D on M and to a G̃-invariant metric g on D.
The distribution D is fat because the linear map ΘX is onto for all X∈p′. The
automorphism σ′ of g′ induces an automorphism τ of G̃ such that τ∗=σ′ which in
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turn gives a transformation ψ :M→M by the rule ψ(ϕx0)=τ(ϕ)x0 for ϕ∈G̃. Then
ψ is an sub-Riemannian isometry of M relative to the sub-Riemannian metric g and
ψ∗(π∗X)=π∗(σ′X)=−π∗X for X∈p′, so ψ fixes x0 and ψ∗ is −1 on Dx0 . Thus ψ is
the sub-symmetry at x0 and φϕ(x0) :M→M defined by φϕ(x0)(x)=ϕψϕ−1(x) is the
sub-symmetry at ϕ(x0). Therefore, M is sub-symmetric. In other words,

Theorem 1. Let (g′, σ′, k′, B′) be a fat sub-orthogonal involutive Lie algebra

and let g′=h
′⊕p′ denote the decomposition of g′ into the ±1-eigenspaces of the

involution s′. Let K̃⊂H̃⊂G̃ be the corresponding connected Lie subgroups for the

Lie subalgebras k
′⊂g′ and h

′⊂g′, respectively. Then the total space of the fibration

H̃/K̃→G̃/K̃→G̃/H̃ is a fat sub-symmetric space equipped with the G̃-invariant

left-structure determined at the identity coset K̃ by p′ and B′.

It follows from the above that the fat sub-OIL algebra (g, σ, k, B) associated
to the sub-symmetric space M constructed as above contains (g′, σ′, k′, B′) as a fat
sub-OIL subalgebra, that is, g′ is a subalgebra of g, σ′ is the restriction of σ, k′ is
a subalgebra of k and B′=B. Moreover, in general the natural left action of G̃ on
M is not effective; there is a discrete kernel Z̃. Consequently, M=G0/K0 where
G0=G̃/Z̃ and K0=K̃/Z̃ still have g′ and k

′ as their Lie algebras.
The point here is that given two fat sub-OIL algebra such that one is a fat sub-

OIL subalgebra of the other, the corresponding simply-connected fat sub-symmetric
spaces are isometric. Taking this into account, we may assume that [p, p]=h since
[p, p]+p is a subalgebra of g and we can pass to a fat sub-OIL subalgebra if necessary.

2.4. A structure theorem

Let β is the Killing form of g. As Lemma 8.2.1 in [19], we also obtain the
following Lemma.

Lemma 1. Let (g, σ, p, k, B) be a sub-OIL algebra (recall that we assume that

p=g−). Then we can extend the inner product B defined on p to an adk-invariant

inner product on g and we have

• β(h, p)=B(h, p)=0.
• β|

k
is negative definite.

Proof. The existence of B and the first property are obvious. To show β|
k

is
negative, observe that ad(X) is skew-symmetric with respect to β, so ad(X) has
purely imaginary eigenvalues for all X∈k and therefore β(X,X)≤0. If β(X,X)=0
then all the eigenvalues of adX would be null and therefore ad(X)=0 and X would
be in the centralizer of p. But we supposed that the adjoint action of k on p is
effective, therefore X=0. �
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Proposition 1. Let (g, σ, k, B) be a solvable sub-OIL algebra, then [g, g]∩k=
{0}.

Proof. As g is solvable, β(g, [g, g])=0 (Lie’s theorem). If [g, g]∩k �={0} then
there would be an element k∈k such that β(k, k)=0. But β is negative definite on
k and we obtain a contradiction. �

As a consequence we obtain the following Corollary.

Corollary 1. Let (g, σ, k, B) be a sub-OIL algebra satisfying [p, p]=h. If g is

solvable then k=0.

A more precise description of a sub-OIL algebra is obtained by identifying
first the maximal solvable ideal in the Lie algebra. We recall now Theorem 5.1
in [14]. Let (g, σ) be an IL-algebra (Involutive algebras as in [14]) and r⊂g be its
radical, its largest solvable ideal. If s �=0 is an adk-, σ- invariant Levi subalgebra of g
(cf. [14]), write hr=h∩r, hs=h∩s, pr=p∩r and ps=p∩s. Then r=hr+pr, s=hs+ps

and g=r+s is a semidirect sum of IL-algebras.

Theorem 2. The exact sequence of IL-algebras

0−→ (r, σ|r)−→ (g, σ)−→ (g/r, σ∗)−→ 0,

where σ∗ is induced by σ on the projection, splits.

In the case g has a structure of sub-OIL algebra, we obtain a refined theorem.

Theorem 3. Suppose (g, σ, h, k, B) is a sub-OIL fat algebra. Then the sequence

0−→ (r, σ|r)−→ (g, σ)−→ (g/r, σ∗)−→ 0,

where σ∗ is induced by σ on the projection, splits. Moreover, with notations as

above, r∩k={0}, [p, pr]=hr, [ps, ps]=hs and hr is isomorphic to h/k.

Proof. The proof is an immediate consequence of the structure theorem for
involutive algebras and the following Lemma.

Lemma 2. Let (g, σ, k, B) be a sub-OIL algebra such that [p, p]=h and let r be

the radical of g, then r∩k={0}.

Proof. Recall β(r, [g, g])=0 (Lie’s theorem). If r∩k �={0} then there would be
an element k∈r such that β(k, k)=0. But β is negative definite on k and we obtain
a contradiction. �

Lemma 3. Let (g, σ, k, B) be a sub-OIL algebra such that [p, p]=h. Then

[p, pr]=hr and [ps, ps]=hs. If the algebra is fat then hr is isomorphic to h/k.
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Proof. The fact that r is an ideal implies that [p, pr]⊂hr and then both equal-
ities follow from the fact that [p, p]=h as p=pr⊕ps. If the algebra is fat then, on
one hand, ([p, pr]+k)/k=h/k and on the other hand ([p, pr]+k)/k=(hr+k)/k with
hr∩k={0}. This completes the proof. �

2.5. Nilpotent algebras

Theorem 4. All fat nilpotent sub-OIL algebras are 2-step nilpotent and are

obtained as in Example 1.

Proof. By Corollary 1 we know that k=0. Let the sub-OIL algebra be (g=
p⊕h, s, k=0, B). The theorem follows from the following two Lemmas. �

Lemma 4. Let g=p⊕h be a nilpotent Lie algebra with h a sub-algebra such

that [p, p]=h and [p, h]⊂p. Suppose moreover that iX ¨[·, ·]:p→h is surjective for

every non-zero X∈p. Then [h, p]=0.

Proof. Observe that, if the Lie algebra is nilpotent and fat, then the last non-
trivial ideal in the lower central series will be contained in h. Denote by z that ideal.
We show that [h, p]=0 by induction on the dimension of h.

If h is one dimensional (or 0-dimensional), it follows that z=h coincides with
the center of g and therefore [h, p]=0.

Now suppose the lemma true in the case dim h<k. If the dimension of h is k

consider the fat nilpotent algebra g/z=p⊕h/z. We apply the induction hypothesis
to conclude that [p, h/z]=0 and this equality implies immediately that [h, p]=0.

Lemma 5. Let g=p⊕h be a Lie algebra with [p, p]=h and [p, h]=0. Then

[h, h]=0.

Proof. We may write elements in h as hi=[Xi, Yi], i=1, 2. We obtain therefore

[h1, h2] = [[X1, Y1], [X2, Y2]] =−[[Y1, [X2, Y2]], X1]−[[[X2, Y2], X1], Y1].

But [h, p]=0, so that the two terms on the right are null as [Y1, [X2, Y2]]=[[X2, Y2],
X1]=0. This concludes the proof. �

To understand 2-step nilpotent algebras it is useful to introduce the following
operator.

Definition 6. ([13], [15]) Let n be a two-step nilpotent Lie algebra and <·, ·>
be an inner product on n. Denote by z the center of n and let n=z⊕z⊥ be the
orthogonal decomposition. We can associate to the pair (n, <·, ·>) the linear map

J : z → so(z⊥, <·, ·>|z⊥)
Z �→ JZ : z⊥→z⊥

(2)
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defined by

<JZX,Y >|z⊥=<Z, [X,Y ]>|z, ∀X,Y ∈ z⊥, ∀Z ∈ z.

Conversely, given two real vector spaces g and V equipped with the inner pro-
ducts, <·, ·>g and <·, ·>V respectively, and a linear map F : g→so(V,<·, ·>V ).
We can define a two-step nilpotent Lie algebra n=g⊕V with the Lie bracket given
by {

[g, g]=[g, V ]=0, [V, V ]⊂g,

<[X,Y ], Z>g=<F (Z)X,Y >V , ∀Z∈g, ∀X,Y ∈V,
(3)

and we can also endow n with the inner product <·, ·> defined by

< ·, ·>|g=< ·, ·>g, < ·, ·>|V =< ·, ·>V , < g, V >=0.

Definition 7. ([8]) A two-step nilpotent Lie algebra n is called fat (also non-
singular, or regular) if adX :n→z is surjective for all X∈(n\z), where z denotes the
center of n.

Proposition 2. ([8], [15]) Let n be a two-step nilpotent Lie algebra equipped

with an inner product <·, ·> and denote by z the center of n. Then [n, n]=z if and

only if the linear map J associated to the pair (n, <·, ·>) defined as in (2) is such

that JZ is not identically null, for all nonzero Z∈z.

Proof. To show the equivalence we argue by contradiction in both directions.
If there exists Z nonzero ∈z, such that JZ is identically null, then <JZX,Y >=<

[X,Y ], Z>=0, ∀X,Y ∈z⊥, then [n, n] cannot be equal to z otherwise there will be
X1, Y1∈z such that [X1, Y1]=Z and consequently Z would be zero. Conversely, if
[n, n] �=z, then there exists h∈z such that h is not in [n, n], since, from the two-step
nilpotent hypothesis, [n, n]⊂z. Now let [n, n]⊥ be the orthogonal complement to
[n, n] in z. We have two cases to consider: 1) h∈[n, n]⊥ or 2) h /∈[n, n]⊥. In the
first case we would have <JhX,Y >=<[X,Y ], h>=0 ∀X,Y ∈z⊥ and consequently
Jh≡0. In the second case h=h1+h2 with h1∈[n, n] and h2 nonzero in [n, n]⊥ and
we would have <Jh2X,Y >=<[X,Y ], h2>=0 ∀X,Y ∈z⊥ and consequently Jh2≡0.
So, in both cases we contradict the hypothesis JZ is not identically null, for all
nonzero Z∈z. �

Proposition 3. ([8], [16]) Let n be a two-step nilpotent Lie algebra equipped

with an inner product <·, ·> and denote by z the center of n. Then n is fat if and

only if the linear map J associated to the pair (n, <·, ·>) defined as in (2) is such

that JZ is invertible, for all nonzero Z∈z.
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Proof. Follows from the equivalence: n is fat if and only if ∀ z �=0∈z the map
(X,Y ) �→<[X,Y ], Z> is a non-degenerate 2-form on z⊥. �

Definition 8. ([13]) A Lie algebra n equipped with an inner product <·, ·> is
said to be of Heisenberg type or H-type, for short, if it is a two-step nilpotent Lie
algebra and the linear map J associated to the pair (n, <·, ·>) defined as in (2) is
such that J2

Z=−<z, z>I, ∀Z∈z, where z denotes the center of n and I denotes the
identity mapping.

Definition 9. ([16]) A two-step nilpotent Lie algebra n equipped with an inner
product <·, ·> is said to be of Representation type or Rep-type, for short, if the two
following conditions holds:

i) there is a structure [·, ·] of compact Lie algebra on the center z of n;
ii) the linear map J :z→so(z⊥, <·, ·>|z⊥) associated to the pair (n, <·, ·>) de-

fined as in (2) is a representation of z, i.e.

J[Z,W ] = [JZ , JW ], ∀Z,W ∈ z.

Example 2. The quaternionic Heisenberg algebra of dimension 4n+3, h4n+3, is
the 2-step nilpotent Lie algebra defined by the direct sum h

4n+3=z⊕V , where z is
a 3-dimensional real vector space with basis α={Z1, Z2, Z3}, V is a 4n-dimensional
real vector space with bases β={X1, Y1, V1,W1, ..., Xn, Yn, Vn,Wn} and the bracket
operation in h

4n+3 is defined as follows:

[Xi, Yi]= Z1, [Xi, Vi]= Z2, [Xi,Wi]= Z3, for 1≤i≤n,

[Yi, Xi]=−Z1, [Yi, Vi]= Z3, [Yi,Wi]=−Z2, for 1≤i≤n,

[Vi, Xi]=−Z2, [Vi, Yi]=−Z3, [Vi,Wi]= Z1, for 1≤i≤n,

[Wi, Xi]=−Z3, [Wi, Yi]= Z2, [Wi, Vi]=−Z1, for 1≤i≤n,

and all the other brackets are zero.

In the quaternionic Heisenberg algebra case, setting the inner product <·, ·>h

on h
4n+3 that declares α and β to be orthonormal basis and z and V orthogonal

subspaces, the linear map defined in (2) associated to the pair (h4n+3, <·, ·>h)
satisfies:

JZ1 : V → V

Xi → Yi

Yi → −Xi

Vi → Wi

Wi → −Vi

JZ2 : V → V

Xi → Vi

Yi → −Wi

Vi → −Xi

Wi → Yi

JZ3 : V → V

Xi → Wi

Yi → Vi

Vi → −Yi

Wi → −Xi

(for 1≤i≤n).
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And then,
JZ1 ¨JZ2−JZ2 ¨JZ1 = 2JZ3 ,

JZ1 ¨JZ3−JZ3 ¨JZ1 = −2JZ2 ,

JZ2 ¨JZ3−JZ3 ¨JZ2 = 2JZ1 .

So, J(z) is a Lie subalgebra of so(V,<·, ·>|V ).

Example 3. Let V 3
2 be the real vector space of all homogeneous polynomials

of degree 3 in two complex variables u and w with complex coefficients, i.e. V 3
2 =

{P (u,w)=au3+bu2w+cuw2+dw3 :a, b, c, d∈IC}. Setting the inner product <·, ·>V

on V 3
2 , that declares { 1√

3u
3, i 1√

3u
3, u2w, iu2w, uw2, iuw2, 1√

3w
3, i 1√

3w
3} to be an

orthonormal basis. Consider the real Lie algebra su(2) equipped with the inner
product such that the basis {H=

[
i 0
0 −i

]
, E−=

[ 0 −1
1 0

]
, E+=

[ 0 −i
−i 0

]
} is orthonormal.

Consider also the linear map

F : su(2) → so(V 3
2 , <·, ·>V )

Z �→ FZ : so(V 3
2 )→so(V 3

2 )

induced by the irreducible representation V 3
2 of SU(2) regarded as a real represen-

tation, i.e.

FZ(P (u,w)) = d
dt

∣∣
t=0

P (e−tZ

[
u

w

]
=dP(u,w)(−Z

[
u

w

]
)

=−
[
∂P
∂u (u,w) ∂P

∂w (u,w)
]
(Z

[
u

w

]
).

Then, we can associate to these structures the two-step nilpotent Lie algebra
n=su(2)⊕V 3

2 with the Lie bracket defined as in 3 which can be represented by its
structural map Fz given in the fixed orthonormal basis by

FaH+bE−+cE+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3a −
√

3b −
√

3c 0 0 0 0
−3a 0

√
3c −

√
3b 0 0 0 0

√
3b −

√
3c 0 a −2b −2c 0 0

√
3c

√
3b −a 0 2c −2b 0 0

0 0 2b −2c 0 −a −
√

3b −
√

3c
0 0 2c 2b a 0

√
3c −

√
3b

0 0 0 0
√

3b −
√

3c 0 −3a
0 0 0 0

√
3c

√
3b 3a 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that det Fz �=0, ∀ z �=0∈su(2) and then, by Proposition 3, n is fat.
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Remark 3. Denote by V n
2 the real vector space of all homogeneous polynomi-

als of degree n in two complex variables u and w with complex coefficients, i.e.
V n

2 ={P (u,w)=anu
n+an−1u

n−1w+...+a1uw
n−1+a0w

n :ai∈IC , i=0, 1, ..., n}. Set-
ting the inner product <·, ·>V on V n

2 such that

{X0, iX0, X1, iX1, ..., Xl, iXl, Yl+1, iYl+1, ..., Yn−1, iYn−1, Y0, iY0}

is an orthonormal basis, where X0= 1√
n
un, X1=un−1w, Y0= 1√

n
wn, Yn−1=uwn−1,

Xk=
√
n−1√

2 ...
√

n−(k−1)√
k

un−kwk(k=2, ..., l), Ys=
√
n−1√

2 ...
√
s+1√
n−s

un−sws(s=l+1, ...,
n−2) and l= n

2 if n is even or l= n−1
2 if n is odd. Consider the real Lie algebra

su(2) equipped with the inner product such that the basis {Z1=−H=
[−i 0

0 i

]
, Z2=

E+=
[ 0 −i
−i 0

]
, Z3=E−=

[ 0 −1
1 0

]
} is orthonormal. Consider also the linear map

F : su(2) → so(V n
2 , <·, ·>V )

Z �→ FZ : so(V n
2 )→so(V n

2 )

induced by the irreducible representation V n
2 of SU(2) regarded as a real represen-

tation, i.e.

FZ(P (u,w)) = d
dt

∣∣
t=0

P (e−tZ

[
u

w

]
=−

[
∂P
∂u (u,w) ∂P

∂w (u,w)
]
(Z

[
u

w

]
).

Then, we can associate to this structure the two-step nilpotent Lie algebra
n=su(2)⊕V n

2 with the Lie bracket defined as in 3 by its structural map Fz. In
particular when n=1, the associated two-step nilpotent Lie algebra n=su(2)⊕V 1

2
is the 7- dimensional quaternionic Heisenberg algebra.

Example 4. In [1] we find a canonical way of building up an irreducible simply-
connected fat sub-Riemannian symmetric space as a Sp(1)-fibration over a compact
simply-connected quaternionic Wolf space (i.e., over a Riemannian symmetric space
equipped with a quaternionic structure for which the holonomy group has quater-
nionic scalar part). The sub-OIL fat algebra (g, s, k, B) associated to this class of
examples of sub-symmetric spaces of quaternionic type has the following additional
properties:

i. the decomposition of g into the ±1-eigenspaces of the involution s denoted
by g=h⊕p is such that the +1-eigenspace is a direct sum of ideals h=k⊕a with
a∼=sp(1) and h=[p, p];
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ii. there is a B-orthonormal basis {X1, J1(X1), J2(X1), J3(X1), ..., Xn, J1(Xn),
J2(Xn), J3(Xn)} of p that satisfies:

[Xk, J1(Xk)] ≡ a
−4n−8 ξ1 mod k,

[Xk, J2(Xk)] ≡ a
−4n−8 ξ2 mod k,

[Xk, J3(Xk)] ≡ a
−4n−8 ξ3 mod k,

[J1(Xk), J2(Xk)] ≡ a
−4n−8 ξ3 mod k,

[J1(Xk), J3(Xk)] ≡ − a
−4n−8 ξ2 mod k,

[J2(Xk), J3(Xk)] ≡ a
−4n−8 ξ1 mod k, for k=1, 2, ..., n,

and the other brackets are zero modulo k, where a is a positive scalar and γ=
{ξ1, ξ2, ξ3} is the basis of a satisfying [ξ1, ξ2]=2ξ3,[ξ1, ξ3]=−2ξ2, and [ξ2, ξ3]=2ξ1.
Now, consider the inner product <·, ·> on [p, p]/k such that { a

−4n−8 ξ1 mod k,
a

−4n−8 ξ2 mod k, a
−4n−8 ξ3 mod k} is an orthonormal basis of [p, p]/k and the linear

map

F : [p, p]/k → so(p, B)

Z �→ FZ : p→p

defined by setting

B(FZX,Y )=<Z, θX(Y )>=<Z, [X,Y ] mod k>, ∀X,Y ∈ p, ∀Z ∈ [p, p]/k,

i.e., FZ(X)=(θX)∗(Z) where (θX)∗ denotes the adjoint of the surjective linear map
ΘX :p→[p, p]/k, ΘX(Y )=[X,Y ] mod k. Then, the two-step nilpotent Lie algebra
n=[p, p]/k⊕p associated to these structures, with the Lie bracket defined as in 3 by
its structural map Fz is the quaternionic Heisenberg algebra of dimension 4n+3.

3. Geometric invariants

In this section we show, by introducing a connection adapted to a fat distri-
bution, that one can interpret fundamental examples as flat spaces with constant
torsions. Namely, the quaternionic Heisenberg model, h4n+3, described in Exam-
ple 2 and the model given in Example 3. We also relate the adapted invariants to
previous work on nilpotent groups with the viewpoint of Riemannian geometry.

Let n be a two-step nilpotent Lie algebra and <·, ·> be an inner product on n.
Denote by z the center of n and let n=z⊕z⊥ be the orthogonal decomposition.
Denote by (N,<·, ·>) a simply real nilpotent Lie group with Lie algebra n endowed
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with a left-invariant metric determined by <·, ·>. The Levi-Civita connection,
denoted by ∇, and the curvature and Ricci tensors of (N,<·, ·>) has been computed
in [8]. One obtains

∇UV = 1
2{[U, V ]−(adU)∗(V )−(adV )∗(U)},

where U , V are elements of n regarded as left invariant vector fields on N , and
(adU)∗ and (adV )∗ denote the adjoints of adU and adV . In particular, one has⎧⎪⎪⎨⎪⎪⎩

i) ∇XY = 1
2 [X,Y ] ∀X,Y ∈z⊥,

ii) ∇XZ = ∇ZX=−1
2JZ(X) ∀X∈z⊥,∀Z∈z,

iii) ∇ZW = 0 ∀Z,W∈z.

A canonical connection adapted to the distribution defined on a sub-Rie-
mannian manifold which has an intrinsic Riemannian extension to the whole man-
ifold was constructed in [1]. To be more precise, let (M,<·, ·>) be a smooth Rie-
mannian manifold and D a smooth distribution on M . Let D⊥ be the <·, ·>-or-
thonormal complement of D. Finally, let TM , D and D⊥ denote respectively the
set of sections of TM , D and D⊥. Then

Theorem 5. ([1]) There exists a unique connection ∇:TM→TM∗⊗TM ,

called the adapted connection, and unique tensors τ :D⊥⊗D→D and σ :D⊗D⊥→
D⊥ which are symmetric in the second variable, called the sub-torsions, with the

following properties (T is the torsion tensor of the connection):

a. ∇U :D→D, ∇U :D⊥→D⊥;

b. ∇<·, ·>=0;
c. T (ξ,X)=τξ(X)+σX(ξ),

T (X,Y )=−[X,Y ]⊥,
T (ξ, η)=−[ξ, η]�;

for X, Y ∈D; ξ, η∈D⊥ and U∈TM , where [X,Y ]⊥ denotes the projection of [X,Y ]
onto D⊥ and [ξ, η]� denotes the projection of [ξ, η] onto D.

We compute the adapted connection for the Riemannian manifold (N,<·, ·>)
and it turns out that the adapted connection and the sub-torsions are identically
null. The only torsion which is not identically zero is T (X,Y )=−[X,Y ], for X,
Y ∈z⊥.

We relate the adapted connection to the invariants of the Levi-Civita con-
nection as computed in [8]. For that, we recall that the map JZ : z⊥→z⊥ is
the unique skew-symmetric linear map such that <JZX,Y >|z⊥=<Z, [X,Y ]>|z,
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∀X,Y ∈z⊥,∀Z∈z. Let End(z) and End(z⊥) be respectively the assembly of all en-
domorphism of z and z⊥, and denote by Ric the Ricci tensor associated to the Levi-
Civita connection. Define the bilinear map b:z⊥×z⊥→End(z), b(X,Y)=bXY :z→z

given by

bXY(Z)= [JZ(X), Y ] =T (Y, JZ(X)), ∀X,Y ∈ z⊥, ∀Z ∈ z.

Then, the linear map

(4) b̂=trace b=
m∑
i=1

beiei : z−→ z

where β={e1, e2, ..., em} is an orthonormal basis of z⊥, does not depend on β and
it is a symmetric linear map. This fact allows us to define the invariants λ1, ..., λd

eigenvalues of b̂. Note that, in the basis β of z⊥,

trace (JZ ¨JW )=
m∑
i=1

<JZ ¨JW (ei), ei >|z⊥=<

m∑
i=1

beiei(Z),W >|z .

And, from [8], we have that trace (JZ ¨JW )=−4Ric (Z,W ), ∀Z,W∈z. So, b̂:z→z

defined as in 4 is the unique positive semidefinite symmetric linear map such that
−4Ric (Z,W )=<b̂(Z),W>|z, ∀Z,W∈z.

Also, the bilinear map

A:z×z −→ End(z⊥)
(Z,W ) �−→ JZ ¨JW

induces the symmetric linear map

(5) Â=traceA=
d∑

α=1
A(Eα, Eα)=

d∑
α=1

(JEα)2 : z⊥ −→ z⊥

where {E1, ..., Ed} is a orthonormal basis of z, and provide us the invariants ρi(i=
1, ...,m) eigenvalues of Â. And, again from [8], we have that < 1

2
∑d

α=1(JEα)2(X),
Y >|z⊥= Ric (X,Y ), ∀X,Y ∈z⊥. So, Â:z⊥→z⊥ defined as in 5 is the unique negative
definite symmetric linear map such that 2Ric (X,Y )=<Â(X), Y >|z⊥ , ∀X,Y ∈z⊥.

Remark 4. We calculate the geometrical invariants for the quaternionic Heisen-
berg model, h

4n+3, described in Example 2 and also for the model given in Ex-
ample 3. We find ρ1=ρ2=...=ρ4n=−3 and λ1=λ2=λ3=−4n for the Example 2.
For the Example 3, we find ρ1=ρ2=...=ρ8=−15 and λ1=λ2=λ3=−40. For the
n=su(2)⊕V n

2 example with the inner product defined as in Remark 3, we find
ρ1=ρ2=...=ρ2n+2=−n2−2n and λ1=λ2=λ3=−2

3 (n3+3n2+2n).
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4. Naturally reductive Nilpotent algebras

It is important to remark that the complete classification of two-step nilpotent
fat algebras in dimension greater than 7 and 3-dimensional center (the 7-dimensional
case will be studied in the next section) is difficult. As an example, as shown in [16],
there exists explicit examples of continuous families of non-isomorphic fat two-step
algebras in higher dimensions.

The classification, however, is possible if we restrict the class of nilpotent
groups. In this section we present the classification of fat two-step nilpotent Lie
algebras of Rep-type with 3-dimensional center, Corollary 2 and Corollary 3. Using
that classification and the classification of H-type Lie algebras given in [3] we found
out that the quaternionic Heisenberg algebra is the only algebra with 3-dimensional
center figuring in both classes.

We start with a definition of naturally reductive Lie algebra which is closely
related to a special class of Rep-type Lie algebras. It provides an interesting class
of homogeneous spaces which generalize the class of symmetric spaces.

Definition 10. ([12]) The homogeneous Riemannian manifold (M, g) is said to
be naturally reductive if there exists:

1) a Lie group G acting transitively and effectively on the left on M as group
of isometries,

2) a vector space m complement to k in g such that Ad(K)m⊆m, where K

denotes the isotropy subgroup of G at some point p∈M , g and k denote the Lie
algebras of G and K,
satisfying the property

< [X,Y ]m, Z >+<Y, [X,Z]m>=0, ∀X,Y, Z ∈m,

where [X,Y ]m denotes the projection of [X,Y ] on m with respect to the decompo-
sition g=k⊕m and <·, ·> denotes the inner product on m induced by the metric g.

Proposition 4. ([12], [15]) Let n be a two-step nilpotent Lie algebra with center

z such that [n, n]=z and <·, ·> be an inner product on n. Denote by (N,<·, ·>) a

simply connected real nilpotent Lie group with Lie algebra n endowed with a left-

invariant metric determined by <·, ·>. Then,(N,<·, ·>) is naturally reductive if

and only if there exists a compact Lie algebra structure on z given by a bilinear map

τ : z×z→z with the property τ(x, ·)∈so(z, <·, ·>|z) such that J :z→so(z⊥, <·, ·>|z⊥)
becomes a real faithful representation of the Lie algebra (z, τ) on z⊥ without trivial

subrepresentations, i. e.
⋂

z∈z kerJz=0.

Corollary 2. Let n be a fat two-step nilpotent Lie algebra with center z and

<·, ·> be an inner product on n. Denote by (N,<·, ·>) a simply connected real nilpo-

tent Lie group with Lie algebra n endowed with a left-invariant metric determined by
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<·, ·>. Then, (N,<·, ·>) is naturally reductive if and only if there exists a compact

Lie algebra structure τ on z such that (z, τ)∼=su(2) and J :z→so(z⊥, <·, ·>|z⊥) is a

real faithful representation of su(2) without trivial subrepresentations.

Proof. First observe that the two-step nilpotent and fat hypotheses imply via
Proposition 2 and Proposition 3 that [n, n]=z. Next note that, using Proposition
4, it only remains to proof the isomorphism (z, τ)∼=su(2). To see this we are first
going to demonstrate that rank(z)=1. Suppose to the contrary, i. e. rank(z)>1.
Since J :z→so(z⊥, <·, ·>|z⊥) is a faithful representation, it follows that (z, τ)∼=J(z),
so rank(J(z))=1. Consequently, there exists T and F , linearly independent, in J(z)
that commute. Since T and F are skew-symmetric, invertible and commute, there
exits W a proper subspace of z⊥ invariant by T and F , and then T |W =λF |W for
some real λ �=0. So, the map T−λF �=0, since T and F are linearly independent, but
(T−λF )|W ≡0. This fact is a contradiction since T−λF is in J(z) and the elements
of J(z) are invertible operators. So, we have z compact with rank(z)=1, then by
[[6], Theorem 1.5 and its Corollary] it follows that (z, τ)∼=su(2). �

Corollary 3. Let n be a fat two-step nilpotent Lie algebra (equipped with an

inner product) which is of Rep-type and with three dimensional center z. If the map

J defined as in (2) is an irreducible representation of z then it is isomorphic to

the irreducible representation V k
2 of su(2) with k= 1

2dimz⊥−1, regarded as a real

representation, as in Remark (3). In the reducible case, by the complete reducibility

property of su(2), it is isomorphic to a direct sum of a finite number of the irreducible

representations V n
2 of su(2) with n odd.

5. Classification in dimension 7

In this section we prove that, in dimension 7, the only nilpotent sub-OIL fat
algebra with distribution of codimension 3 is the quaternionic Heisenberg algebra of
Example 2 (see Corollary 4). This is the analog of the fact that the only nilpotent
contact sub-symmetric spaces are the Heisenberg groups. It is a fundamental piece
for a full classification of sub-symmetric spaces of dimension 7 which we hope to
achieve.

In general, it is not true that a fat two-step nilpotent Lie algebra n equipped
with an inner product is of Rep-type, even under the assumption that the center z

of n has dimension three; see some counterexamples in [16]. But, by [[7], Lemma 3]
the assertion holds if dim n=7 and dim z=3. For the sake of completeness we give
a proof following [7].

Lemma 6. Let V and W be real vector space of finite dimensions, and let

[·, ·]:V ×V →W be a skew-symmetric bilinear map. Then, iX ¨[·, ·]:V ×V →W is
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onto for all nonzero X∈V if and only if, for any nonzero functional f∈W ∗, the

composite (f ¨[·, ·]) is a non-degenerate skew-symmetric bilinear form.

Proof. To show the equivalence we argue by contradiction in both directions.
In fact, if there exists f nonzero in W ∗, such that the composite (f ¨[·, ·]) is a
degenerate skew-symmetric bilinear form, then there exists a nonzero X∈V such
that (f ¨[X,Y ])=0 ∀Y ∈V and, consequently, for this X the map iX ¨[·, ·] cannot be
surjective. Conversely, if there exists a non-trivial X∈V such that iX ¨[·, ·]:V ×V →
W is not onto, then there exists a non-trivial Y ∈W such that Y is not in the image
of iX ¨[·, ·]. Then complete Y to a basis β of W and define a nonzero functional
f∈W ∗ by setting f(Y ) �=0 and f≡0 for other elements of the basis β. So, for
these f∈W ∗ we have that (f ¨[·, ·])≡0 or, equivalently, that (f ¨[·, ·]) is a degenerate
skew-symmetric bilinear form. �

Lemma 7. ([7]) Let p be a 4-dimensional real vector spaces, h a real vector

space of dimension three, and let [·, ·]:p×p→h be a skew-symmetric bilinear map

such that iX ¨[·, ·]:p→h is onto for all X �=0∈p. Then, fixing a basis of p the function

Ω:h�→IR defined by Ω(f)=
√
det(f ¨[·, ·]) is a positive definite quadratic form in h

�,

determined by [·, ·] up to a positive scale factor.

Proof. From Lemma 6 we know that (f ¨[·, ·]) is a non-degenerate skew-sym-
metric bilinear form, for any nonzero functional f∈W ∗. Thus, the matrix of (f ¨[·, ·])
in a fixed basis β={e1, e2, e3, e4} of p is a skew-symmetric matrix given by

[f ¨[·, ·]]β =

⎛⎜⎜⎜⎜⎝
0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

⎞⎟⎟⎟⎟⎠
where aij=f ¨[ei, ej ]; i=1, 2, 3; j=2, 3, 4 and i<j. Then,

det[f ¨ [·, ·]]β =(a12a34−a13a24+a23a14)2.

Consequently, ∀ a∈IR we have that

Ω(af)=
√

det[af ¨ [·, ·]]β =
√

a4det[f ¨ [·, ·]]β = a2
√

det[f ¨ [·, ·]]β = a2Ω(f),

in other words, Ω is a quadratic form. Also, since that for any nonzero functional
f∈W ∗, the matrix [f ¨[·, ·]]β is invertible and by hypothesis iX ¨[·, ·] is onto, it follows
that Ω is positive definite.
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To see that Ω is determined by [·, ·] up to a positive scale factor it is enough to
observe that if β′={e1

′, e2
′, e3

′, e4
′} is another basis of p then,

[f ¨ [·, ·]]β′ =G
t

[f ¨ [·, ·]]βG, where G is the change of basis matrix from β′ to β,

and as a consequence det[f ¨[·, ·]]β′ =(detG)2 det[f ¨[·, ·]]β. �

Theorem 6. ([7]) Let p be a 4-dimensional real vector space, h a real vector

space of dimension three, and let [·, ·]:p×p→h be a skew-symmetric bilinear map

such that iX ¨[·, ·]:p→h is onto for all X �=0∈p. Then, the 2-step nilpotent Lie

algebra g=p⊕h where the bracket of vectors on g is the extension of the bilinear

map [·, ·] given by [p, h]=0, [h, h]=0 is isomorphic to the 7-dimensional quaternionic

Heisenberg algebra.

Proof. Let {A,B,C} be the dual basis of a basis of h∗ that orthonormalizes the
positive definite quadratic form Ω defined in Lemma 7, up to a positive scale factor.
Take any nonzero vector U1∈p and then, from the sobrejectivity of iU1 ¨[·, ·]:p→h

there exist U2, U3 and U4∈p such that [U1, U2]=A, [U1, U3]=B and [U1, U4]=C.
Observe that {U1, U2, U3, U4} is a basis of p. Now, write [·, ·]=L1A+L2B+L3C

where Li :p×p→IR, i=1, 2, 3; and then, set

V2=U2−L2(U2, U3)U1,

V3=U3+L1(U2, U3)U1 and
V4=U4+L1(U2, U4)U1.

We obtain the following relations:

[U1, V2] = A, [U1, V3]=B, [U1, V4]=C,

[V2, V3] = L3(U2, U3)C=δC,

[V2, V4] = L2(U2, U4)B+[L3(U2, U4)−L2(U2, U3)]C=βB+εC,

[V3, V4] = L1(U3, U4)A+[L2(U3, U4)−L1(U2, U4)]B
+ [L3(U3, U4)+L1(U2, U3)]C=αA+γB+ζC.

Then, in the basis {U1, V2, V3, V4} of p we have

det(xL1+yL2+zL3)=

det

⎡⎢⎢⎣x
⎛⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 α

0 0 −α 0

⎞⎟⎟⎠+y

⎛⎜⎜⎝
0 0 1 0
0 0 0 β

−1 0 0 γ

0 −β −γ 0

⎞⎟⎟⎠+z

⎛⎜⎜⎝
0 0 0 1
0 0 δ ε

0 −δ 0 ζ

−1 −ε −ζ 0

⎞⎟⎟⎠
⎤⎥⎥⎦=

(αx2−βy2+δz2+γxy+ζxz−εyz)2,
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for arbitrary real x, y, z.
On the other hand,

(xL1+yL2+zL3) = (xA∗+yB∗+zC∗) ¨ (L1A+L2B+L3C)
= (xA∗+yB∗+zC∗) ¨ [·, ·],

where {A∗, B∗, C∗} is the dual basis of the basis {A,B,C}. Then, we also have

det(xL1+yL2+zL3) = det[(xA∗+yB∗+zC∗) ¨ [·, ·]]
= [Ω(xA∗+yB∗+zC∗)]2 =λ(x2+y2+z2)2,

for some λ>0, since {A∗, B∗, C∗} is the basis of h∗ that orthonormalizes the positive
definite quadratic form Ω, up to a positive scale factor.

So, the equality

(αx2−βy2+δz2+γxy+ζxz−εyz)2 =λ(x2+y2+z2)2,

is verified for any real x, y, z and for some λ>0. This implies that α=−β=δ �=0 and
γ=ζ=ε=0.

Thus, the transformation defined by

X1 = U1,

Y1 = 1
αV2,

V1 = 1
αV3,

W1 = 1
αV4,

Z1 = 1
αA,

Z2 = 1
αB,

Z3 = 1
αC

is an isomorphism onto the 7-dimensional quaternionic Heisenberg algebra. �

Corollary 4. The only nilpotent sub-OIL fat algebra (g=p⊕h, s, k=0, B) with

h=[p, p], dimg=7 and dimh=3 is the quaternionic Heisenberg algebra (see Exam-

ple 2).

Remark 5. The Corollary 4 is not true if we replace 7-dimensional to 11-di-
mensional; see some counterexamples in [16].
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