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Chern classes of tropical vector bundles
Lars Allermann

Abstract. We introduce tropical vector bundles, morphisms and rational sections of these

bundles and define the pull-back of a tropical vector bundle and of a rational section along a

morphism. Most of the definitions presented here for tropical vector bundles will be contained

in Torchiani, C., Line Bundles on Tropical Varieties, Diploma thesis, Technische Universität

Kaiserslautern, Kaiserslautern, 2010, for the case of line bundles. Afterwards we use the bounded

rational sections of a tropical vector bundle to define the Chern classes of this bundle and prove

some basic properties of Chern classes. Finally we give a complete classification of all vector

bundles on an elliptic curve up to isomorphisms.

1. Tropical vector bundles

In this section we will introduce our basic objects such as tropical vector bun-
dles, morphisms of tropical vector bundles and rational sections.

Definition 1.1. (Tropical matrices) A tropical matrix is an ordinary matrix
with entries in the tropical semi-ring

(T = R∪ { −∞}, ⊕, �),

where a⊕b=max{a, b} and a�b=a+b. We denote by Mat(m×n, T) the set of
tropical m×n matrices. Let A∈Mat(m×n, T) and B ∈Mat(n×p, T). We can form
a tropical matrix product A�B :=(cij)∈Mat(m×p, T), where cij =

⊕m
k=1 aik �bkj .

Moreover, let G(r ×s)⊆Mat(r ×s, T) be the subset of tropical matrices with at most
one finite entry in every row. Let G(r) be the subset of G(r ×r) containing all
tropical matrices with exactly one finite entry in every row and every column.
This set G(r) together with tropical matrix multiplication is a group whose neutral
element is the tropical unit matrix, i.e. the matrix with zeros on the diagonal and
all other entries equal to −∞.
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Notation 1.2. For an element σ of the symmetric group Sr we denote by Aσ

the tropical matrix Aσ=(aij)∈Mat(r ×r, T) given by

aij :=
{

0, if i=σ(j),
−∞, otherwise.

Moreover, for a1, ..., ar ∈R we denote by D(a1, ..., ar) the tropical diagonal matrix
D(a1, ..., ar)=(dij)∈Mat(r ×r, T) given by

dij :=
{

ai, if i=j,

−∞, otherwise.

Lemma 1.3. Every element M ∈G(r) can be written as M=Aσ �D(a1, ..., ar)
for some σ ∈Sr and some numbers a1, ..., ar ∈R.

Proof. Let M ∈G(r). By definition there exists exactly one finite entry in every
column. Let ai ∈R be this finite entry in column i, situated in row pi, i=1, ..., r.
Hence we can define a permutation σ :{1, ..., r}→{1, ..., r} by σ(i):=pi, i=1, ..., r,
and obtain Aσ �D(a1, ..., ar)=M . �

Lemma 1.4. G(r) is precisely the set of invertible tropical matrices, i.e.

G(r) = {A ∈ Mat(r ×r, T) | A�A′ =A′ �A=E for some A′ ∈ Mat(r ×r, T)}.

Proof. The inclusion

G(r) ⊆ {A ∈ Mat(r ×r, T) | A�A′ =A′ �A=E for some A′ ∈ Mat(r ×r, T)}

is obvious. Thus, let A, A′ ∈Mat(r ×r, T) be given such that A�A′ =A′ �A=E.
Assume that A=(aij) contains more than one finite entry in a row or column. For
simplicity we assume that a11, a12 �=−∞. As A�A′ =E we can conclude that the
first two rows of A′ look as

A′ =

⎛

⎜
⎝

α −∞ ... −∞
β −∞ ... −∞

*

⎞

⎟
⎠ for some α, β ∈ R.

As moreover A′ �A=E, we can conclude from the second row of A′ and the first
column of A that

a11+β = −∞,

which is a contradiction to a11, β ∈R. �
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Remark 1.5. Note that a matrix A∈G(r ×s) does, in general, not induce a
map fA : R

s→R
r, x 	→A�x, as the vector A�x may contain entries that are −∞.

To obtain a map fA : R
s→R

r anyway we use the following definition: For x∈R
s we

set fA(x):=(y1, ..., yr), where

yi =
{⊕r

k=1 aik �xk, if
⊕r

k=1 aik>−∞,

0, otherwise.

We have all requirements now to state our main definition.

Definition 1.6. (Tropical vector bundles) Let X be a tropical cycle (cf. [AR1,
Definition 5.12]). A tropical vector bundle over X of rank r is a tropical cycle F

together with a morphism π : F→X (cf. [AR1, Definition 7.1]) and a finite open

covering {U1, ..., Us} of X as well as a homeomorphism Φi : π−1(Ui)
∼=→Ui ×R

r for
every i∈ {1, ..., s} such that

(a) for all i we obtain a commutative diagram

π−1(Ui)
Φi

π

Ui ×R
r

P (i)

Ui,

where P (i) : Ui ×R
r→Ui is the projection on the first factor;

(b) for all i and j the composition p
(i)
j ◦Φi : π−1(Ui)→R is a regular invertible

function (cf. [AR1, Definition 6.1]), where p
(i)
j : Ui ×R

r→R, (x, (a1, ..., ar)) 	→aj ;
(c) for every i, j ∈ {1, ..., s} there exists a transition map Mij : Ui ∩Uj→G(r)

such that
Φj ◦Φ−1

i : (Ui ∩Uj)×R
r −→ (Ui ∩Uj)×R

r

is given by (x, a) 	→(x, Mij(x)�a) and the entries of Mij are regular invertible func-
tions on Ui ∩Uj or constantly −∞;

(d) there exist representatives F0 of F and X0 of X such that F0={π−1(τ)|
τ ∈X0} and ωF0(π

−1(τ))=ωX0(τ) for all maximal polyhedra τ ∈X0.

An open set Ui together with the map Φi :π−1(Ui)
∼=→Ui ×R

r is called a local trivial-
ization of F . Tropical vector bundles of rank one are called tropical line bundles.

Remark 1.7. Let V1, ..., Vt be any open covering of X . Then the covering
{Ui ∩Vj } together with the restricted homeomorphisms Φi|π−1(Ui ∩Vj) and transition
maps Mij |(Ui ∩Vk)∩(Uj ∩Vl) fulfills all requirements of Definition 1.6 too, and hence
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defines again a vector bundle. As the open covering, the homeomorphisms and the
transition maps are part of the data of Definition 1.6 this new bundle is (according
to our definition) different from our initial one even though they are “the same”
in some sense. Hence, if two vector bundles arise one out of the other by such a
construction, we will identify those two vector bundles.

Remark and Definition 1.8. Let π : F→X together with the open covering
U1, ..., Us, homeomorphisms Φi and transition maps Mij and π : F→X together
with the open covering V1, ..., Vt, homeomorphisms Ψi and transition maps Nij

be two tropical vector bundles according to Definition 1.6. We will identify these
vector bundles if the vector bundles π : F→X with open covering {Ui ∩Vj } and
restricted homeomorphisms Φi|π−1(Ui ∩Vj) respectively Ψj |π−1(Ui ∩Vj) and transition
maps Mij |(Ui ∩Vk)∩(Uj ∩Vl) respectively Nkl|(Ui ∩Vk)∩(Uj ∩Vl) are equal.

Remark 1.9. Let π1 : F1→X and π2 : F2→X be two vector bundles on X . By
Definition 1.8 we can always assume that F1 and F2 satisfy Definition 1.6 with the
same open covering.

Remark 1.10. Let π : F→X be a vector bundle with open covering U1, ..., Us

and transition maps Mij as in Definition 1.6. On the common intersection
Ui ∩Uj ∩Uk we obviously have Mij(x)=Mkj(x)�Mik(x). This last equation is called
the cocycle condition. Conversely, this data, the open covering U1, ..., Us together
with transition maps Mij fulfilling the cocycle condition, is enough to construct a
vector bundle as we will see in the following proposition.

Proposition 1.11. Let U1, ..., Us be an open covering of X and let

Mij : Ui ∩Uj −→G(r)

be maps such that the entries of Mij(x) are regular invertible functions on Ui ∩Uj

or constantly −∞ and the cocycle condition Mij(x)=Mkj(x)�Mik(x) holds on
Ui ∩Uj ∩Uk. Then there exists a vector bundle π : F→X with open covering U1, ..., Us

and transition functions Mij .

Proof. We take the disjoint union
∐s

i=1(Ui ×R
r) and identify points (x, y)∼

(x, Mij(x)�y) to obtain the topological space |F |. We have to equip this space
with the structure of a tropical cycle. As this construction is exactly the same
as for tropical line bundles, we only sketch it here and refer to [T] for more de-
tails. Let (((X0, |X0|, {ϕσ }), ωX0), {Φσ }) be a representative of X . We define
F0 :={π−1(σ)|σ ∈X0} and ωF0(π

−1(σ)):=ωX0(σ) for all maximal polyhedra σ ∈X0.
Our next step is to construct the polyhedral charts ϕ̃π−1(σ) for F0: Let σ ∈X0 be
given and let Ui1 , ..., Uit be all open sets having non-empty intersection with σ.
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Moreover, let {Vi |i∈I} be the set of all connected components of all σ ∩Uik
. Every

such set Vi comes from a set Uj(i) of the given open covering. Hence, for every pair
k, l∈I we have a restricted transition map Nkl : =Mj(k),j(l)|Vk ∩Vl

. This implies that
for all k, l∈I the entries of Nkl ◦Φ−1

σ are (globally) integer affine linear functions on
Vk ∩Vl. As σ is simply connected, for every such entry h∈ O ∗(Vk ∩Vl) of Nkl there
exists a unique continuation h̃∈ O ∗(σ). Hence we can extend all transition maps
Nkl : Vk ∩Vl→G(r) to maps N ′

kl : σ→G(r). Now we choose for every i∈I a point
Pi ∈Vi and for all pairs k, l∈I a path γkl : [0, 1]→σ from Pk to Pl. Let k, l∈I be
given. As the image of γkl is compact there exists a finite covering Vμ1 , ..., Vμc of
γkl([0, 1]). For x∈Vl we set

S(γkl)(x) :=N ′
μ1,μ2

(x)−1 �...�N ′
μc−1,μc

(x)−1 ∈ G(r).

Now fix some k0 ∈I . For all l∈I we define maps

ϕ̃
(l)
π−1(σ)

: Vl ×R
r ∼=π−1(Vl) −→R

nσ+r,

(x, a) 	−→ (ϕσ(x), S(γk0l)(x)�a).

These maps agree on overlaps and hence glue together to an embedding

ϕ̃π−1(σ) : π−1(σ) −→R
nσ+r.

In the same way we can construct the fan charts Φ̃π−1(σ). Then we define F to be
the equivalence class

F := [(((F0, |F0|, {ϕ̃π−1(σ)}), ωF0), {Φ̃π−1(σ)})]. �

Example 1.12. Throughout the chapter, the curve X :=X2 from [AR1, Exam-
ple 5.5] will serve us as a central example. Recall that X arises by gluing open fans
as drawn in the following figure.

Moreover, recall from [AR1, Definition 5.4] that the transition functions between
these open fans composing X are integer affine linear maps. This implies that the
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curve X has a well-defined lattice length L. We can cover X by open sets U1, U2

and U3 as drawn in the following figure.

The easiest way to construct a (non-trivial) vector bundle of rank r on X is fixing a
(non-trivial) transition map M12 : U1 ∩U2→G(r) and defining M23 : U2 ∩U3→G(r)
and M31 : U3 ∩U1→G(r) to be the trivial maps x 	→E for all x. We will see later
that in fact every vector bundle of rank r on X arises in this way.

Knowing what tropical vector bundles are, there are a few notions related to
this definition we want to introduce.

Definition 1.13. (Direct sums of vector bundles) Let π1 : F1→X and π2 : F2→X

be two vector bundles of rank r and r′, respectively, with a common open covering
U1, ..., Us and transition maps M

(1)
ij and M

(2)
ij , respectively, satisfying Definition 1.6

(see Remark 1.9). We define the direct sum bundle π :F1 ⊕F2→X to be the vector
bundle of rank r+r′ we obtain from the gluing data

U1, ..., Us and M
(1)
ij ×M

(2)
ij : Ui ∩Uj −→G(r+r′),

x 	−→
(

M
(1)
ij (x) −∞

−∞ M
(2)
ij (x)

)

.

Definition 1.14. (Subbundles) Let π : F→X be a vector bundle with open
covering U1, ..., Us and homeomorphisms Φi according to Definition 1.6. A subcycle
E ∈Zl(F ) is called a subbundle of rank r′ of F if π|E : E→X is a vector bundle of
rank r′ such that we have for all i=1, ..., s:

Φi|(π|E)−1(Ui) : (π|E)−1(Ui)
∼=−−→Ui × 〈ej1 , ..., ejr′ 〉R

for some 1≤j1<...<jr′ ≤r, where the ej are the standard basis vectors in R
r.

Remark 1.15. If π : F→X is a vector bundle of rank r with subbundle E of
rank r′ like in Definition 1.14 this implies that there exists another subbundle E′
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of rank r −r′ with

Φi|(π|E′ )−1(Ui) : (π|E′ )−1(Ui)
∼=−−→Ui × 〈ej |j /∈ {j1, ..., jr′ }〉R

and hence that F =E ⊕E′ holds.

Definition 1.16. (Decomposable bundles) Let π : F→X be a vector bundle of
rank r. We say that F is decomposable if there exists a subbundle π|E : E→X of
F of rank 1≤r′ <r. Otherwise we call F an indecomposable vector bundle.

As announced in the very beginning of this section we also want to talk about
morphisms and, in particular, isomorphisms of tropical vector bundles.

Definition 1.17. (Morphisms of vector bundles) A morphism of vector bundles
π1 : F1→X of rank r and π2 : F2→X of rank r′ is a morphism Ψ: F1→F2 of tropical
cycles such that

(a) π1=π2 ◦Ψ;
(b) there exist an open covering U1, ..., Us according to Definition 1.6 for both

F1 and F2 (see Remark 1.9) and maps Ai : Ui→G(r′ ×r) for all i such that

ΦF2
i ◦Ψ◦(ΦF1

i )−1 : Ui ×R
r −→Ui ×R

r′

is given by (x, a) 	→(x, fAi(x)(a)) (cf. Remark 1.5) and the entries of Ai are regular
invertible functions on Ui or constantly −∞.

An isomorphism of tropical vector bundles is a morphism of vector bundles
Ψ: F1→F2 such that there exists a morphism of vector bundles Ψ′ : F2→F1 with
Ψ′ ◦Ψ=id=Ψ◦Ψ′.

Lemma 1.18. Let π1 : F1→X and π2 : F2→X be two vector bundles of rank
r over X . Then the following are equivalent :

(a) There exists an isomorphism of vector bundles Ψ: F1→F2;
(b) There exist a common open covering U1, ..., Us of X and transition maps

M
(1)
ij for F1 and M

(2)
ij for F2 satisfying Definition 1.6 (cf. Remark 1.9) and maps

Ei : Ui→G(r) for i=1, ..., s such that
− the entries of Ei are regular invertible functions on Ui or constantly −∞;
− Ej(x)�M

(1)
ij (x)=M

(2)
ij (x)�Ei(x) for all x∈Ui ∩Uj and all i and j.

Proof. (a)⇒(b) We claim that the maps Ai : Ui→G(r ×r) of Definition 1.17
are the wanted maps Ei. As Ψ is an isomorphism we can conclude that Ai(x) is an
invertible matrix for all x∈Ui, i.e. that Ai : Ui→G(r). Hence it remains to check
that Aj(x)�M

(1)
ij (x)=M

(2)
ij (x)�Ai(x) holds for all x∈Ui ∩Uj : Let i and j be given.
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As Ψ: F1→F2 is an isomorphism, the diagram

(Ui ∩Uj)×R
r

Φ
F2
i ◦Ψ◦(Φ

F1
i )−1

Φ
F1
j ◦(Φ

F1
i )−1

(Ui ∩Uj)×R
r

Φ
F2
j ◦(Φ

F2
i )−1

(Ui ∩Uj)×R
r

Φ
F2
j ◦Ψ◦(Φ

F1
j )−1

(Ui ∩Uj)×R
r

commutes. Hence Aj(x)�M
(1)
ij (x)=M

(2)
ij (x)�Ai(x).

(b)⇒(a) Conversely, let the maps Ei : Ui→G(r) be given. The equation

Ej(x)�M
(1)
ij (x) =M

(2)
ij (x)�Ei(x)

for all x∈Ui ∩Uj ensures that the maps

Ui ×R
r −→Ui ×R

r,

(x, a) 	−→ (x, Ei(x)�a),

on the local trivializations can be glued to a globally defined map Ψ: |F1|→|F2|.
Moreover, this map is a morphism as π1 and π2 are morphisms and the maps
p
(i)
j ◦ΦF1

i , p
(i)
j ◦ΦF2

i and the finite entries of Ei are regular invertible functions

(cf. Definition 1.6). The equation Ej(x)�M
(1)
ij (x)=M

(2)
ij (x)�Ei(x) implies that

E−1
j (x)�M

(2)
ij (x) =M

(1)
ij (x)�E−1

i (x)

holds for all x∈Ui ∩Uj , where E−1
k (x):=Ek(x)−1 for all x∈Uk. As the finite entries

of E−1
k : Uk→G(r) are again regular invertible functions we can also glue the maps

Ui ×R
r −→Ui ×R

r,

(x, a) 	−→ (x, E−1
i (x)�a),

on the local trivializations to obtain the inverse morphism Ψ′ : |F2|→|F1|, which
proves that Ψ is an isomorphism. �

The morphisms we have just introduced admit another important operation,
namely the pull-back of a vector bundle.
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Definition 1.19. (Pull-back of vector bundles) Let π : F→X be a vector bun-
dle of rank r with open covering U1, ..., Us and transition maps Mij as in Def-
inition 1.6, and let f : Y →X be a morphism of tropical cycles. Then the pull-
back bundle π′ : f ∗F→Y is the vector bundle we obtain by gluing the patches
f −1(U1)×R

r, ..., f −1(Us)×R
r along the transition maps Mij ◦f . Hence we obtain

the commutative diagram

f ∗F
f ′

π′

F

π

Y
f

X

,

where f ′ and π′ are locally given by

f ′ : f −1(Ui)×R
r −→Ui ×R

r,

(y, a) 	−→ (f(y), a),

and π′ : f −1(Ui)×R
r −→ f −1(Ui),

(y, a) 	−→ y.

To be able to define Chern classes in the second section we need the notion of
a rational section of a vector bundle.

Definition 1.20. (Rational sections of vector bundles) Let π : F→X be a vector
bundle of rank r. A rational section s : X→F of F is a continuous map s : |X|→|F |
such that

(a) π(s(x))=x for all x∈ |X|;
(b) there exist an open covering U1, ..., Us and homeomorphisms Φi satisfying

Definition 1.6 (cf. Definition 1.8) such that the maps p
(i)
j ◦Φi ◦s:Ui→R are rational

functions on Ui for all i and j, where p
(i)
j : Ui ×R

r→R, (x, (a1, ..., ar)) 	→aj .

A rational section s : X→F is called bounded if the above maps p
(i)
j ◦Φi ◦s are

bounded for all i and j.

Remark 1.21. Let π : L→X be a line bundle and s : X→L be a rational sec-
tion. By definition, the map p(i) ◦Φi ◦s is a rational function on Ui for all i. More-
over, on Ui ∩Uj the maps p(i) ◦Φi ◦s and p(j) ◦Φj ◦s differ by a regular invertible
function only. Hence s defines a Cartier divisor D(s)∈Div(X).

There is a useful statement on these Cartier divisors D(s) in [T] that we want
to cite here including its proof.
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Lemma 1.22. Let π : L→X be a line bundle and let s1, s2 : X→L be two
bounded rational sections. Then D(s1)− D(s2)=h for some bounded rational func-
tion h∈ K ∗(X), i.e. D(s1) and D(s2) are rationally equivalents.

Proof. Let U1, ..., Us be an open covering of X with transition maps Mij and
homeomorphisms Φi according to Definition 1.6 such that for all i both s

(i)
1 :=

p
(i)
1 ◦Φi ◦s1 and s

(i)
2 :=p

(i)
1 ◦Φi ◦s2 are rational functions on Ui (cf. Definition 1.20).

We define hi :=s
(i)
1 −s

(i)
2 ∈ K ∗(Ui). Since we have that s

(i)
1 −s

(j)
1 =s

(i)
2 −s

(j)
2 =Mij ∈

O ∗(Ui ∩Uj) for all i and j, these maps hi glue together to h∈ K ∗(X). Hence we
have that

D(s1)− D(s2) = [{(Ui, s
(i)
1 )}]−[{(Ui, s

(i)
2 )}]

= [{(Ui, s
(i)
1 −s

(i)
2 )}]=[{(Ui, hi)}]=[{(|X|, h)}]. �

Remark 1.23. Lemma 1.22 implies that we can associate with any line bundle
L admitting a bounded rational section s a Cartier divisor class D(F ):=[D(s)] that
only depends on the bundle L and not on the choice of the rational section s.

Combining both the notion of morphism of vector bundles and the notion of
rational section we can give the following definition.

Definition 1.24. (Pull-back of rational sections) Let π : F→X be a vector bun-
dle of rank r and f : Y →X be a morphism of tropical varieties. Moreover, let
s : X→F be a rational section of F with open covering U1, ..., Us and homeo-
morphisms Φ1, ..., Φs as in Definition 1.20. Then we can define a rational section
f ∗s : Y → f ∗F of f ∗F , the pull-back section of s, as follows: On f −1(Ui) we define

f ∗s : f −1(Ui) −→ f −1(Ui)×R
r,

y 	−→ (y, (pi ◦Φi ◦s◦f)(y)),

where pi : Ui ×R
r→R

r is the projection on the second factor. Note that for y ∈
f −1(Ui)∩f −1(Uj) the points (y, (pi ◦Φi ◦s◦f)(y)) and (y, (pj ◦Φj ◦s◦f)(y)) are iden-
tified in f ∗F if and only if (f(y), (pi ◦Φi ◦s◦f)(y)) and (f(y), (pj ◦Φj ◦s◦f)(y)) are
identified in F . But this is the case as

(f(y), (pi ◦Φi ◦s◦f)(y)) = (Φi ◦s)(f(y)) ∼ (Φj ◦s)(f(y)) = (f(y), (pj ◦Φj ◦s◦f)(y)).

Hence we can glue our locally defined map f ∗s to obtain a map f ∗s : Y →f ∗F .

We finish this section with the following statement on vector bundles on simply
connected tropical cycles which will be of use for us later on.
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Theorem 1.25. Let π : F→X be a vector bundle of rank r on the simply
connected tropical cycle X . Then F is a direct sum of line bundles, i.e. there exist
line bundles L1, ..., Lr on X such that F =L1 ⊕...⊕Lr.

Proof. We show that every vector bundle of rank r ≥2 on X is decomposable.
Let U1, ..., Us be an open covering of X and let

Mij(x) =D(ϕ(1)
i,j , ..., ϕ

(r)
i,j )(x)�Aσij (x) =: Dij(x)�Aσij (x), x ∈ Ui ∩Uj ,

with ϕ
(1)
i,j , ..., ϕ

(r)
i,j ∈ O ∗(Ui ∩Uj) and σij(x)∈Sr being transition functions according

to Definition 1.6. We only have to show that it is possible to track the first co-
ordinate of the R

r-factor in U1 ×R
r consistently along the transition maps: Let

γ : [0, 1]→|X| be a closed path starting and ending in P ∈U1. Decomposing γ into
several paths if necessary, we may assume that γ has no self-intersections, i.e. that
γ|[0,1) is injective. As γ([0, 1]) is compact we can choose an open covering V1, ..., Vt

of γ([0, 1]) such that for all j we have Vj ⊆Ui for some index i=i(j), P ∈V1=Vt ⊆U1,
all sets Vj and all intersections Vj ∩Vj+1 are connected and all intersections Vj ∩Vj′

for non-consecutive indices are empty. For sets Vj and Vj′ with non-empty intersec-
tion we have restricted transition maps M̃Vj ,Vj′ (x)=D̃Vj ,Vj′ (x)�AσVj ,V

j′
induced

by the transition maps between Ui(j) ⊇Vj and Ui(j′) ⊇Vj′ . Note that the permuta-
tion parts AσVj,V

j′
of the transition maps do not depend on x as all intersections

Vj ∩Vj′ are connected and the permutations have to be locally constant. We define
Iγ :=σVt−1,Vt ◦...◦σV1,V2(1). We have to check that Iγ =1 holds. First we show that
Iγ does not depend on the choice of the covering V1, ..., Vt. Hence, let V ′

1 , ..., V ′
t′ be

another covering as above. We may assume that all intersections Vj ∩V ′
j′ are con-

nected, too. Between any two sets A, B ∈ {V1, ..., Vt, V
′
1 , ..., V ′

t′ } with non-empty in-
tersection we have restricted transition maps M̃A,B(x)=D̃A,B(x)�AσA,B

as above.
Moreover, let 0=α0<...<αp=1 be a decomposition of [0, 1] such that for all i we
have γ([αi, αi+1])⊆Vj ∩V ′

j′ for some indices j and j′. Let i0 be the maximal index
such that γ([αi0 , αi0+1])⊆Va ∩V ′

b and

σVa−1,Va ◦...◦σV1,V2 =σV ′
b ,Va

◦σV ′
b−1,V ′

b
◦...◦σV ′

1 ,V ′
2

is still fulfilled. Assume that i0<p−1. Let γ([αi0+1, αi0+2])⊆Va′ ∩V ′
b′ . Hence

γ(αi0+1)∈Va ∩V ′
b ∩Va′ ∩V ′

b′ and we can conclude using the cocycle condition that

σVa,Va′ ◦σVa−1,Va ◦...◦σV1,V2 = σVa,Va′ ◦σV ′
b ,Va

◦σV ′
b−1,V ′

b
◦...◦σV ′

1 ,V ′
2

= σVa,Va′ ◦σV ′
b′ ,Va

◦σV ′
b ,V ′

b′ ◦σV ′
b−1,V ′

b
◦...◦σV ′

1 ,V ′
2

= σV ′
b′ ,Va′ ◦σV ′

b ,V ′
b′ ◦σV ′

b−1,V ′
b

◦...◦σV ′
1 ,V ′

2
,

a contradiction to our assumption. Hence i0=p−1 and we conclude that Iγ is
independent of the chosen covering.
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If γ and γ′ are paths that pass through exactly the same open sets Ui in the
same order, then we can conclude that Iγ =Iγ′ holds as exactly the same transition
functions are involved. Hence, a continuous deformation of γ does not change Iγ .
As X is simply connected we can contract γ to a point. This implies that Iγ =Iγ0 ,
where γ0 is the constant path γ0(t)=P for all t. Thus Iγ =Iγ0 =1. This proves the
claim. �

There is a related theorem in [T] which we want to state here. As we will not
need the result in this work, we will omit the proof and refer to [T] instead.

Theorem 1.26. Let π : L→X be a line bundle on the simply connected tropical
cycle X . Then L is trivial, i.e. L∼=X ×R as a vector bundle.

Combining Theorems 1.25 and 1.26 we can conclude the following result.

Corollary 1.27. Let π : F→X be a vector bundle of rank r on the simply
connected tropical cycle X . Then F is trivial, i.e. F ∼=X ×R

r as a vector bundle.

2. Chern classes

In this section we will introduce Chern classes of tropical vector bundles and
prove some basic properties. To be able to do this we need some preparation.

Definition 2.1. Let π : F→X be a vector bundle of rank r and let s : X→F be a
rational section with open covering U1, ..., Us as in Definition 1.20. We fix a natural
number 1≤k ≤r and a subcycle Y ∈Zl(X). By definition, sij :=p

(i)
j ◦Φi ◦s : Ui→R

is a rational function on Ui for all i and j. Hence, for all i we can take local
intersection products

(s(k) ·Y )∩Ui :=
∑

1≤j1<...<jk ≤r

sij1 ...sijk
·(Y ∩Ui).

Since si′j =siσ(j)+ϕj on Ui ∩Ui′ for some σ ∈Sr and some regular invertible map
ϕj ∈ O ∗(Ui ∩Ui′ ), the intersection products (s(k) ·Y )∩Ui and (s(k) ·Y )∩Ui′ coincide
on Ui ∩Ui′ and we can glue them to obtain a global intersection cycle s(k) ·Y ∈
Zl−k(X).

Lemma 2.2. Let π : F→X be a vector bundle of rank r, fix k ∈ {1, ..., r} and let
s : X→F be a rational section. Moreover, let Y ∈Zl(X) be a cycle and let ϕ∈ K ∗(Y )
be a bounded rational function on Y . Then

s(k) ·(ϕ·Y ) =ϕ·(s(k) ·Y ).
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Proof. The claim follows immediately from the definition of the product
s(k) ·Y . �

Lemma 2.3. Let π : F→X and π′ : F ′→X be two isomorphic vector bundles
of rank r with isomorphism f : F→F ′. Moreover, fix k ∈ {1, ..., r}, let s : X→F be
a rational section and let Y ∈Zl(X) be a cycle. Then

s(k) ·Y =(f ◦s)(k) ·Y ∈ Zl−k(X).

Proof. Let U1, ..., Us be an open covering of X satisfying Definition 1.6 for both
F and F ′ and let sij :=p

(i)
j ◦Φi ◦s : Ui→R and (f ◦s)ij :=p

(i)
j ◦Φi ◦f ◦s : Ui→R as in

Definition 2.1. By Lemma 1.18 the isomorphism f can be described on Ui ×R
r

by (x, a) 	→(x, Ei(x)�a) with Ei(x)=D(ϕ1, ..., ϕr)�Aσ for some regular invertible
functions ϕ1, ..., ϕr ∈ O ∗(Ui) and a permutation σ ∈Sr. Hence (f ◦s)ij =siσ(j)+ϕj

on Ui and thus
∑

1≤j1<...<jk ≤r

sij1 ...sijk
·(Y ∩Ui) =

∑

1≤j1<...<jk ≤r

(f ◦s)ij1 ...(f ◦s)ijk
·(Y ∩Ui),

which proves the claim. �

To be able to prove the next theorem, which will be essential for defining Chern
classes, we first need some generalizations of our previous definitions:

Definition 2.4. (Infinite tropical cycle) We define an infinite tropical polyhedral
complex to be a tropical polyhedral complex according to [AR1, Definition 5.4] but
we do not require the set of polyhedra X to be finite. In particular, all open fans
Fσ still have to be open tropical fans according to [AR1, Definition 5.3]. Then an
infinite tropical cycle is an infinite tropical polyhedral complex modulo refinements
analogous to [AR1, Definition 5.12].

Remark 2.5. Definition 2.4 implies that an infinite tropical polyhedral complex
is locally finite, i.e. there are only finitely many polyhedra adjacent to any single
polyhedron. We can therefore think of infinite tropical cycles to be infinitely many
ordinary tropical fans glued together.

Definition 2.6. (Infinite rational functions and infinite Cartier divisors) Let
C be an infinite tropical cycle and let U be an open set in |C|. As in [AR1,
Definition 6.1] an infinite rational function on U is a continuous function ϕ : U→R

such that there exists a representative (((X, |X|, {mσ }σ∈X), ωX), {Mσ }σ∈X) of C,
which may now be an infinite tropical polyhedral complex, such that for each face
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σ ∈X the map ϕ◦m−1
σ is locally integer affine linear (where defined). Analogously

it is possible to define infinite regular invertible functions on U .
A representative of an infinite Cartier divisor on C is a set {(Ui, ϕi)|i∈I},

where {Ui}i is an open covering of |C| and ϕi is an infinite rational function on Ui.
An infinite Cartier divisor on C is a representative of an infinite Cartier divisor
modulo the equivalence relation given in [AR1, Definition 6.1].

Remark 2.7. Using these basic definitions it is possible to generalize many
other concepts to the infinite case. In particular, as our infinite objects are locally
finite, it is possible to perform intersection theory as before.

Definition 2.8. (Tropical vector bundles on infinite cycles) Let X be an infinite
tropical cycle. A tropical vector bundle over X of rank r is an infinite tropical
cycle F together with a morphism π : F→X such that properties (a)–(d) given in
Definition 1.6 are fulfilled with the difference that the open covering {Ui}i of X

may now be infinite.

Now we are ready to prove the following announced theorem.

Theorem 2.9. Let π : F→X be a vector bundle of rank r and s1, s2 : X→F

be two bounded rational sections. Then s
(k)
1 ·Y and s

(k)
2 ·Y are rationally equivalent,

i.e.
[s(k)

1 ·Y ] = [s(k)
2 ·Y ] ∈ A∗(X)

for all subcycles Y ∈Zl(X).

Proof. Let p : |X̃|→|X| be the universal covering space of |X|. We can locally
equip |X̃| with the tropical structure inherited form X and obtain an infinite tropical
cycle X̃ according to Definition 2.4. Moreover, pulling back F along p, we obtain
a tropical vector bundle p∗F on X̃ according to Definition 2.8. As X̃ is simply
connected we can conclude by Lemma 1.25 that p∗F =L1 ⊕...⊕Lr for some infinite
tropical line bundles L1, ..., Lr on X̃ . Hence, the bounded rational sections p∗s1

and p∗s2 correspond to r infinite tropical Cartier divisors as in Definition 2.6 each,
which we will denote by ϕ1, ..., ϕr and ψ1, ..., ψr, respectively. By Lemma 1.22 we
can conclude that for all i these Cartier divisors differ by bounded infinite rational
functions only, i.e. ϕi −ψi=hi for some bounded infinite rational function hi on X̃ .
In particular,

( ∑

1≤j1<...<jk ≤r

ϕj1 ...ϕjk
−

∑

1≤j1<...<jk ≤r

ψj1 ...ψjk

)

·X̃ = h̃·ξ̃2...ξ̃k ·X̃
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with a bounded infinite rational function h̃ and infinite Cartier divisors ξ̃i. Then we
can define a rational function h, which is then also bounded, and Cartier divisors
ξi on X as follows: Let U ⊆ |X| and Ũ ⊆ |X̃| be open subsets such that p|

eU : Ũ → U

is bijective with inverse map p′ :U→Ũ . Then we locally define h|U :=(p′)∗
h̃|
eU and

ξi|U :=(p′)∗
ξ̃i|
eU . Note that h and ξi are well-defined as the Cartier divisors ϕi and

ψi are the same on every possible set Ũ
∼=→U . As we locally have

(s(k)
1 ·Y )∩U = p∗

( ∑

1≤j1<...<jk ≤r

ϕj1 ...ϕjk
·(p′)∗(Y ∩U)

)

and

(s(k)
2 ·Y )∩U = p∗

( ∑

1≤j1<...<jk ≤r

ψj1 ...ψjk
·(p′)∗(Y ∩U)

)

we conclude that
(s(k)

1 −s
(k)
2 )·Y =h·ξ2...ξk ·Y,

which proves the claim. �

Now we are ready to give a definition of Chern classes.

Definition 2.10. (Chern classes) Let π : F→X be a vector bundle of rank r

admitting bounded rational sections. For k ∈ {1, ..., r} we define the k-th Chern
class of F to be the endomorphism

ck(F ) : A∗(X) −→A∗(X),

[Y ] 	−→ [s(k) ·Y ],

where A∗(X)=
⊕

i Ai(X) and s : X→F is any bounded rational section. Note that
the map ck(F ) is well defined by Lemma 2.2 and independent of the choice of the
rational section s by Theorem 2.9. Moreover, we define c0(F ) : A∗(X)→A∗(X) to be
the identity map and ck(F ) : A∗(X)→A∗(X) to be the zero map for all k /∈ {0, ..., r}.
To stress the character of an intersection product of ck(F ) we usually write ck(F )·Y
instead of ck(F )(Y ) for Y ∈A∗(X).

As announced at the beginning of this section we finish this section with proving
some basic properties of Chern classes.

Theorem 2.11. (Properties of Chern classes) Let π : F→X and π′ : F ′→X

be vector bundles of rank r and r′, respectively, admitting bounded rational sections.
Moreover, let f :Y →X be a morphism of tropical cycles. Then the following holds:
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(a) ci(F )=0 for all i /∈ {0, ..., rank(F )};
(b) ci(F )·(cj(F ′)·ZX)=cj(F ′)·(ci(F )·ZX) for all ZX ∈A∗(X);
(c) f∗(ci(f ∗F )·ZY )=ci(F )·f∗(ZY ) for all ZY ∈A∗(Y );
(d) ci(f ∗F )·f ∗(ZX)=f ∗(ci(F )·ZX) for all ZX ∈A∗(X) if X and Y are smooth

varieties;
(e) ck(F ⊕F ′)=

∑
i+j=k ci(F )·cj(F ′);

(f) c1(F )·ZX =D(F )·ZX for all ZX ∈A∗(X) if r=rank(F )=1, where D(F ) is
the Cartier divisor class associated with F .

Proof. Properties (a) and (e) follow immediately from Definition 2.10, prop-
erty (b) follows from the fact that the intersection product is commutative and
property (f) follows from Remark 1.23.

(c) The projection formula implies that

f∗(ci(f ∗F )·ZY ) = f∗([(f ∗s)(i) ·ZY ]) = [s(i) ·f∗ZY ] = ci(F )·f∗ZY ,

where s is any bounded rational section of F .
(d) Applying [A, Theorem 3.2(c) and (f)] we obtain that

ci(f ∗F )·f ∗ZX = [(f ∗s)(i) ·f ∗ZX ] = [f ∗(s(i) ·ZX)] = f ∗[s(i) ·ZX ] = f ∗(ci(F )·ZX),

where s is again any bounded rational section of F . �

Remark 2.12. In “classical” algebraic geometry even the following, general-
ized version of property (e) is true: Let 0→F ′→F→F ′ ′→0 be an exact sequence
of vector bundles, then ck(F )=

∑
i+j=k ci(F ′)·cj(F ′ ′). In the tropical world it is

not entirely clear what an exact sequence of tropical vector bundles should be.
Nevertheless, in some sense the “classical” statement is true in tropical geome-
try as well: Let π1 : F1→X and π2 : F2→X be tropical vector bundles of rank
r1 and r2, respectively, and let U1, ..., Us be an open covering of X such that all
requirements of Definition 1.6 are fulfilled for F1 and F2 simultaneously. More-
over, let f : F1→F2 be an injective morphism of tropical vector bundles such that
(ΦF2

i ◦f ◦(ΦF1
i )−1)(Ui ×R

r1)=Ui × 〈ei1 , ..., eir1
〉R for all i, i.e. such that the image of

F1 under f is a subbundle F ′ of F2 (cf. Definition 1.14). Then we conclude by
Remark 1.15 that F2 is decomposable into F2=F ′ ⊕F ′ ′ for some other subbundle
F ′ ′ of F2. Hence we conclude by Theorem 2.11 that ck(F2)=

∑
i+j=k ci(F ′)·cj(F ′ ′).

3. Vector bundles on an elliptic curve

In this section we will give a complete classification of all vector bundles on an
elliptic curve up to isomorphism. One characteristic to distinguish different bundles
will be the following result.
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Definition 3.1. (Degree of a vector bundle) Let X :=X2 be the curve from
[AR1, Example 5.5] and let π : F→X be a vector bundle of rank r. We define the
degree of F to be the number

deg(F ) :=deg(c1(F )·X).

Remark 3.2. Note that Lemma 2.3 implies that isomorphic vector bundles on
X have the same Chern classes and hence have the same degree.

As already advertised in Example 1.12 vector bundles on the elliptic curve X

can be described by a single transition function. We will prove this fact in the
following lemma.

Lemma 3.3. Again, let X :=X2 be the curve from [AR1, Example 5.5] and
let π : F→X be a vector bundle of rank r. Then F is isomorphic to a vector bundle
π′ : F ′→X that admits an open covering U ′

1, ..., U
′
s and transition maps M ′

ij such
that at most one transition map is non-trivial.

Proof. Let U1, ..., Us be the open covering with transition maps Mij for F

according to Definition 1.6. We may assume that all the sets Ui are connected and
that for all i and j the intersections Ui ∩Uj are connected as well. Moreover, we
may assume that the sets Ui are numbered consecutively as shown in the figure.
For simplicity of notation we will consider our indices modulo s.

We can write every map Mi,i+1, i=1, ..., s, as

Mi,i+1(x) =D(ϕ(1)
i,i+1, ..., ϕ

(r)
i,i+1)(x)�Aσi,i+1 =: Di(x)�Pi

for some regular invertible functions ϕ
(k)
i,i+1 ∈ O ∗(Ui ∩Ui+1) and some permutations

σi,i+1 ∈Sr. We will show that we can successively replace all the transition maps
Mi,i+1 but one by the constant map M ′

i,i+1 : Ui ∩Ui+1→G(r), x 	→E, and the re-
sulting vector bundle F ′ is isomorphic to F : Choose j0 ∈ {2, ..., s}. Note that if
we are given a regular invertible function ϕ∈ O ∗(Ui ∩Uj) there is a unique regular
invertible function ϕ̃∈ O ∗(Ui) such that ϕ̃|Ui ∩Uj =ϕ. As they are regular invertible
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functions, too, we can extend in exactly the same way the finite entries of the matrix
Dj0 along the chain Uj0−1, Uj0−2, ..., Ui+1 to any set Ui+1 for i∈ {2, ..., j0 −1}. By
abuse of notation we will denote this continuation of Dj0 as well by Dj0 . Now, we
take U ′

i :=Ui for all i=1, ..., s and

M ′
i,i+1(x) :=

{
Pj0 �Dj0(x)�Mi,i+1(x)�Dj0(x)−1 �P −1

j0
, if i∈ {2, ..., j0 −1},

Mi,i+1(x), if i∈ {j0+1, ..., s}.

Moreover, we set M ′
12(x):=Pj0 �Dj0(x)�D1(x)�P1 and M ′

j0,j0+1(x):=E. To check
that the vector bundle F ′ we obtain from this gluing data is isomorphic to F we
apply Lemma 1.18: We set

Ei(x) :=
{

Dj0(x)�Pj0 , if i∈ {2, ..., j0},

E, otherwise,

and get that

(Dj0 �Pj0)�(D1 �P1)= (Dj0 �Pj0 �D1 �P1)�E,

(Dj0 �Pj0)�(D2 �P2)= (Dj0 �Pj0 �D2 �P2 �D−1
j0

�P −1
j0

)�(Dj0 �Pj0),

...

E �(Dj0 �Pj0) =E �(Dj0 �Pj0).

This finishes our proof. �

To classify all vector bundles on our elliptic curve X we now give a non-
redundant parametrization of all indecomposable vector bundles on X . Arbitrary
vector bundles are then just direct sums of these building blocks.

Theorem 3.4. (Vector bundles on elliptic curves) Let X :=X2 be the curve
from [AR1, Example 5.5]. Then the set of indecomposable vector bundles of rank r

and degree d is in bijection with gcd(r, d)·X , i.e. with points of the curve X stretched
to gcd(r, d) times the original length.

Remark 3.5. Note that the claim of Theorem 3.4 coincides with the equivalent
result in “classical” algebraic geometry (see [At, Theorem 7]).

To prove the theorem we need the following lemmas.
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Lemma 3.6. Let π : F→X be an indecomposable vector bundle of rank r with
open covering U1, ..., Us and transition maps Mij according to Definition 1.6. If

M12(x) =D(ϕ1, ..., ϕr)(x)�Aσ

for some regular invertible functions ϕ1, ..., ϕr ∈ O ∗(U1 ∩U2) and a permutation
σ ∈Sr and Mij(x)=E for all {i, j} �={1, 2}, then there exists an isomorphic vector
bundle π : F ′→X with open covering U1, ..., Us and transition maps M ′

ij according
to Definition 1.6 such that

M ′
12(x) =D(ϕ′

1, ..., ϕ
′
r)(x)�A(12...r)

for some regular invertible functions ϕ′
1, ..., ϕ

′
r ∈ O ∗(U1 ∩U2) and M ′

ij(x)=E for all
{i, j} �={1, 2}.

Proof. As F is indecomposable σ must by a single cycle. Hence there exists �∈
Sr such that �σ�−1=(12...r). We will apply Lemma 1.18 to show that we can replace
M12(x) by M ′

12(x):=A� �D(x)�A�−1 �A(12...r) without changing the isomorphism
class of F : We set Ei(x):=A� for all x and all i and obtain

A� �(D(x)�Aσ) = (A� �D(x)�A�−1 �A(12...r))�A�,

A� �E =E �A�,

...

A� �E =E �A�.

This proves the claim. �

Lemma 3.7. Let π : F→X be a vector bundle of rank r with open covering
U1, ..., Us and transition maps Mij according to Definition 1.6. Moreover, let all
sets Ui be connected, let for all i and j the intersections Ui ∩Uj be connected as
well, and let the sets Ui be numbered consecutively. If

M12(x) =D(ϕ1, ..., ϕr)(x)�A(12...r)

for some regular invertible functions ϕ1, ..., ϕr ∈ O ∗(U1 ∩U2) and Mij(x)=E for all
{i, j} �={1, 2}, then there exists an isomorphic vector bundle π : F ′→X with open
covering U1, ..., Us and transition maps M ′

ij according to Definition 1.6 such that

M ′
12(x) =D(ϕ′, 0, ..., 0)(x)�A(12...r)

for some regular invertible function ϕ′ ∈ O ∗(U1 ∩U2) and Mij(x)=E for all {i, j} �=
{1, 2}.
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Proof. We apply Lemma 1.18. For i=1, ..., r let αi be the slope of ϕi and let L

be the (lattice) length of our curve X . For i=2, ..., r we set δi :=
∑r

j=i(j −i+1)·αj .
Moreover, we define ϕ′ :=ϕ1+...+ϕr −δ2L. Note that if we are given a regular
invertible function ψ ∈ O ∗(Ui ∩Uj) there is a unique regular invertible function ψ̃ ∈
O ∗(Ui) such that ϕ̃|Ui ∩Uj =ϕ. Hence we can extend our regular invertible functions
ϕ1, ..., ϕr along the chain U2, U3, ..., Us, U1 to any of the sets U1, ..., Us. Note that
on U1 ∩U2 the extension of ϕi to U2 and the extension of ϕi to U1 differ exactly by
αiL. We use these continuations to define the maps Ei as

Ei(x) :=D(ϕ̃2+...+ϕ̃r −δ2L, ϕ̃3+...+ϕ̃r −δ3L, ..., ϕ̃r −δrL, 0),

where for entries of Ei the map ϕ̃j denotes the continuation of ϕj to Ui. Hence we
obtain on U1 ∩U2:

E2 �M12 = D(ϕ̃2+...+ϕ̃r −δ2L, ..., ϕ̃r −δrL, 0)�(D(ϕ1, ..., ϕr)�A(12...r))

= D(ϕ2+...+ϕr −δ2L, ..., ϕr −δrL, 0)�(D(ϕ1, ..., ϕr)�A(12...r))

= D(ϕ1+...+ϕr −δ2L, ϕ2+...+ϕr −δ3L, ..., ϕr−1+ϕr −δrL, ϕr)�A(12...r)

and

M ′
12 �E1 = (D(ϕ1+...+ϕr −δ2L, 0, ..., 0)�A(12...r))

�D(ϕ̃2+...+ϕ̃r −δ2L, ..., ϕ̃r −δrL, 0)

= (D(ϕ1+...+ϕr −δ2L, 0, ..., 0)�A(12...r))

�D(ϕ2+...+ϕr −δ3L, ..., ϕr −δr−1L, 0)

= D(ϕ1+...+ϕr −δ2L, ϕ2+...+ϕr −δ3L, ..., ϕr−1+ϕr −δrL, ϕr)�A(12...r).

The other conditions are trivially fulfilled as Ei|Ui ∩Ui+1 =Ei+1|Ui ∩Ui+1 for all i �=1.
This proves the claim. �

Lemma 3.8. Let π :F→X and π :F ′→X be vector bundles of rank r and degree
d with open covering U1, ..., Us and transition maps Mij respectively M ′

ij according
to Definition 1.6. Moreover, let all sets Ui be connected, let for all i and j the inter-
sections Ui ∩Uj be connected as well, and let the sets Ui be numbered consecutively.
If

M12(x) =D(ϕ, 0, ..., 0)(x)�A(12...r) and M ′
12(x) =D(ϕ+cL, 0, ..., 0)(x)�A(12...r)

for some regular invertible function ϕ∈ O ∗(U1 ∩U2) and the (lattice) length L of
our curve X , and Mij(x)=M ′

ij(x)=E for all {i, j} �={1, 2}, then F and F ′ are
isomorphic if and only if c is an integer multiple of gcd(r, d).
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Proof. By Lemma 1.18, F and F ′ are isomorphic if and only if for all i=
1, ..., s there exists a map Ei : Ui→G(r) such that for all i the equation Ei+1(x)�
Mi,i+1(x)=M ′

i,i+1(x)�Ei(x) holds for all x∈Ui ∩Ui+1. As Mi,i+1 is trivial for all
i �=1 these equations imply that Ei|Ui ∩Ui+1 =Ei+1|Ui ∩Ui+1 for all i �=1. Hence F

and F ′ are isomorphic if and only if there exist a permutation τ ∈Sr and regular
invertible functions ψ1, ..., ψr ∈ O ∗(U1 ∩U2) with continuations ψ̃1, ..., ψ̃r to all sets
U1, ..., Us along the chain U2, U3, ..., Us, U1 such that

(D(ψ̃1, ..., ψ̃r)�Aτ )�(D(ϕ, 0, ..., 0)�Aσ)

= (D(ϕ+cL, 0, ..., 0)�Aσ)�(D(ψ̃1, ..., ψ̃r)�Aτ )

holds on U1 ∩U2. In particular, the last equation implies that Aτ �Aσ=Aσ �Aτ

and hence τ =σk for some k ∈Z. Thus F and F ′ are isomorphic if and only if there
exist k ∈Z and ψ1, ..., ψr as above such that

D(ψ̃1, ..., ψ̃k, ψ̃k+1+ϕ, ψ̃k+2, ..., ψ̃r)�Aσk+1 =D(ϕ+cL+ψ̃r, ψ̃1, ..., ψ̃r−1)�Aσk+1 .

Let αi be the slope of ψi. Then on U1 ∩U2 the continuation of ψi to U2 and the
continuation of ψi to U1 differ exactly by αiL. Hence we obtain the system of
equations

ψ1 =ϕ+cL+ψr+αrL,

ψ2 =ψ1+α1L,

...

ψk =ψk−1+αk−1L,

ψk+1+ϕ=ψk+αkL,

ψk+2 =ψk+1+αk+1L,

...

ψr =ψr−1+αr−1L.

In particular, we can conclude that α1=...=αk and αk+1=...=αr. Hence F and F ′

are isomorphic if and only if there exist α1, αr and k ∈Z such that

−c =(r −k)·αr+k ·α1 and α1 = −d+αr,

or equivalently if and only if there exist αr and k ∈Z with

−c = rαr −k ·d.

This finishes the proof. �
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Proof of Theorem 3.4. Let π : F→X and π : F ′→X be indecomposable vector
bundles of rank r and degree d. We may assume by Remark 1.9 that F and F ′

fulfill Definition 1.6 with the same open covering U1, ..., Us and transition maps
Mij respectively M ′

ij . Again, we may assume that all sets Ui are connected, that
for all i and j the intersections Ui ∩Uj are connected as well, and that the sets Ui

are numbered consecutively. Moreover, by Lemma 3.3 we may assume that M12

and M ′
12 are the only non-trivial transition maps. Applying Lemmas 3.6 and 3.7

consecutively we can furthermore assume that M12(x)=D(ϕ, 0, ..., 0)(x)�A(12...r)

and M ′
12(x)=D(ϕ′, 0, ..., 0)(x)�A(12...r). As F and F ′ are vector bundles of degree d

the affine linear maps ϕ and ϕ′ both must have slope −d. Hence we have ϕ′ =ϕ+cL,
where c∈R and L is the (lattice) length of the curve X . Thus F and F ′ are
isomorphic if and only if c is an integer multiple of gcd(r, d) by Lemma 3.8. �
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