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Whitney coverings and the tent spaces T 1,q(γ)
for the Gaussian measure

Jan Maas, Jan van Neerven and Pierre Portal

Abstract. We introduce a technique for handling Whitney decompositions in Gaussian

harmonic analysis and apply it to the study of Gaussian analogues of the classical tent spaces T 1,q

of Coifman–Meyer–Stein.

1. Introduction

Much of modern harmonic analysis in Euclidean spaces depends upon the fact
that the Lebesgue measure is compatible with the scalar multiplication in the sense
that for any ball B in R

n we have |2B|=2n|B|; here 2B is the ball with the same
centre and twice the radius of B. Indeed, many results proved originally in the
Euclidean setting have been extended to metric spaces endowed with a doubling
measure μ, i.e., a measure satisfying μ(2B)≤Cμ(B) for some constant C depending
only upon μ.

It is a simple matter to verify that the standard Gaussian measure γ on R
n,

dγ(x)= (2π)−n/2 exp
(

− 1
2 |x|2

)
dx,

is non-doubling. In their seminal paper [5], Mauceri and Meda found a way around
this by introducing the class of admissible balls. These are the balls B=B(cB, rB)
in R

n satisfying the smallness condition

rB ≤ min
{

1,
1

|cB |

}
.
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Mauceri and Meda show that admissible balls enjoy a doubling condition. Armed
with this, many results from the Euclidean case can be carried over to the Gaussian
case, as long as one is able to work with admissible balls only. Mauceri and Meda
were thus able to define Gaussian counterparts of the spaces H1 and BMO and
extend parts of the Calderón–Zygmund theory to the Gaussian setting. Some of
these results have even been extended to a more general class of locally doubling
metric measure spaces in [1] and [2].

Another important tool of Euclidean harmonic analysis is the Whitney covering
method. This technique allows one to cover open sets O with dyadic cubes whose
sizes are proportional to the distance of the cube to the complement of O. In the
Gaussian case, one runs into the problem that admissible cubes become very small
at large distances from the origin. As a consequence, the distance of such a cube
to the exterior of a given open set is typically much larger than the size of the
cube. At first sight, this renders Whitney covering useless as a tool in the Gaussian
setting. The purpose of this note is to show how Whitney covering, too, can be
adapted to the Gaussian setting. To illustrate its usefulness, we use it to prove an
atomic decomposition theorem and a change of aperture theorem for the Gaussian
analogue of the tent space T 1,q of Coifman–Meyer–Stein.

2. Admissible balls and cubes

Throughout this paper we fix the dimension n≥1. As usual we denote by

B(x, r) := {y ∈ R
n : |x−y| <r}

the open ball in R
n centred at x with radius r. Following Mauceri and Meda [5] we

begin by introducing the class of admissible balls.

Definition 2.1. For α>0 we define

Bα :=
{
B(x, r) : x ∈ R

n and 0 <r ≤ αm(x)
}
,

where

m(x) :=min
{

1,
1

|x|

}
, x ∈ R

n.

The balls in Bα are said to be admissible at scale α.

It is a fundamental observation of Mauceri–Meda [5] that admissible balls enjoy
a doubling property.



Whitney coverings and the tent spaces T 1,q(γ) for the Gaussian measure 381

Lemma 2.2. (Doubling property) Let α, τ >0. There exists a constant d=
dα,τ,n, depending only upon α, τ , and the dimension n, such that if B1=B(c1, r1)∈
Bα and B2=B(c2, r2) have nonempty intersection and r2 ≤τr1, then

γ(B2) ≤ dγ(B1).

In particular this lemma implies that for all α>0 there exists a constant d′ =
d′

α,n such that for all B(x, r)∈Bα we have

γ(B(x, 2r)) ≤ d′γ(B(x, r)).

Lemma 2.3. Let a, b>0 be given.
(i) If r ≤am(x) and |x−y|<br, then r ≤a(1+ab)m(y).
(ii) If |x−y|<bm(x), then m(x)≤(1+b)m(y) and m(y)≤(2+2b)m(x).

Proof. (i) If |y| ≤1, then m(y)=1 and r ≤am(x)≤a=am(y).
If 1<|y| ≤1+ab, then m(y)≥1/(1+ab) and

r ≤ a ≤ a(1+ab)m(y).

If |y|>1+ab, then m(y)=1/|y| and

r ≤ a

|x| ≤ a

|y| −br
≤ a

|y| −ab
≤ a(1+ab)

|y| = a(1+ab)m(y).

(ii) Put r′ =m(x). Then |x−y|<br′ and therefore (i) (with a=1) implies that
r′ ≤(1+b)m(y). This gives the first estimate. To obtain the second we consider
three cases. If |x| ≤1, then (2+2b)m(x)≥1≥m(y). If 1≤ |x| ≤2b, then (2+2b)m(x)≥
(2+2b)/2b≥1≥m(y). If |x| ≥1 and |x| ≥2b, then |y| ≥ |x| −b/|x| ≥ |x| − 1

2 ≥ 1
2 |x|, and

thus m(y)≤2m(x)≤(2+2b)m(x). �

For m∈Z let Δm be the set of dyadic cubes at scale m, i.e.,

Δm = {2−m(x+[0, 1)n) : x ∈ Z
n}.

In the Gaussian setting the idea is to use, at every scale, cubes whose diameter
depends upon another parameter l≥0, which keeps track of the distance from the
cube to the origin. More precisely, define the layers

L0=[−1, 1)n and Ll=[−2l, 2l)n \[−2l−1, 2l−1)n, l≥1,

and define, for k ∈Z and l≥0,

Δγ
k,l = {Q ∈ Δl+k : Q ⊆ Ll}, Δγ

k =
⋃

l≥0

Δγ
k,l and Δγ =

⋃

k≥0

Δγ
k .
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Figure 1. Subdivision of the layers L0, L1, L2, ... into cubes of Δγ
0,l. The (5,8)-cubes in

the layers L2 and L3 corresponding to the choice ˇ=3 are black. A cube from Δγ
−3,2

and a cube from Δγ
−3,3 have been coloured grey.

Note that Δγ
0,0 consists of 2n cubes of side length 1, and that Δγ

k,l=∅ for all other
k ≤ −2l. Also, if Q∈Δγ

k,l, then Q has side-length 2−k−l, diameter 2−k−l
√

n, and its
centre x has norm |x| ≥2l−1.

Fix an integer ˇ≥1. For each l≥
⌈

1
2 (ˇ+1)

⌉
, the layer Ll is a disjoint union of

cubes in Δγ
−ˇ,l, each of which is the disjoint union of 2ˇn cubes from Δγ

0,l. Each
such cube can be labelled by a label i=(i1, ..., in)∈ {1, ..., 2ˇ}n. See Figure 1, where
n=2, ˇ=3, and the shaded cubes are the cubes from Δγ

0,l with label i=(5, 8) for
l=2, 3.

For a set A⊆R
n we write

(1) A+Cα = {z ∈ R
n : z is the centre of a ball B ∈Bα that intersects A}.
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Lemma 2.4. Let p≥0 and l≥p+2 be integers, let Q∈Δγ
0,l be given, and con-

sider a ball B=B(cB, rB) in B2p intersecting Q. Then we have cB ∈Ll−1 ∪Ll ∪Ll+1.

Proof. Suppose first that we had cB ∈Ll−m for some 2≤m≤l. On the one
hand, rB ≤2p ≤2l−2. On the other hand, the distance between the layers Ll and
Ll−m is at least 2l−2+2l−3+...+2l−m=2l−1 −2l−m ≥2l−2. Since B is open, it would
follow that B does not intersect Q⊆Ll.

The proof that cB cannot be in Ll+m for any m≥2 is similar and requires only
cruder estimates. �

Lemma 2.5. Fix integers p≥1 and ˇ≥p+4. Let i∈ {1, ..., 2ˇ}n and let Q1 ∈
Δγ

0,l1
and Q2 ∈Δγ

0,l2
be two distinct cubes with the same label i in the layers Ll1 and

Ll2 with l1, l2 ≥max
{
p+2,

⌈
1
2 (ˇ+1)

⌉}
. Then

d(Q1+C2p , Q2+C2p) > 0.

Proof. We consider the case when one of the cubes, say Q1, lies in layer l and
the other, say Q2, lies in layer l+1; the case where both cubes lie in the same layer
or are more than one layer apart can be handled with cruder estimates.

The centre of a ball B=B(cB, rB) in B2p intersecting a layer Ll satisfies |cB | ≥
2l−1 −rB ≥2l−1 −2p|cB | −1, which in view of Lemma 2.4 implies that |cB | ≥2l−1 −
2p−l+2. Therefore rB ≤2p/(2l−1 −2p−l+2). For j ∈ {1, 2} let Bj =B(cBj , rBj ) be a
ball in B2p intersecting Qj . It follows that

rB1 ≤ 1
2l−p−1 −2−l+2

and rB2 ≤ 1
2l−p −2−l+1

.

The cubes Q1 and Q2 are separated by at least 2ˇ −1 cubes in Δγ
0,l or Δγ

0,l+1, so the
distance between Q1 and Q2 is at least (2ˇ −1)/2l+1. Hence, using that l≥p+2≥3,

d(Q1+C2p , Q2+C2p) ≥ 2ˇ −1
2l+1

−
(

1
2l−p−1 −2−l+2

+
1

2l−p −2−l+1

)

≥ 2ˇ −1
2l+1

−
(

1
2l−p−1 −2−p

+
1

2l−p −2−p−1

)

=
2ˇ −1
2l+1

−2p

(
2

2l −2
+

1
2l − 1

2

)

≥ 2ˇ −1
2l+1

−2p 3
2l −2
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≥ 2ˇ −1
2l+1

−2p 8
2l+1

=
2ˇ −2p+3 −1

2l+1
,

and the right-hand side is strictly positive since ˇ≥p+4. �

In the remainder of this section we fix the integer p≥2 and take ˇ=p+4. Note
that all l≥p+2 then satisfy the assumptions of Lemma 2.5.

Definition 2.6. The set A
(i)
p is the union of all cubes in

⋃
l≥p+2 Δγ

0,l with label
i∈ {1, ..., 2p+4}n.

Definition 2.7. Let λ>0. A set A⊆R
n is said to be a λ-admissible Whitney

set if for all x∈A we have
d(x, �A) ≤ λm(x).

Clearly, subsets of admissible Whitney sets are admissible Whitney.

Theorem 2.8. Let p≥2.
(i) Q+C2p with Q∈Δγ

0,l and l=0, ..., p+1 is 22p+2
√

n-admissible Whitney ;

(ii) A
(i)
p +C2p with i∈ {1, ..., 2p+4}n is 2p+3

√
n-admissible Whitney.

Proof. In view of Lemma 2.5 both assertions follow from the fact (proved next)
that Q+C2p is admissible Whitney for any cube Q∈Δγ

0,l, with constant 22p+2
√

n

for l=0, ..., p+1 and constant 2p+3
√

n for l≥p+2.
First let l∈ {0, ..., p+1}. Let Q∈Δγ

0,l, consider a ball B=B(cB, rB)∈B2p in-
tersecting Q, and remark that rB ≤2p. It follows that

Q+C2p ⊆ {z ∈ R
n : d(z, Q) ≤ 2p}.

Let z ∈Q+C2p be given. If z ∈Q, then the distance of z to the complement of Q+C2p

is at most 1
2 +2p. At the same time, m(z)≥1/2p+1

√
n (since z ∈L0 ∪...∪Lp+1). If

z /∈Q, then the distance of z to the complement of Q+C2p is at most 2p. At the
same time, m(z)≥1/2p+2

√
n (since z ∈L0 ∪...∪Lp+2). In both cases, the inequality

in Definition 2.7 is satisfied.
Next let l≥p+2. Let Q∈Δγ

0,l be given and consider a ball B=B(cB, rB) in
B2p intersecting Q. Using Lemma 2.4 we find that rB ≤2p|cB | −1 ≤2p−l+2. It follows
that

Q+C2p ⊆ {z ∈ R
n : d(z, Q) ≤ 2p−l+2}.
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Now let z ∈Q+C2p be given. If z ∈Q, then the distance of z to the complement of
Q+C2p is at most 2−l−1+2p−l+2. At the same time, m(z)≥1/2l

√
n (since z ∈Ll).

If z /∈Q, then the distance of z to the complement of Q+C2p is at most 2p−l+2. At
the same time, m(z)≥1/2l+1

√
n (since z ∈Ll−1 ∪Ll ∪Ll+1). In each of these cases,

the inequality in Definition 2.7 is satisfied. �

Corollary 2.9. There exists a constant N , depending only on p≥2 and the
dimension n, such that every open set in R

n can be covered by N open 22p+2
√

n-
admissible Whitney sets.

An explicit bound on N is obtained by counting the number of sets involved in
Theorem 2.8, which can be estimated by 2n(1+2(p+4)n+...+2(p+1)(p+4)n)+2(p+4)n.

The next result is an immediate consequence of its Euclidean counterpart
(see [7, Section VI.1] for the details). The cubes that we pick up from the Eu-
clidean proof will automatically be admissible at a suitable scale (which depends
upon n only) because we start from an admissible Whitney set.

Lemma 2.10. Let λ>0 and suppose O ⊆R
n is an open λ-admissible Whitney

set. There exists a constant ρ, depending only on λ and the dimension n, a countable
family of disjoint cubes {Qm}m in Δγ , and a family of functions {φm}m ⊆C∞

c (Rn)
such that

(i)
⋃

m Qm=O;
(ii) diamQm ≤d(Qm, �O)≤ρdiam Qm for all m;
(iii) supp φm ⊆Q∗

m for all m, where Q∗
m denotes the cube with the same centre

as Qm but side length multiplied by ρ;
(iv) 1/ρ≤φm(x)≤1 for all m and all x∈Qm;
(v)

∑
m φm(x)=1 for all x∈O.

3. Gaussian tent spaces

Throughout this section we fix 1<q<∞ and let q′ :=q/(q −1) denote its con-
jugate exponent. Let

D := {(x, t) ∈ R
n ×(0, ∞) : t<m(x)}.

Note that a point (x, t)∈R
d ×(0, ∞) belongs to D if and only if B(x, t)∈B1.

Definition 3.1. The Gaussian tent space T 1,q(γ) is the completion of Cc(D)
with respect to the norm

‖f ‖T 1,q(γ) := ‖Jf ‖L1(Rn,dγ(x);Lq(D,dγ(y) dt/t)),
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where

(Jf(x))(y, t) :=
1B(y,t)(x)

γ(B(y, t))1/q
f(y, t).

For a measurable set A⊆R
n and a real number α>0 we define the tent with

aperture α over A by

Tα(A) := {(y, t) ∈ R
n ×(0, ∞) : d(y, �A) ≥ αt}.

Definition 3.2. Let α be a positive real number. A function a:D→C is called
a T 1,q(γ) α-atom if there exists a ball B ∈Bα such that

(i) a is supported in T1(B)∩D;
(ii) ‖a‖Lq(D,dγ dt/t) ≤γ(B)−1/q′

.

Lemma 3.3. If a is a T 1,q(γ) α-atom, then a∈T 1,q(γ) and ‖a‖T 1,q(γ) ≤1.

Proof. Let a be a T 1,q(γ) α-atom supported in T1(B)∩D for some B ∈Bα.
If (y, t)∈T1(B)∩D and x∈B(y, t), then x∈B. First using this fact, then Hölder’s
inequality, then the Fubini theorem, we obtain

∫

Rn

(∫∫

D

1B(y,t)(x)
γ(B(y, t))

|a(y, t)|q dγ(y)
dt

t

)1/q

dγ(x)

=
∫

Rn

(∫∫

D

1B(y,t)(x)
γ(B(y, t))

|a(y, t)|q dγ(y)
dt

t

)1/q

1B(x) dγ(x)

≤
(∫

Rn

∫∫

D

1B(y,t)(x)
γ(B(y, t))

|a(y, t)|q dγ(y)
dt

t
dγ(x)

)1/q

γ(B)1/q′

=
(∫∫

D

|a(y, t)|q dγ(y)
dt

t

)1/q

γ(B)1/q′

≤ 1. �

The set D admits a locally finite cover with tents T1(B) based at balls B ∈Bα

if and only if α>1; this explains the condition α>1 in the next theorem, which
establishes an atomic decomposition of T 1,q(γ). The proof follows the lines of the
Euclidean counterpart in [3] (see also the expanded version in the setting of spaces
of homogeneous type [6]). However, one needs to be careful not to use a doubling
property for non-admissible balls; it is here where the results of the previous section
come to rescue.
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Theorem 3.4. (Atomic decomposition) For all f ∈T 1,q(γ) and α>1, there
exist a sequence {λn}n≥1 ∈	1 and a sequence of T 1,q(γ) α-atoms {an}n≥1 such
that

(i) f=
∑

n≥1 λnan;
(ii)

∑
n≥1 |λn|�‖f ‖T 1,q(γ).

Before we start with the proof, we need some notation and auxiliary results.
Given a measurable set A⊆R

n and a real number α>0, we define

Rα(A) = {(y, t) ∈ R
d ×(0, ∞) : d(y, A) <αt} = �Tα(�A).

We also put, for any measurable set A⊆R
n and real number β>0,

A[β] =
{

x ∈ R
n :

γ(A∩B)
γ(B)

≥ β for all B ∈ B3/2 with centre x

}
.

We call A[β] the set of points of admissible β-density of A. Note that A[β] is a closed
subset of R

n contained in Ā.

Lemma 3.5. For all η ∈
(

1
2 , 1

)
there exists an η̄ ∈(0, 1) such that, for all mea-

surable sets F ⊆R
n and all non-negative measurable functions H on D,

∫∫

R1−η(F [η̄])∩D

H(y, t) dγ(y)
dt

t
�

∫

F

∫∫

D

1B(y,t)(x)
γ(B(y, t))

H(y, t) dγ(y)
dt

t
dγ(x).

Proof. First let η̄ ∈(0, 1) be arbitrary and fixed. Let (y, t)∈R1−η(F [η̄])∩D.
Note that (y, t)∈D implies that B(y, t)∈B1. There exists x∈F [η̄] such that |y −x|<
(1−η)t. Notice first that, since t≤m(y), we have |x|<(1−η)t+1/t≤ 1

2 +1/t≤3/2t.
We thus have that t∈

(
0, 3

2m(x)
)
. Moreover B(x, ηt)⊆B(y, t)⊆B

(
x, 3

2 t
)
, and hence

B(y, t)∈B1, B(x, t)∈B3/2, and γ(B(x, t))�γ(B(y, t)) by repeated application of
the doubling property on admissible balls (Lemma 2.2). We therefore have

γ(F ∩B(y, t)) ≥ γ(F ∩B(x, t))−γ(B(x, t)∩�B(y, t))

≥ η̄γ(B(x, t))−γ(B(x, t))+γ(B(x, t)∩B(y, t))

≥ (η̄ −1)γ(B(x, t))+γ(B(x, ηt)).

Now, picking η̄ close enough to 1 and using the doubling property, we obtain a
constant c=c(η, n)∈(0, 1) such that

γ(F ∩B(y, t)) ≥ cγ(B(x, t)).
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Therefore, there is a constant c′ =c′(η, n)>0 such that γ(F ∩B(y, t))≥c′γ(B(y, t))
for all (y, t)∈R1−η(F [η̄])∩D. Finally,
∫

F

∫∫

D

1B(y,t)(x)
γ(B(y, t)

H(y, t) dγ(y)
dt

t
dγ(x) =

∫∫

D

γ(F ∩B(y, t))
γ(B(y, t))

H(y, t) dγ(y)
dt

t

≥ c′
∫∫

R1−η(F [η̄])∩D

H(y, t) dγ(y)
dt

t
. �

Lemma 3.6. If a function f ∈T 1,q(γ) admits a decomposition in terms of
T 1,q(γ) α-atoms for some α>1, then it admits a decomposition in terms of T 1,q(γ)
α-atoms for all α>1.

Proof. Suppose that f ∈T 1,q(γ) admits a decomposition in terms of T 1,q(γ)
β-atoms for some β>1. We will show that f admits a decomposition in terms of
T 1,q(γ) α-atoms for any α>1. This is immediate if α≥β, since in this case any
T 1,q(γ) β-atom is a T 1,q(γ) α-atom as well.

Let us now assume that 1<α<β. We claim that it suffices to show that there
exists an integer N, depending only upon α, β, and the dimension n, such that if
B ∈Bβ , then T1(B)∩D can be covered by at most N tents of the form T1(B′) with
B′ =B(c′, r′)∈Bα satisfying r′ =αm(c′).

To prove the claim, it clearly suffices to consider the case that f is a T 1,q(γ) β-
atom having support in T1(B)∩D for some ball B ∈Bβ with centre c and radius r=
βm(c). Let {T1(B′

1), ..., T1(B′
N )} be a covering of T1(B), where each B′

j , j=1, ..., N,

is a ball in Bα with centre cj , radius rj =αm(cj), and intersecting B. For x∈
T1(B)∩D we set n(x):=#{1≤j ≤N :x∈T1(B′

j)} and fj(x):=n−1(x)f(x)1T1(B′
j)

(x).

It then follows that f=
∑N

j=1 fj . Moreover, each fj is a T 1,q(γ) α-atom, since fj is
supported in T1(Bj)∩D and

‖fj ‖Lq(D,dγ dt/t) ≤ ‖f ‖Lq(D,dγ dt/t) ≤ γ(B)−1/q′ � γ(B′
j)

−1/q′
.

To obtain the latter estimate, we pick an arbitrary b∈B′
j ∩B and use Lemma 2.3(ii)

to conclude that m(cj)≤(1+α)m(b)≤2(1+α)(1+β)m(c), and then we estimate

rj =αm(cj) ≤ 2α(1+α)(1+β)m(c)= 2αβ−1(1+α)(1+β)r.

Combined with Lemma 2.2, we infer that γ(Bj)�γ(B). It follows that f=
∑N

j=1 fj

is a decomposition in terms of T 1,q(γ) α-atoms, which proves the claim.
Fix R>1+β so large that α(R−β)/(R−β+α)>1. The set {(y, t)∈D :|y| ≤R}

can be covered with finitely many sets—their number depending only upon R, n

and α—of the form T1(B′) with B′ =B(c′, r′)∈Bα and r′ =αm(c′).
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Take a ball B=B(c, r)∈Bβ with |c| ≥R and choose δ ∈(0, 1) so small that
(1−δ)α(R−β)/(R−β+α)>1. We first remark that, if x∈B, then |x| ≥R−β ≥1,
and therefore m(x)=1/|x|. Let us then define

CB := {(x, t) ∈ B ×(0, ∞) : t ≤ m(x)}.

Noting that T1(B)∩D ⊆CB , it remains to cover CB with N tents T1(B′) based on
balls B′ ∈Bα, where the number N depends on α, β and n only.

To do so, let us start by picking c′ ∈B, and let r′ =αm(c′)=α/|c′ | and B′ =
B(c′, r′). If (x, t)∈CB is such that |x−c′ | ≤δr′, then

d(x, �B′) = d(c′, �B′)− |x−c′ | ≥ (1−δ)r′ =(1−δ)
α

|c′ | ≥ (1−δ)
α

|x|+|x−c′ |

≥ m(x)(1−δ)
α|x|

|x|+α
≥ m(x)(1−δ)

α(R−β)
R−β+α

≥ m(x) ≥ t.

Here we used the monotonicity of the function t �→t/(t+α).
We have proved that a point (x, t)∈CB belongs to T1(B′) whenever |x−c′ | ≤δr′.

Using that (|c|+β)r ≤(|c|+β)β/|c| ≤β+β2, we have that

r′ =
α

|c′ | ≥ α

|c|+β
≥ α

β+β2
r.

This implies that B can be covered with N balls B′ =B(c′, δr′) as above, with N

depending only on α, β and n. The union of the N sets T1(B′)∩D will then cover
CB . The proof is complete. �

Proof of Theorem 3.4. By Lemma 3.6 it suffices to prove that each f ∈T 1,q(γ)
admits a decomposition in terms of T 1,q(γ) α-atoms for some α>0.

Recall that the disjoint sets A
(i)
p have been introduced in Definition 2.6. We

shall apply Theorem 2.8 with p=4 (the reason for this choice is the constant 16=24

produced in the argument below). Since
( 5⋃

l=0

Ll

)
∪

( ⋃

i∈{1,...,28}n

A
(i)
4

)
= R

n

we may write

(2) f = f1{ ‖Jf ‖q>0} =
5∑

l=0

∑

Q∈Δγ
0,l

f1Q∩ { ‖Jf ‖q>0} +
∑

i∈{1,...,28}n

f1
A

(i)
4 ∩ { ‖Jf ‖q>0},

where we use the notation

{‖Jf ‖q > 0} := {x ∈ R
n : ‖Jf(x)‖Lq(D,dγ(y) dt/t) > 0}
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and
f1{ ‖Jf ‖q>0}(x, t) := f(x, t)1{ ‖Jf ‖q>0}(x).

The first equality in (2), which holds almost everywhere on D, is justified as follows.
For all x∈V :={ ‖Jf ‖q=0} we have 1B(y,t)(x)f(y, t)=0 for almost all (y, t)∈D, and
therefore, by Fubini’s theorem, for almost all y ∈R

d we have 1B(y,t)(x)f(y, t)=0
for almost all t>0. Fix δ>0 arbitrary. Then for almost all y ∈B(x, δ) we have
f(y, t)=0 for almost all t≥δ. By another application of Fubini’s theorem this implies
that f(y, t)=0 for almost all (y, t)∈(B(x, δ)×[δ, ∞))∩D. Taking the union over all
rational δ>0, it follows that f ≡0 almost everywhere on Γx :={(y, t)∈D :|x−y|<t},
the ‘admissible cone’ over x. If K is any compact set contained in V , then by
taking the union over a countable dense set of points x∈K it follows that f(y, t)=0
almost everywhere on the ‘admissible cone’ over K. Finally, by the inner regularity
of the Lebesgue measure on R

n, it follows that f(y, t)=0 almost everywhere on the
‘admissible cone’ over V . In particular this gives f(x, t)=0 for almost all (x, t)∈D

with x∈K. This proves the first identity in (2).
To prove the theorem it suffices to prove that each of the summands on the

right-hand side of (2) has an atomic decomposition. In view of Theorem 2.8 (applied
with p=4) it even suffices to prove that

g := f1W ∩ { ‖Jf ‖q>0}

has an atomic decomposition for any given measurable set W in R
n such that

W +C16 is 210
√

n-admissible Whitney.
Given k ∈Z, let us define

Ok := {x ∈ R
n : ‖Jg(x)‖q > 2k }

and Fk :=�Ok. Fix an arbitrary η ∈
(

1
2 , 1

)
and let η̄ be as in Lemma 3.5. With abuse

of notation we let O
[η̄]
k :=�F

[η̄]
k , where F

[η̄]
k denotes the set of points of admissible

η̄-density of Fk, and note that Ok ⊆O
[η̄]
k . We claim that O

[η̄]
k is contained in W +C16

(see (1)).
To prove the claim we first fix x∈Ok and check that x∈W +C2. Indeed,

since Jg(x) does not vanish almost everywhere on D we can find a set D′ ⊆D

of positive measure such that for almost all (y, t)∈D′ one has 1B(y,t)(x)g(y, t)=
1B(y,t)(x)f(y, t)1W ∩ { ‖Jf ‖q>0}(y) 
=0. For those points we have y ∈W , |x−y|<t and
t<m(y), so t<2m(x) by Lemma 2.3(i). Thus B(x, t) belongs to B2 and inter-
sects W , and so x∈W +C2.

Next let x∈O
[η̄]
k . Then x is not a point of admissible η̄-density of Fk, so

there is a ball B ∈B3/2 with centre x such that γ(Fk ∩B)<η̄γ(B). This is only
possible if B intersects Ok=�Fk. Since Ok is contained in W +C2, this means
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that B intersects W +C2. Fix an arbitrary x′ ∈B ∩(W +C2) and let B′ ∈ B2 be
any admissible ball centred at x′ and intersecting W . From x′ ∈B and B ∈B3/2

it follows that |x−x′ |< 3
2m(x). Also, since B′ belongs to B2 and intersects W ,

d(x′, W )<2m(x′). It follows that d(x, W )< 3
2m(x)+2m(x′). By the second part

of Lemma 2.3(ii) we have m(x′)≤5m(x) and therefore dist(x, W )≤ 23
2 m(x). This

proves the claim (with a somewhat better constant, but that is irrelevant).
For each N ≥1 define gN (y, t):=1{ |y|≤N }1{ |g|≤N }1(1/N,∞)(t)g(y, t). Clearly,

gN ∈T 1,q(γ) and, by dominated convergence, limN→∞ gN =g in T 1,q(γ). Defining
the sets Fk,N , Ok,N , F

[η̄]
k,N , O

[η̄]
k,N in the same way as above, Lemma 3.5 gives that

∫∫

R1−η(F
[η̄]
k,N )∩D

|gN (y, t)|q dγ(y)
dt

t

�
∫

Fk,N

∫∫

D

1B(y,t)(x)
γ(B(y, t))

|gN (y, t)|q dγ(y)
dt

t
dγ(x) � ‖gN ‖q

T 1,q(γ).

As k→−∞, the middle term tends to 0 and therefore the support of gN is con-
tained in the union

⋃
k∈Z

T1−η(O[η̄]
k,N )∩D. Clearly, Ok,N ⊆Ok implies T1−η(O[η̄]

k,N )⊆
T1−η(O[η̄]

k ), and therefore a limiting argument shows that the support of g is con-
tained in the union

⋃
k∈Z

T1−η(O[η̄]
k )∩D.

Choose cubes {Qm
k }m and functions {φm

k }m as in Lemma 2.10, applied to the
open sets O

[η̄]
k , which are contained in W +C16. Define for (y, t)∈D,

bm
k (y, t) := (1

T1−η(O
[η̄]
k )

(y, t)−1
T1−η(O

[η̄]
k+1)

(y, t))φm
k (y)g(y, t),

μm
k :=

∫∫

D

|bm
k (y, t)|q dγ(y)

dt

t
,

and put

λm
k := γ(Qm

k )1/q′
(μm

k )1/q and am
k (y, t) :=

bm
k (y, t)
λm

k

.

Then,
g =

∑

k∈Z

∑

m

λm
k am

k .

Let C be a constant to be determined later and denote by (Qm
k )∗ ∗ the cube

which has the same centre as Qm
k but side-length multiplied by C. Let us fur-

ther denote by 	m
k and δm

k the side-length and the length of the diagonal of Qm
k ,

respectively, and by cm
k the centre of Qm

k . We claim that

supp am
k ⊆ T1((Qm

k )∗ ∗).
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We have
supp am

k ⊆ T1−η(O[η̄]
k )∩ {(y, t) ∈ D : y ∈ (Qm

k )∗ },

where (Qm
k )∗ is as in Lemma 2.10. Therefore, fixing (y, t)∈supp am

k , we have

d(y, F
[η̄]
k ) ≥ (1−η)t and y ∈ (Qm

k )∗.

For z /∈(Qm
k )∗ ∗ this gives

d(z, cm
k ) ≥ 1

2C	m
k = 1

2Cdm
k /

√
n

and

(3) d(y, z) ≥ d(z, cm
k )−d(y, cm

k ) ≥
(

C√
n

−ρ

)
1
2δm

k ,

where ρ=ρ210
√

n,n is the constant from Lemma 2.10. Moreover, by property (ii) in
Lemma 2.10,

d(cm
k , F

[η̄]
k ) ≤

(
ρ+ 1

2

)
δm
k .

For u∈F
[η̄]
k such that d(cm

k , u)≤
(
ρ+ 1

2

)
δm
k +ε, this gives

(4) (1−η)t ≤ d(y, F
[η̄]
k ) ≤ d(y, u) ≤ d(y, cm

k )+d(cm
k , u) ≤ 3ρ+1

2
δm
k +ε.

Upon taking C=2
√

n
(

1
2ρ+(3ρ+1)/2(1−η)

)
, from (3) and (4) (where we let ε↓0)

we infer that
d(y, z) ≥ 3ρ+1

2(1−η)
δm
k ≥ t.

This means that (y, t)∈T1((Qm
k )∗ ∗), thus proving the claim.

Using the definitions of λm
k and am

k together with the doubling property for
admissible balls, we also get that

∫∫

D

|am
k (y, t)|q dγ(y)

dt

t
≤ 1

γ(Qm
k )q/q′ � 1

γ((Qm
k )∗ ∗)q/q′ .

Up to a multiplicative constant, the am
k are thus T 1,q(γ) α-atoms for some α=

α(C, n)>0. To get the norm estimates, we first use Lemma 3.5. Noting that
(y, t)∈supp(bm

k ) implies that (y, t) /∈T1−η(O[η̄]
k+1) and hence (y, t)∈R1−η(F [η̄]

k+1), and
that (y, t)∈T1((Qm

k )∗ ∗) and x∈B(y, t) imply that x∈(Qm
k )∗ ∗, we obtain

μm
k ≤

∫ ∫

R1−η(F
[η̄]
k+1)∩D

1T1((Qm
k )∗ ∗)(y, t)|g(y, t)|q dγ(y)

dt

t

�
∫

Fk+1

∫∫

D

1B(y,t)(x)1T1((Qm
k )∗ ∗)(y, t)

γ(B(y, t))
|g(y, t)|q dγ(y)

dt

t
dγ(x)
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≤
∫

Fk+1∩(Qm
k )∗ ∗

‖Jg(x)‖q
Lq(D,dγ dt/t)) dγ(x)

≤ 2q(k+1)γ((Qm
k )∗ ∗)

� 2qkγ(Qm
k ).

This then gives
∑

k∈Z

∑

m

λm
k =

∑

k∈Z

∑

m

(μm
k )1/qγ(Qm

k )1/q′ �
∑

k∈Z

2kγ(O[η̄]
k ).

Since x∈O
[η̄]
k implies M3/2(1Ok

)(x)≥1−η̄, the weak type 1-1 estimate for the Hardy–
Littlewood maximal function M3/2 defined by using only B3/2-balls (which is proved
by copying its Euclidean counterpart, see [5, Theorem 3.1]), gives (1−η̄)γ(O[η̄]

k )�
γ(Ok) and thus

(1−η̄)
∑

k∈Z

∑

m

λm
k �

∑

k∈Z

2kγ(Ok) �
∫ ∞

0

γ(x ∈ R
n : ‖Jg(x)‖q >s) ds= ‖g‖T 1,q(γ). �

As an application of the atomic decomposition we next prove a change of
aperture theorem. Our proof is different from the Euclidean proofs in [3] and [4] in
that we derive the result directly from the atomic decomposition theorem.

Definition 3.7. For α>0, the Gaussian tent space T 1,q
α (γ) with aperture α is

the completion of Cc(D) with respect to the norm

‖f ‖T 1,q
α (γ) := ‖Jαf ‖L1(Rn,dγ(x);Lq(D,dγ(y) dt/t)),

where
Jαf(x, y, t) :=

1B(y,αt)(x)

γ(B(y, t))1/q
f(y, t), f ∈ Cc(D).

Theorem 3.8. (Change of aperture) For all 1<α0<α we have T 1,q
α (γ)=

T 1,q
α0

(γ) with equivalent norms.

Proof. It is clear that T 1,q
α (γ)⊆T 1,q

α0
(γ), so it suffices to show that T 1,q

α0
(γ)⊆

T 1,q
α (γ). For this it suffices to show that Jαf ∈L1(Rn, dγ(x); Lq(D, dγ(y) dt/t))

whenever f ∈T 1,q
α0

(γ). Now, by the doubling property (noting that (y, t)∈D im-
plies B(y, t)∈B1),

‖Jαf ‖L1(Rn,dγ(x);Lq(D,dγ(y) dt/t))

=
∫

Rn

(∫

D

1B(y,αt)(x)
γ(B(y, t))

|f(y, t)|q dγ(y)
dt

t

)1/q

dγ(x)
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=
∫

Rn

(∫

eD

1B(y,t)(x)
γ(B(y, t/α))

∣
∣
∣
∣f

(
y,

t

α

)∣
∣
∣
∣

q

dγ(y)
dt

t

)1/q

dγ(x)

�
∫

Rn

(∫

eD

1B(y,t)(x)
γ(B(y, t))

∣
∣
∣
∣f

(
y,

t

α

)∣
∣
∣
∣

q

dγ(y)
dt

t

)1/q

dγ(x)

= ‖Jf̃ ‖L1(Rn,dγ(x);Lq( eD,dγ(y) dt/t)),

where D̃ :={(y, t)∈R
n ×(0, ∞):(y, α−1t)∈D} and f̃(y, t):=f(y, α−1t). To prove the

theorem, it thus suffices to show that

(5) ‖Jf̃ ‖L1(Rn,dγ(x);Lq( eD,dγ(y) dt/t)) � ‖Jα0f ‖L1(Rn,dγ(x);Lq(D,dγ(y) dt/t))

for f ∈T 1,q(γ).
Suppose a is a T 1,q(γ) α0-atom a. Then a is supported in T1(B)∩D for

some ball B=B(c, r)∈Bα0 . Then ã(y, t):=a(y, α−1t) is supported in T̃ 1(B)∩D̃,
where T̃ 1(B):={(y, t)∈R

n ×(0, ∞):(y, t/α)∈T1(B)}. Using that (y, t)∈T̃ 1(B) and
x∈B(y, t) imply that x∈B(c, αr), the doubling property for admissible balls gives

∫

Rn

(∫∫

eD

1B(y,t)(x)
γ(B(y, t))

∣
∣
∣
∣a

(
y,

t

α

)∣
∣
∣
∣

q

dγ(y)
dt

t

)1/q

dγ(x)

≤
∫

Rn

(∫∫

eD

1B(y,t)(x)
γ(B(y, t))

∣
∣
∣
∣a

(
y,

t

α

)∣
∣
∣
∣

q

dγ(y)
dt

t

)1/q

1B(c,αr)(x) dγ(x)

≤
(∫

Rn

∫∫

eD

1B(y,t)(x)
γ(B(y, t))

∣
∣
∣
∣a

(
y,

t

α

)∣
∣
∣
∣

q

dγ(y)
dt

t
dγ(x)

)1/q

γ(B(c, αr))1/q′

=
(∫∫

eD

∣
∣
∣
∣a

(
y,

t

α

)∣
∣
∣
∣

q

dγ(y)
dt

t

)1/q

γ(B(c, αr))1/q′

�
(∫∫

eD

∣
∣
∣
∣a

(
y,

t

a

)∣
∣
∣
∣

q

dγ(y)
dt

t

)1/q

γ(B(c, r))1/q′

=
(∫∫

D

|a(y, t)|qdγ(y)
dt

t

)1/q

γ(B(c, r))1/q′

≤ 1.

This shows that Jã belongs to L1(Rn, dγ(x); Lq(D̃, dγ(y) dt/t)) with norm �1.
An appeal to Theorem 3.4 now shows that Jf̃ ∈L1(Rn, dγ(x); Lq(D̃, dγ(y) dt/t))

for all f ∈T 1,q(γ). The estimate (5) then follows from the closed graph theorem.
This completes the proof. �
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