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Carleson measures for weighted holomorphic
Besov spaces

Carme Cascante and Joaquin M. Ortega

Abstract. We obtain characterizations of positive Borel measures p on B™ so that some
weighted holomorphic Besov spaces B (w, B™) are embedded in L?(du).

1. Introduction

The aim of this paper is to contribute to the theory of Carleson measures. Let
us recall that a Carleson measure for a function space X? (e.g. a Hardy space) is
a positive Borel measure p such that the space X? is embedded in LP(du). This
class of measures for the Hardy spaces HP were first introduced by Carleson in the
study of the interpolation problem for Hardy spaces, and plays a crucial role, among
others, in the context of characterizations of pointwise multipliers and the corona
problem.

The Carleson measures for unweighted Hardy—Sobolev spaces H?(B"™) have
been thoroughly studied, although the characterization is still open for a whole
range of s and p. If n—sp<0, the space H?(B"), consists of continuous functions
on the unit ball B”, and therefore, the Carleson measures are the finite measures.
If n—sp>0 and n=1, the characterization in terms of Riesz capacities is due to
Stegenga [17]. But for n>1 and s>0, the characterization of the Carleson measures
for H?(B"™) still remains open. Close to the regular case, when n—sp<1, in [2],
[6] and [7], extensions of the capacitary characterizations given in [17] have been
obtained. The case p=2, and s=(n—1)/2, which corresponds to the Drury—Arveson
space, has been considered by [3] and [19]. In the remaining cases there is not a
complete characterization.

Both authors were partially supported by DGICYT grant MTM2008-05561-C02-01/MTM,
MTM2007-30904-E and 2009SGR1303.
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The boundedness of both the restriction operator from the Hardy—Sobolev
space Hs+1/ (B"*1) to the Besov space B?(B"), and of an extension operator from
B?(B") to H? o+1/p
measures for the Besov spaces BP(B™) for the same ranges of s and p, as has been
observed in [14] (see also, [3], [8] and the references therein).

In this paper we study Carleson measures for weighted holomorphic Besov
spaces BP(w,B"™), with s>0, that is, the positive Borel measures p on B", for
which the weighted holomorphic Besov space BP(w,B") is embedded in LP(dpu).

To be more precise, let us introduce some notation. Let w be a weight in B”,
the unit ball in C™, dv be the normalized Lebesgue measure on B", and R be the
radial derivative. We use the notation z7 to indicate the complex inner product in
C™ given by 2m=>_1_, z7;, if z=(21, ..., z,) and n=(m1, ..., ). We will consider
the weighted Besov space BP(w,B™), for 1<p<+oo and s€R, which consists of
holomorphic functions on B™ such that

1 me) = [ 1T+R @A) 5 ) do(y) < -+oc,

(B"t1), give as a consequence a characterization of the Carleson

for some k€Z ., k>s. As happens in the unweighted case, it can be shown that for
adequate weights if the above integral is finite for some k>s, then it is also finite
for any k>s (see Section 3).

The weighted Hardy—Sobolev space H? (w, B™), 0<s<400, 1 <p<+00, consists
of functions f holomorphic in B™ such that if f (z):Zj:OS fj(2) is its homogeneous
polynomial expansion, and (I+R)°f(z)= ;;08(1 +7)°f;(2), we have that

||f|\H§(w,Bn)= Sup ||(I+R)sf(7“C)HLP(wda)<+OO,
o<r<1

where do is the Lebesgue measure on S™. When w=1, we obtain the classical
Hardy—Sobolev spaces H?(B™).

The Carleson measures for certain weighted Hardy—Sobolev spaces H? (w, B™)
have been studied in [5], extending the unweighted case. The weights considered
there were in the class A,(S™) and satisfied a certain doubling condition.

The main purpose of this paper is to obtain characterizations of Carleson mea-
sures for certain weighted Besov spaces B (w,B"), 1<p<+o00, $>0, in dimension
n>1. The weights w considered are in the class A, (B™), with respect to balls asso-
ciated with a pseudodistance in B", and are also in an appropriate class of doubling
measures D, (B™). We refer to Section 2 for the precise definitions.

Theorem 1.1. Let 1<p<+o00, s>0 andweA,(B")ND,(B"), T—p(s+1/p)<1.
Let p1 be a positive Borel measure on B™. We then have that the following statements
are equivalent:
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(i) There exists C>0 such that for any f€BP(w,B"),

1/l e ay < CI |

BE(w,B")5

(ii) There exists C>0 such that for any f€LP(wdv),

I
’ /n (l—zy)n+yl)—(s+1/p) dv(y)

(iii) There exists C>0 such that for any f€LP(w dv),

fy)
‘/Bn |1—zg|nt1-(s+1/p) du(y)

We would like to remark that condition (iii) in the above theorem reduces the
problem to the boundedness of an integral operator with positive kernel.

If w=1, then 7=n+1, and the equivalence of (i) and (ii) in Theorem 1.1 for
n+1—(s+1/p)<1 is immediate. The above theorem deals with the more general
case n+1—p(s+1/p)<1.

In fact, we will extend the above theorem to a bigger class of weights, B,(B™)N
d,(B™), where the balls involved in the definitions are just the ones that “intersect”
the boundary. It can be proved that if 7—p(s+1/p)<0, the space B (w,B™) con-
sists of continuous functions on B", and consequently, the Carleson measures are
just the finite ones. We will just consider from now on the case 7—p(s+1/p)>0.

Let us finally mention that if s<0, no derivative is necessarily involved in the
definition of the norm of B?(w,B™), and it is in fact a weighted Bergman space.
The corresponding Carleson measures for some classes of weights have been studied,
among others, in [12] and [17] in dimension 1, and [9], [10] and [11] in dimension
n>1. The object of this paper is the study of Carleson measures for weighted Besov
spaces B (w,B™) with s>0.

The paper is organized as follows: In Section 2 we introduce the classes A, (B™),
D,(B™) and the bigger classes B,(B™)Nd,(B") and state their main properties. In
Section 3, we study the weighted Besov spaces, proving, among other results needed
in forthcoming sections, the weighted theorems on extension and restriction. In
Section 4, we give the proof of Theorem 1.1.

SCONfllewavys
L7 (dp)

< CHf”LP(w dv)-
Lr(du)

Finally, the usual remark on notation: we will adopt the convention of using
the same letter for various absolute constants whose values may change in each
occurrence, and we will write A=<B if there exists an absolute constant M such
that A<M B. We will say that two quantities A and B are equivalent if both A<B
and B=<A, and, in that case, we will write A~B.
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2. Weights in B™

2.1. A pseudodistance p in B™

Our approach to the study of Carleson measures for weighted Besov spaces
in B” uses the immersion of such spaces in holomorphic spaces defined in B"+!
via the natural projection IT: S"*1—B", given by (21, ..., 2nt1)=(21, -, 2). It
is then convenient to consider a pseudodistance in B", p(z,y), deduced from the
hyperbolic pseudodistance in S"*1. We define p(z, y) by the infimum of the Koranyi
pseudodistances of the antiimages by the mapping II of the points z, y:

_ . o (L1200 —|y]20—0
p(z,y) %9161[1572ﬂ)!1 —/1—|z2e\/1—[y[2e™"|
=t [1-27—V1-[ePVI-yPe’| = [1-27]— V1= [P V1= [yl

Lemma 2.1. p is a pseudodistance in B™.

Proof. Let 0€[0,2r). If zeB", let I, (2)=(z, /1—|2[2¢?). We then have
that for any 6o €[0,27), p(z,y)=infs |1 —TI,*(2)IT, ' (y)|, an expression from which

0
we easily obtain that p is a pseudodistance. [

We denote by U,(z, R)={yeB";p(z,y)<R} the ball of center z and radius R
with respect to the pseudodistance p. In the following lemma we show that p is a
pseudodistance whose balls centered at z of radius R are “equivalent”, in a sense
that we will make precise, to polydisks of radius R+ R'/?(1—z|?)*/? in the complex
normal direction and of radius R'/? in the complex-tangential directions. We will
write v(E) for the volume measure of a measurable subset £ in B".

Lemma 2.2. Let 26B", and 0<R<1. Let P(z,R) be the polydisk in B"
centered at z, of radius R+RY?(1—|z|>)'/2 in the complex normal direction and of
radius R'Y? in the complex tangential directions. Then there exists C>0 such that
P(z,R/C)CU,(z,R)CP(z,CR). In particular, v(U,(z, R))~R™(R+(1—|z[?)).

Proof. Let z€B™ and R>0. A unitary change of variables gives that, without
loss of generality, we may assume that z=(r,0,...,0), 0<r<1. We begin showing
that P(z, R)CU,(z,CR) for some fixed constant C'>0. Let us consider first the
case R<1—72. If y=(y1, ..., yn) EP(2, R), the definition of the polydisk gives that
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|r—y1|<R+RY?(1—r2)Y/2 and |y;|<RY?,i=2,...,n. Then

=y P-Q-r?) A=yl [y Pyl e[ (A —1?)

VISPV [PV

- R*+R(1-72?)
- 1—7r2

p(2,y)

=R.

Assume now that (1—72)<R. We have that
p(z:y) = L=rgy| = V1=[yPV1-r2 <|1-r7|
< (A=r))+rlr—y| = (1—r?)+R+RY?(1—r*)Y/2 < R.

Hence in any case we have shown that P(z, R)CU,(z,CR).
Conversely, let y€B™ be such that p(z,y)<R. The previous argument gives
that

L r=y P4y P+ ya ) (1 =12)

— =<R.
|1—r7,|

p(2,y)

In particular,

lr—u1 |?
1 — < R.
@ (I=r2)+|r—uy| ~

If |r—y1|<(1—7r?), we have that (1—72)+|r—y;|=~(1—r?), and we deduce from (1)
that |r—y1| < RY2(1—72)/2. If on the other hand, (1—r2)<|r—y;], (1) gives that
|r—y1|=R. Thus in any case we deduce that \r—y1|jR+R1/2(l—r2)1/2. In order
to finish we have to check that |y;|?<R, i=2, ...,n. It is clear that this is the case if
|r—y1|<1—7r2, since then (|y2|?>+...4|yn|?)(1—72)/|1—r7y;| X R. So we may assume
that (1—r%)<|r—y1]. As we have shown that in this case |[r—y;| <R, we obtain
that

Y2+ lyn 2 < 1=y 21— | K 1=r2+|r—y1| 2 fr—y1| X R.

The assertion on the volume of the balls is obvious from the above. 0O

Observe that if 0<e<1 is small enough, then there exists a constant C'>0
such that if yeU,(z,e(1—|z])), then we have that (1—|z]?)/C<1—|y[?<C(1—|z]?).
This is a consequence of the fact that by the above lemma, if R=¢(1—|z|?), the ball
U,(z,e(1—|z])) is contained in and contains a polydisk of radius Ce(1—|z|?) in the
normal direction.
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2.2. Weights in the classes A,(B™) and D, (B"™)

We next recall the definition of the class A,(S"™!). We recall that o(F) will
stand for the Lebesgue measure of a measurable subset F' in S"*!. Observe that
although we will denote by ¢ both the Lebesgue measure in S™ and in S, it will
be clear in any occasion if we are in dimension n or n+1.

Definition 2.3. A weight ¢ in S"*! is in A,(S"*!), 1<p<+oo, if there exists
C>0 such that for any nonisotropic ball B(¢, R)={neS"*!;|1-(n|<R}, (€S,
R>0,

(m /B@,R) W“) (m /B(QR) g7 d“)p_ =¢

We also introduce the weights in the class A, (B™) with respect to the pseudodis-
tance p.

Definition 2.4. We say that a weight w in B" is in A, (B"), 1<p<-oo0, if there
exists C'>0 such that for any ball U,=U,(z, R) in B",

(s =) s f o0

P

If in the above definition we consider just balls U,(z,7) that intersects the
boundary, we obtain the class B,(B™) defined in [4]. We will deal with this class of
weights in Section 2.3 below.

The following lemma gives a characterization of weights in A,(B") in terms of
their “lifting” to S™*!.

Definition 2.5. If w is a weight in B", we denote by w; the weight in S"*?
defined by wi(21, ..., Znt1)=w(21, ..., 2, ). We will call w; the lifted weight.

Lemma 2.6. Let 1<p<+oo, n>1, and let w be a weight in B™. We then
have that we A,(B™) if and only if the lifted weight w € A, (S™T1).

Proof. We begin proving that if we.A,(B™), then w;€ AP(S"H1).

We consider first the particular case where z,,1=0, i.e. the center of the
ball B(z, R) lies in B™. By a suitable change of variables we may assume that
2=(1,0,...,0). Then II"Y(U,((1,0,...,0), R))={yeS" ;|1 —y1|<R}=B(z, R), and
consequently,

/ wldJ:/ wldJ:/ wdv,
B(z,R) I-1(U,((1,0,...,0),R)) U,((1,0,...,0),R)



Carleson measures for weighted holomorphic Besov spaces 37

and the same argument holds for w, ®"=1 These equalities, together with the fact
that weA,(B™) and v(U,(1,0,...,0), R)~R"*! give that

1 1 (p/ 1) 1/(17/*1)
R T e
(RnH /B(Z,R) R g !

In fact, this argument can be applied to nonisotropic balls B(z, R) in S"*!
whose centers z=(2', z,,41) satisfy 1—|2/|><R. We just have to observe that in this
case the ball B(z, R) is included in a nonisotropic ball in S”*! whose center lies in
S™ and whose radius is comparable to R.
So we may assume that R<1—|2'|2. Without loss of generality we also may
assume that z=(r,0,...,0,v/1—7r2e?), for some 0<r<1 and #€[0,27r). The fact

that R=1—r?, gives that v(U,((r, OT,L...l, 0), R))~R"(1—r?).

Next, it is immediate to check that the projection of the points in S™*! at
distance less than R from the set II71((r,0, ...,0)) (with respect to the pseudodis-
tance in S"*!) is included in U,((r,0,...,0), R), and on the other hand, the ball
U,((r,0,...,0), R) is included in the projection of the set of points in S"*! at dis-
tance less than CR from the set II=1((,0,...,0)). Moreover, the set of points of
S"*1 at distance less than R from the set II=*((r, 0, ..., 0)) is included in a union of
nonisotropic balls of radius R in a number which is of the order of (1—|r|?)/R, and
includes the same number of disjoint balls of radius comparable to R. The integral
of the lifted weight w; on each of these balls is equivalent since we transform one
nonisotropic ball to another by a rotation that leaves w; invariant.

Altogether we obtain that

1—72

/ wy dO’Z/
R JB((ro0,....0,/T=%i%),R) I-1(U, ((r,0,...,0),R))

= / wdv,
Up((r,0,...,0),R)

and, since in the case we are now considering v(U((r,0, ...,0), R))~R"(1—7r?), we
have that

2
R™ Y J5((r.0,....0/T=17€i%),R)

wy do

1

wdo~ ———— / wdv
(A=) R"™ Ju,(r0....0).R)

with a similar estimate for w, (=1

then w; € 4,(S" ).

. Hence, we have proved that if weA,(B"),
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Let now w be a weight in B" satisfying w; € A,(S"*!). The argument we have
used above shows that if zéB", R>0 and U,(z,R) is a ball in B", such that
1—|2|><R, we can reduce ourselves to the case where the point z is in S™. Then
U,(z,R) is just a tent centered at a point z in S”, and U,(z, R)=B((z,0), R).
Consequently, w satisfies the A,(B™) condition for this class of balls.

If R<1—|z|?, then v(U,(z, R))~R"(1—|z|?), and again the argument used
before gives then that for any 6,

1 / d 1 / d
_— wdvy ——— wy do
Rr(1-1212) Ju,(z,R) R(1—|2?) Ju-— (v, (=,R))

1 1—|2|?

 Rr(1—-|z?) R /B((z,\/l—|z|2ei3),CR)

wy do

o
© R B/ TooPei),CR)

w; do,

with a similar relationship for w=®'~1. Since w;€ A,(S™*!), we are done. [

It is easy to check that in a natural way, weights in A,(S™) give weights
in A,(B™).

Ezample 2.7. Assume that we A,(S™). Then the weight defined by

w(z)= 1

+ [ w©dac),

(I=[=[%)" /1.
z€B™, where IZ:{CES”;|1—ﬁf|§c(1—|z|2)}, ¢>0, is in A,(B™).

Proof. We want to show that there exists C'>0 such that if a=(a, ..., a,), and
U=U(a, R)={n€B";p(n,a) <R}, then

Assume first that 1—|a|<R/§, >0 to be chosen. We can reduce this case
to the one where a=(a1,0,...,0)€S™. We then have that if z€U and (€I, then
¢eU(a,CR), for some fixed constant C'>0. Next, Fubini’s theorem gives that if
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Da(¢)={z€B":1- ¢ <a(1—|]*)}, then

1 o - 1 . w o) V(2
w0 e = [ [ w0t
e [ w(Qdo _n(z)
S /BvaR) (e /U(a,RmDa(o (1=[z[)
1

~ = w(C) do(¢),
R" B(a,R)
where we have used that if (€1, then |1—2z(|<1—|z|. An analogous argument to
the one we have used applied to @~ /(=1 finishes this case.
If R<4(1—|al), we have that for any z€U, w(z)~w(a), and consequently, the
A, condition in this case is obvious. [

A weight w in 8" is a doubling weight, if there exists A>0 satisfying that
for any R>0, w(B((,2R))<Aw(B(¢, R)). More precisely, we introduce the class
D, (S™*1) of doubling weights in the following definition.

Definition 2.8. A weight w in S"*! is in D, (S"*!), 7>0, if there exists C>0
such that for any nonisotropic ball B(¢, R)={neS"*!;|1—-n{|<R}, (€S"*, R>0,
and any integer j>1, w(B((,2R))<C2/"w(B(¢, R)).

Obviously, any weight we D, (S"*1) is in D, (S"*1), for any 71 >7. It is well
known that any weight we A,(S™™) is in D, (S™), with 7=p(n+1), see for instance
Section 1.5 of Chapter 5 in [18].

In the proof of Lemma 2.6 we have seen in fact that if w is a weight in B™ and
w; is the corresponding lifted weight in S™*!, then

R
B(z,R))~ ——————w(U,(7, R)),
Bz R) = g U )
where z=(2', z,+1)€S™ L. It is then natural to define the class D, (B") of weights
in B™ as follows.

Definition 2.9. We say that a weight w in B" is in D.(B"™) for some 7>0, if
there exists C'>0, such that for any integer j>1, ze B" and R>0,

(1—1]2]*)+2R
(1-[z[*)+R
Since v(U,(z, R))~R"(R+(1—|z|?)), this condition can be rewritten as
U= 2R) _ ., 27 w(Uy(zR))
v(Up(2,27R)) = ~ 200+ v(U,(2, R))

(2) w(U,(2,2R))<C 21—V (U, (2, R)).
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Observe that for those balls U,(z, R) such that 1—|z|*<R, the D, condition is
just that w(U,(z,27 R))<C277w(U,(z, R)).
We have the following lemma.

Lemma 2.10. A weight w is in D,(B™), 7>0, if and only if the lifted weight
wy s in Do (S™T).

Proof. Assume that weD,(B"), and let 2=(2’, z,41)€S" ™!, R>0 and j>1.
If 1—|2/|?<R, then
wi(B(2,27R)) ~w(U,(#',27R)) 2 277w(U, (', R)) ~ 2w (B(z, R)).

If 1-|2'|>>27R, we have that (see the proof of Lemma 2.6) w;(B(z,2/R))~
(29R/(1—12'*))w(U,(2',27R)), and wi(B(z, R))~(R/(1—|7'|?))w(U,(z', R)). Hence,

21 R L 2/ R
<
_|Z/|2w(Up(z ,27R)) < P

wi(B(2,2'R)) ~ . 277w(U,(#', R)) ~ 277w (B(z, R)).
If 1—-|2'|>> R and 1—|2’|?<27 R, we have that (see Lemma 2.6) w;(B(z,2'R))~
w(U,(2',27R)), and w(B(z, R))~(R/(1—|7']?))w(U(z', R)). Hence

2R
—[='?

wi(B(2,2R)) ~w(U,(#,2'R)) < ———=27"w(U,(%, R)) < 277w (B(z, R)).

So we have that w; € D, (S™*1). The other implication is proved in a similar way. [

Observe that if w=1, then we€D,,11(B™). The following lemma is an immediate
consequence of the differentiation theorem (see for instance Theorem 5.3.1 in [15]),
and show that without loss of generality we always may assume that 7>n+1.

Lemma 2.11. If w is a nonidentically zero weight in L'(B™) which is in
D.(B"™), then T>n+1.

Proof. Assume that 7<n+1, and fix a ball U,=U,(z, R) CB™ that intersects S".
The fact that weD,(B™), gives that there exists an integer jo such that for any
integer j> o,
R

— ]

w(U,) = 2=V y(U,(2,27R)) ~ 521" Dy(U,(2,277R)).

T 277R+(1-|2]?)
Since for j>jo, v(U,(2,277 R))~(277 R)"(1—|z|?), we have that

Jj(n+1—7 n lw(U (Z 2_]R))
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The differentiation theorem (see for instance Theorem 5.3.1 in [15]) gives that for
almost every zeB",
2—J
U2 R)

ATz R)) W)

If T<n+1, the last estimate gives a contradiction to (3). O

2.3. Weights in B,(B"™) and in d,(B"™)

In this subsection we study the main properties of some bigger classes of weights
B,(B™) and d,(B™), which correspond to weights that satisfy the conditions A, (B™)
and D, (B"), respectively, only for balls that intersect the unit sphere. More pre-
cisely we make the following definition.

Definition 2.12. We say that a weight w is in B,(B™) (see [4]) if there exists

C>0 such that for any ball U,(z, R) that intersects S, i.e., U,(z, R)NS"#@,

(ot fon ) Gty fon " w <o

Obviously, any A, (B™) weight satisfies the condition B,(B").
We also have the following definition.

Definition 2.13. We say that a weight w in B™ is in d.(B"™) for some 7>0, if
there exists C'>0, such that for any integer j>1, zé B"™ and R>0 satisfying that
U,(z,2R) intersects S™,

R

(4) W(Up(zvsz))Scm

217w(U,(2, R)).
As we have already observed, it is well known that if weA,(S™*1), then we

Dyyn41)(8™T1) (see for instance [18]). An analogous argument shows that any
weight weB,(B") is in d,(B"™) for 7=p(n+1).

Lemma 2.14. Let 1<p<+oo and weB,(B™). There exists C>0, such that
for any integer j>1, z€B™ and R>0 satisfying that U,(z,2’ R) intersects S™,

R

w(U,(2,2'R)) < C’m

27Tcu(Up(z,R))7

where T=p(n+1).
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As a consequence of Lemma 2.14, we have an equivalent definition of weights
in B,(B™) which coincides with the weights in the class B,(B"™) introduced in [4]:
a weight w is in B,(B") if there exists C'>0 such that for any tent T(B((, R))=
{2€B";[1-2C| <R}, (€S,

(5) B
(W/ —_— R»“’d“) (m /ﬂB@,R))“‘(”‘” d“) =¢

This observation is a consequence of the fact that if a ball U,(¢, R) intersects S”,
then it is included in a tent of radius comparable to R and, conversely, a tent of
radius R is included in a ball that intersects S™ of comparable radius, and the
“doubling” condition of those weights.

Let us give some examples of weights in B,(B™) and weights in d,(B™).

Proposition 2.15. Let 1<p<+oo, and let ¢: (0,1]=R be a nonnegative
monotone function, C >0, and a>0, satisfying one of the following alternative as-
sumptions:

(i) ¢ is nondecreasing, and for any integer j>1, ©(272)<C2% ¢ (z);

(ii) ¢ is nonincreasing, and for any integer j>1, p(x)<C2%p(2z).

Let w,(z)=¢(1—|z|). We then have the following:

(a) The weight wy, is in B,(B™) if and only if 0<a<p—1 if ¢ is as in case (i)
or if and only if 0<a<l1 if it is as in case (ii).

(b) The weight w, is in d-(B™) if ¢ is as in case (i) for each T>n+a+1 or
@ 1s as in case (i) for each T>n+1.

Proof. We begin with the proof of (a). We have that w,eB,(B") if and
only if w, satisﬁes (5 ) If (eS™, R>0 and T(B(¢,R)) is a tent, we have that

wo(T(B((, R)))~R" fo ©(t) dt, and consequently, it is enough to show that

(Lo e

Assume first that ¢ satisfies the hypothesis in (i). Since ¢ is nondecreasing,
we have that for any R>0,

w(%) g S/R]; p(t)dt < /OR p(t) dt < Rp(R).

Since p(2x)~p(x), we obtain that fo ©(t) dt~Ryp(R). Next,

1) R/27 1) R (»-1)
—p = — - - ~ J
/O t) dt = Z / ) dt ~ Z 277 Ry ( > ) .

/2J+1
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Thus, it suffices to check that ;08 279 p(R/21) = =1 <p(R)~#' =1 The fact that
¢ satisfies a doubling condition can be restated as ¢(R)<¢(R/27)((2/(1+05))P~1)J
for some 6>0. And in consequence, the above estimate holds.
If o satisfies the hypothesis in (ii), then o~ ®'~1 satisfies condition (i), and we
o— -1 EBp (B™). And that is equivalent to
the fact that weB,(B™). The remaining implications are proved in a similar way.
In order to prove (b), we will check that

deduce from the above argument that w

R

IR <C—
wy(Uy(2,2’R)) _le\z|2+R2

7wy (Uy(2, R))
for any U,(z, R) and j>0 such that U,(z, 2’ R) intersects S".

We first recall that if M <x/2, then we have that for any t€[x—M,z+M],
x/2<t<3x/2, and hence, f;j\]\f o(t) dt~p(x)M. If on the contrary, M >x/2, then
f;fg p(t)dt=Mp(M).

Let zeB", R>0 and let j>1 be an integer. If (1—|z|?)/2<R, the above con-
siderations give easily that w,(U,(z,2R))~(2/R)"*1p(2/R), and w,(U,(z, R))~
R""1p(R). Thus the condition d.(B") is fulfilled provided

(27R)" V(2 R) 32727V R o(R),
a condition which is in turn equivalent to
(6) @(2'R) 22" Dy(R).

Assume first that ¢ is as in case (i). The conditions on 7 and ¢ give immediately
that (6) is satisfied for this set of z’s.

If R<(1—|2|%)/2<2/R, an analogous argument gives now that w,(U,(z, R))~
R"(1—|2]?)¢(1—|z]). Hence it is enough to check in this case that

(2/R)" V(2 R) < 2R (1= |2*)p(1~|z),

1—|2]2
i.e.,
(7) (27 R) < 2= D (1 2]).

And this estimate is again a consequence of the fact that ¢ satisfies (i).
On the other hand, if ¢ is nonincreasing, estimates (6) and (7) are obvious. O

Corollary 2.16. The weight wo(2)=(1—|2])%, —1<a<p—1, is in B,(B™). If
0<a<p—1, then wy€dprar1(B™), and if —1<a<0, then wy Edyy1(B™).
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The techniques we have applied in order to work with weighted holomorphic
Besov spaces in B™ require that the weights are in A,(B™)ND,(B"). As we will
show in the following section, any weighted Besov space with a weight in B,(B™)N
d-(B"™) can, in fact, be defined in terms of a weight in the smaller class A,(B™)N
D,(B™). The way to achieve this is via the regularizations of the weights.

Definition 2.17. If w is a weight in B", 0<e< 1, the regularized weight R.w is
defined as

1
o(Up(z,e(1=2))) /W,E(l_ﬂ)) wy) dv(y)-

Rew(z) =

Remark 2.18. As an immediate consequence of Lemma 2.2, we have that if w
satisfies a doubling condition, then all its regularizations are equivalent, that is, if
g,e'>0, then R.w(z)~NR.w(z), for any z€B", with constants that do not depend
on z. We just have to observe that if >0 is fixed, there exists C'>¢ such that
for any z€B™, U,(z,C(1—|z|)) intersects S™. The fact that w satisfies a doubling
condition gives that w(U,(z,e(1—|z]?)))~w(U,(z, C(1—|z]?))).

Observe that the regularization of a doubling weight w satisfies that R, (R.w)~
R.w.

It is worthwhile to recall that analogous regularizations were already considered
among others by [4] and [11], where the balls Ud(z)={yeB";d(z,y)<e(1—|z|?)}
were defined with respect to the pseudodistance d(z,y)=||z|—|y||+|1—=27/|2yl|.

Proposition 2.19. Let 1<p<+oo and assume that w is a weight in B,(B").
Then the weight Rew is in Ay(B™).

Proof. We want to show that there exists C'>0 such that for any ball U,=

Up(a, R),
1 1 ( , 1 1/(1’/_1)
— R.w dv (—/ Row)~ P~ dv) <C.
(s /. )G p, )

As we have already observed, without loss of generality we may assume that >0
is small enough, since for every ¢,&’' >0, R.w~NR.w.

Suppose first that §(1—|a[?)<R, >0 to be chosen later on. In this case,
Lemma 2.1 gives that v(U,)~R""!. Since we also have that in that case U,(a, R)
is included in a ball in B™ centered at a point in S™ of radius comparable to R,
we also may assume without loss of generality that a€S™, and that U=U),(a, CR),
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C>0. In particular we have that for any x€U,(a, R), 1—|z|*<R. Thus there
exists C1>0 such that if zeU,(a, CR) and yeU,(z,e(1—|2|?)), y€U,(a, CR), and
Fubini’s theorem gives that

1
Rew(z) dv(z)z/ 7/ w(y) dv(y) dv(2)
/Up(a,CR) U,(a,CR) (1—[z[?)n+1 U, (z,e(1—|2]2))
< / () / dv(z) dv(y)
< w(y) ——— v(z) du(y
U,(a,C1R) (L=ly[>)n*t Up(y,e’ (1—[y|?))
(8) = / w(y) dv(y).
Upy(a,CR)

In order to estimate the integral involving (D‘igw)_(f’l_l), we use the fact that if
weB,(B"), then w=®'~DeB,,(B") and both of them satisfy a doubling condition
to get that,

1 1 ( , 1) 1/(17/_1)
_— w dv / w™ P dv)
v(Ue(2)) /Up(z,s(l—z?)) (U(Up(275(12|2))) Up(z,e(1—|2]2))

~1.

Consequently Row=~ (R (w= @' ~D))=1/@'=1) and

1 / (! 1 () —
—_— Rew)~ P 1)dv27/ R (w™ P V) do,
o0, (@ OR) S e =) 0@ OR) Sy oy = )

and the argument in (8) applied to R.(w™®'~b) together with the fact that we
B,(B"), gives that in case 1—|a|?<R/§, then

1 1 ( , 1) 1/(13/*1)
_— R.w dv 7/ Row) P~ dv) <(C.
(v(Up<a,R>> /UPW,R) )(v(vp(a,R» ooy )

Assume next that R<d(1—]|al?), and § is small enough. In that case, for any z€
U,(a, R), 1—|z|*~1—a|, and consequently R.w(z) ~R.w(a) for any zeU,(a, R). O

Lemma 2.20. If w is a doubling weight in B™ its reqularization R.w also
satisfies a doubling condition.

Proof. The proof follows the scheme of the previous proposition, and we just
sketch it briefly. If z€B"™ and 0<R<4(1—|z|?), with §>0 small enough so that
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for any yeU,(z,2R), 1—|y[*~1—|z|?, we have that R, is “quasi”’-constant on
U,(z,2R). And the doubling condition is satisfied in this case.

If 6(1—1z]) <R, the desired doubling condition is obtained from Fubini’s theo-
rem and the fact that w satisfies a doubling condition, using (8). O

Proposition 2.21. Let 1<p<+oo, and assume that w is a weight satisfying
that wed,(B™). Then the weight Rew is in D, (B™).

Proof. Our first observation is that the proof of Lemma 2.11 shows in fact that
if wed.(B"™), then 7>n+1. The hypothesis on w gives that for any z€B", any
integer >0 and R>0, such that U,(z,27 R) intersects S™,

R

w(Uy(2,2'R)) = (SEDEY:

277w (U, (2, R)).

In order to check that R.weD,(B™), we fix §>0 to be chosen later on, and given
z€B"™, an integer j>0 and R>0, we will consider the following three possibilities:

(a) 27~ LR<H(1—|[2);

(b) R<6(1—|z2) <2 1R;

(c) 6(1—|z]*)<R.

We begin with case (a). In that case R.w(y)~R.w(z) for yeU,(z,27 ' R).
Hence, by the preceding lemma,

Rew(U,(2,2'R)) ~ Rew(U,y (2,27 ' R)) ~Rew(2)(2' R)"(1—|z|)

~ in / Row(n) do(n) <27 T"IR.w(U, (2, R)),
U,(2,R)

where in the last inequality we have used that 7>n+1. This shows case (a).
We consider now case (b). Let jo>1 be such that 270~ 1 R<§(1—|z|?) <27 R.
Arguing as in (8), the fact that wed,(B") together with 2777 R+ (1—|z|?)<
29 R+(1—1z|?)~27 R, gives that

(9) / %Ewdvj/ wdv < R 22(j—jo)(7—1)+j/ wdv.
U, (2,29 R) U,(,C29 R) 1—|z] U, (2,290 R)

Since R<4§(1—|2]?)<2/°R, the argument established in case (a) gives that R.w is
“frozen” on Up,(z, R/2). This observation, together with the fact that R.w satisfies
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a doubling condition, gives that

/ Rew(y) do(y) ~ / Rew(y) du(y)
Uy(z,R)

UP(ZvR/Q)

<nion(v, (- 2))

z%Ew(z)R”<§+(1—|Z|2>)

R"200R

N AR w(y) d(y).
(I=[=[*)™* Ju, (2,200 r)
Consequently, if we plug the above calculation in (9), we deduce that since 7>1,

R —or—n4s A=I2)"
Rew(y) dv(y) < 52 — Rew(y) dv(y).
U, (2,29 R) 1—|2| R Up(2,R)

In other words,

R

1—|z[?

Q,jo(n+1—r)+jr/ R.w(y) do(y) < R 22jr/ Rew(y) du(y).
U, (z,R) 1_‘Z| Up(z,R)

We finally have to deal with case (c), i.e. the case where §(1—|z|?)<R. We
have that if yeU,(z,277'R), and z€U,(y,5(1—|z]?)), then z€U,(z,C2'R), and
consequently Fubini’s theorem gives that

(10) / R.w(y) do(y) < / w(z) dv(z) <297 / w(z) dv(x),
U,(2,27R) U,(2,C27R) U,(z,R)

where we have used that wed,(B™).
On the other hand, $R.w satisfies a doubling condition. Thus, if M >0 is fixed,
Fubini’s theorem gives that

1
) dow)= [ el [ do(z) do(y)
/Up(z,m Upmiir) A=) Ju,m.ea-m2))

z/ Rsw(x) dv(x):/ Rew(z)dv(z). O
U,(z,MR) Uy,(z,R)

Remark 2.22. Similar arguments can be used to show that if weA,(S™)N
D.(S™), then the weight @ introduced in Example 2.7, is in A,(B")ND, 41 (B™).
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3. Weighted holomorphic Besov spaces

We now introduce the weighted holomorphic Besov spaces. Let w be a B,-
weight in B", 1<p<+o0, and s>0. The space BY , (w,B™) is the space of holomor-
phic functions in B™ for which

1 o = [ IR A1) ity dofy) <+

where k>s is an integer. In fact, the definition of the weighted holomorphic Besov
spaces does not depend on the integer £>s. This is the object of the following
result.

Theorem 3.1. Let 1<p<+o0, s>0, ki, ks be integers such that ki >ko>s,
and weB,(B™). The following are equivalent:

(i) fer7k1(w,B”);

(ii) feB?, (w,B").

s,k2

Proof. We recall (see for instance Chapter 7 in [15]) that if A is a holomorphic
function in B, and N >0 is such that (1—|z|?)NheL!(dv), then there exists cy such
that the following reproducing formula holds for any yeB™:

_[52)N
(11) h(y)=cn /Bn ﬂ(—l,fgj)%h(z) dv(z).

Assume that (i) holds. The fact that ngf,kl (w, B"), means that
(TR f(y) (1 [y[2)5—> 1P € LP(wdv).

In particular, there exists p; <p such that (I+R)* f(y)(1—|y|>)F* == /P isin LP1 (dv)
(see [5], Lemma 2.1). Consequently, we may apply the reproducing formula (11) for
N >0 big enough to the function (I4+R)** f and obtain

(R ) =ex [ 4RI G dete),

. (1—zy)n 1N

Let us recall that the operator (I+R)™ is invertible and that the operator (I+R)~™
has the following integral representation (see for instance [13])

(I+R) "g(z) = ﬁ /01 <log %)mlg(rz) dr.



Carleson measures for weighted holomorphic Besov spaces 49

‘We then have
|(I+R)*2 f(y)| =

ka2 —k1 _122)N

Z

CN/B (I+R)™ f <I+Zyw
</ [(T+R)M ()1 =[N

|172y|’n+1+N+k27k1 d ( )

Using that by duality
fodv|,

”fHLT’(wdv) = sup

NI o (= (0 =1) gy S

B

we have that

Ml o = o / (T+R)™ f(y) 1=y )P (y) do(y)
- 11 oo 1) gy <1 B
»>0
< / / |(I4+R)™ f(2)]
= uwuw( o _Ud <1/Bn JBn [1— zy|n+1+N+k2 k1
>0

(12) x (=[N (1= [y*)*=2 =717 (y) do(y) do(2).
We now check that the mapping
(L= [a)N s s D (1 [y 2y
(e e ¥(y) dv(y),

Yr—
Bn
is bounded from L¥ (w~® =D dv) to itself.
Since
1o |2\N—=(k1—s=1/p) (1 _|4,|2\k2—s—1/p _1a12\k2—s—1/p
(I—[z5)" (I—[y[*)"™ L (=ly[)™
‘l_z—y‘n-ﬁ—l-&-N-‘rkg—kl — ‘1_ny|n+1+k,2—s—l/p’

ko—s—1/p>—1, and w*(plfl)eBp/ (B™), this is a consequence of Proposition 2
in [4].
Consequently, from (12) and the above observations we have that
||f|\B§,,€2 (w,Br) = Hf”nykl(w,B") | sup_ 190 Lo (w0 dwy = ||fHB§1k1(w,B")'
LP (w dv) =

The other implication is proved in a similar way. [

By Theorem 3.1, the spaces B ; (w, B") do not depend on k>s, and from now
on we will denote them simply by B?(w, B").

Our next goal is to study the relations between the weighted Besov spaces in
B and the weighted Hardy—Sobolev spaces with respect to the lifted weight in
S"*1. These relations strongly rely on the boundedness of Bergman type operators
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on weighted LP spaces obtained in [4]. We will show (see Corollary 3.7) that the

restriction operator maps Hf+1/p(wl, B"*+1) onto B?(w,B").

Definition 3.2. Let 1<p<+o0, 1<q<400, $>0, and let w be a weight in S™.
The weighted holomorphic Triebel-Lizorkin space HFPI(w,B™) when g<-+oo, is
the space of holomorphic functions f in B™ for which

ez = ([ ([ (R F)(rQ) (1)1 dr>p/qw<<> da(C))l/p

n

< 400,

where k€ (s,+00), whereas when g=+o00,

11 o) = ( L (s (4R Do) ) da(())l/p <+os.

0<r<1

As happens in the unweighted case, the definition does not depend on the integer
k>s (see [5]).

The proof of the following lemma can also be found in [5].

Lemma 3.3. Let 1<p<+oo and §€A,(S™). We then have:
(a) HFP2(0,B")=HE(0,B");
(b) If qo<q1 <+o0, then HFP%(9,B")C HF?"(6,B").

We will also need the following lemma.

Lemma 3.4. Let we A,(B™). If M >0, let Py be the operator given by

2\ M
Pu)(©) = [ st duty

for e L (wdv) and ¢€B"'. We then have that Py is bounded as an operator
from L¥ (wdv) in B™ to LP (w;~ @' =1 jn 81,

Proof. Observe that for every ¢'€B"™, Py (1) is constant on I171(¢’). Conse-
quently,
1A O gy = [ Pra@)P (™D (¢) dor(€)
Lr" (wy do) gnt1

= [ Pu@)? ()™ =() dv(¢)

B»

= HPM('(/J)Hip’(wf(p’*l)dv)'
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Hence, we just have to show that the operator defined by

P1(y) (A =lyH)M

QM(QZH)(Z) = |1—Z?|n+1+M d’l)(y)

Bn

is bounded from L?' (w’(plfl) dv) to itself. And this estimate is a consequence of
Proposition 3 in [4]. O

We next prove a weighted restriction theorem.

Theorem 3.5. Let 1<p<+oo, 1<g<+00, weA,(B"), and s>0. Then the

restriction operator maps HFerql/p(wl, B"t1) to BP(w,B").

Proof. Since by Lemmas 2.6 and 3.3 if gg<q; <400,

HF?Y (0, B CHFMY ) (w, B,

it is enough to show that HF[], (wi, B"*1)|g» C B?(w, B").

Let fEHFfE/p(wl,B 1) and k>s+1/p. We have that if N>0 is chosen big

enough, the reproducing formula (11) gives that

_|2[2\N
(IR =C [ (+RI ) oo o).

Bn+1
Hence,
112 e

<[

Since by duality of L?(w dv),

p

[ Ry U | 0ty ) auty)
- [ ‘

”fHLP(wdv) = sup flbw dv s
HLT’,(wdv)Sl B
we have that
(1[N
fll'se ny S / / I+R dv(z
171z Hwnu,( d)gl By — TN gy ()
$>0

x (1= [y}~ Py (y)w(y) du(y).
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Using polar coordinates in the z-variable, we obtain that

11y = o L speRy O e

H HLP (w dv) mr<l
$>0

L (1—p2)N+s+1/p=k —
g </0 [1—r(y|n+2tN dr>¢(y)(1‘y| ) Pwly) du(y) do(C)-
Since we have that

/1 (1_r2)N+s+1/p—k 1
0

[1—r(gnt2n dr X [1—Cg|nHi+h—s—1/p’

the above is bounded up to a constant by

/S sup(|(I+R)* F(rO)|(1=r2) =" Y2) By (8)(C) dor(C).

n+l r<1

Applying Hoélder’s inequality, Lemma 3.4 gives that

||fHBT’(w Bn

< swp / sup([(T+R)* F(r¢)|(1—r2)k=5-1/p)
1007 (o ay <1874 7<1
$>0

% P g1/p()(Qw P (Qwy VP (C) do(€)

1/p
< swp ( / sup<<f+7e>'ff<r<>(1—r2>k—5—1/P>Pwl<<>da(@)

100 07 oy 1\ <1
20

’

’ </s Phesm () V(O do(C))l/p

S pree Brt1). U

v,

Now we prove an extension theorem for weighted holomorphic Besov spaces.

Theorem 3.6. Let 1<p<+o00, s>0, and we A,(B™). We then have that the
extension operator fr fi, where fl(z i) =f(2), if (2,2,401)€S"TL, 2/€B",

maps BP(w,B™) boundedly to HFSPJ’rl/p(bi”“).
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Proof. Let fe H(B"). If we denote by R; the radial derivative in B"™!, then
we have

(I+R) fi(2, 2nt1) (I—FZ Zi +Zn+1a a+1)fl(2/,2n+1) =(I+R)f(Z),

ie, (I+Ry)fi=((I4+R)f);. Consequently, if k>s+1/p, and N is chosen big enough,
duality and the representation formula give

”fl”HFPH/ (wy,B+1)

) </S"+1 /01((I+R)kf)l(r0(1r)ksl/pl dr pwl(C) da(C))l/p
(k. /ol(”R)kf (r) A=) pw(c’mu(c’))l/p

sup

HwHLP/(w du)Sl / "
/ / / [(I+R)* )|
<1.JB" JB" [1— zr(’|”+1+N

uwuw S

x (1—2[*) (1—r)k_s_1/p_1d7“dv(2)lw( Dw(¢’) dv({’)

// (2)(1=]2*)™

|(I+R)* / / /
kuw( oy 1— zC/|n+1+N a1/ W)W () do(C).

/0 (TR f(r¢) (L =r) ==L dr|(¢N)w(¢") du((')

The theorem finishes with an analogous argument to the one used in the restriction
theorem. [

As an immediate consequence of the above two theorems and Lemma 3.3, we
obtain the following corollary.

Corollary 3.7. Let 1<p<+oo, s>0, and weA,(B™). Then the restriction
operator from Hg+1/p(wl, B"*1) to BP(w,B™) is onto.

The above restriction and extension theorems permit us to reformulate the fact
that a measure y is Carleson for B?(w, B™) in terms of the lifted weight w; and the
lifted measure ;.

Corollary 3.8. Let 1<p<+o0, >0, and weA,(B™). We then have that the
following assertions are equivalent:
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(i) There exists C>0 such that for any f€BP(w,B"),

Il fllecap < C|l £

(ii) There exists C>0 such that for any fGHf_H/p

BE(w,B")5

(Wl,Bn+1),
(13) lF I ze (dp) < O||f||Hf+1/p(w,,,B"+1)a

where py is the measure on B" 1 defined by [g..1 fdm= [g. f(Z',0)du(2).

Proof. Let us show that (i) implies (13). If ferH/p(wl, B"*1), Theorem 3.5
gives that f|g» € B?(w,B™), and that ||f|B"||B§(W,Bn)§C||f||H5+1/p(thn+1). Since
we are assuming that (i) holds, we then have that || f|gn || Lo () <C|| f| B~ |
Clfllr,,, (unsonssy- Since || £l g0 =12 - e e done.

If (13) holds and feBP(w,B™), the extension Theorem 3.6 gives that f;€
(wi, B, with || fill e (., B2+1) <C| fllpr(w,Bn)- The hypothesis on w

s+1/p

BI(w,Br) S

H§+1/p

gives then that

I fillo ) < CNfull e

s+1/p

(wi,Bn1) <C| f]

Bf(w,B")"
Since, || fillpo gy = fllzr(an), we get (i). O

We finish the subsection with a result that shows that the weighted Besov space
associated with a weight in B?(w,B™) coincides with the corresponding weighted
Besov space of its regularization. In particular, we deduce that in the definition of
the spaces B?(w,B"™) we can assume, without loss of generality, that we A,(B"™).

Proposition 3.9. Let 1<p<+4oo, s>0, and assume that w is a weight in
B,(B™). Then the spaces B (w,B™) and B?(R.w,B™) coincide.

Proof. Assume that e<1 and 2€B", and let k>s. The fact that (I+R)*f is
holomorphic in B™ gives easily that

1
Ue)| Ju.(y)

((IT+R)* f(y)| = (I+R)* f ()] dv(z).

On the other hand, 1—|y|?~1—|z|? for any y€U.(z). Hence
(L= Jy| %) E= =D)L+ R)* f(y)]

(1= |2 E =D)L+ R)* f(2)] du 2).

Ue@)] Ju.(y)
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Consequently,

115 510y = /Bn ((T+R)* £ ()P (1= [y )P Rew(y) do(y)

; —lz 2\((k—s)p—1)/p k 5 oz
</n{(l—lyP)“1 /U5<y)(1 |21%) |(I+R)" f(2)| dv(z)
xRew(y) dv(y)

2/Bn(9%((1*IZIQ)((’“*S)’H)/’JI(HR)’“f(Z)I)(y))”%w(y) dv(y).

p

Since weB,(B") and [5, (R-9)?R.w dv= [5, gPw dv for any g>0 (the proof is
analogous to Lemma 9 in [4]), we deduce that the above is bounded by

/ (1= |y PO (LR £ (y))Pw (y) do(y) = [ F1e -
On the other hand, the fact that |(I+7R)" f|P is plurisubharmonic gives that

[(T+R)* f(y)IP = ((I+R)* £(2)IP dv(z).

1
V=)l Ju. )
Since 1—|y|?~1—|z|? in U.(2), we have
155 @ 5y = /B [T+R)* F ()P (1= [y )= w(y) do(y)

j/ (R (1= [y ) F=P= DT RYE )P (y))w(y) du(y).
Fubini’s theorem gives that there exists ¢’ >0 such that for any f, g>0,

fRgdv = / gR. f dv.

n

B»

Hence, the above is bounded by

L Q= (R ) Rl o) = oy O
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4. Carleson measures for B?(w,B™), we A,(B*")ND,(B")

In [5], it is shown that the Carleson measures for a weighted Hardy—Sobolev
space HP(w,B"*!) for some range of s and for a class of weights w in S"*! coin-
cide with the Carleson measures for a nonisotropic weighted potential space. This
potential space is the image of the space LP(w) under the operator K, defined by

K0 - | O 0.

gn+1 |1 —zC|ntl-s

This last problem has been thoroughly studied, and there are different types of
characterizations (see for instance [1] and [16]).

The main result in this section shows that we can reduce the study of Carleson
measures for weighted holomorphic Besov spaces to the study of the boundedness
of an operator with positive kernel.

Theorem 4.1. Let 1<p<+o0, $>0, w be a weight in A,(B")ND,(B"), and
0<7—p(s+1/p)<1. Let u be a positive Borel measure on B™. We then have that
the following assertions are equivalent:

(i) There exists C>0 such that for any f€B?(w,B"),

| fllzeauy <C| f]

(ii) There exists C>0 such that for any fe€L?(wdv),

’ / (1@){%)(3“ 7oy o)

(iii) There exists C>0 such that for any f€LP(w dv),

fy)
‘ /]3n |1—Zy|n+1—(s+1/p) d’U(y)

Proof. We recall that we have already observed (Lemmas 2.6 and 2.10) that
if weA,(B")ND,(B"), then the lifted weight w; is in A,(S"*1)ND,(S"*1). In
particular, w € A,(S™™1), and by the observation given after Definition 2.13, 7<
p(n+1). By hypothesis 0<7—p(s+1/p), thus we also have that 0<p(n+1)—p(s+
1/p), and consequently that n4+1—(s+1/p)>0. That is, the exponent that appears
in conditions (ii) and (iii) is strictly bigger than zero.

First of all, observe that by Corollary 3.8, (i) is equivalent to

Bf(w,B");

< C”f”LP(w dv)3
LP(dp)

< CHfHL”(wd'U)-
LP(dp)

I fllze @) < Clf Il

sy BH):
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Next, Theorem 2.13 in [5] gives that this can be rewritten as

f(Q)
/Sn+1 (1 —Zz)"""l—(s-‘rl/p) do(Q)

Let us check that (14) is equivalent to

fly)
. e )

for any feLP(wdv). Indeed, assume first that (14) holds. We then have that
fie LP(wy dv), and || fill e (w, do) = fl| Lp (w dv)- Moreover, if z€B", 2=(2',0), and if
for any Cesn+1a CZ(C/aCn+1)7 CIEBna

fi(¢) B f({) /
/Sn+1 (1—2¢)nt1=(s+1/p) da(oic/m (1—zC7)nt1=(s+1/p) (),

and consequently, we obtain (15).
Assume now that (15) holds, and let f€LP(w;dv). Then the function

S C”f”LP(wl dv)+
LP(dpr)

(14) |

S C”fHLP(wdv)
LP(du)

(15) |

Fw == [ fe®a-lyP)?)do for yeB

o -
is in LP(w dv) (just applying Holder’s inequality) and moreover,
||f||LP(w dv) < CHfHLP(wl dv)-

In addition, if zeB"*1, 2=(2',0),
f(v) _
/Bn (1—zg)n+1-(s+1/p) dvly) =C B

_ f(Q)
o CAn+1 (l—zz)n'f‘l_(s"rl/l”) dO—(C)

And that proves that (i) is equivalent to (ii).

Next, the hypothesis give that 7—p(s+1/p)<1. Since we have observed that
the lifted weight w;€ D, (S™*1), Theorem 3.5 in [5] gives that (13) holds if and only
if for any feLP(w;dv), f>0,

f(©)
/Sn+1 |1_ZZ|n+1_(3+1/p) do—(()

The same argument used for the holomorphic potential gives that (16) can be rewrit-
ten as (iii). O

J7 fy, e (1—[y|*)/?) do
(1—zg)n+H1=(s+1/p) v(y)

é C”f”LP(wl dv)-
LP(dp)

(16) |
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Remark 4.2. The above theorem cannot be extended in general to the case
where 7—p(s+1/p)>1, even in the unweighted case, as is shown in [5].

Remark 4.3. If 0<n+1—(s+1/p)<1, and weA,(B"), the theorem can be ob-
tained directly. The equivalence of (i) and (ii) is proved as before, whereas the
equivalence for (ii) and (iii) for the case n+1—(s+1/p)<1 is trivial. The equiva-
lence of (ii) and (iii) in the case n+1—(s+1/p)=1, can be reduced to the previous
one, using that BE(w, B")=DB,./,((1—|z|)°w), and that if we A,(B"), there exists
g9 such that for any e<eg, (1—|z|)*weA,(B™).

Finally, observe that Theorem 4.1 together with Propositions 2.19 and 2.21
permits one to extend the characterization of the Carleson measures obtained in
Theorem 4.1 to weighted Besov spaces with respect to weights weB,(B™)Nd,(B™),
where 0<7—p(s+1/p)<1, replacing in the statement of this theorem the weight w
by its regularization R.(w).
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