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Smooth tropical surfaces with infinitely many
tropical lines

Magnus Dehli Vigeland

Abstract. We study the tropical lines contained in smooth tropical surfaces in R
3. On

smooth tropical quadric surfaces we find two one-dimensional families of tropical lines, like in

classical algebraic geometry. Unlike the classical case, however, there exist smooth tropical surfaces

of any degree with infinitely many tropical lines.

1. Introduction

Tropical geometry has during the last few years become an increasingly popular
field of mathematics. This is not least due to the many fascinating similarities with
classical geometry. In this paper we examine tropical analogues of the following
well-known results in classical algebraic geometry.

(I) Any smooth quadric surface has two rulings of lines.
(II) Any smooth surface of degree greater than two, has at most finitely many

lines.
While a lot of work has been done lately on tropical curves (e.g. [3], [5], [7]–[9]

and [13]), comparatively little is known in higher dimensions. A common way of
defining a tropical variety is as the tropicalization of an algebraic variety defined over
an algebraically closed field with a non-Archimedean valuation (see e.g. [11]). In the
case of hypersurfaces, however, a more inviting, geometric definition is possible. For
example, a tropical surface in R

3 is precisely the non-linear locus of a continuous
convex piecewise linear function f : R

3→R with rational slopes. It is an unbounded
two-dimensional polyhedral complex, with zero tension at each 1-cell. Furthermore,
it is dual to a regular subdivision of the Newton polytope of f (when f is regarded
as a tropical polynomial). The tropical surface is smooth if this subdivision is an
elementary (unimodular) triangulation.
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Tropical varieties of higher codimension are in general more difficult to grasp.
However, the only such varieties we are interested in here, are tropical lines in R

3.
These were given an explicit geometric description in [11], on which we base our
definition. As an analogue of (I) above, we prove that the following holds.

Theorem. Any smooth tropical quadric surface X has a unique compact
2-cell X . For any point p∈X , there exist two tropical lines on X containing p.

While in classical geometry, any two distinct points in R
3 lie on a unique

line, this is only true generically for tropical lines. In fact, for special choices of
p, q ∈R

3 there are infinitely many tropical lines containing p and q. We show that
such families of tropical lines can also exist on a smooth tropical surface. As a
consequence, we get the following result, in contrast to (II) above.

Theorem. There exist generic smooth tropical surfaces of any degree, with
infinitely many tropical lines.

The paper is organized as follows: In Sections 2 and 3 we give some necessary
background on convex geometry and tropical geometry, respectively. In particular,
the concept of a two-point family of tropical lines in R

3 is defined in Section 3.3.
Then follows two technical Sections, 4 and 5. The former of these deals with con-
structions of regular elementary triangulations, while the latter contains an analysis
of certain lattice polytopes. In Section 6 we explore the general properties of trop-
ical lines contained in smooth tropical surfaces, and in Section 7 we use these to
study tropical lines on quadric surfaces. Section 8 concerns two-point families of
tropical lines on smooth tropical surfaces. Finally, Section 9 contains our results
for tropical surfaces of higher degrees.

2. Lattice polytopes and subdivisions

2.1. Convex polyhedra and polytopes

A convex polyhedron in R
n is the intersection of finitely many closed halfspaces.

A cone is a convex polyhedron, all of whose defining hyperplanes contain the origin.
A convex polytope is a bounded convex polyhedron. Equivalently, a convex polytope
can be defined as the convex hull of a finite set of points in R

n. Throughout this
paper, all polyhedra and polytopes will be assumed to be convex unless explicitly
stated otherwise.

For any polyhedron Δ⊆R
n we denote its affine hull by Aff(Δ), and its rela-

tive interior (as a subset of Aff(Δ)) by int(Δ). The dimension of Δ is defined as
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dim Aff(Δ). By convention, dim ∅=−1. A face of Δ is a polyhedron of the form
Δ∩H , where H is a hyperplane such that Δ is entirely contained in one of the
closed halfspaces defined by H . In particular, the empty set is considered a face
of Δ. Faces of dimensions 0, 1 and n−1 are called vertices, edges and facets of Δ,
respectively. If Δ is a polytope, then the vertices of Δ form the minimal set A such
that Δ=conv(A).

Let F be a facet of a polyhedron Δ⊆R
n, where dimΔ≤n. A vector v is

pointing inwards (resp. pointing outwards) from F relative to Δ if, for some positive
constant t, the vector tv (resp. −tv) starts in F and ends in Δ\F . If in addition v

is orthogonal to F , v is an inward normal vector (resp. outward normal vector) of
F relative to Δ.

If all the vertices of Δ are contained in Z
n, we call Δ a lattice polyhedron, or

lattice polytope if it is bounded. A lattice polytope in R
n is primitive if it contains

no lattice points other than its vertices. It is elementary (or unimodular) if it is
n-dimensional and its volume is 1/n!. Obviously, every elementary polytope is also
primitive, while the other implication is not true in general. For instance, the unit
square in R

2 is primitive, but not elementary.
Most of the polytopes we are interested in will be simplices, i.e., the convex

hull of n+1 affinely independent points. In R
2, the primitive simplices are precisely

the elementary ones, namely the lattice triangles of area 1
2 . (This is an immediate

consequence of Pick’s theorem.) In higher dimensions, the situation is very different:
There is no upper limit for the volume of a primitive simplex in R

n, when n≥3.
The standard example of this is the following: Let p, q ∈N be relatively prime, with
p<q, and let Tp,q be the tetrahedron with vertices in (0, 0, 0), (1, 0, 0), (0, 1, 0) and
(1, p, q). Then Tp,q is a primitive simplex of volume q/6.

2.2. Polyhedral complexes and subdivisions

A (finite) polyhedral complex in R
n is a finite collection X of convex polyhedra,

called cells, such that (i) for any C ∈X , all faces of C are in X , and (ii) for any pair
C, C ′ ∈X , the intersection C ∩C ′ is a face of both C and C ′. The d-dimensional
elements of X are called the d-cells of X . The dimension of X itself is defined as
max{dim C |C ∈X}. Furthermore, if all the maximal cells (with respect to inclu-
sion) have the same dimension, we say that X is of pure dimension. A polyhedral
complex, all of whose cells are cones, is a fan.

A subdivision of a polytope Δ is a polyhedral complex S such that | S |=Δ,
where | S | denotes the union of all the elements of S . It follows that S is of pure
dimension dimΔ. If all the maximal elements of S are simplices, we call S a
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triangulation. If S and S ′ are subdivisions of the same polytope, we say that S ′ is
a refinement of S if for all C ′ ∈ S ′ there is a C ∈ S such that C ′ ⊆C.

If Δ is a lattice polytope, we can consider lattice subdivisions of Δ, i.e., subdivi-
sions in which every element is a lattice polytope. In particular, a lattice subdivision
is primitive (resp. elementary) if all its maximal elements are primitive (resp. ele-
mentary). We write down some noteworthy properties of these subdivisions.

• Every elementary subdivision is a primitive triangulation.
• In a primitive subdivision, all elements (not only the maximal) are primitive.
• For any lattice polytope, its lattice subdivisions with no non-trivial refine-

ments are precisely its primitive triangulations.

2.3. Regular subdivisions and the secondary fan

Let Δ=conv(A), where A is a finite set of points in R
n. Any function α : A→R

will induce a lattice subdivision of Δ in the following way. Consider the polytope

conv({(v, α(v)) | v ∈ A }) ⊆ R
n+1.

Projecting the top faces of this polytope to R
n, forgetting the last coordinate, gives

a collection of subpolytopes of Δ. They form a subdivision Sα of Δ. The function
α is called a lifting function associated with Sα.

Definition 2.1. A lattice subdivision S of conv(A) is regular if S =Sα for some
α : A→R.

The set of regular subdivisions of conv(A) has an interesting geometric struc-
ture, as observed by Gelfand, Kapranov and Zelevinsky in [4]. Suppose A ⊆R

n

consists of k points. For a fixed ordering of the points in A, the space R
A �R

k is
a parameter space for all functions α : A→R. For a given regular subdivision S of
conv(A), let K(S) be the set of all functions α∈R

A which induce S . The following
is proved in [4, Chapter 7].

Proposition 2.2. Let S and S ′ be any regular subdivisions of conv(A). Then
(a) K(S) is a cone in R

A;
(b) S ′ is a refinement of S if and only if K(S) is a face of K(S ′);
(c) the cones {K(S)| S is a regular subdivision of conv(A)} form a fan in R

A.

The fan of Proposition 2.2(c) is called the secondary fan of A, and is de-
noted Φ(A). Proposition 2.2(b) shows that a subdivision corresponding to a maxi-
mal cone of Φ(A) has no refinements. Hence the maximal cones correspond precisely
to the primitive regular lattice triangulations of conv(A).
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3. Basic tropical geometry

3.1. Tropical hypersurfaces

The purpose of this section is to recall the basics about tropical hypersurfaces
and their dual subdivisions. Good references for proofs and details are [2], [11]
and [7].

We work over the tropical semiring Rtr :=(R, max, +). Note that some authors
use min instead of max in the definition of the tropical semiring. This gives a
semiring isomorphic to Rtr. Most statements of tropical geometry are independent
of this choice, but sometimes care has to be taken (cf. Lemma 3.3).

To simplify the reading of tropical expressions, we adopt the following con-
vention: If an expression is written in quotation marks, all arithmetic operations
should be interpreted as tropical. Hence, if x, y ∈R and k ∈Z we have for example
“x+y”=max{x, y}, “xy”=x+y and “xk”=kx.

A tropical monomial in n variables is an expression of the form “xa1
1 ...xan

n ”, or in
vector notation, “xa”, where x=(x1, ..., xn)∈R

n and a=(a1, ..., an)∈Z
n. Note that

“xa”=〈a, x〉, the Euclidean inner product of a and x in R
n. A tropical polynomial

is a tropical linear combination of tropical monomials, i.e.

(1) f(x)= “
∑

a∈A
λaxa”=max

a∈A
(λa+〈a, x〉),

where A is a finite subset of Z
n, and λa ∈R for each a∈ A. From the rightmost

expression in (1) we see that as a function R
n→R, f is convex and piecewise lin-

ear. The tropical hypersurface Vtr(f)⊆R
n is defined to be the non-linear locus of

f : R
n→R. Equivalently, it is the set of points x∈R

n where the maximum in (1) is
attained at least twice.

It is well known (see e.g. [11] and [7]) that if n≥2, then Vtr(f) is a connected
polyhedral complex of pure dimension n−1. As a subset of R

n, Vtr(f) is unbounded,
although some of its cells may be bounded.

We next describe the very useful duality between a tropical hypersurface Vtr(f)
and a certain lattice subdivision. With f as in (1), we define the Newton poly-
tope of f to be the convex hull of the exponent vectors, i.e., the lattice polytope
conv(A)⊆R

n. As explained in Section 2.3, the map a 
→λa induces a regular subdi-
vision of the Newton polytope conv(A); we denote this subdivision by Subdiv(f).

Any element Δ∈Subdiv(f) of dimension at least 1, corresponds in a natural
way to a subset Δ∨ ⊆Vtr(f). Namely, if the vertices of Δ are a1, ..., ar, then Δ∨ is
the solution set of the equalities and inequalities

(2) λa1 +〈a1, x〉 = ... =λar +〈ar, x〉 ≥ λb+〈b, x〉 for all b ∈ A \ {a1, ..., ar }.
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That Δ∨ ⊆Vtr(f) follows immediately from the definition of Vtr(f), once we observe
that r ≥2 (this is implied by the assumption dim Δ≥1). In fact, Δ∨ is a closed cell
of Vtr(f). Moreover, we have the following theorem (see [7]).

Theorem 3.1. The association Δ 
→Δ∨ gives a one-to-one correspondence be-
tween the k-cells of Subdiv(f) and the (n−k)-cells of Vtr(f), for each k=1, 2, ..., n.
Furthermore, for any cells Δ, Λ∈Subdiv(f) of dimensions at least 1, we have that

(a) Δ is a face of Λ if and only if Λ∨ is a face of Δ∨ in Vtr(f);
(b) the affine-linear subspaces Aff(Δ) and Aff(Δ∨) are orthogonal in R

n;
(c) Δ∨ is an unbounded cell of Vtr(f) if and only if Δ is contained in a facet

of the Newton polytope of f .

If C is a cell of Vtr(f), we denote its corresponding cell in Subdiv(f) by C∨.
The cells C and C∨ are said to be dual to each other.

Theorem 3.1 is independent of the choice of max or min as the tropical addition.
However, the following lemma is not. For lack of reference, we include a proof.

Lemma 3.2. (a) Let X ⊆R
2 be a tropical curve, E ∈X be a vertex, and C ⊆X

be an edge adjacent to E. A vector pointing inwards from E relative to C is an
outward normal vector of C∨ relative to E∨.

(b) Assume that n≥3, and let X ⊆R
n be a tropical hypersurface, E ⊆X be an

(n−2)-cell, and C ⊆X be an (n−1)-cell adjacent to E. An inward normal vector
of E relative to C is an outward normal vector of C∨ relative to E∨.

Remark 3.3. When working over the semiring (R, min, +) instead of (R, max, +),
the word “outward” in each part of Lemma 3.2 must be changed to “inward”.

Proof. (a) Let X be defined by the polynomial

f =“
∑

a∈A
λaxa”=max

a∈A
(λa+〈a, x〉),

where A ⊆Z
2 is finite. Let E be a vertex of X , and C an edge of X adjacent to E.

By Theorem 3.1(a), C∨ is then an edge of the polygon E∨.
We consider first the case where C is bounded. Then C has a second end-

point F , and the vector
−−→
EF points inwards from E relative to C. In fact, any

vector pointing inwards from E relative to C is a positive multiple of
−−→
EF , so it

suffices to prove that
−−→
EF is an outward normal vector of C∨ relative to E∨. We

already know from Theorem 3.1(b) that
−−→
EF is orthogonal to C∨. To show that it

points outwards, it is enough to find a vector u pointing inwards from C∨ relative
to E∨, satisfying 〈u,

−−→
EF 〉<0.
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Let V (E∨)={a1, a2, ..., ar } be the vertices of E∨, named such that C∨ =a1a2.
Then u=−−→a2a3 points inwards from C∨ relative to E∨. We claim that 〈−−→a2a3,

−−→
EF 〉<0.

To see this, observe that the vertex E satisfies the system of (in)equalities

(3) λa1 +〈a1, E〉 =λa2 +〈a2, E〉 = ... =λar +〈ar, E〉 >λb+〈b, E〉,

for all b∈ A \ V (E∨). Similarly, F satisfies the relations

(4) λa1 +〈a1, F 〉 =λa2 +〈a2, F 〉 =λc+〈c, F 〉 >λd+〈d, F 〉,

for all c∈ V (F ∨) and d∈ A \ V (F ∨). Now, in particular, (3) gives 〈a2, E〉 − 〈a3, E〉=
λa3 −λa2 , while (4) implies (setting d=a3) that 〈a2, F 〉 − 〈a3, F 〉>λa3 −λa2 . Hence,

〈−−→a2a3,
−−→
EF 〉 = 〈a3 −a2, F −E〉 = 〈a3, F 〉 − 〈a2, F 〉+〈a2, E〉 − 〈a3, E〉

<λa2 −λa3 +λa3 −λa2 =0.

This proves the claim. Thus
−−→
EF is an outward normal vector of C∨ relative to E∨.

If C is unbounded, then C∨ ⊆∂(Δf ), where Δf is the Newton polytope of f .
Let f ′ =“f+λbx

b”, where the exponent vector b∈Z
2 is chosen outside of Δf in such

a way that C∨ is not in the boundary of Δf ′ . If the coefficient λb is set low enough,
all elements of Subdiv(f) will remain unchanged in Subdiv(f ′). Furthermore, all
vertices of X , and all direction vectors of the edges of X , remain unchanged in
Vtr(f ′). In particular, E is a vertex of Vtr(f ′), and its adjacent edge whose dual
is C∨, has the same direction vector as C. Since C∨ is not in the boundary, we
have reduced the problem to the bounded case above. This proves part (a).

(b) Let π be the orthogonal projection of R
n from Aff(E) to Aff(E∨)�R

2.
If C1, ..., Cr are the (n−1)-cells adjacent to E, then π(C1), ..., π(Cr) are mapped
to rays or line segments in Aff(E∨), with π(E) as their common endpoint. Fur-
thermore, if v is an inward normal vector of E relative to Ci, then v points in-
wards from π(E) relative to π(Ci). The lemma now follows from the argument in
part (a). �

3.2. Tropical surfaces in R
3

A tropical hypersurface in R
3 will be called simply a tropical surface. We will

usually restrict our attention to those covered by the following definition.

Definition 3.4. Let X=Vtr(f) be a tropical surface, and let δ ∈N. We say that
the degree of X is δ if the Newton polytope of f is the simplex

Γδ := conv({(0, 0, 0), (δ, 0, 0), (0, δ, 0), (0, 0, δ)}).

If Subdiv(f) is an elementary (unimodular) triangulation of Γδ , then X is smooth.
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Remark 3.5. We will frequently talk about a tropical surface X of degree δ

without referring to any defining tropical polynomial. It is then to be understood
that X=Vtr(f) for some f with Newton polytope Γδ . In this setting, the notation
SubdivX refers to Subdiv(f).

Let us note some immediate consequences of Definition 3.4. For example,
since any elementary triangulation of Γδ has δ3 maximal elements, X must have δ3

vertices. Furthermore, any 1-cell E ⊆X has exactly 3 adjacent 2-cells, namely those
dual to the sides of the triangle E∨. This last property makes it particularly easy to
state and prove the so-called balancing property, or zero-tension property for smooth
tropical surfaces. (A generalization of this holds for any tropical hypersurface.
However, this involves assigning an integral weight to each maximal cell of X ,
a concept we will not need here.)

Lemma 3.6. (Balancing property for smooth tropical surfaces) For any 1-cell
E of a smooth tropical surface X , consider the 2-cells C1, C2 and C3 adjacent to E.
Choosing an orientation around E, each Ci has a unique primitive normal vector
vi compatible with this orientation. Then v1+v2+v3=0.

Proof. As explained above, C∨
1 , C∨

2 and C∨
3 are the sides of the triangle E∨.

Theorem 3.1 implies that C∨
i is parallel to vi for each i=1, 2, 3. In fact, since C∨

i

is primitive, it must also have the same length as (the primitive) vector vi. The
vectors forming the sides of any polygon (following a given orientation), sum to
zero, thus the lemma is proved. �

Note that when dimE=1, Theorem 3.1 guarantees that dimE∨ =2; in partic-
ular E∨ is non-degenerate. This implies that no two of the vectors v1, v2 and v3 in
Lemma 3.6 are parallel. Thus we have the following result.

Lemma 3.7. Let C1, C2 and C3 be the adjacent 2-cells to a 1-cell of a smooth
tropical surface. Then C1, C2 and C3 span different planes in R

3.

We conclude these introductory remarks on tropical surfaces with a description
of some important group actions. Let S4 be the group of permutations of four
elements, so that S4 is the symmetry group of the simplex Γδ . In the obvious way
this gives an action of S4 on the set of subdivisions of Γδ .

We can also define an action of S4 on the set of tropical surfaces of degree δ. Let
X=Vtr(f), where f(x1, x2, x3)=“

∑
a∈Γδ

λaxa1
1 xa2

2 xa3
3 ”. For a given permutation

σ ∈S4, we define σ(X) as follows. First, homogenize f , giving a polynomial in four
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variables:
fhom(x1, x2, x3, x4)= “

∑

a∈Γδ

λaxa1
1 xa2

2 xa3
3 xδ−a1−a2−a3

4 ”.

Now σ acts on fhom in the obvious way by permuting the variables, giving a new
tropical polynomial σ(fhom). Dehomogenizing again, we set

σ(f) :=σ(fhom)(x1, x2, x3, 0).

(Note that 0 is the multiplicative identity element of Rtr.) Finally, we define σ(X)
to be the surface Vtr(σ(f)). Clearly, σ(X) is still of degree δ. The resulting action
is compatible with the action of S4 on the subdivisions of Γδ . In other words,
Subdivσ(X)=σ(SubdivX).

3.3. Tropical lines in R
3

Let L be an unrooted tree with five edges, and six vertices, two of which are
3-valent and the rest 1-valent. We define a tropical line in R

3 to be any realization
of L in R

3 such that
• the realization is a polyhedral complex, with four unbounded rays (the

1-valent vertices of L are pushed to infinity);
• the unbounded rays have direction vectors −e1, −e2, −e3, e1+e2+e3;
• the realization is balanced at each vertex, i.e., the primitive integer vectors

in the directions of all outgoing edges adjacent to a given vertex, sum to zero.
If the bounded edge has length zero, the tropical line is called degenerate.

For non-degenerate tropical lines, there are three combinatorial types, shown in
Figure 1. From left to right we denote these combinatorial types by (12)(34),
(13)(24) and (14)(23), respectively, so that each pair of digits indicate the directions
of two adjacent rays. Likewise, the combinatorial type of a degenerate tropical line
is written (1234).

Remark 3.8. This definition is equivalent to the more standard algebraic defi-
nition of tropical lines in R

3. See [11, Examples 2.8 and 3.8].

Figure 1. The combinatorial types of tropical lines in R
3.
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The tropical Grassmannian, Gtr(1, 3), is the space of all tropical lines in R
3.

It is a polyhedral fan in R
4 consisting of three 4-dimensional cones, one for each

combinatorial type. These cones are glued along their common linearity space of
dimension 3 (corresponding to rigid translations in R

3).

Remark 3.9. One can define tropical lines in R
n and their Grassmannians for

any n≥2. A detailed description of these spaces are given in [10].

In classical geometry, any two distinct points lie on a unique line. When we
turn to tropical lines, this is true only for generic points. In fact, for special choices
of points P and Q there are infinitely many tropical lines passing through P and Q.
The precise statement is as follows.

Lemma 3.10. Let P, Q∈R
3. There exist infinitely many tropical lines con-

taining P and Q if and only if the coordinate vector Q−P contains either a zero,
or two equal coordinates. In all other cases, P and Q lie on a unique tropical line.

An infinite collection of tropical lines in R
3, is called a two-point family if there

exist two points lying on all tropical lines in the collection. Using Lemma 3.10 it
is not hard to see that the tropical lines of any two-point family have in fact a
one-dimensional common intersection.

4. Constructing regular elementary triangulations

Suppose Δ is a lattice polytope contained in Γδ for some δ ∈N. We say that Δ
is a truncated version of Γδ , if Δ results from chopping off one or several corners
of Γδ such that (i) each chopped off piece is congruent to Γs for some s<δ, and
(ii) any two chopped off pieces have disjoint interiors.

The aim of this section is to prove that if a truncated version of Γδ admits a
regular, elementary triangulation (or RE-triangulation for short), then this can be
extended to a RE-triangulation of Γδ . This fact and the lemmas building up to its
proof are useful for proving existence of smooth tropical surfaces with particular
properties.

We start with an easy observation, which we state in some generality for later
convenience. (Recall in particular that any RE-triangulation is primitive.)

Lemma 4.1. Suppose Δ⊆R
n is an n-dimensional lattice polytope, F1 and F2

are disjoint closed faces of Δ, and αj : Fj ∩Z
n→R is a lifting function for each

j=1, 2, such that the following conditions are fulfilled :
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(i) Δ∩Z
n=(F1 ∩Z

n)∪(F2 ∩Z
n),

(ii) dim(F1)+dim(F2)=n−1,
(iii) αj induces a primitive triangulation of Fj , with Nj maximal elements.

Then α : Δ∩Z
n→R, defined by α(v):=αj(v) if v ∈Fj , induces a primitive triangula-

tion of Δ with N1N2 maximal elements, each of which is of the form conv(Λ1 ∪Λ2),
where Λi ⊆Fj is a maximal element of the triangulation induced by αj .

Proof. For each j=1, 2, let Λj ⊆Fj be an arbitrary maximal element of the
triangulation induced by αj . Then Ω:=conv(Λ1 ∪Λ2) is the convex hull of dim(F1)+
1+dim(F2)+1=n+1 lattice points, and it is a primitive simplex contained in Δ.
All we have to check is that Ω is in the subdivision induced by α, i.e. that

(5) α(v) <Affα,Ω(v)

for any v ∈(Δ∩Z
n)\Ω, where Affα,Ω is the affine function extending α|Ω∩Zn to

Aff(Ω). By condition (i), we have v ∈Fj for some j=1, 2. In particular, v ∈Aff(Λj),
which implies that Affα,Ω(v)=Affαj ,Λj (v). Hence (5) is equivalent to the fact that
αj(v)<Affαj ,Λj (v). But this is true since Λj is an element of the subdivision induced
by αj . �

Lemma 4.2. Let Δ1 and Δ2 be lattice polytopes such that Δ1 ∪Δ2 is convex
and F :=Δ1 ∩Δ2 is a facet of both. Suppose S1 and S2 are regular lattice subdivisions
of Δ1 and Δ2, respectively, such that S1 and S2 have associated lifting functions
α1 and α2, respectively, which coincide on the lattice points in F . Then S1 ∪ S2 is
a regular lattice subdivision of Δ1 ∪Δ2.

Proof. Let L(x)=0 be the equation of the affine hyperplane spanned by F . For
any λ∈R consider the lifting function αλ defined on the lattice points of Δ1 ∪Δ2

by

αλ(v) :=

{
α1(v), if v ∈Δ1,

α2(v)−λL(v), if v ∈Δ2.

For λ large enough, αλ is concave at every point of F , and the induced subdivisions
on Δ1 and Δ2 are S1 and S2, respectively. �

Zooming in to R
3, we now prove an auxiliary result.

Lemma 4.3. Let d>e be natural numbers, and define the triangles T0, T1 ⊆R
3

by

T0 =conv({(0, 0, 0), (d, 0, 0), (0, d, 0)}),

T1 =conv({(0, 0, 1), (e, 0, 1), (0, e, 1)}).
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Let Ti be any RE-triangulation of Ti, i=0, 1. Then there exists a RE-triangulation
T of the polytope Δ=conv(T0 ∪T1) such that T extends T0 and T1.

Proof. The strategy is as follows: We decompose Δ into three tetrahedra, find
RE-triangulations of each of them, and show that these glue together to form a
RE-triangulation of Δ. For i=0, 1, let αi be a lifting function associated with Ti,
and let α : Δ∩Z

3→R be defined by α(v)=αi(v) if v ∈Ti.
The decomposition of a triangular prism into three tetrahedra is well known.

Let

Δ0 =conv(T0 ∪ {(0, 0, 1)}),

Δ1 =conv(T1 ∪ {(d, 0, 0)}),

Δ2 =Δ\(Δ0 ∪Δ1).

(6)

For each i=0, 1, 2, α restricted to Δi ∩Z
3 induces a primitive triangulation Si on Δi.

(This follows from Lemma 4.1. For Δ0 and Δ1 use the decompositions indicated
in (6); for Δ2 take F1=conv({(d, 0, 0), (0, d, 0)}) and F2=conv({(0, 0, 1), (0, e, 1)}).)
Obviously, S0 and S1 extend T0 and T1, respectively, and are elementary. Fur-
thermore, S2 has de maximal elements, since the edges (d, 0, 0)(0, d, 0) and
(0, 0, 1)(0, e, 1) are triangulated into d and e pieces, respectively (cf. condition (iv)
of Lemma 4.1). On the other hand, vol(Δ2)= 1

6de, so S2 is also elementary.
Now we glue: First let Δ′ =Δ0 ∪Δ2. Since S0 and S2 come from restrictions of

the same lifting function, all conditions of Lemma 4.2 are met, showing that S0 ∪ S2

is a RE-triangulation on Δ′. Also, it follows from the proof of Lemma 4.2 that we
can find an associated lifting function which is equal to α on Δ2 ∩Z

3. But then
we can use Lemma 4.2 again, on Δ=Δ′ ∪Δ1. We conclude that S0 ∪ S1 ∪ S2 is a
RE-triangulation of Δ. �

Corollary 4.4. Let Γ⊆R
3 be a lattice polytope congruent to Γδ for some δ.

Then any RE-triangulation of any of its facets can be extended to a RE-triangulation
of Γ.

Proof. After translating and rotating, we can assume that Γ=Γδ , and that the
triangulated facet is the one at the bottom, i.e., T0 in the above lemma. Now choose
any RE-triangulation of each triangle Tk :=conv({(0, 0, k), (δ −k, 0, k), (0, δ −k, k)}),
k=1, ..., δ. Lemma 4.3 then implies that each layer (of height 1) conv(Tk−1, Tk) has
a RE-triangulation extending these. Finally we can glue these together one by one,
as in Lemma 4.2. �

We now prove the main result of this section.
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Proposition 4.5. Let Δ be a truncated version of Γδ for some δ ∈N. If T is
a RE-triangulation of Δ, then T can be extended to a RE-triangulation of Γδ .

Proof. Each “missing piece” is a tetrahedron congruent to Γs for some integer
s<δ, with a RE-triangulation (induced by T ) on one of its facets. Hence, by
Corollary 4.4, each missing piece has a RE-triangulation compatible with T . By
Lemma 4.2, we can glue these triangulations onto T one by one, thus obtaining a
RE-triangulation of Γδ . �

5. Polytopes with exits in Γδ

Let ω1, ω2, ω3 and ω4 be the vectors −e1, −e2, −e3 and e1+e2+e3, respec-
tively. For any δ ∈N, and each i=1, 2, 3, 4, let Fi be the facet of Γδ with ωi as an
outwards normal vector. For any p∈R

n, let 	p,i be the unbounded ray emanat-
ing from p in the direction of ωi. Hence any tropical line in R

3 with vertices v1

and v2, contains the rays 	v1,i1 , 	v1,i2 , 	v2,i3 , 	v2,i4 for some permutation (i1, i2, i3, i4)
of (1, 2, 3, 4).

A central theme of this paper is to examine under what conditions a tropical
line can be contained in a tropical surface. A simple, but crucial observation in this
respect is the following result.

Lemma 5.1. Let C be a (closed) 2-cell of a tropical surface, and p∈C be
a point. Then,

	p,i ⊆ C ⇐⇒ C∨ is contained in Fi.

Proof. Let E1, ..., Es be the edges constituting the boundary of C, and for
each j=1, ..., s let nj be an inward normal vector of Ej relative to C. Observe
that for any point p∈C, we have 	p,i ⊆C if and only if ωi is parallel to C, and
〈ωi, nj 〉 ≥0 for each j. In other words, 	p,i ⊆C if and only C∨ is parallel to Fi and
none of the vectors nj points inwards from Fi relative to Γδ . Comparing this with
Lemma 3.2(b), which says that each nj is an outward normal vector of C∨ relative
to E∨

j , the lemma follows. �

Motivated by this lemma, we make the following definition.

Definition 5.2. Let Δ be a lattice polytope contained in Γδ . We say that Δ
has an exit in the direction of ωi if dim(Δ∩Fi)≥1. If Δ has exits in the directions
of k of the ωi’s, we say that Δ has k exits.
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We will be interested in the maximal number of exits of various subpolytopes
of Γδ . The following observation serves as a warm-up.

Lemma 5.3. If δ ≥2, then a primitive triangle in Γδ can have at most 3 exits.

Proof. A triangle Δ with four exits must have an edge (with vertices v1 and v2,
say) contained in an edge of Γδ . By primitivity both of v1 and v2 cannot be vertices
of Γδ . This implies that there is a facet of Γδ touching neither v1 nor v2. But then
Δ cannot have an exit in the direction corresponding to this facet. �

A more interesting task is the classification of tetrahedra with 4 exits in Γδ .
Let Tδ be the set of all such tetrahedra. The study of Tδ , and in particular its
elementary elements, will occupy the remainder of this section.

For any lattice tetrahedron Ω⊆Γδ we define its facet distribution Fac(Ω) to be
the unordered collection of four (possibly empty) subsets of [4]:={1, 2, 3, 4} obtained
in the following way. For each vertex of Ω take the set of indices i of the facets Fi

containing that vertex. For example, if Ω′ ⊆Γ2 has vertices (0, 0, 0), (0, 0, 1), (1, 1, 0)
and (1, 0, 1), then Fac(Ω′)={ {1, 2, 3}, {1, 2}, {3, 4}, {1, 4}}.

A collection of four subsets of [4] is called a four-exit distribution (FED) if each
i∈[4] appears in exactly two of the subsets. Clearly, Ω has four exits if and only
if Fac(Ω) contains a FED. (A collection {J1, J2, J3, J4} is contained in another col-
lection {J ′

1, J
′
2, J

′
3, J

′
4} if (possibly after renumerating) Ji ⊆J ′

i for all i=1, ..., 4.) For
example, with Ω′ as above, Fac(Ω′) contains two FEDs: {{1, 2, 3}, {1, 2}, {3, 4}, {4}}
and {{2, 3}, {1, 2}, {3, 4}, {1, 4} }.

Let F be the set of all FEDs, and consider the incidence relation

Q := {(Ω, c)|c is contained in Fac(Ω)} ⊆ Tδ × F .

Let π1 and π2 be the projections from Q to Tδ and F , respectively. Then π1 is
obviously surjective, but not injective (for example, the last paragraph shows that
π−1

1 (Ω′) consists of two elements). Note that the group S4 acts on Tδ (induced
by the symmetry action on Γδ), on F (in the obvious way), and on Q (letting
σ(Ω, c)=(σ(Ω), σ(c))). Hence we can consider the quotient incidence

Q/S4 ⊆ Tδ/S4 × F /S4,

with the projections π̃1 and π̃2. We claim that the image of Q/S4 under π̃2 has
exactly six elements, namely the equivalence classes of the following FEDs:

(7)

c1={{1, 2, 3}, {1, 2, 4}, {3}, {4} }, c4={{1, 2, 3}, {1, 2}, {3, 4}, {4}},

c2={{1, 2, 3}, {1, 2, 4}, {3, 4}, ∅}, c5={{1, 2, 3}, {1, 4}, {2, 4}, {3}},

c3={{1, 2}, {1, 2}, {3, 4}, {3, 4} }, c6={{1, 2}, {1, 3}, {2, 4}, {3, 4}}.
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The proof of this claim is a matter of simple case checking: One finds that the set
F /S4 has 11 elements. In addition to the six given in (7) there are four elements
represented by FEDs of the form { {1, 2, 3, 4}, {..}, {..}, {..}}. These cannot be in
the image of π̃2, since no vertex lies on all four facets. Finally there is the equiv-
alence class of {1, 2, 3}, {1, 2, 3}, {4} and {4}, which corresponds to a degenerate
tetrahedron.

Now, for δ ∈N, and each j=1, ..., 6, we define the following subsets of Tδ :

(8) G j
δ := {Ω ∈ Tδ |Ω̃ ∈ π̃1(π̃−1

2 (cj))} and E j
δ := {Ω ∈ G j

δ |Ω is elementary}.

(Here, Ω̃ denotes the image of Ω in Tδ/S4.) Note that for a fixed δ, the subsets G j
δ

cover Tδ , but may overlap. For instance, our running example Ω′ lies in G4
2 ∩ G6

2 .
In the particular case δ=1, we have trivially that for all j=1, ..., 6, the sets G j

1

and E j
1 both consist of the single tetrahedron Γ1. For higher values of δ, we have

the following results for the subsets E j
δ .

Proposition 5.4. Let δ ≥2 be a natural number. Then
(a) E 1

δ =E 2
δ =E 3

δ =∅;
(b) E 4

δ ∩ E 5
δ �=∅;

(c) E 5
δ \(E 4

δ ∪ E 6
δ )=∅;

(d) E 6
δ \(E 4

δ ∪ E 5
δ )=∅ if and only if either δ=3, or δ is even and contained in a

certain sequence, starting with 2, 4, 6, 8, 14, 16, 18, 20, 26, 30, 56, 76, ... .

Proof. (a) Any tetrahedron Ω in G1
δ or G2

δ contains a complete edge of Γδ . Such
an edge is not primitive when δ>1, hence Ω cannot be elementary. If Ω∈ G3

δ , then
(modulo S4) the vertices of Ω are of the form (0, 0, a), (0, 0, b), (c, δ −c, 0), (d, δ −d, 0).
Its volume is

∣∣∣∣∣∣∣∣

1
6

∣∣∣∣∣∣∣∣

0 0 a 1
0 0 b 1
c δ −c 0 1
d δ −d 0 1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
=

∣∣∣∣
1
6
δ(a−b)(c−d)

∣∣∣∣,

which is either equal to 0 or ≥δ/6. Hence Ω cannot be elementary when δ>1.
(b) Given any natural number δ, let Ω be the convex hull of (0, 0, 0), (1, 0, 0),

(δ −1, 0, 1) and (0, 1, δ −1). Then Ω∈ G4
δ ∩ G5

δ . Also, vol(Ω)= 1
6 , so Ω is elementary.

(c) Any Ω∈ G5
δ has (modulo S4) vertices with coordinates (0, 0, 0), (δ −a, 0, a),

(0, b, δ −b) and (c, d, 0), where a, b, c, d are natural numbers such that 0≤a, b, c, d≤δ

and c+d≤δ. Furthermore, if Ω /∈ G j
δ for all j �=5, then all these inequalities are strict.
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If Ω is elementary, we must have vol(Ω)= 1
6 , which is implies that

(9) 6 vol(Ω) =

∥∥∥∥∥∥

δ −a 0 a

0 b δ −b

c d 0

∥∥∥∥∥∥
= |abc+(δ −a)(δ −b)d|

is equal to 1. This is impossible when δ ≥2, as shown in Lemma 5.5 below.
(d) The vertices of Ω∈ G6

δ \(G1
δ ∪ G2

δ ∪ G3
δ ∪ G4

δ ∪ G5
δ ) are (modulo S4) of the form

(a, 0, 0), (0, b, 0), (0, c, δ −c) and (d, 0, δ −d), where 1≤a, b, c, d≤δ −1. We find that

6 vol(Ω) = |ac(δ −b−d)−bd(δ −a−c)| =: f(δ, a, b, c, d).

When δ=3, it is straightforward to check by hand that the equation f(δ, a, b, c, d)=1
has no solutions in the required domain. However, if δ=2n+1 for any n≥2,
then (a, b, c, d)=(n−1, n, n+1, n) is a solution, since f(2n+1, n−1, n, n, n+1)=
|(n−1)(n+1)−n2|=1.

When δ is even we do not have any general results. A computer search shows
that the equation f(δ, a, b, c, d)=1 has solutions (in the allowable domain) for all
δ less than 1000 except for δ ∈ {2, 4, 6, 8, 14, 16, 18, 20, 26, 30, 56, 76}. It would be
interesting to know whether more exceptions exist. �

Lemma 5.5. The equation

abc+(δ −a)(δ −b)d = ±1

has no integer solutions in the domain 1≤a, b, c, d≤δ −1.

Proof. Let δ, c, d∈Z be fixed, where 1≤c, d≤δ −1, and let ε be either 1 or −1.
Then the equation cxy+d(δ −x)(δ −y)=ε describes a hyperbola C intersecting the
x-axis in x∗ =(δ −ε/dδ, 0) and the y-axis in y∗ =(0, δ −ε/dδ). Observe that δ −ε/dδ

is strictly bigger than δ −1, and furthermore that the slope

y′(x) =
d(δ −y)−cy

cx−d(δ −x)

is positive at both x∗ and y∗. It follows that C never meets the square 1≤x, y ≤δ −1.
This proves the lemma. �
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6. Properties of tropical lines on tropical surfaces

From now on, unless explicitly stated otherwise, X will always be a smooth
tropical surface of degree δ in R

3, and L be a tropical line in R
3. We fix the

notation 	1, ..., 	4 for the unbounded rays of L in the directions −e1, −e2, −e3 and
e1+e2+e3, respectively, and 	5 for the bounded line segment.

Any tropical surface X induces a map cX from the underlying point set of X

to the set of cells of X , mapping a point on X to the minimal cell (with respect to
inclusion) on X containing it. In particular we introduce the following notion: If v

is a vertex of L⊆X , and dim cX(v)=k, we say that v is a k-vertex of L (on X).
An important concept for us is the possibility of a line segment on X to pass

from one cell to another. When X is smooth, it turns out that this can only happen
in one specific way, making life a lot simpler for us. We prove this after giving a
precise definition.

Definition 6.1. Let X be a tropical surface (not necessarily smooth), and let
	⊆X be a ray or line segment. Define CX(	) to be the set of cells C ⊆X with the
property

dim(int(C)∩	) ≥ 1.

If | CX(	)| ≥2, then we say that 	 is trespassing on X .

Lemma 6.2. Suppose X is smooth, and 	⊆X is a trespassing line segment
such that

CX(	) = {C, C ′ }.

Then C and C ′ are maximal cells of X whose intersection is a vertex of X .

Proof. Let E=C ∩C ′, and let v be a direction vector of 	. Clearly, dimE is
either 1 or 0. If E is a 1-cell, then C and C ′ are 2-cells adjacent to E. But since
X is smooth, Lemma 3.7 implies that 	 cannot intersect the interiors of both C

and C ′, contradicting that CX(	)={C, C ′ }.
Hence dim E=0, i.e., E is a vertex of X . Since X is smooth, E∨ is a tetrahedron

in SubdivX . Now, if dim C=dim C ′ =1, then both C and C ′ are parallel to v,
implying that E∨ has two parallel facets (C∨ and (C ′)∨). This contradicts that E∨

is a tetrahedron. The case where dim C=1 and dim C ′ =2 (or vice versa) is also
impossible. Here, C∨ and (C ′)∨ would be, respectively, a facet and an edge of E∨,
where v is the normal vector of C∨ and v also is normal to (C ′)∨ (since (C ′)∨ is
normal to C ′ which contains 	). This would lead to E∨ being degenerate. The only
possibility left is that dim C=dim C ′ =2, in other words that C and C ′ are both
maximal. This proves the lemma. �
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In the following, we will call a tropical line L trespassing on X , if L⊆X , and
at least one of the edges of L is trespassing. Obviously, Lemma 6.2 implies the
following corollary.

Corollary 6.3. Any trespassing tropical line on X contains a vertex of X .

Proof. By definition, a trespassing tropical line on X has a trespassing edge
(either a ray or a line segment). Then we can find a line segment 	 contained in
this edge, such that | CX(	)|=2. By Lemma 6.2, 	 contains a vertex of X . �

Lemma 6.4. Suppose L⊆X is non-degenerate, and that L has a 1-vertex v

on X . Let E=cX(v). Then
(a) E contains no other points of L;
(b) the edges of the triangle E∨ ⊆SubdivX are orthogonal to the vectors ωi, ωj

and ωi+ωj (in some order), where ωi and ωj are the directions of the unbounded
edges of L adjacent to v.

Proof. (a) Since L is non-degenerate, v has exactly three adjacent edges. Let
m1, m2 and m3 be the intersections of these with a neighborhood of v, small enough
so that each mi is contained in a closed cell of X . It is sufficient to prove that none of
these segments are contained in E. Assume otherwise that m1 ⊆E. Since v ∈int(E),
the only other cells of X meeting v are the three (since X is smooth) 2-cells adjacent
to E. Hence m2 ⊆C and m3 ⊆C ′, where C and C ′ are 2-cells adjacent to E. We must
have C �=C ′, otherwise L cannot be balanced at v. But then, since X is smooth,
C and C ′ span different planes in R

3 (see Lemma 3.7). This again contradicts the
balancing property of L at v. Indeed, balance at v immediately implies that the
plane spanned by m1 and m2 equals the plane spanned by m1 and m3.

(b) Follows from (a) and Lemma 3.7. �

Corollary 6.5. Let v1 and v2 be the (possibly coinciding) vertices of L⊆X ,
and let Vi=cX(vi) for i=1, 2. Then L is degenerate if and only if V1=V2.

Proof. One implication is true by definition. For the other implication, suppose
V1=V2=:V . If dim V =0, then L is clearly degenerate. If dim V =1, then we must
have v1=v2 (indeed, v1 �=v2 would contradict Lemma 6.4(a)), thus L is degenerate.
Finally, dimV cannot be 2, as this would imply the absurdity that V spans R

3. �

We are now ready to prove the following proposition.
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Figure 2. A tropical line not containing any vertices of X .

Figure 3. Positions of A, B, C, D ∈Γδ .

Proposition 6.6. If deg X ≥3, then any tropical line L⊆X passes through at
least one vertex of X .

Proof. Suppose L∩X0=∅. By Corollary 6.3, L must be non-trespassing. Also,
L cannot be degenerate. Indeed, if it were, let v be its vertex. Then cX(v)∨ would
have to be a primitive triangle in Γδ with four exits, contradicting Lemma 5.3. For
non-degenerate tropical lines, it is easy to rule out all cases except for one, namely
when both of L’s vertices are 1-vertices (necessarily on different edges on X), as
suggested to the left in Figure 2. We can assume without loss of generality that
the combinatorial type of L is ((1, 2), (3, 4)). Applying Lemma 6.4(b), it is clear
that SubdivX contains two triangles with a common edge, with exits as shown
to the right in Figure 2. The points A, B, C and D lie on F14, F23, F12 and
F34, respectively, and the middle edge AB is orthogonal to e1+e2. It follows that
the points are situated as in Figure 3, with coordinates of the form A=(a, 0, 0),
B=(0, a, δ −a), C=(0, 0, c) and D=(d, δ −d, 0). Since X is smooth, the triangles
ABC and ABD must be facets of some elementary tetrahedra ABCP and ABDQ .
Setting P =(p1, p2, p3) and Q=(q1, q2, q3) we find that

6 vol(ABCP) =

∥∥∥∥∥∥∥∥

a 0 0 1
0 a δ −a 1
0 0 c 1
p1 p2 p3 1

∥∥∥∥∥∥∥∥
= |a(ac+δp2 −ap2 −ap3 −c2 −cp1)|,

implying that a=1, and that

6 vol(ABDQ) = |(δ −a)(da−δa+aq2+aq3+δq1 −dq2 −dq1)|,
giving δ −a=1. Hence we conclude that δ=2, as claimed. �
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7. Tropical lines on smooth tropical quadric surfaces

The aim of this section is to prove a tropical analogue of the following famous
theorem in classical geometry: A smooth algebraic surface of degree two has two
rulings of lines.

We begin by describing the compact maximal cells of a smooth tropical quadric.
It turns out that there is always exactly one such cell.

Proposition 7.1. A smooth tropical quadric surface has a unique compact
2-cell. This cell has a normal vector of the form −ei+ej +ek, for some permutation
(i, j, k) of the numbers (1, 2, 3).

Proof. Let X be a smooth quadric. We must show that SubdivX contains
exactly one inner edge. As seen in Figure 4, the only possibilities are the diagonals

(10) PP ′ =(1, 0, 0)(0, 1, 1), QQ′ =(1, 0, 1)(0, 1, 0) and RR′ =(0, 0, 1)(1, 1, 0).

Note that SubdivX has 10 vertices and (being elementary) consists of 8 sim-
plices. Each simplex has four triangles, each of which is the face of two simplices,
except the 16 triangles lying on a facet of Γ2. Hence 2#(triangles)−16=4·8, giv-
ing 24 triangles in SubdivX . The Euler characteristic of a simplex is 1, hence
−8+24−#(edges)+10=1, i.e. #(edges)=25. Since there are 24 edges on the facets
of Γ2, there is exactly one inner edge. �

Let X denote the compact 2-cell of X found in Proposition 7.1. We then have
the following result.

Theorem 7.2. For each point p∈X there exist two distinct tropical lines on
X passing through p.

Proof. We can assume (using if necessary the action of S4) that X has a normal
vector −e1+e2+e3, i.e., that the edge in SubdivX corresponding to X is PP ′ (see

Figure 4. The lattice points in Γ2. Possible inner edges are PP ′, QQ′ and RR′.
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Figure 4). Let p be any point on X , and consider the line given by p+t(e1+e2),
t∈R. Let L− and L+ be the rays where t≤0 and t≥0, respectively, and let p− and
p+ be the points on the boundary of X where L− and L+ leave X . We will show
that the tropical line Lp with vertices p− and p+, lie on X .

Let E− :=cX(p−) and E+ :=cX(p+). If E− (resp. E+) is a vertex, redefine it
to be any adjacent edge (of X) not parallel to e1+e2. To prove that Lp ⊆X , it is
enough (by Lemma 5.1) to show that the triangle (E−)∨ ∈SubdivX has exits in the
directions ω1 and ω2, and that (E+)∨ has exits in the directions ω3 and ω4.

The boundary of X is made up precisely of the 1-cells of X whose dual triangles
in SubdivX has PP ′ as one edge. In particular there are lattice points A, B ∈Γ2

such that (E−)∨ =�APP ′ and (E+)∨ =�BPP ′. We claim that

(11) A and B lie on the edges F12 and F34, respectively.

If this claim is true, it follows immediately that the triangles �APP ′ and �BPP ′

have the required exits, and therefore that Lp ⊆X . To prove the claim, we use
Lemma 7.3 below. By the construction of E−, it is clear that the vector e1+e2

points inwards from E− into X . The lemma then implies that 〈e1+e2, u〉<0 for all
vectors u pointing inwards from PP ′ into �APP ′. In particular, choosing u as the
vector from P to A=(a1, a2, a3), this gives a1+a2<1. The only lattice points in
Γ2 satisfying this are those on F12, so A∈F12. That B ∈F34 follows similarly. This
proves the claim, and we conclude that Lp ⊆X .

Next, consider the affine line p+t(e1+e3), t∈R. The points where this line
leaves X are again the vertices of a tropical line, L′

p, which we claim is contained
in X . Indeed, this follows after swapping the coordinates e2 and e3 (i.e., letting the
transposition σ=(23)∈S4 act on X), and repeating the above proof word by word.
Figure 5 shows Lp and L′

p in a typical situation. �

Figure 5. The two tropical lines passing through a point p∈X .
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Figure 6. Illustration of Lemma 7.3.

Lemma 7.3. Let E be an edge of a 2-cell C on a tropical surface. For any
vector v pointing inwards from E into C, and any vector u pointing inwards from
C∨ into E∨, we have 〈v, u〉<0.

Proof. Let n be the unit inwards normal vector of E relative to C. By
Lemma 3.2, n is an outwards normal vector of C∨ relative to E∨. In particular, we
have 〈v, n〉>0 and 〈u, n〉<0. (See Figure 6.)

For v=n, the lemma is clearly true, so assume v �=n. The vector product v ×n is
then a normal vector of C, and therefore a direction vector of C∨. Hence u×(v ×n)
is a normal vector of E∨, i.e., it is a direction vector of E. But since n is a normal
vector of E, this implies that 〈u×(v ×n), n〉=0. Expanding this, using the familiar
formula a×(b×c)=〈a, c〉b− 〈a, b〉c, we find that

〈u, n〉〈v, n〉 = 〈u, v〉〈n, n〉 = 〈u, v〉.

(In the last step we used that |n|=1.) The lemma follows from this, since 〈u, n〉<0
and 〈v, n〉>0. �

8. Two-point families on X

To any L⊆X , with edges 	1, ..., 	5, we can associate a set of data, DX(L)=
{V1, V2, C1, C2, ..., C5,ˇ}, where,

• Vi=cX(vi), where v1 and v2 are the (possibly coinciding) vertices of L;
• Ci is the set CX(	i) (cf. Definition 6.1);
• ˇ is the combinatorial type of L.

Recall in particular that 	i is trespassing on X if and only if | Ci| ≥2.
One might wonder if different tropical lines on X can have the same set of

data. It is not hard to imagine an example giving an affirmative answer, e.g. as
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Figure 7. A two-point family of tropical lines on a tropical surface.

in Figure 7. In this figure one of the vertices of the tropical line can be moved
along the middle segment, creating infinitely many tropical lines with the same set
of data. Clearly, the collection of all these tropical lines is a two-point family. As
we will show in the remainder of this section, this is not a coincidence.

By a perturbation of a point p∈R
3 we mean a continuous map μ : [0, 1)→R

3,
possibly constant, such that μ(0)=p.

Definition 8.1. A tropical line L⊆X can be perturbed on X if there exist per-
turbations μ1 and μ2—not both constant—of the vertices of L such that for all
t∈[0, 1), μ1(t) and μ2(t) are the vertices of a tropical line Lt ⊆X . In this case, we
call the map [0, 1)→Gtr(1, 3) given by t 
→Lt a perturbation of L on X .

If L is degenerate, we think of L as having two coinciding vertices. Thus
Definition 8.1 allows perturbations of L where the vertices are separated, creating
non-degenerate tropical lines.

By a two-point family of tropical lines on X , or simply a two-point family
on X , we mean a two-point family of tropical lines, all of which are contained in X .
A two-point family on X is maximal (on X) if it not contained in any strictly larger
two-point family on X . A tropical line on X is isolated if it does not belong to any
two-point family on X .

Special perturbations, as the one in Figure 7, give rise to two-point families
on X . We state a straightforward generalization of this example in the following
lemma, for later reference. Note that if μ is a perturbation of L on X , we say that
the vertex vi is perturbed along an edge of L, if im(μi)⊆Aff(	) for some edge 	⊆L

(cf. the notation in Definition 8.1).
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Lemma 8.2. If a non-degenerate L⊆X has a perturbation on X where at least
one of the vertices is perturbed along an edge of L, then L belongs to a two-point
family on X .

Proposition 8.3. Let L be a tropical line on a smooth tropical surface X ,
where deg X ≥3. If L is isolated, then L is uniquely determined by DX(L).

Proof. Let D =DX(L)={V1, V2, C1, C2, ..., C5,ˇ} be a given set of data. We will
identify all situations where L is not uniquely determined by D, and show that
Lemma 8.2 applies in each of these cases.

We first consider the case where ˇ �=(1234), meaning that L is non-degenerate.
The following observations will be used frequently.

(A) L is determined by (the positions of) its two vertices.
(B) The direction vector of the bounded segment 	5 is determined by ˇ.
(C) If | Cj | ≥2, then Aff(	j) is determined by the elements of Cj (and the in-

dex j).
(D) If dim Vi=1, and Aff(	j) is known for any edge 	j adjacent to vi, then vi

is determined.
Of these, (A) and (B) are clear, (C) is a consequence of Lemma 6.2, and (D) follows
from Lemma 6.4(a).

Now, assume that V1 and V2 are ordered so that dim V1 ≤dim V2. Under this
assumption, we examine the uniqueness of L for different sets of data, according to
the pair (dim V1, dim V2).

• (dim V1, dim V2)=(0, 0). Obviously, by (A), L is determined.
• (dim V1, dim V2)=(0, 1). In this case Aff(	5) is determined by V1 and ˇ

(cf. (B)). Hence v2 is determined (by (D)). Since v1=V1, it follows that L is deter-
mined.

• (dim V1, dim V2)=(0, 2). Again, v1 and Aff(	5) are determined by V1 and ˇ.
Write ˇ=((a, b), (c, d)), and consider first the case where either | Cc| ≥2 or | Cd| ≥2.
We can assume the former. Then Aff(	c) is determined, which again determines
v2=Aff(	5)∩Aff(	c). Thus, in this case L is determined.

Otherwise, we have Cc=Cd=V2. In this situation L is not uniquely determined
by D, as v2 can be perturbed to anywhere in the intersection of Aff(	5) and V2

without changing D.
• (dim V1, dim V2)=(1, 1). Observe first that we must have | Ci| ≥2 for some i.

(Otherwise L is not trespassing, and since none of its vertices are vertices of X , this
would contradict Proposition 6.6.) Hence Aff(	i) is determined for some i. If i=5,
then (by (D)) both v1 and v2 are determined by this. If i �=5, then in the first place
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only the endpoint of 	i is determined. But this together with ˇ determines Aff(	5),
and thus both vertices. Hence, in any case, L is determined.

• (dim V1, dim V2)=(1, 2). Let ˇ=((a, b), (c, d)). We consider five cases.
(i) | Cj | ≥2 for both j=c, d. Then Aff(	c) and Aff(	d) are determined, and

therefore also v2=Aff(	c)∩Aff(	d). This and ˇ determines Aff(	5), which in turn
(by (D)) determines v1. Hence L is determined.

(ii) | Cj | ≥2 for exactly one index j ∈ {c, d} (assume d), and also for at least
one index j ∈ {a, b, 5}. This last condition determines Aff(	5), either directly (if
j=5) or via v1 and ˇ. Thus v2=Aff(	d)∩Aff(	5) is determined, and therefore L as
well.

(iii) | Cj | ≥2 for exactly one index j ∈ {c, d} (assume d), and for no other in-
dices j. In this case v2 can be perturbed along 	d without changing D, so L is not
determined by D. (The perturbation of v1 (along V1) will be determined by the
perturbation of v2.)

(iv) | Cj | ≥2 for no j ∈ {c, d}, but at least one j ∈ {a, b, 5}. As in (ii) above, the
last condition determines Aff(	5) and therefore v1. The vertex v2 can be perturbed
along 	5, so L is not determined.

(v) | Cj |=1 for all j ∈ {1, 2, 3, 4, 5}. This is not possible when deg X ≥3. In fact,
it follows from Lemma 5.3 that deg X=1. Indeed, since no edge of L is trespassing,
the triangle V ∨

1 must have four exits in Γdeg X .
• (dim V1, dim V2)=(2, 2). Note first that V1 �=V2, since L spans R

3. Hence
| C5| ≥2, determining Aff(	5). Now, for both i=1, 2 we have: If any adjacent un-
bounded edge of vi is trespassing, then vi is determined. If not, vi can be perturbed
along 	5 keeping D unchanged.

Going through the above list, we see that in each case where L is not uniquely
determined by D, L has a perturbation where a vertex is perturbed along an edge
of X . Hence, by Lemma 8.2, L belongs to a two-point family on X .

Finally, suppose ˇ=(1234), so L is degenerate. We show that in this case,
L is determined by D. Corollary 6.5 (and its proof) tells us that V1=V2=:V where
dim V is either 0 or 1. In the first case, L is obviously uniquely determined. If
dim V =1 then | Cj | ≥2 for some j ∈ {1, 2, 3, 4}, otherwise L would contain no vertex
of X , contradicting Proposition 6.6. Hence Aff(	j) is determined. We claim that
V1 �⊆Aff(	j). Note that this would determine v1=v2=Aff(	j)∩V1, and therefore
also L. To prove the claim, note that if V1 ⊆Aff(	j), then V1 ∈ Cj . This is impossible,
since any element of Cj must be of dimension 2 (cf. Lemma 6.2). This concludes
the proof of the proposition. �
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9. Tropical lines on higher degree tropical surfaces

In this section we present our main results about tropical lines on smooth
tropical surfaces of degree greater than two. The proofs rest heavily on what we
have done so far. The first is indeed a corollary of Proposition 8.3.

Corollary 9.1. Let X be a smooth tropical surface where deg X ≥3. Then X

contains at most finitely many isolated tropical lines. Furthermore, X contains at
most finitely many maximal two-point families.

Proof. The first statement is immediate from Proposition 8.3, since there are
only finitely many possible sets of data DX(L). For the last statement, observe
that any maximal two-point family on X contains a non-degenerate tropical line
(cf. Lemma 5.3). Going through the proof of Proposition 8.3, we see that if D is the
data set of a non-degenerate tropical line, then there can be at most one maximal
two-point family containing tropical lines with data set D. Hence there are at most
finitely many maximal two-point families on X . �

We show that two-point families exist on smooth tropical surfaces of any degree:

Theorem 9.2. For any integer δ, there exists a full-dimensional cone in Φ(Γδ)
in which each point corresponds to a smooth tropical surface containing a two-point
family of tropical lines. In particular, there exist smooth tropical surfaces of degree
δ with infinitely many tropical lines.

Proof. Let δ be an arbitrary, fixed integer. Consider the lattice tetrahedron
Ω⊆R

3 defined by

(12) Ωδ := conv({(0, 0, 0), (0, 0, 1), (δ −1, 1, 0), (1, 0, δ −1)}).

It is easy to see that Ωδ has four exits in Γδ (see Figure 8).
Assume for the moment that there exists a smooth tropical surface X of de-

gree δ such that SubdivX contains Ωδ . Then Lemma 5.1 implies that the vertex
v :=Ω∨

δ ∈X is the center of a degenerate tropical line L⊆X . We claim that L be-
longs to a two-point family on X . Indeed, this also follows from Lemma 5.1: Let
C ⊆X be the cell dual to the line segment in SubdivX with vertices (0, 0, 0) and
(0, 0, 1). Then for any point p(t)=v+t(−e1 −e2), where t>0, the line segment with
endpoints v and p(t) is contained in C. Let Lt be the tropical line with vertices v

and p(t). Lemma 5.1 guarantees that the rays starting in p(t) in the directions −e1

and −e2 are contained in C. Hence Lt ⊆X . Clearly, the lines Lt form a two-point
family on X , thus the claim is true. (See Figure 9.)
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Figure 8. The tetrahedron Ω3 has four exits in Γ3.

Figure 9. The two-point family on X corresponding to the tetrahedron Ω3 in Figure 8.

It remains to prove the existence of a RE-triangulation of Γδ containing Ωδ .
Using the techniques in Section 4, it is not hard to construct such a triangulation
explicitly. For example, consider the polytope

Δ=conv({(0, 0, 0), (δ, 0, 0), (δ −1, 1, 0), (0, 1, 0), (0, 1, δ −1), (0, 0, δ)}).

Then Δ is a truncated version of Γδ , so by Proposition 4.5 it is enough to con-
struct a RE-triangulation of Δ which contains Ωδ . Write Δ=Ωδ ∪Δ1 ∪Δ2 ∪Δ3 ∪Δ4,
where

Δ1 =conv({(0, 0, 0), (δ, 0, 0), (δ −1, 1, 0), (1, 0, δ −1)}),

Δ2 =conv({(0, 0, 1), (δ −1, 1, 0), (1, 0, δ −1), (0, 0, δ)}),

Δ3 =conv({(0, 0, 0), (δ −1, 1, 0), (0, 1, 0), (0, 0, δ)}),

Δ4 =conv({(δ −1, 1, 0), (0, 1, 0), (0, 1, δ −1), (0, 0, δ)}).

Repeated use of Lemma 4.1 gives a RE-triangulation of each of these (for
Δ1 and Δ4 choose any RE-triangulation of the facets conv({(0, 0, 0), (δ, 0, 0),
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Figure 10. The RE-triangulation induced on Γ3 by g3.

(1, 0, δ −1)}) and conv({(δ −1, 1, 0), (0, 1, 0), (0, 1, δ −1)}), respectively). Finally, it
is easy to check that these triangulations patch together to a RE-triangulation of Δ,
using Lemma 4.2. �

Example 9.3. Define the tropical polynomial g3 by

g3(x, y, z) = “−22x3+16x2y −10x2z+0xy2+0xz2+8xyz −23y3 −12y2z

−5yz2+0z3 −14x2+14xy −3xz −6y2+4yz+0z2 −8x+6y −z −3”.

The subdivision Subdiv(g3), shown in Figure 10, is a RE-triangulation of Γ3 con-
taining the tetrahedron Ω3 (as defined in (12)). Hence Vtr(g3) is a smooth tropi-
cal cubic surface with a two-point family of tropical lines, all of which have Ω∨

3 =
(1, −21, −2) as a vertex. The polynomial g3 was constructed by first building the
RE-triangulation (following the suggestions in the proof of Theorem 9.2, making
appropriate choices where needed), and then calculating an interior point in the
secondary cone of this subdivision. The latter part was done using the Maple pack-
age Convex ([1] and [6]).

Similarly, the tropical polynomial g4 below gives a smooth tropical surface of
degree four containing a two-point family of tropical lines:

g4(x, y, z) = “−12x4+72x3y −x3z −4x2y2+41x2yz+7x2z2 −91xy3

−39xy2z+2xyz2+12xz3 −189y4 −133y3z −85y2z2 −45yz3 −6z4

−5x3+56x2y+5x2z −24xy2+24xyz+11xz2 −118y3 −63y2z

−19yz2 −3z3 −x2+32xy+7xz −55y2 −4yz −z2+0x+0y+0z+0”.

In light of the above theorem, one might ask whether there exist tropical sur-
faces of high degree containing an isolated degenerate tropical line L. If we add
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the requirement that L is non-trespassing on X , we can give the following partial
answer.

Proposition 9.4. Let δ ∈N. There exists a smooth tropical surface X of degree
δ containing an isolated, non-trespassing, degenerate tropical line, if and only if δ

is
• an odd number greater than 3, or
• an even number except 2, 4, 6, 8, 14, 16, 18, 20, 26, 30, 56, 76, ... .

Proof. We know that the vertex of such a line must be a vertex of X , corre-
sponding to an elementary tetrahedron Ω∈SubdivX with four exits. Furthermore,
no edge of Ω can have more than one exit. Indeed, an edge with exits ωi and ωj

will be orthogonal to the vector ωi+ωj , implying (as in the proof of Theorem 9.2)
that L belongs to a two-point family.

From the classification in (7) of tetrahedra with four exits in Γδ , we observe the
following: A tetrahedron with four exits, in which no edge has more than one exit,
must belong either exclusively to the subset G5

δ , or exclusively to the subset G6
δ . The

result then follows from Proposition 5.4. As we remarked in the proof of part (d)
of that proposition, we do not know how (or if) the list of even degree exceptions
continues. �

Both Theorem 9.2 and Proposition 9.4 show that there exist plenty of tropical
surfaces of arbitrarily high degree containing tropical lines. It is natural to won-
der whether there also exist smooth tropical surfaces containing no tropical lines,
isolated or not. This is indeed true in all degrees greater than three, as we prove
in [12]. In that paper we present a classification of tropical lines on general smooth
tropical surfaces, and propose a method for counting the isolated tropical lines on
such surfaces.
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