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The finite antichain property in Coxeter groups

Axel Hultman

Abstract. We prove that the weak order on an infinite Coxeter group contains infinite

antichains if and only if the group is not affine.

1. Introduction

Given an infinite poset, a natural problem is to decide whether or not it contains
infinite antichains (sets of pairwise incomparable elements). It is known [1] and [9]
that every antichain in the Bruhat order on any Coxeter group is finite. Here, we
consider the other of the two most common ways to order a Coxeter group, namely
the weak order. One observes that the answer must depend on the group; it is
straightforward to check that the antichains in the infinite dihedral group are finite,
whereas there are infinite ones in the universal Coxeter group of rank 3. The open
problem of characterising the groups with infinite antichains is [2, Exercise 3.11].
The main result of this paper is that the answer is the following new characterisation
of affine Weyl groups:

Theorem 1.1. The weak order on an infinite Coxeter group contains an infi-
nite antichain if and only if the group is not affine.

After establishing notation in Section 2, we use the remaining two sections to
prove our main result. In Section 3, we show that affine groups do not possess
infinite antichains, whereas (irreducible) not locally finite ones do. The groups that
remain are the compact hyperbolic Coxeter groups. In Section 4, it is shown that
they all have infinite antichains, thereby finishing the proof of Theorem 1.1. While
the proofs in Section 3 are uniform, we have been forced to resort to a case-by-case
argument in Section 4.

Remark 1.2. The Poincaré series of an affine Weyl group is given by a sim-
ple formula first proved by Bott [3], see [10, Theorem 8.9]. From it, it immedi-
ately follows that every irreducible affine Weyl group except the infinite dihedral
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group I2(∞) has the following property: the number of elements of Coxeter length k

grows arbitrarily large as k tends to infinity. Distinct elements of the same length
are always incomparable under the weak order. Therefore, the only infinite Coxeter
groups with bounded antichain size are W×I2(∞), for finite W . All other infinite
groups have arbitrarily large finite antichains.

2. Preliminaries

We assume the reader to be familiar with basic theory of Coxeter groups and
root systems as can be found e.g. in [2] or [10]. Here, we review scattered pieces
of the theory in order to agree on notation. For the most part, we borrow our
terminology from [2].

Throughout the paper, (W, S) will denote a Coxeter system with |S|<∞. Given
J⊆S, WJ =〈J〉 is the parabolic subgroup generated by J . Every coset in W/WJ

has a unique representative of minimal length; the set of such representatives is
denoted by W J .

We use �(w) to denote the Coxeter length of w∈W . The right descent set of w

is

DR(w)= {s∈S | �(ws)< �(w)}.
Definition 2.1. The (right) weak order on W is defined by v≤Rw if and only

if there exists u∈W such that w=vu and �(w)=�(v)+�(u).

One can also define the left weak order ≤L in the obvious way. In this paper, “weak
order” always refers to the right weak order. The results are of course equally valid
for the left version.

Every group element w∈W can be expressed as a word in the free monoid S∗.
If such a word has length �(w) it is called a reduced expression. The combinatorics
of reduced expressions is a key to many properties of Coxeter groups and plays
a prominent role in our arguments. Abusing notation, we will sometimes blur the
distinction between elements of W and their representatives in S∗. We trust the
context to make the meaning clear.

For s, s′∈S, let m(s, s′) denote the order of ss′. This information is collected
in the Coxeter diagram which is a complete graph on the vertex set S in which the
edge {s, s′} is labelled with m(s, s′). For convenience, we agree to suppress edges
with label 2 and labels that are equal to 3.

Consider a word in S∗ representing w∈W . Deleting a factor ss, we obtain an-
other word representing w. Similarly, replacing a factor ss′ss′s... of length m(s, s′)
with the factor s′ss′ss′... of the same length, we again obtain a representative of w.
The former operation is called a nil move, the latter a braid move. Obviously, nil
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moves can never be performed on reduced expressions. The following important
result is due to Tits [13].

Theorem 2.2. (Word property)
(a) Any word in S∗ can be brought to a reduced expression by a sequence of

braid moves and nil moves.
(b) Given a reduced expression for w, every other reduced expression for w can

be obtained by a sequence of braid moves.

One consequence of the word property is that every reduced expression for w∈W

uses the same set of generators. We use S(w)⊆S to denote this set.

2.1. A recognising automaton for reduced expressions

It is a fundamental fact that the language of reduced expressions in W is reg-
ular, i.e. recognised by a finite state automaton. In other words, there is a directed
graph on a finite vertex set whose edges are labelled with elements from S, such
that the sequences of labels along directed paths beginning in some distinguished
starting vertex are exactly the reduced expressions for elements in W . The exis-
tence of such an automaton is essentially due to Brink and Howlett [4]. They in fact
showed that the language of so-called normal forms is regular, but this is enough
due to a result of Davis and Shapiro [5].

At one point in Section 4, we will rely on explicit computations in a particular
recognising automaton for reduced expressions. For this purpose, we briefly sketch
how the automaton works. For the sake of brevity, the reader will be kept on a need-
to-know basis. A more thorough account of the construction can be found in [2,
Section 4.8], which is largely based on material from the thesis of Eriksson [7]. See
also Headley’s thesis [8].

Suppose Φ is a root system for W with simple roots ∆={αs |s∈S}. A sym-
metric bilinear form on V =spanΦ=span∆ is defined by

(αs |αs′)=− cos
π

m(s, s′)
.

Given w∈W , we recursively define a corresponding set DΣ(w)⊆Φ+ of positive roots
by

DΣ(e)=∅

(where e∈W is the identity element) and, if s /∈DR(w),

DΣ(ws)= {αs}∪{s(β) |β ∈DΣ(w) and −1 < (β |αs)< 1}.
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The recognising automaton is constructed in the following way. Its vertex set (which
turns out to be always finite) is

{DΣ(w) |w ∈W}.
The labelled edges are given by

DΣ(w)
s−−!DΣ(ws),

whenever s /∈DR(w). Our distinguished starting vertex is DΣ(e)=∅.

3. Affine and not locally finite groups

A well-partially-ordered (wpo) set is a poset in which every non-empty subset
has a minimal element and every antichain is finite. The origin of the following easy
lemma is non-trivial to establish. See e.g. Kruskal’s survey [11]. We include a proof
for convenience and completeness.

Lemma 3.1. Suppose P and Q are wpo posets. Then the product poset P×Q

is also wpo.

Proof. It is easy to see that the non-empty subsets of P×Q have minimal
elements. Suppose, in order to deduce a contradiction, that A={(pi, qi)}i∈N is an
infinite antichain in P×Q. We may assume that {pi}i∈N and {qi}i∈N are infinite;
otherwise we could find an infinite subset B⊆A isomorphic to a subposet of Q or P ,
respectively, giving a contradiction.

It follows from Ramsey’s theorem that every infinite poset either has an infinite
chain or an infinite antichain (or both). The antichains in P are finite, so the set
{pi}i∈N contains an infinite chain. This chain has a smallest element since P is wpo.
Without loss of generality we may therefore assume p0<p1<p2<... . Similarly, we
may assume that {qi}i∈N forms an infinite chain in Q. Since Q is wpo, we cannot
have q0>q1>q2>... . Therefore, there exist indices i and j such that pi<pj and
qi≤qj, contradicting the fact that A is an antichain. �

Since non-empty subsets of Coxeter groups always contain minimal elements
under weak order, Lemma 3.1 allows us to restrict attention to irreducible Coxeter
groups – a group contains an infinite antichain if and only if one of its irreducible
components does.

Theorem 3.2. Affine Weyl groups have no infinite antichains.

Proof. Let W be a finite Weyl group with root system Φ and associated affine
group ˜W . Consider the realisation of ˜W as a group generated by affine reflections



The finite antichain property in Coxeter groups 65

in V =spanΦ (see e.g. [10, Section 4]). Identifying V with its dual, the reflecting
(affine) hyperplanes are given by Hα,k={λ∈V |〈λ, α〉=k} for α∈Φ+, k∈Z. The
complement V \⋃

α,k Hα,k is a disjoint union of connected open alcoves. The set

of alcoves is in bijection with ˜W . The alcove corresponding to w∈˜W is defined
by a (possibly redundant) set of inequalities of the form nα

w<〈λ, α〉<nα
w+1, where

nα
w∈Z for all α∈Φ+. Corresponding to the identity e∈˜W , the fundamental alcove

is obtained by putting all nα
e =0.

Define a partial order � on Z by letting i�j if and only if |i|≤|j| and either
i=0 or sgn(i)=sgn(j). Thus, ...	2	1	0≺−1≺−2≺... . Let Z denote this poset.
It is known that the weak order on ˜W corresponds to inclusion on the sets of
hyperplanes that separate the various alcoves from the fundamental one. This
amounts to saying that, choosing some total ordering of Φ+, the map ϕ : ˜W!Z |Φ+|

given by w �!(nα
w)α∈Φ+ is a poset isomorphism from the weak order on ˜W to the

image of ϕ.
By Lemma 3.1, the antichains in Z |Φ+| are finite, and the theorem follows. �

A Coxeter group W is called locally finite if |WJ |<∞ for all J�S.

Theorem 3.3. If W is irreducible and not locally finite, then it has an infinite
antichain.

Proof. Suppose WJ is infinite and irreducible for J�S. Choose s∈J and
s′∈S\J which are neighbours in the Coxeter diagram of W , i.e. s and s′ do not
commute. It follows from [6, Proposition 4.2] that W

J\{s}
J is infinite. Observe

that DR(w)={s} for all w∈W
J\{s}
J . By the word property, since s and s′ do not

commute, every reduced expression for ws′, w∈W
J\{s}
J , contains exactly one s′, and

this is necessarily the last letter. This implies that the infinite set {ws′ |w∈W
J\{s}
J }

is an antichain under weak order. �

4. Compact hyperbolic groups

Lannér [12] showed that the locally finite Coxeter groups that are neither finite
nor affine are precisely the compact hyperbolic ones. In rank 3, every infinite, non-
affine group is compact hyperbolic. The diagrams of the remaining irreducible
compact hyperbolic Coxeter groups are shown in Figure 1.

In light of Theorems 3.2 and 3.3, the next result concludes the proof of The-
orem 1.1.

Theorem 4.1. Every compact hyperbolic Coxeter group has an infinite an-
tichain.
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Figure 1. All irreducible compact hyperbolic Coxeter groups of rank at least 4.

Proving this theorem is the topic of the remainder of the paper. Proceeding in
a case-by-case fashion, the proof is somewhat unsatisfactory. In particular, our
argument that the group at the bottom of Figure 1 has an infinite antichain relies
on computer aided calculations and the structure of the automaton discussed in
Section 2. It would be very interesting to have a type-independent proof of The-
orem 4.1, perhaps in terms of general properties of the symmetric bilinear form
( · | · ); see [10, Section 6.8] for details.

The following simple lemma turns out to produce infinite antichains in most
compact hyperbolic groups.

Lemma 4.2. Suppose that u, w∈W fulfil the following requirements:
(i) �(u)≤�(w);
(ii) u�Rw;
(iii) |S(w)|≥3;
(iv) Every reduced expression for wu is a concatenation of a reduced expression

for w and a reduced expression for u;
(v) Every reduced expression for w2 is a concatenation of two reduced expres-

sions for w.
Then, {wku|k∈N} is an infinite antichain in W .

Proof. Suppose u and w satisfy the hypotheses. We claim that every reduced
expression for wku, k∈N, is a concatenation of k reduced expressions for w and one
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for u. To see this, take an expression for wku of the form just described. By (iii), it
allows no braid move which involves an entire copy of w. Thus, (iv) and (v) imply
that every braid move simply replaces one copy of w (or u) with another. Moreover,
nil moves cannot be possible since it would mean either that �(wu)<�(w)+�(u)
(contradicting (iv)) or that �(w2)<2�(w) (contradicting (v)). The claim is proved.

Now assume wku<Rwlu for some k<l. By (i) and the above claim, this means
that some reduced expression for w has a reduced expression for u as a prefix,
contradicting (ii). We conclude that {wku} is indeed an antichain. �

We say that u and w form a good pair if they satisfy the hypotheses of Lemma 4.2.

Lemma 4.3. Suppose W ′ is a Coxeter group obtained from W by increasing
some edge labels in the Coxeter diagram. If W has infinite antichains, then so
does W ′.

Proof. Take an infinite antichain {w1, w2, ...}⊂W . Pick reduced expressions
for the wi. These expressions are reduced in W ′, too. This is because any sequence
of braid moves applicable in the context of W ′ is also applicable in W ; otherwise
the expression would not be reduced in W . Thus, the sequence never leads to a nil
move. The corresponding elements therefore form an antichain in W ′, too. �

Proof of Theorem 4.1. The proof is divided into six different cases that combine
to exhaust all irreducible compact hyperbolic groups (after allowing edge labels to
increase, using Lemma 4.3). The rank three groups are covered by Cases I–III. The
remaining groups are those in Figure 1. The first row is covered by Case II, the
second by Case I and the third by Case IV. Finally, the singleton fourth and fifth
rows are covered by Cases V and VI, respectively. In each case except the last one,
we apply Lemma 4.2 by producing a good pair of elements in the corresponding
group.

Case I.
Suppose the Coxeter generators form a cycle s1, ..., sn, s1 in the Coxeter dia-

gram, and assume m(s1, sn)=4. Then, sn and s2...sns1 form a good pair.

Case II.
Assume s1, ..., sn is a path in the Coxeter diagram, with m(s1, s2)=5 and

m(sn−1, sn)=4. Now, s1s2s1 and s1...snsn−1...s2 yield a good pair.

Case III.
Suppose we have three generators s, t, u∈S with m(s, t)=7 and m(t, u)≥3.

A good pair is given by st and sutst.
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Case IV.

Let s1, ..., sn−1 be a path in the diagram with m(s1, s2)=5, and add sn with
the relation m(sn−2, sn)=3. We get a “fork-shaped” diagram like the one depicted.
In this case, we may recycle the solution from Case II above, regarding the product
of the “ends of the fork” as a single generator. We get a good pair consisting of the
elements s1s2s1 and s1...snsn−2sn−3...s2.

Case V.
Suppose S={s, t, u, v} with m(s, t)=m(u, v)=3 and m(t, u)=5. Consider the

element ω=utvsut=utvust=uvtust=utsvut=uvtsut, and note that these are all
the reduced expressions for ω. One easily checks that ω satisfies condition (v) of
Lemma 4.2 by inspecting the 25 concatenations of two such expressions, observing
that none of them admits a braid move involving both copies of ω. Similarly, we
make sure that ω together with ν=uvtut=utvut obey condition (iv). Conditions
(i)–(iii) are immediate, implying that (ν, ω) is a good pair.

Case VI.
Finally, we assume S={s, t, u, v, w}, m(s, t)=5 and m(t, u)=m(u, v)=m(v, w)

=3. Let α=stuvwstuv. We claim that

{αkw | k ∈N and k≡ 0 (mod 6)}
is an infinite antichain. Aided by the computer, we have established the following
facts:

(1) DΣ(wα6)=DΣ(wα7);
(2) �(wα7w)=2+7�(α)=65.
Now consider the recognising automaton for the language of reduced expres-

sions described in Section 2. Combining (1) and (2), we see that there is a cycle of
length �(α)=9 corresponding to α which begins and ends in DΣ(wα6). Repeatedly
traversing this cycle produces reduced expressions. Furthermore, fact (2) shows
that after walking this cycle a number of times, we may use an edge labelled w.
Thus, �(wαkw)=2+k�(α) for all k≥6. This proves that w≮Rαkw for such k. Since
αkw<Rαlw⇔w<Rαl−kw, for k<l, we conclude that {αkw|k∈6N} is indeed an
infinite antichain. �
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