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Local energy decay of solutions to the 
wave equation for nontrapping metrics 

Georgi Vodev 

A b s t r a c t .  We prove uniform local energy decay est imates of solutions to the wave equation 

on unbounded Riemannian manifolds with nont rapping  metrics. These est imates are derived 

from the propert ies of the resolvent at high frequency. Applications to a class of asymptotical ly 

Euclidean manifolds as well as to per turba t ions  by non-negative long-range potentials are given. 

1. I n t r o d u c t i o n  and  s t a t e m e n t  o f  resul t s  

Let (M, 9) be an n-dimensional unbounded connected Riemannian manifold 
with a Riemannian metric 9 of class C ~ (M) and a compact C~ bound- 
ary OM (which may be empty).  We suppose that  M is of the form M=XoUX, 
where X0 is a compact  connected Rienmnnian manifold with a metric glxo of class 
C~(Xo) with a compact boundary OXo--OMUOX, OMnOX=~, X=[ro, +oc)• 
r0>>l, with metric 91x:=dr2+~(r). Here (S, ~(r))  is an (n-1) -d imens iona l  com- 
pact Riemannian manifold without boundary equipped with a family of Riemannian 
metrics or(r) depending smoothly on r which can be writ ten in any local coordinates 
OCE in the form 

n 1 

a(r) = ~ 9ij(r,O)dOidOj, 9ij EC~176 �9 
i , j  1 

Let X,. = [r, +oct) • S. Clearly, (?X~. can be identified with the Riemannian manifold 

(S, a ( r ) )  with the Laplace-Bel t rami operator  Aox~ writ ten as 

1 fe--i 

]9 i , j = l  

where (9 ij) is the inverse matr ix  to (gij) and p=(det(gij))l/2=(det(gi3)) -1/2. Let 

Ag denote the (positive) Laplace Beltrami operator  on (M, 9) and let V~ be the 
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corresponding gradient. We have 

/ 

A x  : =  A g l x  = - lO~(pO,.)+Aox~. -0.,.2- PO~+Aox,., 
p P 

where p'=Op/Or. We have the identity 

(1.1) 

where 
n--1 

A~.= ~ Oo~(g<JOoj), 
i , j=l  

and q is an effective potential  given by 

\Or'] (Opt2 ~-1 0t) Op g~j +lpAx(p_l).  q(r, O) = (2p) -~ +(2p) -~ 00~ OOj 

We suppose that  q=ql +q2, where ql and q2 are real-valued functions satisfying 

(1.2) ]ql(r,O)l<_C, ~r. (r,O)<_Cr-l-~~ Iq2(r,O) l <_Cr -1-so, and 

with constants C, 5o > 0. Let 

h(<,0,(): ~ 9{J(<,o)~{%, (O,r 
i , j=l  

We also suppose that  

(1.3) Oh C ~(~,o,r h(~,o,r for  ( 0 , ~ ) ~ * s ,  

with a constant C > 0 .  
Denote by G the selfadjoint realization of Ag on the Hilbert space 

H = L 2 (M, d Volg) 

with Dirichlet or Neumann boundary conditions, B u = 0 ,  on OM. Let xcC~ 
X = I  on X0, X=0 in X~.o+l. Let ~ : = ( G + I )  1/2. We make the following assumption: 

(1.4) 

there exist constants T, (7 > 0 so that  the operators 

~l~eos (r ,Fd)~2  and ~ l ~ ( s i n ( r ~ d ) / ~ d ) ~  ~2§ 
belong to s for all (71, (72 C R such that  (71 +(72 = (7. 
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The metric g will be said nontrapping if there exists a constant T0>0 such 
that for every generalized geodesics 7 (see [3] and [4] for the definition), with 7(0) 
M\X,.o+I/2, there is 0 < t = t ~  <To so that 7(t)~X~o+l. For such a metric, it follows 
from the result of Melrose-Sj6strand [3], [4] on propagation of C ~ singularities that  
tile distribution kernels of the operators X cos(Tox/G)X and x ( s i n ( T o v ~ ) / V ~ ) X  
are of class C~176 • M) (this is known as the generalized Huyghens principle). 
Therefore, (1.4) is fulfilled for nontrapping metrics. 

Given a real s, choose a real-valued function X~ C C ~ (M), Xs = 1 on M\Xro+l/2 , 
X~ Jx depending only on r, Xs = r - ~  on X,o+~ , X~X s-= 1. Denote by Go the Dirichlet 
selfadjoint realization of A x  on the Hilbert space H o = L  2 (X, d Volg). 

Our first result is the following theorem. 

1 there T h e o r e m  1.1. Assume (1.2) and (1.3) fulfilled. Then, for every s>~, 
exist constants Co, C > 0  such that for z>_Co and 0 < s < l ,  we have (with j = 0 ,  1) 

(1.5) llr -< 
Moreover, if (1.4) holds, we have 

(1.6) I[xsV~(G-z~ic)- lXs  I[s -< Cz(g-1)/2. 

We will use this theorem to study the local energy of the solutions of the 
following mixed problem 

{ (0 t2+Ag)u( t ,x )=0  in R x M ,  

(1.7) Bu( t ,x)  : 0  on R•  

u(0, x ) = 9 9 ( G ) f l ( x ) ,  0t~t(0, X ) = ~ 9 ( a ) f 2 ( x ) ,  x c M ,  

where p E C k ( R ) ,  ~ = 0  in a neighbourhood of the interval ( -oc ,  A0], ~=1  outside 
a larger neighbourhood, and A0=max{C0, 6%}, Co being as in Theorem 1.1 and 
C~ being as in (1.9) and (1.10) below. Recall that the solutions to (1.7) can be 
expressed by the fbrnmla 

(1.8) ~t = cos (t'~-G) F (G)fl  + sin (tx/G) 

Given s>0  and a function x c C ~ ( M ) ,  X : J  in X0, X=0 outside some compact set, 
let 

G (t) : ./i~ ([Otu(t' x)12 + IVgu(t, x)[a)X2~ d Volg, 

Ebc ( t )=  j f  ~ (lO~u(t,z)li+lV~(t,z)12)xdVolg, 

E(0) = .L~ (1]'2 ]2 + iVgfl [2 + ]fa [2) d Volg, 

= [ X-2~+~ dVolg. 
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To get uniform local energy decay estimates of the solutions to (1.7) we need to 
impose additional conditions on the behaviour of the resolvent of the operator G0. 
We suppose that  there exist s>�89 C~>0 and an integer m>_0 so that for z>_C~, 
0 < e < l ,  the following estimates hold (with j = 0 ,  1): 

(1.9) IIr-sV~,(Co_z+i~)-%-~ll~(Ho ) <_czU-k)/2, k=1,. . . , ,~+1, 
(1.1o) I I r -sV~(Co-~•  2) "-2r-~ll~(Ho ) <czU -~ 2)/%-1+< 
with constants C > 0  and 0<#_<1 independent of z and c. 

Our main result is the following theorem. 

T h e o r e m  1.2. Assume (1.2), (1.3), (1.4), (1.9) and (1.10) fulfilled. Then, we 
have, for t>>l, 

(1.11) E~-l/2(t) <_ O(t 2"~-2")/~_~(0). 

In particular, if f l  and f2 are of compact support, we have 

(1.12) F.~o~(t) < O(t ~" 2")b(0). 

Remark 1. If (1.9) holds for every integer k_>l with 8=8k>�89 and C C~>0, 
then (1.12) holds with ON(t - x )  for every N>>I, in place of O( t -2" -2" ) .  

The key point in the proof of Theorem 1.2 is the following result. 

P r o p o s i t i o n  1.3. The estimates (1.5), (1.6), (1.9) and (1.10) imply the fol- 
lowing estimates (with j = 0 ,  1) 

(1.13) IIx~v~(c ~• <_C~U-k)/t k=1,...,.~+1, 

(1.14) iix~V~(C_z• <C~U ~ 2)/%-,+< 
for z>_Ao, 0<e_<l, with m and 0 < # < 1  being the same as in (1.9) and (1.10), and 
a new constant C > 0  independent o f z  and c. 

As an application of the above theorem we will get uniform local energy decay of 
the solutions to (1.7) for a class of asymptotically Euclidean manifolds. To describe 
this class, let 

q~ .-- 10(r2q) and ] E {O(r2gij) Ooj.) 

Denote by G~ the Dirichlet selfadjoint realization of the operator A~x on the Hilbert 
space H~o--L2(X, dr dO). We make the assumptions 

(1.15) I,~(r,O)l _<Cr '~, 
(1.16) 5 b ~ . - 1  ~ (Ho~), r A.,.(Go-z ) �9 

for some constants C>O and 0<5<1.  We have the following results. 
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P r o p o s i t i o n  1.4. Assume (1.2), (1.3), (1.15) and (1.16) fulfilled. Then, (1.9) 
and (1.10) hold with m=O and s=1+�89  for every 0 < # < 5 .  

C o r o l l a r y  1.5. Assume (1.2), (1.3), (1.4), (1.15) and (1.16) fulfilled. Then, 
we have, for ~>>1, 

(1.17) E(a+5)/2(t)<_O~(t 25+~)E_(l+s/2)(0) for every 0 < s < < 1 .  

In particular, if fl  and f2 are of compact support, we have 

(1.18) Elo~(t) <_ Oc(t 2~+~)/~(0) j'br every 0 < s << 1. 

Remark 2. It is worth noticing that  the above results still hold for the selfad- 
joint realization of Ag + V(x), where V is a real-valued potential, V(x)>_ O, provided 
the assumptions (1.2) and (1.15) are satisfied with q replaced by q+Vlx .  

It is easy to see that  the assumptions (1.2), (1.3), (1.15) and (1.16) are fulfilled 
for long-range perturbations of the Euclidean metric on R 'r~, n >  2. More precisely, 
let O C R  ~ be a bounded domain with a C~ boundary and connected com- 
plement ~=R'r~\O. Let g be a Riemannian metric in t2 of the form 

g = (x) dxi dxj ,  (x) C 
i , j=l  

satisfying 

(1.19) ]0~(90(x) -5ij)I  < C~{x} -~~ - I~1 , 

for every multi-index o:, with constants C~, 70>0, where (x}: (l+lx12) 1/2 and 6ij 
denotes the Kronecker symbol. It follows from (1.19) that  outside a sufficiently large 
compact set there exists a global smooth change of variables, (r,O)=(r(x), O(x)), 
rC[r0,+oc),  r0>>l, OcS={y~R~:ly[=l} ,  which transforms the metric g to the 
form dr2+a(r). Therefore, (t2,g) is isometric to a Riemannian maniibld of the 
class described above, and (1.17) and (1.18) hold with 5=rain{l ,  70}, provided the 
metric 9 is nontrapping. 

In the case when 9ij=~j for Ixl_>00 with some t)0>>l, and the metric g is 
nontrapping, a better estimate than (1.18) is known to hold true with ~ - 1 .  In 
this case, Vainberg [5], [6] showed that  the generalized Huyghens principle implies 
(1.18) with a rate of decay O(e-ct), c>0, if n_>3 is odd, and O(t -2~) if n > 4  is even. 
The fact that  the metric coincides with the Euclidean one outside some compact 
set plays an important role in Vainberg's method. In particular, this implies that 
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the cutoff resolvent extends analytically to some strip through the real axis. This 
approach, however, does not work anymore in the setting described above, and it 
does not allow one to get estimates like (1.11) and (1.17). 

To prove Theorem 1.1 we make use of some ideas developed in [1] and [8], 
where uniform high fi'equency resolvent estimates have been obtained without as- 
suming (1.4). The assumption (1.4), however, allows to get much better  estimates 
than those proved in the above papers. We use it to prove a priori estimates for 
the stationary problem on some large compact set (see Proposition 2.1 below). On 
the other hand, outside another large compact set we have nice a priori estimates 
due to the assumptions (1.2) and (1.3) (see Proposition 2.3 below, which is proved 
in [1]). Then, we paste together both a priori estimates in precisely the same way 
as in [1] in order to get (1.6). Note that  a semi-classical analogue of (1.6) is proved 
in [7] for a class of asymptotically Euclidean manifolds and nontrapping metrics. 
Proposition 1.4 is proved using some ideas fl'om [2], where a similar result has been 
proved. 

2. High frequency resolvent estimates 

In this section we will prove Theorem 1.1 as well as Propositions 1.3 and 1.4. 
In what follows, given any domain MoCM,  the Sobolev space Hl(Mo,dVolg) will 
be equipped with the semi-classical norm defined by 

2 2 1 2 II llH ( 0,dVol ) "--IIq + - -  IP, VgullL2(Mo,dVol , ) ,  
where /~>>1. We begin with the proof of Theorem 1.1. In fact, the estimate (1.5) 
is proved in [8], Theorem 2.1, and we therefore omit the proof. To prove (1.6) we 
need the following result. 

Proposition 2.1. Assume (1.4) fulfilled. Then, given any uED(G), the fol- 
lowing estimate holds: 

C 
(2.1) I]U]IHX(M\X~~176 < X II(Ag-A2+ic)uIIL2(M\XTo+IxV~ 

+CllU]rH'(X~.o+l/2\X,.o+l,dVol~) 
.for ~>_;~o and 0<e_< 1, with constants C, Xo >0 independent of ~ and e. 

Proof. Choose a function r]EC~176 r /= l  in M\Xro+l/2 , 7]----0 in X~.o+l , and 
set w=rluED(G). Clearly, (2.1) follows from the estimate 

C _)s 
(2.2)  _< XII (% 
tbr ~_>~0 and 0<e_<l,  with constants C, X0>0 independent of ~ and e. We will 
derive (2.2) from the following a priori estimate. 
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P r o p o s i t i o n  2.2. Let U( t , x )=O in RxX~0+I  satisfy the equation 

f (o~+G)u(t,x)=v(t,x) in R• 
(2.3) 

BU(t ,  x) = 0 on R x  OM. 

Under the assumption (1.4), there exists a constant C > 0  so that the .following 
inequality holds: 

IIO~U(T,. )11 + HVgU(T,. )11 -< CIl~l-~U(0, - )ll 

(2.4) +CIIG ~OtU(O,.)I[+C IIV(t,.)lldt, 

where T , r  are as in (1.4). Here and below II denotes the norm in the space 
L 2 (M, d Volg). 

Pro@ By Duhamel's formula we have 

s in ( t~)  u(t,.)=~os(tC-d)u(o,.)~ ~ o~u(o,.) 
(2.5) 

+ j o  t €  sin((t-w)xffG) V(T,. )dT. 
,#d 

Let x E C ~ ( M ) ,  X = I  on supp U, X 0 outside a small neighbourhood of supp U. In 
view of (2.5) we can write 

(2.6) 

(2.7) 

a sin(tCd) "~-~'~-~U'O 

~a ~sin(t~) ;~-1~1 ~U,O 
+t ,Xj ~ X ~,') 

+X ~os(t,#d)X;~; ~0tv(0,-) 

J/ + xcos((t-,-)J-d)xv(~-,.) &, 

sin(tx/G) X~r " ) 
+Vgx v ~  

+fo~ xv~Sin(tt-~)~)~ = ~V<,.) d; 

/o' + [vg, x] sm((~-~)~-d) ~V(~, .) d~. 
~d  
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In view of Green's formula we have 

(2.8) IIvgfll2={2~gf, f}=(Gf, f }=] l~ f l l  2 for fED(G). 

It is easy to see that  (2.4) follows from (2.6)-(2.8) together with (1.4). [] 

We are going to apply (2.4) with 

U(t,x)=eitXlw(x) and V(t,x)=e~t;~l(Ag-A2+ie)w, 

where A1 ~C is such that  A~=A 2 - i e  and Re ~1 )0 .  We obtain 

(2.9) ;~ll~ll+tlV~ll < _ c H c S - ~ l t + c ) , l l g - ~ ' w l l + C l l ( / ' , ~ - ) , ~ + i ~ ) w l l  �9 

Without loss of generality we may suppose that  o_<1. We are going to show that,  
for A_>I, 

(2.10) Hga-~wH _< C~l-~ll~,ll+CIl(~xg-~N+ic)~LI, 

(2.11) LIg-%ll  <_Ca -~/(N ~ ) l l z u I l + ~ l [ ( A g - a 2 + i c ) w l l  �9 

Given a parameter A > I ,  denote by ~p the characteristic function of the interval 
( -oc,  A]. We have 

IIGl-'~wll _< I1~1-~"r 1 ~'(~-W(~))wll _< A a - ~ l l w l l + A - l - ~ l l ( a + l ) w l l  

<_A~-~IIwlI+A ~-~O(~N)Ilwii+O(1)II(zX,--:,N +i~)wll 

fbr all A > I .  Choosing A=A we obtain (2.10). In the same way, we have 

On the other hand, 

= ~ l l ( a + l )  l(Ag-AN+ie)w+(1-iel(G+l)-lw-wll [ l ( G + l ) - l w l l  

< o(), ~)(11(,~,-.~+i~)~,11+11.~11). 

Hence, 

II ~ - ~  II <- A ~ II ~ II + A  N ~O(~  -~)  II ~ II +AN-~O(~-N) II (zX~ - A N + i 4 w  II 

for all A > I .  Choosing A=A 1/(2-~) we obtain (2.11). 
Clearly, (2.2) follows from (2.9), (2.10) and (2.11) by taking A large enough. 

The proof of Proposition 2.1 is therefore complete. [] 
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The following proposition is proved in [1] (see Proposition 2.4) in the case when 
q2 =--0. Since the general case is treated in precisely the same way, we omit the proof. 

P r o p o s i t i o n  2.3. Let u c H 2 ( X a , d V o l g ) ,  a>ro, be such that 

r s (Ag- ,~2+ie)u  C L 2 (Xa, d Votg) 

for ~1 <8<_ 1(1+5o), O<c<l._ Then, for every 0<7<<1 there exist constants C1, C2, 
)m>O (which may depend on 7 but are independent of ;~ and c) so that for ~_>~o 
and all al >a, we have 

--s 2 C1 II r ~'~llHl(Xo, l,dVolg) ~ vIIrS( Ag-- A2 ~-i~)~ll2L2(Xa,dVolg) 

(2.12) C2 Im{0,.u, U)L2(OX~ ) +711ull~/l(x~\x~ 1 tiVoli)- 

By Green's formula we have 

- Im{&.u,  u} L2 (OXo.) = - -  I m ( ( A ~  - - ) ~ 2  . 2 --ze)n, n}L2(M\Xa,dVolg )-gIluIILa(M\xo dVolg) 

2 C 2 2 ( 2 . 1 3 )  <c71all> ll  (.,.vo  )+ llx  (zx -a 

1 Combining (2.1), (2.12) and (2.13), for all 71>0. Choose a = r 0 + ~  and a l = r 0 + 5 .  
and choosing the parameters 7 and ~1 small enough easily leads to the estimate 

C 
(2.14) IlX~ullHl(V,dVol~) <_ ~llX_~(Ag-)~2+ie)ullr~(M,gVol~), u E D(G),  

for A>_A0 with constants C, A0>0 independent of ~ and g. Clearly, (2.14) implies 
(1.6) with z=A 2. Thus we have completed the proof of Theorem 1.1. 

Proof of Proposition 1.3. Choose a function QEC~176 0=1 on  M \ X r 0 + l  , 

0=0 on X,.o+2. We have, for all g>0, 

( a - z ~ i s  -2 = (g-z -} - i s  10(2 o ) ( G - z •  -1 

• (a--z@ig)-- l (1--  0) 2 (a -z -} - i s  

(2.15) : ( ~  Z_j[_is 10( 2 L0)(G__z~is ) 1 
1F, , 

• (1-~0+[~o, A g ] ( G - z •  
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Differentiating (2.15), k - 1  times with respect to z, we get the identity 

(21B) 

k 

(G-~• ~ ~ : Z Q ~ ( ~ 1 7 7  ~o(2-o)(G-~• -~ ->~  
~--1 

+ Z ~177 ~* lag '  L)] +/3~1(1- 0)) 
/]1 ~-LJ2 -~/Ja--k+3 

z]2>2 
~'3>1 

• (Go-z• A~](G-z• ~), 

where ek,,, cek,,1,,2,,a and flu are real numbers , /~,=1 if u - 1  a n d / ~ ,= 0  if u > l .  It 
follows from (2.16) that  if (1.13) holds for k - l ,  ..., K with some integer l < K < m ,  
then this together with (1.9) imply that  it holds for k = K + l  as well. Moreover, 
applying (2.16) with k = m + l  and g replaced by ez ~/2, it is easy to see that  (1.14) 
follows from (1.9), (1.10) and (1.13). [] 

Proof of Proposition 1.4. We will first prove (1.10) for j = 0  with m=0 ,  s =  
1+�89 Since the operators Go and G~o are unitarily equivalent, it suffices to prove 

it with Go and Ho replaced by G~o and Ho ~, respectively. Set es :=ez 1/2, 0 < e < l ,  
and 

A::21x~+[r& A~] = ~ + < .  

For s > 1 we have the identity 

2(zTic1)r-S(G~o-Znt-i~l) 2r S:_r-S(G~o--Zq-iG1) lr s 

• 0 _zlisl)-l Orr s+l 

(2.17) --r s+lOr(aS--z• lr-s 

-}-r s(G~ 0-z-}-icl)-lA(G~ 0-Z-}-icl)-lr-s. 

In view of the assumptions (1.15) and (1.16), we have 

(2.18) B := raA(G~ - i )  -1 E s 

We can write 

r - "  (G~o - ~+<  )-~A(C~o - ~ •  ) - l r - "  : r - ~  ( C~  - ~ •  ) - l r - ~ / ~  

(2.19) • -5/2 s-[O2r,r 5/2](G~ o z-t-i&) lr-S 

+(z~icl  i)r ~/2(G~o-Z• ~r % 
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Let Z)~.=-iz 1/20~. We need the following estimates (for s>  �89 j = 0 ,  1): 

( 2 . 20 )  II<S~g(ag - - z - F i s  ' s H ~ Cz -1/2, 

(2.21) IIZ~(c~0-~• <c~ 1/2c 1/2, 
for zkC~, with some constants C, C~>0 independent of z and e. Here and below 
/[' II denotes the norm in s For j = 0 ,  (2.20) follows from (1.5), while (2.21) is 
proved in [2] (see Lemma 3.1). For j = l  these estimates follow easily from the case 
j 0. Indeed, given uED(G~o), for z>>l we have 

IIH~+ClI~ ~[[Ho ~ 
< Re{(C~0-~•  ~ ~> .o  ~ +O(~)tl~'-~ll~/o ~ 

_< ! II(a~0-~• +o(~)11<%11~ 
Z 

-< ]-IIr-~(C~o -z::el)Ul]~,o~ + 0 ( z - l )  il~" ~O,-~ll~/o, +O(z)II~-~ll~/o , , Z 
which yields 

(2.22) II,'-~Oruli,,o ~ <O(z-1/2)Hr-S(G~o-z• o. 
Clearly, this implies the desired estimates. 

Given a parameter A > I ,  denote by x(r<_A) (resp. x(r>_A)) the characteristic 
1 1 fimction of the set {r<_A} (resp. {r>_A}). Given any s>  ~, sl > g, in view of (2.20) 

and (2.21), we have 

Ilr-5/2DJ(G~o-Z• l~-~ll < ii~.-~/~x(~._< A)Z)3,i(a~-z• 
•176 " ~ A)79J(G~o-z• lr-'Sll 

< A~ ~/~llr-~iDJ(G~o-z• ~'-Sll (2.23) 
+A -a/~ II ~ ;  (c"o --Z--/s l) - l r - s  II 

<O(Z-1/2)(A s~ ~/2+A-5/2c-1/2 ) 
= O ( g  1/2s 

if we choose A=e -E2~. Taking into account that, for s', s'>O, 
~.-~ (c~ ~• z)~.- = (~-~ z ) ~ . ( a ~ - ~ : i ~ ) - l ~  -~ )* 

1 it is easy to see that  (1.10) with j = 0 ,  m 0, s = l + � 8 9  and #=5/2sl, for all S l>~  
follows from (2.17) (2.21) and (2.23). The estimate (1.10) with j = l  follows easily 
fi'om (1.10) with j = 0  and the observation that we have an analogue of (2.22) with 
G~0 and H~ replaced by Go and H0, respectively, and IIr-SVgullBo in the left-hand 
side, for uED(Go). [] 



390 Georgi Vodev 

3. U n i f o r m  e n e r g y  e s t i m a t e s  

In this section we will derive (1.11) from (1.13) and (1.14). We will first prove 
the following result. 

P r o p o s i t i o n  3.1.  

(3.1) 

(b) 

(3.2) 

(a) The estimate (1.6)implies, for s>�89 

ooo E~(~-) < s(O). dw CE 

The estimates (1.13) and (1.14) imply, for t> l, 

f oo E~(~) <_ Ct--2"~--2~_~(0). dr 

1 and Proof. Choose a real-valued function r E C ~ (R), 0_> 0, r = 0 for t_< 5 
r  for t >  �89 Let u be the solution of the equation (1.7). We have 

By Duhamel's formula, 

(0~ + a ~ ) r  = ( r 1 6 2  =: ~(t). 

f0 t s in((t--T)x/G) dT. (3.3) Cu(t) = ~/~ Y(T) 

On the other hand, we have the formula 

(3.4) (G_(A_ic)2) 1= e - ~  dr, c > 0 .  

It follows from (3.3) and (3.4) that the Fourier transform of Cu satisfies the identity 

(3.5) r = ( c -  (~-i~) 2) 1~1(~)~(~-i~), 

where ~ 1 E C ~ ( R ) ,  ~1 =1 in a neighbourhood of supp~  and ~1=0  in a neighbour- 
hood of ( -oe ,  A0]. Hence, for every c>0,  we have 

A 

(3.6) ~o~(r  (;~-i~) 2) ~ ( G ) ~ _ ~ ( ~ - i ~ ) ,  

(3.7) xsVgO~(A-i~) XsVg(G-()~-ic) 2) l~l(G)xsX-s~b()~-ic). 

We now need the following estimate. 
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L e m m a  3.2. There exists a constant C > 0  so that 

(3.8) IIx-~v(t) II~, <_ c~_,(0). 

Proof. Let us first see that for every s_>0 there exists a~>_0 so that, for all 
t ~ R ,  

(3.9) X ~cos (E-d )> ,x - s s in ( t , / - d )>  = O ( ( I t l + l P  ) :H-~ H. 

Clearly, it suffices to prove (3.9) for t>0 .  By Duhamel's formula we have 
(3.10) 

j0 ~ [zxg, x-el cos(W-0)> dr, 
s i n ( ( t - r ) , ~ )  

: c o s ( S O )  + 

and similarly for sin(tx/G).  We have 

pX/2rA = 02 ( ~  ) [ g,X-s]p-1/2f [--02r,X-~]f-- X Or 2 f - 20~ f . 

Hence, by (3.10), for every c~>0, 

}lX-~ cos (t~/-G)X~]} <- 1+C/ot( t  - r)llx cos(r,m)x.II dr 

+ ( l + a t ) . ~ t  (G+ct)_l/2~r~_rS COS(rVC~)Xs dr, 

where O,.=p 1/2c%pl/2, ;~-1 on suppOx_~/Or , ;~=0 on M\X,.o+]/a and 0<;~_<1. 
Choose a function ~, g/=l on supp X/, ~=0  on M\X~o+I/4, O<g/<l.  In view of (1.1) 
and (1.2), we have 

[[XOr.I[IH < (Ag@f), rlf}H +Ci [[fl[ 2 = IIVg (~f)I/2 +el Ilfl/2 
2 2 <<_ ilVgfllH+C2[IfllH = {(G+c~)f, f }H = [I(G+~)I /2zI]~,  

with c~=C2. Hence 

Thus, we obtain 

(3.H) 
0 t 

+C(l+o~t) l ix_~+leo~(rCC)> II dr. 
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Clearly, a similar estimate holds for sin(t~/G) as well. It is easy to see by induction 
over s that  (3.11) implies (3.9). 

In view of (1.8), we have 

X sv(t) -- r  s cos(t~/G)P(G)fl + r  s s in( t~/G)G 1/2p(G)f2 

2r ~ sin(t~/G)GU2~o(G)fl+2r ~ cos(tv/G)~(G)f2. 

Hence, using (3.9), we obtain 

Ih ~v(t) llH < CIh ~(G)f~ IIH+cI[~_sG1/2~(o)A IIH (3.12) 
+CHx-~G-1/2~(G)f2 IIH +CHx-~(G)f2 IIH. 

Now (3.8) follows from (3.12) and Lemma 3.3 below. [] 

L e m m a  3.3. The operators X-sP(G)X~ and x- ,G-U2p(G)xs  belong to s 
Moreover, the following estimate holds: 

(3.13) HX ~G1/2~(G)flIH < ClIx-YgfllH +CHx-~+lfllH. 

Proof. Introduce the function r F(A2). We are going to take advantage of 
the formula 

/? 1 eit'/c~(t) d~, (3.14) ~(G) r  : ~ oo 

where ~(t)--ON(]tI-N), N > I ,  for It]>>1, and ~(t) O([t I 1) for It[<<1. Hence 

l f f  �9 
(3.15) X - ~ ( G ) x ~ - ~ ( G )  : ~ ( X _ s e ~ t ~ X ~ - e i t ~ ) ~ ( t )  dt. 

O0 

It follows fi'om (3.9) and (3.10) that  

)~-~e i t ~  X~ - e i ~ a  E s 

with norm upper bounded by O(]tp ~) for It1>>1, and by O(]t]) for I t l < l .  Therefore, 
the integral in (3.15) is absolutely convergent, and we conclude that  the operator 
X_~(G))/~ belongs to s Clearly, the operator X ~ ( G ) G  ~/2Xs can be treated 
in the same way. 

Set ~1 (1 ) -Ar  We have 

F 1 ci t~G ~1 (t) dt, 
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where ~l(t)  ON(ItI-N), N>_I, for Itl>>l, and ~l(t)  0(Itl 2) for Itl<<l. 
write 

1 fit [X-s'eit'/U]f~l(t) dt IX s,CU2qo(C)]f ~ I>_ 1 

(3.16) + ~--~ /tl<l [)c-~'eit'/c]f'~l(t)dt=:II+I2" 

Wu (3.10) in the form 

Ix-s, eit'/-d]f = rit s in(( t -w)~fG) lag, X_s]e i~/G f d7, v~d do 
(3.17) 

and taking into account (3.9) one easily obtains 

(3.1s) l ib s,e~t'/~]fl lH <O(Itla~)llx s+lf l lH, Itl > 1, 

(3.19) II[X s, eit~fG]fllH ~ O(Itl)]lX-s+lfllH, Itl <_ 1. 

It follows from (3.18) that the integral [1 is absolutely convergent, and hence 

(3.20) HIIlIH _< Cllx s+lf[IH. 

By (3.17) we have, for Itl_<l, 

II[~ s,e~t~C]fllH <_.fat(t--T) dT(H[Ag, x-s]flIH +II~-s+2/IIH) 

+ f f  II~ s+l< ~-~-l)f l l .  d~- 

_< ct2(ll~ s+,VgfliH+ilx-s+2fllH) 

+.fat 11[)/-~+1, e ~ d  ]fllH d~+ f t  I1( e ~  _ 1)~ s+a/llH aT 

<Ct2(ll~ s+lVJllH+ll~-s+2flIH+llG1/%c s+~fllH), 

where we have used (3.19). Hence 

IIhlIH < CI[X-s+~vgZllH+Cll:~-~+2IllH+CIIG1/2X-~+lfllH 
(3.21) _<ClI~ s+I VgIIIH+CHx s+2IIIH+CII%~ s+lfHH 

<CIIx s+lVgfllH+Cll~ s+2fllu. 

393 
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By (3.16), (3.20) and (3.21), 

(3.22) II[x-~, G1/2 ~( G)]IIIH ~ CIl~ ~+ x % flIH +Cllx-8+ ~IIIH. 

Hence 

IIx-~C~/2~(G)flIH ~ ClIG1/2~ ~fllH--CIl~ ~+a VgfllH+CIl~ ~+~fllH 
<_ CHVgx-,IIIH +CIIx ,~+ a VJIIH +CIIx-~+ ~IIIH 

<_ CllX-~VJIIH+Cllx-~+lf[IH. [] 

We have now proved Lemma 3.3, and hence also Lemma 3.2 and can therefore 
proceed with the proof of Proposition 3.1. 

Let us see that,  for AER, we have 

(3.23) 

(3.24) 

~x,(~-i~)(c-(A-i~) ~) ~(G)x, 

~XsVg(C-(/~-is 1~91 ( a ) ~  s k = 0 ,  1, + d _<C, ... ,m, 

din+ 1 ~x~(a- i s  ~) ~(a)x~ 

-- d~+l (a__is  ~ C g  -I+p 

with a constant C > 0  independent of A and e. For IAl>~A-o, (3.23) and (3.24) 
follow from (1.13) and (1.14), respectively, together with the fact that  the operator 
X-sPl(G)x~ is bounded on H. Let now" I~1 _<,/~0. For every integer k > l ,  we have 
with some constant e0>0 ( j=0,  1) 

IIV~(c-(x-i~)~)-%~(c)H _< llc.~/2(c-(~x-ic)~) ~ ( c ) l l  

_< sup ly/2(y-(~ ,ic)2)-%~(y)l 
ycR 

<_ sup ly /2(y-  ),2 +c2) -k] 
y>Ao+so 

_< Const, 

which clearly implies (3.23) and (3.24) in this case. 
By (3.6), (3.7), (3.23) and (3.24), we get 

A i 
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d "~+l ~ . Ii d ~+1 A . II 

m + l  

(3.26) < c~ *§ ,q~-i4i l~+c ~ ilx-,tL(A-i4il~, 
k--1 

with a constant  C > 0  independent  of A and s. By Plancherel 's  identi ty we have, for 

every 0 < e < < l ,  

/ ~ 0 2 V 2 2~t (llx~ , ( ~ ) L I H + I I x ~  . 0 ~  II~) ~ dt 
O<2 

. F  - - -  --c~ (llxs0~(r + Ilx~vgJ;(x-/c) 115) da 
OO 

F (3.27) < C2 ][X-s$(.X-ie) ]15 dA 
0<3 

F -- c3 IIx_s~(t) [i5~ - ~  dt 
OO 

_< c ~  ~(0), 

with a constant  C > 0  independent  of e, where we have used (3.25), (3.8) and the 

fact tha t  X ~v(t) has compact  suppor t  in t. Hence, we can take e -+0  in (3.27), 

which clearly imp]ies (3.1). 

To prove (3.2) we proceed similarly as above. We have, for every T>_I and 

every 0<c<<1,  

e-4eTT2m+2 (llx~&(r + IlxY@~ll~) dt 
J T  

F _< (llxY~+%(O~) 2 m + l  2 --2et  II~+llxst v~r dt 
O ~  j/~~ 2B dm+l ~ ,,2N 

oo ~ . o m - F 1 / . o o  

oc m + l  c o o  P 

:~-~+~ / , , ~ - ~ ( ~ ) , I ~  - ~  ~+~ z / I I ~ - ~ ( ~ ) , I ~  ~ ~'~, J -  oo ;~=i J - -  oo 

_< 0c-2+2"~_s(0), 

with a constant  C > 0  independent  of e, where we have used (3.26) and (3.8). Taking 
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G=T -1 in (3.28) we get 

/( (3.29) (llx~O~(r II~V~r at << CT-2m-2uE ~(0) 

for all T>_I, with a constant C > 0  independent of T. Hence, for every integer j>_0, 
we have 

(3.30) .s [IX~Ot ( Ou) ll2H + l]Xs VgOUl]2H ) dt <_ C2-(2m+2u)JZ 2m 2P F,-~ (O ). 

Summing up (3.30) we get (3.2). 

The estimate (1.11) follows from (3.2) and the following lemma. 

L e m m a  3.4. For s>�89 and t>l ,  we have 

(3.31) E s _ l / 2 ( t  ) ~ C Es(r )dT, 

with a constant C > 0  independent of t. 

Proof. Using Green's formula we get 

dE~_l/2(t) .~ (-a~(t, ~).o~(t, ~)+v~(t ,  ~). v~a~(t, z) ) x~-~ dVolg 2 Re 
dt 

=2Re /M(-VgU(t,x)'Vg(X2s lOqtu(t,x)) 

Hence, for T>t>_l, we have 

(3.32) E~_l/2(t) < E~ 1/2(T)+C I T  E~(T) dr. 
- -  J t  

Therefore, to prove (3.31) it suffices to show that  for every s>0  there exists Tj--++ec 
such that  

(3.33) lira E~(Tj)=O, 
Tj~+oc 

1 provided /~_s_1/2(0)<+oc. For s>  1, (3.33) follows from (3.1). Let now 0 < s < ~  
1 Given any A > 1, by an interpolation argument we have and sl > 5" 

E~(t) <_ .~s~-~ F.~ (t)+ A ~Eo(0). 

We have that  for every c > 0 there exists T~ > 0 such that  E ~  (T~)<c. Hence, 

Es(Te ) <_ ASl-~ s + A-~Eo(O ) = O(cS/~ ), 

if we choose A = c  1/~1, which clearly implies (3.33) in this case as well. [] 
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