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Local energy decay of solutions to the
wave equation for nontrapping metrics

Georgl Vodev

Abstract. We prove uniform local energy decay estimates of solutions to the wave equation
on unbounded Riemannian manifolds with nontrapping metrics. These estimates are derived
from the properties of the resolvent at high frequency. Applications to a class of asymptotically
Fuclidean manifolds as well as to perturbations by non-negative long-range potentials are given.

1. Introduction and statement of results

Let (M, g) be an n-dimensional unbounded connected Riemannian manifold
with a Riemannian metric g of class C°(M) and a compact C*°-smooth bound-
ary OM (which may be empty). We suppose that M is of the form M=X UX,
where X, is a compact connected Riemannian manifold with a metric g|x, of class
C>(Xy) with a compact boundary dXo=80MUJX, OMNOX =0, X =[rq, +00) xS,
ro>>1, with metric g|x:=dr?+o(r). Here (S,0(r)) is an (n—1)-dimensional com-
pact Riemannian manifold without boundary equipped with a family of Riemannian
metrics o(r) depending smoothly on r which can be written in any local coordinates
€S in the form

n—1

o(r)="_ gi;(r,0)d0; db;, gi; € C®(X).

=1
Let X, =[r,+o0)xS. Clearly, X, can be identified with the Riemannian manifold

(S,o(r)) with the Laplace-Beltrami operator Agx, written as

n—1

1 3
AaXr - _]_j Z 891‘(]9913693')7

4,7=1

where (g¥/) is the inverse matrix to (g;;) and p=(det(gs;))'/2=(det(g"))~1/2. Let
Ay denote the (positive) Laplace-Beltrami operator on (M, g) and let V, be the
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corresponding gradient. We have
1 5 7
Ax=Aglx = —]gar(p&-)JrAaxr ==0,— Eaﬁ'Aaer

where p’=0p/0r. We have the identity
(1.1) Ny =p' P Axp 2= 02+ A, +q(r,0),

where

n—1
Ae=—3" B.(9"s,),
i,j=1
and ¢ is an effective potential given by

8]7 2 n—1 ap ap 1
=(@2p) | 5= ) +(2p)7? g7 +=pAx(p™h).
a0 = e (5] o X0 G grants)

We suppose that g=q; +¢o, where ¢; and ¢ are real-valued functions satisfying

(12) OISO SEGe<orT ad e <o,

with constants C| §;>0. Let

n—1
h(r,0.6)= Y g7(r,0)&&;, (6,€)€T"S.

ij=1
We also suppose that

(1.3 00,62 Cnir0.6) for (0,0)€ 77,

with a constant C'>0.
Denote by G the selfadjoint realization of A, on the Hilbert space

H=L*M,dVol,)
with Dirichlet or Neumann boundary conditions, Bu=0, on dM. Let xcC>(M),

x=1o0n Xy, x=0in X,,41. Let G:=(G+1)"/2. We make the following assumption:

~ there exist constants 7', ¢ >0 so that the operators

(1.4) G x COS(T\/E)XQJZ and g"lx(sin(T\/é)/\/a)xg‘72+1
belong to L{H) for all o1,02 € R such that o1 +03=0.
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The metric g will be said nontrapping if there exists a constant Ty>0 such
that for every generalized geodesics v (see [3] and [4] for the definition), with v(0)&
M\ X, 11/2, there is 0<t=t, <Tj so that y(t)€ X,,+1. For such a metric, it follows
from the result of Melrose—Sjostrand [3], [4] on propagation of C°° singularities that
the distribution kernels of the operators x cos(Tov/G )x and x(sin(ToVG )/VG )x
are of class C®(M x M) (this is known as the generalized Huyghens principle).
Therefore, (1.4) is fulfilled for nontrapping metrics.

Given a real s, choose a real-valued function x; €C> (M), xs=1on M\ X112,
Xs|x depending only onr, x,=r"% on X, 41, xsx—s=1. Denote by Gy the Dirichlet
selfadjoint realization of Ax on the Hilbert space Ho=L?(X,d Vol,).

Our first result is the following theorem.

Theorem 1.1. Assume (1.2) and (1.3) fulfilled. Then, for every 5>%, there
erist constants Co, C>0 such that for 2>Cy and 0<e<1, we have (with j=0,1)

(1.5) ||7‘75V§(G0—zﬂ:i€)'1r_sHL(HO) <C20-1/2,
Moreover, if (1.4) holds, we have
(1.6) Ixs V(G — zekie) " xs oy < C2U0 12

We will use this theorem to study the local energy of the solutions of the

following mixed problem

(02+Ag)u(t,z)=0 in RxM,
(1.7 Bu(t,z}=0 on RxIM,

u(0, l‘) = ‘70<G)f1($)’ (%U(O, z)=p(G) f2(z), z€M,
where p€C>(R), ¢=0 in a neighbourhood of the interval (—oo, Ao}, ¢=1 outside
a larger neighbourhood, and Ag=max{Cq, C}j}, Cp being as in Theorem 1.1 and
Cy being as in (1.9) and (1.10) below. Recall that the solutions to (1.7) can be
expressed by the formula
sin (t\/é ) () f

\/@ ¥ 2-

Given s>0 and a function x€C*(M), x==1 in Xg, x=0 outside some compact set,
let

(1.8) u=cos(tVG )p(G) fr+

Bt)= [ (D0t )* 419 (e, 0)) e, d Vol

|Osu(t, z) | +|Vgul(t, 2)|?)x d Vol,,

Bpoo(t) = / 1<
E(0)= /M(1f2|2+IV AI2HL A2 2) dVol,,
E_y(0)= /M(llezﬂv F1*)x—2s d Vol, +/ | F1lPX _2sp2d Vol .
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To get uniform local energy decay estimates of the solutions to (1.7) we need to
impose additional conditions on the behaviour of the resolvent of the operator Gb.
We suppose that there exist s>%, C}>0 and an integer m>0 so that for 2>Cj,
0<e<1, the following estimates hold (with =0, 1):
(1.9) HT_SV;(GOfz:l:z‘s)*kr_sﬂﬁ(}[o) <CITR2 =1, mtl,
(1.10) ||7"_5Vg(G0 —zkiez /2y T2y oy < CRlU=m=2/2=1+n
with constants C'>0 and 0<p <1 independent of z and «.

Our main result is the following theorem.

Theorem 1.2. Assume (1.2), (1.3), (1.4), (1.9) and (1.10) fulfilled. Then, we
have, for t>1,

(1.11) B, 1)5(t) <Ot 22 E_(0).
In particular, if f1 and fo are of compact support, we have
(1.12) Eloc(t) <O 2" 20 E(0).

Remark 1. If (1.9) holds for every integer k>1 with s:$k>% and C=C,>0,
then (1.12) holds with On(¢~) for every N>>1, in place of O(t~2™~2#).
The key point in the proof of Theorem 1.2 is the following result.
Proposition 1.3. The estimates (1.5), (1.6), (1.9) and (1.10) imply the fol-
lowing estimates (with j=0,1)
(1.13) Ixs VI(G—ztie) Xl o < C2UM/2) k=1, ,m+1,
(1.14) ||X5VZ(G~z:tiszl/2)_m_2xs||£(H) < QM= 2 = 14n
for 2> Ag, 0<e<1, with m and 0<p<1 being the same as in (1.9) and (1.10), and

a new constant C'>0 independent of z and &.

As an application of the above theorem we will get uniform local energy decay of
the solutions to (1.7) for a class of asymptotically Euclidean manifolds. To describe
this class, let

19(r?q) 1 d(r?g"”)
b. b.
q = o and A: ; ;j Oa, - Oy, |

Denote by Gg the Dirichlet selfadjoint realization of the operator APX on the Hilbert
space H§:L2(X ,dr df). We make the assumptions

(1.15) l¢° (r,0)] < Cr 9,
(1.16) AN (G —i) "t e £(HY),

for some constants C >0 and 0<6<1. We have the following results.
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Proposition 1.4. Assume (1.2), (1.3), (1.15) and (1.16) fulfilled. Then, (1.9)
and (1.10) hold with m=0 and s=1+18 for every 0<pu<4.

Corollary 1.5. Assume (1.2), (1.3), (1.4), (1.15) and (1.16) fulfilled. Then,
we have, fort>>1,

(1.17) E(1+§)/2 t) <0, (t726+€)’E\;_(1+5/2) (0)  for every 0<e< 1.
In particular, if f1 and fo are of compact support, we have

(1.18) Bloc(t) <O (t2T)E(0)  for every 0<e < 1.

Remark 2. Tt is worth noticing that the above results still hold for the selfad-
joint realization of A,+V(z), where V is a real-valued potential, V(x)>0, provided
the assumptions {1.2) and (1.15) are satisfied with ¢ replaced by ¢+V|x.

It is easy to see that the assumptions (1.2), (1.3), (1.15) and (1.16) are fulfilled
for long-range perturbations of the Euclidean metric on R™, n>2. More precisely,
let OCR™ be a bounded domain with a C*°-smooth boundary and connected com-
plement Q=R"\O. Let g be a Riemannian metric in £ of the form

9= Z gij () day day,  gig(x) € C(Q),

3,j=1
satisfying
(1.19) 105 (gij (x) i) < Cafz) 1071,

for every multi-index «, with constants Cy, 70 >0, where (z):=(1+]z|*)}/? and §;
denotes the Kronecker symbol. It follows from (1.19) that outside a sufficiently large
compact set there exists a global smooth change of variables, (r,8)=(r(z),8(z)),
r€lrg, +00), ro>>»1, 0eS={yeR™:|y|=1}, which transforms the metric g to the
form dr?+o(r). Therefore, (§,g) is isometric to a Riemannian manifold of the
class described above, and (1.17) and (1.18) hold with §=min{1, v}, provided the
metric g is nontrapping.

In the case when g;;=4d,; for |z|>gy with some go>>1, and the metric g is
nontrapping, a better estimate than (1.18) is known to hold true with ¢=1. In
this case, Vainberg [5], [6] showed that the generalized Huyghens principle implies
(1.18) with a rate of decay O(e™"), ¢>0, if n>>3 is odd, and O(¢~2") if n>4 is even.
The fact that the metric coincides with the Euclidean one outside some compact
set plays an important role in Vainberg’s method. In particular, this implies that
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the cutoff resolvent extends analytically to some strip through the real axis. This
approach, however, does not work anymore in the setting described above, and it
does not allow one to get estimates like (1.11) and (1.17).

To prove Theorem 1.1 we make use of some ideas developed in {1] and [8],
where uniform high frequency resolvent estimates have been obtained without as-
suming (1.4). The assumption (1.4), however, allows to get much better estimates
than those proved in the above papers. We use it to prove a priori estimates for
the stationary problem on some large compact set (see Proposition 2.1 below). On
the other hand, outside another large compact set we have nice a priori estimates
due to the assumptions (1.2) and (1.3) (see Proposition 2.3 below, which is proved
in [1]). Then, we paste together both a priori estimates in precisely the same way
as in [1] in order to get (1.6). Note that a semi-classical analogue of (1.6) is proved
in [7] for a class of asymptotically Euclidean manifolds and nontrapping metrics.
Proposition 1.4 is proved using some ideas from [2], where a similar result has been
proved.

2. High frequency resolvent estimates

In this section we will prove Theorem 1.1 as well as Propositions 1.3 and 1.4.
In what follows, given any domain MyC M, the Sobolev space H(My,d Vol,) will
be equipped with the semi-classical norm defined by

||U||§{1(M0,d\/019)~ ”uH%z(Mo,dVolg)+||)‘71vgu”%2(Mg,dVolg)’

where A>>1. We begin with the proof of Theorem 1.1. In fact, the estimate (1.5)
is proved in [8], Theorem 2.1, and we therefore omit the proof. To prove (1.6) we
need the following result.

Proposition 2.1. Assume (1.4) fulfilled. Then, given any u€D(G), the fol-
lowing estimate holds:

C .
(2.1) llwll z2 (31\ Xy 41, d Vo) < X||(Ag_)\2+715)U||L2(M\XTO+1,dVolg)
FCNull 51 (X, 412\ Xy 11,d Voly)

for A>Xo and 0<e <1, with constants C, Ag>0 independent of A and e.

Proof. Choose a function neC>®(M), n=1 in M\ X,,;1/2, =0 in X141, and
set w=nue D(G). Clearly, (2.1) follows from the estimate

C .
(2.2) lwll 2 (e 11,dv01,) < 3 I(A, — N +ig)w|| L2\ Xy 1,d VoL,

for A> X and 0<e<1, with constants C, A\g>0 independent of A and . We will
derive (2.2) from the following a priori estimate.
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Proposition 2.2. Let U(t,z)}=0 in Rx X, 41 satisfy the equation

z)
{ (O2+A)U(t,z)=V(t,z) inRxM,
0

(2.3)
BU(t,z)= on RxOM.

Under the assumption (1.4), there exists a constant C>0 so that the following
inequality holds:

[0:U(T, IV, U(T, )| <ClG U0, )]

2.4 T
24 OG0, )] +C / IVt dt,

where T,0>0 are as in (1.4). Here and below || - || denotes the norm in the space
L2(M, dVol,).

Proof. By Duhamel’s formula we have

sin (tx/@)
VG

Vir,-)dr.

U(t, ) =cos(tVG U (0,- )+

tsin((t—7)VG)
e

Let x€C>(M), x=1 on supp U, x=0 outside a small neighbourhood of supp U. In
view of (2.5) we can write

2:U(0,-)
(2.5)

sin%@) Xga—lgl—o’U(O, . )

sm(tf)
VG

+x cos(t\/a)xgagiaatU(O» *)

+/0 XCOS((t—T)\/a)XV(T,~)dT,
(2.7) VoU(t,)=Vyxcos(tvVG )xG> g =7U(0,-)
mn(t\/w)

VG
/ V. sin((t— T)\/§>

(2.6) BU(t, ) =—Gy

HG X —7=xg7 ¢ U(0, )

+V o x——==xG°G778,U(0, )
— IV (7, )dr

sm((t IVG)
+/O [Vg,x]—i\/@ XV(r,-)dr.
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In view of Green’s formula we have

(2:8) IVofIP=(Asf. £)=(CF.H)=|VC S| for f € D(G).
It is easy to see that (2.4) follows from (2.6)-(2.8) together with (1.4). O
We are going to apply (2.4) with

Ut,z)=eMw(z) and V(t,z)=e" (A, N +ie)w
where A €C is such that A2=X% —ie and Re A\; >0. We obtain
(2.9) Mwl|-+{|Vwll < ClIG = 7wl[+CAIG w][+Cll(Ag — A +ie)wl.

Without loss of generality we may suppose that 0<1. We are going to show that,
for A>1,

(2.10) 16wl < OX =7 (8, N i,
(2.11) 1677wl < A= ol 45 (8~ N

Given a parameter A>1, denote by 1 the characteristic function of the interval
(—o0, A]. We have

19"~ 7wll < N1G" (@ ull+]G" 7 (1=p(G)wl < A7 flw]| + A7 [(G+1)w]|
<AV w]+ AT OO lwl+O(1) | (Ag =N +ie)u

for all A>1. Choosing A=\ we obtain (2.10). In the same way, we have
G “w| <G (1=p(GNwl|+]G (G w] < A |lw]|+A*=7 | (G+1) " wl.
On the other hand,
G+ w0l = 55 (GH+1) (B = A2 +ighw+(1—ie)(G+1) " w—w]
SOO)I(A =X +igyw] +|wl).
Hence,
G w]| < A7 [lw]|+A* TOAT?) w||+ A2~ OAT?)[[(Ag = A +ie)w||

for all A>1. Choosing A=\/(2~9) we obtain (2.11).
Clearly, (2.2) follows from (2.9), (2.10) and (2.11) by taking A large enough.
The proof of Proposition 2.1 is therefore complete. U
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The following proposition is proved in [1] {see Proposition 2.4) in the case when
g2=0. Since the general case is treated in precisely the same way, we omit the proof.

Proposition 2.3. Let u€ H*(X,,dVol,), a>rg, be such that
7 (Ag— A2 +ie)u € L*(X,, d Vol,)

for %<s§%(1+§0), 0<e<1. Then, for every 0<~v<1 there exist constants Cy,Cy,
Ao>0 (which may depend on ~y but are independent of A and €) so that for A>Xg
and all a1 >a, we have

— 1 .
kg SU”%(I(XG1 dVoly) = FHTS(AQ_)‘2+Z€)u||%2(Xa,dVolg)

Cy
— 5 (0w, u) rz(ox,) Fllullin x,x., avel,)-

(2.12)

By Green’s formula we have

—Im(3,u, u) L2(ax,) = — IM((Ag = A*+ie)u, u) L2 (an\ X, a vol,) —ElullT2 (ar\ x. avel,)
C )
(2.13) < CyMlxsullzzoaravor,) +%—)\ I —s(Ag =X +ig)ullT2(ar,avol,)

for all 1 >0. Choose a=r¢+7 and a;=ro+1. Combining (2.1), (2.12) and (2.13),
and choosing the parameters v and v, small enough easily leads to the estimate

C .
(2.14) IxsullE ar,avol,) < 5 [X=s(Ag =X +ie)ul r2(ar,avol,), u€D(G),

for A>Xp with constants C, Ao>0 independent of A and ¢. Clearly, (2.14) implies
(1.6) with z=A?. Thus we have completed the proof of Theorem 1.1.

Proof of Proposition 1.3. Choose a function o€ C®(M), o=1 on M\ X,y11,
0=0on X,,12. We have, for all €>0,

(G—zdie) 2 =(G~zic) 1o(2—0)(G—2z+ig) !
+(G~z+ie) " (1—0)*(G—2+ie) ™"
(2.15) =(G—z+ie) 1 0(2—0)(G—z+ie) !
+((G—z2xie) A, 0] +1—0)(Go - 2Eie) 2
x(1=o+[0, Agl(G—2+ic)™t).
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Differentiating (2.15), k—1 times with respect to z, we get the identity

k
(G—z+ie) 1= Z rw(G—2%ie) ™" p(2—0)(G—ztig) <17

v=1
(2'16> + E : akv'/th,V?,((GﬁZ:tig)im [AQ’Q]—FHW (1_9))
vi+ve+rz=k+3
v1>1
v >2
v3>1

X (Go—ztie) 7" (By, (1—0)+[0, Ag)(G—zxie) ),

where ¢k, Ok, 00,0, and B, are real numbers, 8, =1 if v=1 and B,=01f v>1. It
follows from (2.16) that if (1.13) holds for k=1, ..., K with some integer 1<K <m,
then this together with (1.9) imply that it holds for k=K +1 as well. Moreover,
applying (2.16) with k=m+1 and ¢ replaced by £2/2, it is easy to see that (1.14)
follows from (1.9), (1.10) and (1.13). O

Proof of Proposition 1.4. We will first prove (1.10) for j=0 with m=0, s=
1—1—%5 . Since the operators Gy and Gg are unitarily equivalent, it suffices to prove
it with Go and Hy replaced by Gg and Hg, respectively. Set e1:=e2'/?, 0<e<l,
and

A:=2A8 0., Af] =¢"+ A

For s>1 we have the identity
2zFie))r 5 (Gh—ztiey) 2r % = —r~5(Gl —2ie;) 1r®
+T_S(Gg—zii51)'larr’s+1
217) —r 10, (G —zkie))
+r (G — zie)) T HA(GE — 2 i) TR

In view of the assumptions (1.15) and (1.16), we have
(2.18) B:=rS A(Gh—i)~' e L(H}).
We can write

T_S(Gg_ziifl)_lA(Gg—Z:l:i&l)_lr_s = T_S(Gg —Ziial)_lr_5/2
(2.19) X B 3, r (G zien)
+(zFie;—i)r O (Gh—ztie)) Tl o).



Local energy decay of solutions to the wave equation for nontrapping metrics 389

Let D, =—iz"/20,. We need the following estimates (for s>2, j=0,1):

(2.20) = sDI(GE —2iey) e 0| < C2~ /2,

(2.21) IDI(Gh =2 ier) "L r 8| < Cz V212

for z>C}, with some constants C, C{>0 independent of z and . Here and below
| - || denotes the norm in £(HY). For =0, (2.20) follows from (1.5), while (2.21) is

proved in [2] (see Lemma 3.1). For j=1 these estimates follow easily from the case

§=0. Indeed, given ue D(G}), for z>1 we have
Ir=*0rullye <H0n(r*u) s +Cllrull,
SRe{(Gg—zisl)r—su,r*Su>H§+O(z)HT’_SuHilg

1 —s —5
< S IGh — o) (ru) 2+ O(=) Il
1 —s 1 —s -5
< Sl (Gh— e ully+ - 102, 7 ul + O ul

1 —& — —8 —8
<l (Gh - e )ul y +O(2 Ylir*drull e +O(2)lIr*ull Gy,
which yields
(2.22) Ir=*0pull gz < O~ (G — 2o )ull gz +O("2) [l g

Clearly, this implies the desired estimates.

Given a parameter A>1, denote by x(r<A) (resp. x(r>A)) the characteristic
function of the set {r<A} (resp. {r>A}). Given any s>1, s1>%, in view of (2.20)
and (2.21), we have

||r’5/2’DZ(Gg—zii61)7lr_s|| <|lrm8 2 (r < A)Dﬂ(G%—z:ﬁ:ial)*lr_SH
—i—l\r“;/Qx(rZA)D{(G%-z:l:z’sl)’lr_SH
SAsr‘s/z||r*51D¥(GﬁO—zii€1)7lr_s||
+ AT DI(GE — 2 £ie) |
<O(zV/2) (45012 A=5/2e71/2)
— Oz V2= 1/2+5 401,

(2.23)

—1/251 Taking into account that, for ¢, s” >0,

P (G%fz:lzisl)lerr_S” = (7”_8//DT(G31O —zqiial)*lr'sl)*
it is easy to see that (1.10) with j=0, m=0, s=1+46 and p=4/2s;, for all s1>1
follows from (2.17)—(2.21) and (2.23). The estimate (1.10) with j=1 follows easily
from (1.10) with j=0 and the observation that we have an analogue of (2.22) with
GY and H| replaced by Go and Hy, respectively, and ||[r=5V u| g, in the left-hand
side, for ue D(Gg). O

if we choose A=¢
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3. Uniform energy estimates

In this section we will derive (1.11) from (1.13) and (1.14). We will first prove
the following result.

Proposition 3.1. (a) The estimate (1.6) implies, for s>,
oo o~
(3.1) / E (r)dr <CE_4(0).
0
(b) The estimates (1.13) and (1.14) imply, for t>1,

(3.2) /t h Ey (1) dr <Ct™2m 2 E_ (0).

Proof. Choose a real-valued function ¢(t)eC*(R), ¢$>0, ¢(t)=0 for t<3 and
¢(t)=1 for t>1. Let u be the solution of the equation (1.7). We have

(O2+A,)pu=(¢" +2¢' 8 )u=:v(t).

By Duhamel’s formula,

Fsin((t—7)VG
(3.3) ult) = /0 Sm(—(\/_;)—‘/_)w) dr.
On the other hand, we have the formula
e SIM(VG)
3.4 G—(A—ie)? *1:/ —it(-ie) S(EVE) dt, &>0.
(34) =iyt = | e gt

It follows from (3.3) and (3.4) that the Fourier transform of ¢u satisfies the identity
(3.5) pu(A—ie) = (G—(A—ie)?) o1 (G)D(A—ie),

where ¢ €C®(R), ¢1=1 in a neighbourhood of supp ¢ and ;=0 in a neighbour-
hood of (—o0, Ag]. Hence, for every >0, we have

(3-6) XsOr(du)(A—ig) = xa(A—ie)(G— (A—ie)?) " 01 (G)xax—sD(A—ic),
(3.7) Xs Vgt A—ie) =X Vg (G—(A—ig)?) L1 (G)Xsx—sd(A—ic).

We now need the following estimate.
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Lemma 3.2. There exists a constant C>0 so that
(3.8) Ix-sv (@3 < CE-.(0).

Proof. Let us first see that for every s>0 there exists as>0 so that, for all
teR,
(3.9) X—s5 €08{tVG ) x5, X—s sin(tVG ) xs = O((Jt| +1)%): H — H.

Clearly, it suffices to prove (3.9) for t>>0. By Duhamel’s formula we have
(3.10)

Y—s cos(tVG ) xs =cos(t\/5)+/0t %«t—\_/g@

and similarly for sin(tv/G'). We have

[Ag, x—s] cos (T\/@)Xs dr,

0%y _ dx_
/21 A —1/2 ¢ _[_52 _9 X5 e X-s
| gvX—s]p f=1 OrsXx—slf 02 f 267“( or f>
Hence, by (3.10), for every >0,

fIx-s cos(tVG ) xs || < 1+C/Ot(t—7)||xs+2 cos (VG x| dr

-t

+(1+at)/

0

(G+a) 28,72 cos(rV@ ) |

r

where 9,=p~1/28,p'/%, ¥=1 on supp 8x_,/dr, Y=0 on M\ X,, 1,3 and 0<Y<L.
Choose a function 7, =1 on supp X, 7=0 on M\ X, 11/4, 0<7<1. In view of (1.1)
and (1.2}, we have

IS0 103 < (8 G,y +Cull F I = 95 ) I+ Cr 1
< IV o 13+ Call I = ((G+a) f, oo = [(GH+) /2,
with a=C5. Hence
(G )™ 28,3 = [K0-(G+a) 2 <1.
Thus, we obtain
Hx_scos(t\/a)xsﬂ§1+Ct/OtHX_S+2C0s(T\/@)XsHdT

(3.11) t
+C(1+at) /0 [ X—st1cos(TVG)xs| dr.
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Clearly, a similar estimate holds for sin (t\/é ) as well. Tt is easy to see by induction
over s that (3.11) implies (3.9).
In view of (1.8), we have

X-s0(t) =¢" (t)x—s cos(tVG ) o(G) fr+¢" ()X s sin(tVG )G 2 0(G) f2
—2¢'(t)x_s sin(t\/a)Gl/gap(G)ﬁ +2¢'(t)x_s cos (t\/a Jo(G) fa.
Hence, using (3.9), we obtain

IxX—sv@la < Clix—s(G) il +Cllx—sG**0(G) fill i
+CIx=sG™2p(G) fal g +Clx—s0(G) f2 | 1.

Now (3.8) follows from (3.12) and Lemma 3.3 below. [J

(3.12)

Lemma 3.3. The operators x _.0(G)xs and x G ~/%¢(G)xs belong to L(H).
Moreover, the following estimate holds:

(3.13) IX—sG2@(@) fllar < Clix—s Vo m+ClIx—ss1fllar-

Proof. Introduce the function 1 (\)=¢(A\?). We are going to take advantage of
the formula

(3.14) P(G)—v(VG) =5 [ eEia
where (t)=On ([t|™N), N>1, for [t|>1, and ¢(t)=0(]t| 1) for |t|]<1. Hence
315 xpl@x (@) =g [ (™ =)0 dr

Tt follows from (3.9) and (3.10) that

Xésem/ﬁ Ys _etVG ¢ L(H)

with norm upper bounded by O([t|**) for [¢|>>1, and by O(|t|) for [t|< 1. Therefore,
the integral in (3.15) is absolutely convergent, and we conclude that the operator
x-s¢(G)xs belongs to L(H). Clearly, the operator x _s¢(G)G /%y, can be treated
in the same way.

Set 11 (A)=AP(A). We have

GY2p(G) =y (VG) = L /OO eV Py (t) dt,

2r J_
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where 9, (1)=On (|t|¥), N>1, for [t|>1, and ¥ (£)=O(|t|~2) for [t|]<1. We can
write

[Xs,Gl%(G)]f%/lt>l[x_57ewa]fzﬁ1(t) dt
(3.16) =
+ L etO fn () de = I, + 1.
27 Jiy<a
Writing (3.10) in the form
. tsin((t—1)VG _
(317) [X—Srezt\/a]f:/o 81n(4(\/:c;,)b_)[AgaX—S}e”-\/afd’ra

and taking into account (3.9) one easily obtains

(3.18) X—s, €YC fllr <O X o1 flla, 1H>1,
(3.19) IX—s, €Y fllr OGN Ix sy fllars <1

It follows from (3.18) that the integral I; is absolutely convergent, and hence

(3.20) 1l < Clix—st1fllm

By (3.17) we have, for |¢|<1,
t

I s €VC L < / (t=7) dr(|[Dg, X sl 1+ [Xmssz f111)

t .
+ / IX—as1 (€7 1) g dr
<O (x—er Vo f i+ Ixsrafll)
+ / 1D, €7VC L drt /O 178 ~1)x o1 fll1r dr
<OP(Ixeir Vol i+ X sl 1GX e flli0),

where we have used (3.19). Hence

1Ll g <Clix—st1Vaflla+Clix—st2flla+ClIGY2 X g1 fll
(3.21) <Clx st 1V fla+Clx —si2flla+ClIVex—st1fllm
<COlx-—s11Vaflla+Cllx—staflla-
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By (3.16), (3.20) and (3.21),

(3.22) Ilx=s: G20( @) fllr < Clix—s1 VSl +Clix=se1fllar-

Hence

Ix—sGY20(G) fllw < CNG 2 x s fllr +ClIx—s+1 Vo fla+Clix—sc1fllu
SCNVex=sflla+Clx—s+1 Vo flla+Cllx—st1fllm
<Clx=sVeflu+Clix—sirflla. O

We have now proved Lemma 3.3, and hence also Lemma 3.2 and can therefore
proceed with the proof of Proposition 3.1.
Let us see that, for A€R, we have

T XA} (G=(A=ie)*) i (G)xs
dk
WXS

|5

(3.23) +

|5

Vo (G—(A—ie)’r) o1 (Q)xs|| <C, k=0,1,...,m,

i Xs(A—ie) (G- (A=i€)*) " 1(G)xs

dm+1 : \2y—1 —14p
Vg(G—=(A—ig)”) " o1(G)xs|| < Ce™ 7,

with a constant C'>0 independent of A\ and e. For |A|[>+v/Ag, (3.23) and (3.24)
follow from (1.13) and (1.14), respectively, together with the fact that the operator
X—sp1(G)xs is bounded on H. Let now |A|<+/Ag. For every integer k>1, we have
with some constant g9 >0 (§=0,1)

IV3(G—(A—ie)?) Fi (O] < 1G73HG = (A—ie)?) Fon (@)

<sup [y 2 (y—(A—ie)®) P (y)]
yER

< sup [y (y— N re?) 7

y=Aot+eo
< Const,

which clearly implies (3.23) and (3.24) in this case.
By (3.6), (3.7), (3.23) and (3.24), we get

e~

(3.25) 0 () (A=) + || xs Vg pu(A—ie) [ < Cllx—s0(A—ie) |1,
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m+1 e . m—+1 o .
‘1WXsat(¢u)()\—l€) H+HWXSV9¢U()\_ZE) .
m-+1 -
(3.26) <Ce M|y gi(A—ie)|[g +C Z Ix—stFo(A—ig)||z,
k=1

with a constant C>0 independent of A and £. By Plancherel’s identity we have, for
every 0<e<1,

/ (xeds (60) 13+ llxe V g bullZe)e 2" dt

— 00

—a [ " (Ixedr(gm) (i) 13+ s VoA —ie) [) dA
(3.27) <y /_OO X —sO(A—ig)||% dA

— 0y / =t (6) [Zre 2
<CE_,(0),

with a constant C'>0 independent of &, where we have used (3.25), (3.8) and the
fact that y_sv(t) has compact support in . Hence, we can take ¢—0 in (3.27),
which clearly implies (3.1).

To prove (3.2) we proceed similarly as above. We have, for every T'>1 and
every O<e<k1,

2T
(AT Im 2 /T (B2 + | xa Vool ) dt

S/ (“XSthrlat(gbu)”%{+‘|X5tm+1vg¢u||%{)e*28t dt

2 m+1

2
+H——m Xs )d/\
H dA + H
m+1

(3.98) < Che-2om / oA 3 / I otFo(A—ie)|[% d

Vypu(r—ic)

dm+]
_C’1 (H /\m+1XSat pu)(A—ic)

m-+1

e / =@~ s 3 / IXatbo(t) 32" di
< Ce™?T2E_(0),

with a constant C'>0 independent of €, where we have used (3.26) and (3.8). Taking
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e=T""in (3.28) we get

27
(3.20) /T (csde(Su) |3+ s Voul%) di < CT-2m 21 E_(0)

for all T'>1, with a constant C'>0 independent of T'. Hence, for every integer j>0,
we have

2T
(3.30) / (DO (w) |3 +1xs VgullFy) di < C27Emr2nip=2m=2up_ (0).
2T
Summing up (3.30) we get (3.2). O
The estimate (1.11) follows from (3.2) and the following lemma.

Lemma 3.4. For s>-§— and t>1, we have

xD
(3.31) E, 12(H) < C/ Ey(r)dr,
t
with a constant C'>0 independent of t.
Proof. Using Green’s formula we get

dEs——l/2(t)

g :QRe/ (=Agu(t, z)- Ou(t, )+ V gult, ) Vydu(t, ) ) X2s—1 d Vol
M

=2Re /IVI (—Vgu(t, l’) 'vg (X2sflatu(t7 1‘))

+x2s-1Vgult, z)-Vgouu(t, ) ) d Vo,

:—2Re/ Oru(t, z)- tu(t,:z:)axzsf1 d Vol .
M or

Hence, for T>t>1, we have
T
(332) Es~1/2(t) SEsfl/Q(T>+C/ ES(T) dr.
¢
Therefore, to prove (3.31) it suffices to show that for every s>0 there exists T; —+00

such that
(3.33) lim E (T;)=0,

Tj%—ﬁ-oo

provided E_s_1/2(0)<+oo. For s>1, (3.33) follows from (3.1). Let now 0<s<3
and s3> % Given any A>1, by an interpolation argument we have

EL(t) < A 7B, (t)+ A~* Ey(0).
We have that for every >0 there exists T, >0 such that Fy, (Tz)<e. Hence,
E(T.) < A" %+ A7 Ep(0) = O(c‘:‘s/s1 )s

if we choose A=e~ /%1 which clearly implies (3.33) in this case as well. O
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