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The 0-problem with support conditions 
on some weakly pseudoconvex domains 

J u d i t h  Br inkschul te  

Abs t r ac t .  1eVe consider a domain g} with Lipschitz boundary, which is relatively compact 
in an n-dimensional Kghler manifold and satisfies some "log 5-pseudoconvexity" condition. We 
show that the O-equation with exact support in f~ admits a solution in bidegrees (p, q), l<q<_n 1. 
Moreover, the range of 0 acting on smooth (p, n -  1)-forms with support in f~ is closed. Applications 
are given to the solvability of the tangential Cauchy-Riemann equations for smooth forms and 
currents for all intermediate bidegrees on boundaries of weakly pseudoconvex domains in Stein 
manifolds and to the solvability of the tangential Cauchy Riemann equations for currents on Levi 
fiat CR manifolds of arbitrary codimension. 

1. I n t r o d u c t i o n  

Let  us consider  a complex  mani fo ld  X and  f ~ X  a re la t ive ly  compac t  domain .  

In  th is  art icle,  we will s t u d y  the  following quest ion:  

Let  f be  a s m o o t h  (p, q)-form on X sa t i s fy ing (~ f=0  on X and  supp  f c ~  (in 

o ther  words,  f vanishes to  infini te  order  a t  the  b o u n d a r y  of f~). Does  the  p rob l e m 

Su=f, 
(g)P'q s u p p u  C 

a d m i t  a so lu t ion  u, which is a s m o o t h  (p, q - 1 ) - f o r m  on X ?  

The  so lvabi l i ty  of th is  c6-problem leads  to  ex tens ion  resul ts  for C~b-Closed forms 

on the  b o u n d a r y  of ~ ,  whenever  cO~ is smooth ,  and  can  thus  be used to  u n d e r s t a n d  

the  6b-COhomology of Oft. 

More  precisely,  let (X,  w) be an  n -d imens iona l  Kghler  manifold.  We assume 

t h a t  ~ has  Lipschi tz  b o u n d a r y  and  is log &pseudoconvex ,  mean ing  roughly  t h a t  the  

funct ion  - l o g ( b o u n d a r y  d i s tance  wi th  respec t  to co) admi t s  a s t r i c t ly  p lu r i subhar -  

monic  ex tens ion  to ~ .  Then  the  c6-problem (.)p,q admi t s  a so lu t ion  for l < q < n - 1 ,  

and  the  t op  degree O-cohomology groups  of s m o o t h  forms wi th  suppo r t  in ~ are 

sepa ra ted .  
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We will prove this by means of basic L ~ estimates on f~ with powers of the 
inverse of the boundary distance as weight functions. Sobolev estimates for elliptic 
operators whose symbol can be controlled by some power of the boundary distance 
will be deduced in order to prove regularity results for the minimal L 2 solutions of 
the c6-operator. 

Examples of domains satisfying the above log ~-pseudoconvexity condition are 
weakly pseudoconvex domains in Stein manifolds and weakly pseudoconvex domains 
in K/~hler manifolds with positive holomorphic bisectional curvature. 

We would like to mention that  the case of f~ C C ~ with piecewise smooth bound- 
ary was already settled in [MS], using kernel methods. Moreover, if X is compact, 
then the solvability of the c6-problem (.)p,q is eqnivalent to tile solvability of the c6- 
equation with smoothness up to the boundary in X\ f~  in bidegree (p, q - 1 ) ,  as long 
as the global c6-cohomology groups of X in bidegree (p, q) and (p, q - l )  vanishes. 
This has been studied in [HI]. For some related work, one should also consult [O]. 

By duality, we also solve the 0-equation for extensible currents on f~. These 
currents were at first considered by Martineau [M]. The analogous results in the 
strictly pseudoeonvex case can be found in [Sa] with a very different proof. We 
then deduce the solvability of the c6-equation in bidegree (0, 1) for smooth forms 
admitting a distribution boundary value and the vanishing of the Cech eohomology 
groups of the sheaf of germs of holomorphic functions admitting a distribution 
boundary value. 

Moreover, we can apply the solvability of the c~-equation for extensible currents 
to deduce the vanishing of some tangential Cauchy-Riemann cohomology groups for 
currents on Levi flat CR manifolds of arbitrary codimension embedded in a Stein 
manifold. 

I would like to thank the referee for carefully reading the manuscript and 
providing helpful comments. 

2. A regularity theorem for elliptic operators  

In this section, we will study the regularity of the equation Lu=f,  where L is 
an elliptic operator on a bounded open set in a n whose principal symbol can be 
controlled by some power of the boundary distance. 

More precisely, let ft be an open set in R ~, and let L=~l~l_,~aa(x)D~+ 
~l~l<m b;~(x)DZ be a differential operator of order m with smooth coefficients 
as, bz~C~176 on ft. Let A: f~--+R + be a smooth function on f~. 

We say that  L is an elliptic operator of polynomial growth with respect to A on 
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ft if there exist k, l c N  such that  

(2.1) a~(x)~ ~ ~ ( x ) l ~ l  ~ for every ~ E R  n 

and 

(2.2) IO~a~(x)l~A-z-'~'(x), ]D~b~(x)l~A -z I~'(x) 

for all multiindices c~, /~ and 7. 

Here we write a<b (resp. b>a), if there exists an absolute constant C > 0  such 
tha t  a<_Cb (resp. b>Ca); a~b signifes a<b and a>b. 

Let us now recall some of the basic properties of Sobolev spaces. 

Let ~D(R ~) be the space of C ~ functions on R ~ with compact  support,  and 
8 the Schwartz space of rapidly decreasing functions on R ~. The Sobolev norms 

II-l[~ of order s on R ~, s E R ,  are defined by 

I1~11~ z / ~ , ~  (1+ i~l~) ~ I~(~)I ~ d~, 

where uE8  and ~ is the Fourier t ransform of u. If k is a positive integer, we have 

I l u l [ ~  ~ IID~ul] 2 for all u E S .  
0<l~]<k 

As usual the Sobolev space H ~ - - H ~ ( R  ~) is the completion of $ under the norm 

II-IIs. 
Now let f t c R  ~ be a bounded open set in R ~ and m a nonnegative integer. 

The Sobolev space H,,~(f~) is the completion of the space of all those C ~ functions 
f :  t2-+C such that  

2 : z  f ~  [Ifl[~,~ ~ [D~I[ 2 dx < +oc 

relative to the norm II. ][.~,a. The completion of the space 7P(f~) of C ~176 functions 

with compact  support  in ft relative to I[' II'~,~ is denoted by /2/.~(Q). If f~ has 
Lipschitz boundary, then if f is of class C k on R ~ and supported in Q, then f C/2/k ([~) 
(see [G]). On the other hand, if fc /2/s(f t )  and s>k+�89 then it follows from the 
Sobolev lemina that  f is of class C ~ on R n and supported in t2. 

We define C'~(R ~, f t ) : = { f  eC~'(R ~) [supp f c ~ } .  
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T h e o r e m  2.1. Let L be a differential operator of order m with smooth coe]fi- 
cients on an open set ~2�9 n, which is elliptic of polynomial growth with respect to 
a smooth function AEC~(f~, R+). Assume that A has essentially the same features 
as the regularized boundary distance function of f~ (as cited before Proposition 3.1), 
i.e. A N d  and 1D~A]<d 1-1~1 for every multiindex c~. 

Then we have the following a priori estimate 

2 < ts L 2 A Ts2 2 (2.3) II ll, ,n ~ II  11o,  

for" some t, T C N ,  all s>>l and nEC~(f~). 
Moreover, let f~ have Lipschitz boundary and let uEC~(f~) satisfy 

s lu(x)12A-N(x) d~(x) < +oo 

and LuECN (R ~, ~)NC~176 Then uCC'~(N)(R ~, ~)NC~(Ft), where s ( N ) ~ x / N  for 
all N>>I. 

Proof. We wilt first show that it suffices to prove the a priori estimate (2.3). 
Let uCC~176 satisfy .fa lu(x)12A-N (x) dA(x) < +~ and LucCN (Rn,~)NC~176 
We want to show that uEc~(N)(R~,~)Nd~176 with s ( N ) ~ / N  for all N>>I. As 
noted above, it suffices by the Sobolev ]emma to show that u~H~(N)(f~). 

Since ft has Lipschitz boundary, it follows from a general result of Grisvard 
that 

Gk(Rn'Q) C {  f CCk(~)) / u ' f ' 2  d-2kd/~ < +~ 

(see [G, Theorem 1.4.4.4]). Hence the a priori estimate (2.3) together with the 
assumptions on u yields u~H~(N)(~) with s ( N ) ~ . f N .  

Next, we define the open sets ~jCf~ by 

~ j = { Z C ~  d(z)> j ~ } G [ ~ j + l .  

For every j ~ N, it is then possible to construct Xj E d~176 (R'~) with compact support in 
f~j+l such that Xj~I in a neighborhood of ~j,  and moreover, for every multiindex c~, 

(2.4) sup ID~ < NI~Ij 2I~1. 
xcR n 

We can also find functions r/jCC~176 satisfying 0<fly<l,  r/j=1 in a neigh- 
borhood of ~ j + l \ ~ j ,  supp fly C~'~j+2\~j-1 and 

sup ]D%Tj(x)I < Mlcdj 21al 
xcR n 

for every multiindex c~. 
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Let us now estimate II~-~j~ll~,~. Using the a priori estimate (2.3) and (2.4), 
we obtain 

II~-~j~ll~,~ 5 IIA tSL(u-x j  u)II~-.~,~+IIA-TS=(~ ~j~)ll0,~ 
5 II A tS(Lu-xjLu)ll~-~,~2+ T82 2 ,c8 2 II A (~-x~)l10,~+9 Ib.;ull8 ~,a 

for some large c c N .  

We also have 

=/{(llq_l{12_>j(4+c)s+1} (]q-l~12)s--ll@(~)12 d{ 

+Jir 1--I{1=<9(~+~>o+~} (1 + 1{12) 8-1 b--7~ ({)I = d{ 
< j  (4+~)8-1 u 2 + .~ '~  2 

~j-(4+c)s-1 U 2 j_.-cs-1 -c'8 ~ 2 

<. .  cs--1/.?.t.2 @ . A - c " s 2  .2 x 
~3 <11 ,ll,,a II II0m) 

for some large c', c"EN;  note that j < A  -1 on f~\Qj. 

Combining this with the above inequalities, we obtain 

Ilu-xjull],a < IIA-tS(Lu-xjLu)  II]_,,~,a+IIA-T82 (u-xju)II~,a 
1 2 + - ( I b l l ~ + l l  ~ - ~  s u l l ~ ) .  
] ' 

We have already shown that  for some s ~ , / N ,  Ilnll~,n<+oo. By the hypothesis 
CttS 2 2 on u, we also have IIA- ull0,e<+o~ for some s ~ , / N ,  thus the last term in the 

above inequality tends to zero, as j - ~ + o o .  Moreover, the assumptions on u imply 
that  also the first two terms tend to zero, as j - ~ + o c ,  for some s ~ v ~  (see [G, 
Theorem 1.4.4.4]). We have therefore proved the last assertion of the theorem. 

Now, let us finally turn to the proof of the a priori estimate (2.3). We prove 
this estimate by simply making explicit the dependence on A of all the constants 
involved in the classical proof of the hypoellipticity of uniformly elliptic operators 
(see [F]). 

Let us fix x0E~  and let Ba(xo) be the ball of radius 6<<1 centered at x0. Let 
u be a smooth function with support  in Bd(xo). 



264 J u d i t h  Br inkschu l t e  

First, we assume that b;~ 0 for every multiindex/3. Then we have 

Lxo~u(~) i'~ Z a~(x~ 

where Lxo =L(xo)  is the differential operator with frozen coefficients at xo. 
This implies 

(1 + ]~12) ~ la(~)p~ < 2"~(1 + I~j2) * ~ (1  + [~l 2~)  la({)]2 

(1+ 1~12)~-'~1~(~)1~ +ZX-2~(Xo)(l+ ]~I~F-~ IL~o---~(~)] 2 

by (2.1). Integrating both sides and using the inequality Ilull.~ ,%~< ]]uH,_l,a, one 
obtains 

[1~,11~, ~ </X-2k(xo)llLxo~ll~_.~,~+ 2 

Hence there exists Co>0 such that 

4 2-5) Ilull~,~ _< Co/X-2k(xo)(llLxoull2_.~,~+ 

We now wish to estimate 

I1[o~ I m I I s - -m,~  

The estimates (2.2) yield 

for some C1>0, all ~, x and xo with 1A(xo)<_A(x)<_2A(xo). 
Set 5=(8CoC~n m/k-2k 2/-2(x0)) 1/2 and assume that xo is close enough to 

the boundary of f~ in order that 5<�89 Fix Cd)(B2a(0) )  with 0_<r and 
qb~l on B~(O). Suppose u is a smooth function supported in Ba(xo). Then 

and 

(a~(x)-a~(xo))D~u(x) r 

sup 
xCB~(xo) 

Hence by (2.2) 

/r(a~(x)-a~(x0))D%ll~ .~,~_< 2n,~CoA_2~(Xo) 

1 
I ~ ( ~ o - ~ ) ( ~ ( x ) - ~ ( ~ o ) ) l  ~ _< 4c~A-~-~(~o)6 ~ = 2~ r  ~ ( . o )  

~c~A sis s~ 
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for some C2>0 and So, s l E N .  

Thus, since there are at most n "~ multiindices c~ with lal =m,  we have 

HL~u-L~~ . . . .  ~-< 2CoA 2k(xo) 
~- ~'~'tYt C2/~--818--80 ( Xo ) II~IIL ~,~. 

Combining this with (2.5), we then obtain 

Ilull2s,f~ <_ Co/k 2]~(xo)(l[Lull2_m,a+nmC2A-s~s-S~ 1 u 2 II L,a, 

hence 

I1~.11~,~ ~< A-~k(~0)IILull~ .~,~+A -'~~176 (xo)Ilull~-a,~ 

for some m0, k0 E N. 
Next, we consider the case b~ ~0. Replacing m0 and k0 by larger integers if nec- 

essary, we can absorb the additional terms of Ln in the term A -m~ ~o (x0)I1~11~-~,~ 

and still have the estimate 

We emphasize that all the constants involved are independent of x0Egt. 

Next, one can cover ft by balls B5j(xj) of the above type, j ~ N ,  such that 
there exists a partition of unity (Oj)jcN with respect to this covering satisfying 

E l ~ l ~  ID~Ojl2<_OjlP~(5~2)I , where Ps is a polynomial of degree s in one variable. 

One has 

2 2k 2 

for every smooth function u on f~. 

Replacing m0 and leo by larger integers if necessary, we get 

ilOjull~,~ <C(A-kO(xj)llO~Lull~_.~,~+A ,,~o~ k(,(xj)llOjull2 s 1,f~ 

(2.6) 
<_ E 2 

--IIOjUll 2 1,f~- f ~  Oj]Ul 2 dA) 

--2 - -2k  21 2 ~. for some C, M > 0 ;  note that 5~ ~.A (ocj;. 
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Moreover, 

MZx - ~ ~  ~o (xj)II0j<l L ~,~ 

= M A  - '~~176 (zj) s  (1 + 1{12) s - 1 1 0 ~ ( ~ )  12 dA 

-- M A  .~o,-~o (xj) f (1+ I~l ~)s-110~(~) i ~ da 
a{ ~II+I~I2>2MA m0"s-k0(xj)} 

+ M A  "~~176 f~l,+lel2<2MA_.~o~ ko(xj)}(l+l~12)* ll0~.u(~)12 dA 

21 uju~'O ., s, •162 A- -mos2  kos+ko ( x j  ) llOjUll2,f~ 

for some C > 0 .  Thus, by (2.6), 

IloJull~,a < ~ ~I OjA-2tS]D~(Lu)]2 dA+/  OJ A 2TS21ul2dA 
p<<s-m 

for some t, TEN and s>>l. So 

2 
_ z2k-ts 2 Ts 2 2 II~ll[~ = ~ oj~ < ~ IlOjull~,~ < [I Lull . . . . .  ~ +llA ull0,a, 

j c N  s,fl j c N  

which completes the proof. [] 

3. S o m e  L 2 c o h o m o l o g y  g r o u p s  o f  t h e  
o6-operator on  log  ( f - p s e u d o c o n v e x  d o m a i n s  

In order to prove a solvability result for the c6-problem with exact support 
in pseudoeonvex domains, we have to make a global assumption on the ambient 
complex manifold as well as an additional assumption on the domain itself. 

We let (X,~) be an n-dimensional Ks manifold. Let ~ X  be an open 
set. Let 5(z) be the distance from zCf~ to the boundary of f~ with respect to the 
metric w. 

Definition. We say that  ~ is log 5-pseudoconvex, if there exists a smooth 
bounded function ~ on f / such  that  

(3.1) iO0(-log5§ >w in f2. 

In particular every log 5-pseudoconvex domain ~ admits a strictly plurisubhar- 
monic exhaustion function, therefore ~2 is a Stein manifold. 
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Example 1. Let X be a Stein manifold and let f ~ X  be a domain which is 
locally Stein, i.e. for every xCOf~, there exists a neighborhood Ux of x in X such 
that  ftNU~ is Stein. It was shown in [E] that  there exists a Kghler metric co on X 
such that  f~ is log 5-pseudoconvex. 

The same remains true if X is only assumed to admit a strictly plurisubhar- 
monic function (see [E]). 

In particular, every bounded weakly pseudoeonvex domain with smooth bound- 
ary in C ~ is log ~-pseudoconvex. 

Example 2. Let (X, co) be a K/~hler manifold with positive holomorphic bisec- 
tional curvature, that  is T I ' ~  is positive in the sense of Griffiths. Then every 
(weakly) pseudoconvex domain f ~ c X  is log&pseudoconvex (see [T], for the case 
X = P  ~, [E] and [Su]). 

In partieulm', the complex projective space p n  equipped with the Fubini 
Study metric is a K/ihler manifold with positive holornorphic bisectional curvature. 
By [SY] we moreover know that  a compact K/~hler manifold with positive holomor- 
phic bisectional curvature is isomorphic to pn .  

In general, ~ is not a smooth function in fL However, in [St, p. 171], the 
existence of a regularized distance having essentially the same profile as ~ is proved: 

There exists a function AEC~176 R) satisfying 

Cl(~(X) ~ Z2k(X) ~ C2(~(X ) and ~ ]~ct ((~(x)) 1-[ctl , 

where x = ( x l ,  ... ,x2~) are local coordinates on X .  The constants B~, cl and c2 are 
independent of ft. 

Let (E, h) be a hermitian holomorphic vector bundle on X, and let N c Z .  We 
denote by L~,q(~2, E,  N)  the Hilbert space of (p, q)-forms u with values in E which 
satisfy 

Ilull v :=  luj~,hANdV~ < + o o .  

Here dV~ is the canonical volume element associated with the metric co, and 
I" [~,h is the norm of (p, q)-forms induced by co and h. 

P r o p o s i t i o n  3.1. Let f~ be a relatively compact domain in a Kiihler man- 
ifold (X, co). We assume that Q is log C-pseudoeonvex. Let (E ,h)  be a hermit- 
ian holomorphic vector bundle on X and let N>>I and l<_q<_n. Suppose f f f  

2 ( f~ ,E ,N)  such that O u = f  and L~,q(ft, E , N ) N K e r C .  Then there exists uCLn, q 1 

IJ ll < ll.f ljN. 
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Pro@ This follows immediately from standard L s estimates in the form of [D]. 
Indeed, since A has essentially the same features as 5exp( -~ )  (cf. (3.1)), it suffices 
to prove the statement with A replaced by ~ exp(-O) in the definition of the spaces 
L~p,q(f~, E, N). But for N sufficiently large, we clearly have 

iO(E) +NiO0(-  log 5+~)  |  _> w| 

by (3.1), thus the desired vanishing result follows from [D]; note that  - l o g ~ + f =  
- [ ]  

P r o p o s i t i o n  3.2. Let f~ be a relatively compact domain in an n-dimensional 
Kiihler manifold (X,w). We assume that f~ is logS-pseudoconvex. Let (E, h) be a 
hermitian vector bundle on X and let N >> 1. Suppose f C L2,q (f~, E, - N )  C~ Ker 0 v, 1 < 

q<n-1 .  Then there exists uEL2,q_l (f~, E , - N + 2 )  such that Ou= f and Ilull_N+2 < 

Ilfll- . 
Proof. Suppose l<_q<_n-1 and let f~L~,q(f~,E,-N);3KerS,  N>>I. We de- 

fine the linear operator 

�9 - -  2 * 

L f .  O L n , n _ q ( ~  , E , N - 2 )  ---+ C 

Let us first show that  L/  is well defined. 
~L 2 rt2 ~* N - 2 )  so that  c6~1 =c6~2. Then c6(~1-V)2)=0, Indeed, let~l ,WSv n, , -q t  , ~ ,  

and by Proposition 3.1, since n - q >  1, there exists a~EL~, n q-1 (tS, E*, N - 2 )  such 

that  CgCt=~)l--('DS. But then 

fA(~s fAOo'=lis~(--1)q,/o~ f fox 

= - lim [ f A 0 a  = -- lira f f A ( ~ , - ~ 2 )  

with (tS~)~>0 being an exhaustiort of f~ by smoothly bounded domains such that  
fl~ D {zCf~lA(z) >e}. Here we have used Stoke's theorem several times. The third 
equality is obtained as follows: Fix e<0 and choose for each large j>2 /c  a C ~ 
function Xj such that  Xj=~l on f~2/j, Xj =~0 on f~l/j, 0<-Xj-  <1 and ID)tjI<Cj. Set 
aj =XjaETPn"~-q-l(f~). Then we have 
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S~\~ f f~sf~ ~ C,XI\~. I/I~A ~ dV~ s j~I<~A ~ dV~ 

_< ClI/II~_NII~IIT~_~. 

Hence the dominated convergence theorem gives 

.~  f A c ~ =  lim ir~ fAO~ lira Sa 0(fA~j)  

=--(--1)qj--+oolim .]oa~ f fA~'J=--(-1)qJo~ fAc~" 

Moreover, 

/ \ f l  fA(~  l-q~ <~ (.~\f~ 'f'2A-N)I/2(~\f, [q ~ ~02,2AN)1/2-----+0, 

as c--+0. Thus rf(~l)=Cf(~2). 
Now let 

E Dora(O: 2 2 �9 L~,~ q(a,E*,N-2) ~L,~,~ q+~(a,E ,N-2)). 

By Proposition 3.1, there exists ~eL~,~_q(f~,E*,N-2) satisfying c ~ = 0 ~  and 
II~IIN--2<IIO~IIN 2. This yields 

.f) f A ~  -<ll/ll NII~IIN ILs(J~)I ILf(5~)l 

< Ilfll ~11~11~ ~< Ilfll ~llO~ll~-~. 

Thus Lf is a continuous linear operator of norm <l l f l l  ~ and therefore, using 
the Hahn Banaeh theorem, Lf extends to a continuous linear operator with norm 
<ll.flI-N on the Hilbert space 2 �9 Ln,n_q+l(f~,E , N - 2 ) .  By the theorem of Riesz, 
there exists uCL~,q_l(fl , 1?7, N+2) with Ilull_N+2<ll/ll  N such that for every qo~ 
L~,n_q(f~,E*,N 2) we have 

(--1)q ~ UA0)9 Lf(qD)=~fA~, 

i.e. Ou=f . [] 
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4. The O-problem with exact support 

In this section, we will show son~m vanishing and separation theorems for the 
0-cohomology groups with values in a vector bundle E supported in ~: 

{f  E C~,q (X, E) I supp f C ~} N Ker (~ 
HP'q(x, ~, E) - 

O{f C C~,q_ 1 (X, E) ] supp f C ~} 

This is done by solving the 0--equation in the L2-sense as in the last section and 
then applying the results of Section 2 to the operator []-N =c~cC*-N +c~*-1-~-6 for N > 0 .  

Here c~*_ N is the von Neumann adjoint of cC: Lp,q ( f t , 2  E, - N + 2 )  ~L>v+,2 (f~, E, - N ) .  

An easy computation shows that  c~*Nu=AN-2c~*(A NU), where c~* is tile von 
Neumann adjoint of c5 with respect to the metric co on X. 

Theorem 4.1. Assume that ~2 has Lipschitz boundary. Let u~ L~,q(ft, E, - N) 

satisfy Ou= f and c~*Nu=0 with f eC~q( X, ft, E)nC~,q( ft, t~). 
,Cps(N) { y Then ~_~p,q \~., ~, u)nC~,q(ft, J~), where 8(X)  is a function proportional to 

x>>l .  

Pro@ The above theorem is a consequence of the results of Section 2. Indeed, 
since O*Nn=AN-26*(A-Nu),  where c9" is the adjoint of c5 with respect to the 
metric co on X, it is clear that  [] N is an elliptic operator of polynomial growth 
with respect to A on ft. Since O*Nu=O, and 5u=f ,  we have [] x u = 5 * N f .  From 
general results on domains with Lipschitz boundaries (see [G, Section 1]), we deduce 
that  OZNfCCNq_k[(X,~,E)AC,Tq l (a ,E)  for some /% not depending on N. The 
result then follows from Theorem 2.1, using a finite partition of unity. [] 

We are now ready to prove the main theorem of this section. 

Theorem 4.2. Let ft be a relatively compact domain with Lipschitz bound- 
ary in an n-dimensional Kiihler manifold (X, co). We assume that D is log& 
pseudoconvex. Let E be a holomorphic vector bundle on X.  Then we have 

HP'q(x ,~ ,E)=O for" l <_ q<_n-1 

and Hv'~(X, {2, E) is separated for the usual C~-topology. Moreover, 

N E N  

for all h E L~,_p,0 (D, E*, N ) n K e r  c5}. 

Pro@ Replacing the vector bundle E by AP(TL~ * @E, it is no loss of gen- 
erality to assume p=0.  

We will begin by proving the following claim: 
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Let f~g~oq(X ~,E)NC~,q(Ft E)NKerS ,  l < q _ < n - 1 ,  h>>l. Then there exists 
ueCJ}:) x (X, g), E)NC~,q ~ (f~, E) such that Ou=f with j(]~)~,~,. 

Indeed, general results on Lipschitz domains (see e.g. [G, Theorem 1.4.4.4]) 
show that f~c~,q(fLE,-Tl~). Proposition 3.2 implies that there exists u~ 
L~,~ l ( fL  E , - 2 k + 2 )  such that c~u=f in f~. Moreover, choosing the minimal so- 

lution, we may assume c5" 2~u=0. Applying Theorem 4.1, we then have 

with 
Let us now prove the theorem. 
That H ~ (X, ~, E)=O follows immediately from the above claim and the hy- 

poellipticity of c 6 in bidegree (0, 1). 
Now assume that l < q < n - 1  and let fcd~,q(X,f~,E)NKerO. By induction, 

we will construct  ttkEC~,q_a(X,~,E)nC~,,q_l(f~ E) such that 6uk=f and so that 
luk+l -uklj(~) 1<2 -k. It is then clear that (uk)V~N converges to uEg~,q_l(X, f~, E) 
such that c~u--f. 

Suppose that we have constructed u l , . . . ,uk .  By the above claim, since f c 
k+l (N,~,E)NC~,q l(f~ E) suchtha t  f=c~ctk+l. C~,q( X, f~, E), there exists a k  + l ~Co,q_ 1 

We have c~k+l-nk cC~,q ~ (X, ~, E)NC~,q l(f~, E)NKer c~. Once again by the above 

claim, there exists g~C~!:)2(X, ~, E)NC~,q_2(a , E) satisfying ozk+ 1 - u  k ~g. Since 

C~q 2(X,~,E) is dense in ~0,qrO(~) zv~.,(Y fi, E), there exists g~+,~C~,q 2(X fLE) such 

that I9-g~+~ ]j(~) <2-~" Define u~+l =a~+~-gg~+~ ~+~ <CO,q_l(X ,~},t~)nc~,,q l ( a , ~ ) .  

Then cqU~+l=f and lu~+~ -u~lj(~)_ ~-109-09~+~ Ij(~) ~ <-19-g~+~/j(~) <2-~- 
Thus u~+~ has the desired properties. 
It remains to show that 

C~C0, n-1 ( x '  ~ '  /~) = n fCCO, n(X'~'F) fAh'=O 
NGN 

for all h C LT<,o (a,/77*, m)OKer c~}. 

This clearly implies that  H~ gt, E) is separated. 
First of all, suppose f = c5c~ with c~ E C~, n_ 1 (X, f~, E) and let h ~ LYe,0 (f~, E*, N) N 

Ker c5. Then we have 

~-+o ~ ~O d~\r~ ~O d~\r~ 
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with ~ > { ~ l A ( ~ ) > c }  and 

as c-+0, which shows the inclusion C (notice that  fEC~.~(X, ~, E) implies that  
fcL~,~(f~, E, - N  2) for all N c N ,  and see the proof of Theorem 3.2 for the justi- 
fication of some of the equalities). 

Now, let us take 

NEN 
We first show that  for each N ~ N ,  N>>I, there exists f lNCL2n t(~ E , - N )  

satisfying Os f . 
To see this, we defne the linear operator 

Lf:Im(5:L~o(~2 E* N) '~L~,t(~,E*,N)) >C, 

First of all, notice that  Lf  is well-defined because of the moment conditions 
imposed on f .  

By Proposition 3.1, Lf  is a continuous linear operator and therefore extends 
to a continuous linear operator on the Hilbert space L~,I(~, E*, N) by the Hahn 
Banach theorem. By the theorem of Riesz, there exists fiN cL~,~_t (f~, E , - N )  such 
that  for every 9~CL~,0(f~ , E*, N) we have 

(--1)r' ,/s flN A ~yp = L f ( yp ) = / ~  f A cg , 

i.e. 5flN= f . 
Now the proof follows the saute lines as above, and we construct (n~)k~N~ 

C0k,~_I(X, ~, E) converging to nEC~.~ s(X, ~, E) such that (~n f ,  which concludes 
the proof. [] 

C o r o l l a r y  4.3. Let ~ X be a C~176 domain in a compact Kiihler man- 
ifold (X, co) of complex dimension n. We assume that f~ is log &pseudoconvez. 
Let E be a holomorphic vector bundle on X .  Let f cg~,q(Of~, E)NKercCb satisfy the 
tangential Cauchy Riemann equations on Of~, q<_n-2. 

Then there exists FEd~,q(f~, E) such that Floa f and c6F=0. 

For" q = n - 1 ,  the same holds true if there exists f c Cp, r~_ t (~, E) such that l i sa  = 

f ,  5]  vanishes to in~nite order on Oa and.L a rab=0  for all h ~ L,%~,0(a, E*, X)n 
Kerc6,/'or all N ~ N.  
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Proof. Choose fcC~,q(X E) such that  f l o ~ = f  and such tha t  cSf vanishes to 
infinite order on Oft (for the existence of such an extension see e.g. IRa, Lemma 2.4]). 
Applying Theorem 4.2, there exists hEC~,q(X, ~, E) such that  Oh=Of. The function 

F : = f - h  is then a c6-closed C ~ extension of f to ~. [] 

Corollary 4.4. (See [HI]) Let f t ~ X  be a C~-smooth domain in a compact 
Kiihler manifold (X, cv) of complex dimension n. We assume that ft is log &pseudo- 
convex. Let E be a holomorphic vector bundle on X .  Assume that HP'q(x, E ) = 0  

and put D= X \ ~. 
Then for every O-closed form fEC~,q(D, E), which is smooth up to the bound- 

ary, there exists ucC~,q I (D  E) SUCh that ~u=f ,  l < q < n - 2 .  

For q:n--1,  the saT~te holds true if there exists f eC~,n_ l ( x  ~) such that/119 
f ,  Of vanishes to infinite order on Oft and f~? 5 f /~h 0 for all h c L ~ p,o( f~, E*, N) n 
KercC, for all N ~ N .  

Proof. Choose fEC~,q(X,E) such that  f l ~ = f ,  Then 0 f  vanishes to infinite 

order on Oft. By Theorem 4.2, there exists hEC~,q(X, [5, E) such that  gh=Of.  The 

function F : = f - h  is then a 0-closed C ~ extension of f to X.  As HP'q(x, E)=0, 
we have F c6u for some u~C~,q I(X,E). Then u]D has the desired properties. [] 

Remark. Corollary 4.3 is related to the nonexistence of smooth Levi flat hy- 
persurfaces in P~,  n_>3, which was proved by Siu IS]. Indeed, as observed in [S], to 
establish this nonexistence result, it suffices to solve the equation Obu=f on a Levi 

flat hypersurface M in P~,  where f is a smooth c6b-closed (0, 1)-form on M and u 
is a smooth function on M. Since H ~  n) 0, it then follows from Corollary 4.3 
that  this C6b-equation can be solved if n_>3. We thus get a different proof of Siu's 
theorem. 

5. The O-equation for extensible  currents 

The results of the previous section will allow us to solve the 0-equation for 
extensible currents by duality. 

Let f t c X  be an open set in an n-dimensional complex manifold X. A current 
T defined on ft is said to be extensible, if T is the restriction to [5 of a current 
defined on X.  

It  was shown in [M] that  if f~ satisfies ~ - f t  (which is always satisfied in our 

case), the vector space ~ '~q(x )  of extensible currents on f~ of bidegree (p, q) is the 
topological dual of C,~ p,~ q(X, ~)A:D ~' P,~ q(x) .  
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T h e o r e m  5.1. Let ft be a relatively compact domain with Lipschitz boundary 
in a Kiihler manifold (X, cJ). We assume that ft is log 5-pseudoconvex. 

Let TE~ '~ iq (x )  be an extensible current on f~ of bidegree (p,q), q>_l, such 
that cqT=0 in f2. Then there exists S E ~ ' ~ q - ~ ( X )  satisfying OS=T in ft. 

Proof. Since ft is relatively compact in X, we have 

"(x) oo C,r~_p,. q(X,  ft). 

Let TC~'P~q(x) be an extensible current on ft of bidegree (p, q), q_>l, such that  

cqT=0 in f~. 
Consider the operator 

LT:~GT~p, n q(X, ft) >C, 

o~, > (T, ~). 

We first notice that  LT is well defined. Indeed, let pcC,~_p,~_q(X, ft) be such 

that  0~ 0. 
If q=n, the analytic continuation principle for holomorphie functions yields 

~=0 ,  so (T, ~)=0.  
If l<_q<_n-1, one has ~ cSa with aEC~p,~ q_l(X,~) by Theorem 4.2. As 

D'r~-P,~-q-l(ft) is dense in C~_p,,~_q_I(X , ~), there exists (O~j)jENE~)n-p'n q l(ft) 
such that  5aj-+ga,  as j - ~ + o c ,  in C~ p~ q(X [~). 

Hence (T,~) (T, 0@ =limj~+o~ (T, Sctj) 0, because OT=0. 
By Theorem 4.2, OC,~_pr,_q(X ~) is a closed subspace of C~p,,~ q+l(X,~) ,  

and thus a Fr6chet space. Using Banach's open mapping theorem, LT is in fact 
continuous, so by the Hahn Banach theorem, we can extend LT to a continuous 
linear operator LT:C~_p,,~ q+I (X ,~ ) -+C,  i.e. LT is an extensible current on ft 

satisfying 
(c~Lr, ~) = (-1)P+q(LT, 0@ = (-1)P+q(T, ~) 

for every ~Ed~_p,~_q(X, fi). Therefore T ( 1)P+qOLT. [] 

For the notion of differential forms admitting distribution boundary values, 
which is used in the following corollary, we refer the reader to [LT]. 

C o r o l l a r y  5.2. Let f ~ X  be a C~176 relatively compact domain in a 
Kiihler manifold (X,c~). We assume that ft is log S-pseudoconvex. Let f be a 
smooth O-closed (0, 1)-form on ft admitting distribution boundary values on Of L 

Then there exists a smooth function g on ft admitting a distribution boundary 
value on Oft such that Og=f  on ft. 
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Pro@ As f admits distribution boundary values, we may view f as an ex- 
tensible c~-closed current on ft (see [LT]). Applying Theorem 5.1, there exists an 
extensible current S of bidegree (0, 0) on t2 such that  OS=T. 

The hypoeltipticity of c5 in bidegree (0, 1) yields that  S is in fact a C~-smooth 
function on ft. But a C~-smooth function S, extensible as a current, such that  
cqS admits distribution boundary values, admits itself distribution boundary values 
(see [Sa, Lemme 4.3]). [] 

C o r o l l a r y  5.3. Let f t ~ X  be a C~-smooth domain in a Kiihler manifold 
(X, w). We assume that ft is log 5-pseudoconvez. Then we have 

for every q>_l, where Oa is the sheaf of germs on ~ of holomorphic functions 
admitting a distribution boundary value. 

Proof. We have the following exact sequence of sheaves on 

0 

- ~tO 0 ~tO 1 Indeed, that  Ker(0:~D ~' ( X ) ~ D  ~' (X))=(D~ was proved in [LT], and the exactness 
of the rest of the sequence follows from Theorem 5.1. 

Then the de Rham Weil theorem yields 

Ker(cg: ~ ' ~ q ( x )  > ~'~ (X)) 
Hq(ft, Off) ~- 

Irn(5:- '0 q-1 (x)  

and by Theorem 5.1, the right-hand side of the above isomorphism is 0 for q> 1. [] 

6. Boundaries  of  weakly pseudoconvex domains 

Let f t ~ X  be a domain with smooth boundary M in an n-dimensional complex 
manifold X. We then denote by HP'q(M) and Hgdqr(M) the cohomology groups 
of the tangential Cauchy-Riemann operator on smooth forms and currents on M, 
0_<p<_n, 0 < q < n - 1 .  

T h e o r e m  6.1. Let X be art n-dimensional Stein manifold and ~2~X a do- 
main with smooth boundary M.  We assume that ft is weakly pseudoconvez. Then 
HP'q(M)=Hgdqr(M)=O.for O<_p<_n and l_<q_<n-2. Moreover, HP'~176 
HP'n- 1 ( M ) and Hgd'~ ~- 1 ( M ) are infinite-dimensior~,al and, if n > 3, separated. 

In the case X = C  '~, the statement about the cohomology groups H p'q (M) was 
already proved in [Ro]. 
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Proof. It follows from [HN1] and [HN3] that  H>~ HP,'~-I(M), Hgd~ 
and P, ~-1 H ~  r (M) are infinite-dimensional. 

Now let f~C~,v(M ) satisfy the tangential Cauchy Riemann equations, l_<q_< 
n - 2 .  It follows fi'om Corollary 4.3 that there exists F~g~,v(f* ) satisfying FIM= f 
and cSF=0. Using Kohn's result on the solvability of the 0-equation with regularity 
up to the boundary in weakly pseudoconvex domains [K1], [K2], there exists UC 
C~,q_l(~ ) satisfying OU=F in fL Then u=UIM satisfies CgMn=f. Hence HP'q(M)= 
0 for l<q_<n-2 .  

Moreover, we know from abstract duality arguments (see [Se]) that  Hg;~(M) 
is separated if and only if Hn-P'n-q(M) is separated. Furthermore, if any one of 
these equivalent conditions is satisfied, we have Hgdqr(M)-~H ~-p''~ q-1 (M)'. 

Therefore we have Hg~q(M)=0 for 2<q_<n-2  and Hg,'[r~-~ (M) is separated for 
n_>3; to complete the proof of the theorem, it remains to show that  H~ur(M)-0p'x - if 
n_>3, O<_p<n. 

To prove this, we note that  we have a direct splitting 

H{:urP'q ( M )  ~ HP'q(~2(X) )OHP'q(~Px\~(X) ) , 

q__~l. Here IJP,q(~(X)) (resp. HP,q(~x\o(X)) ) denote the c%cohomology groups 
for currents on f~ (resp. on X\f~)  which are extendable to X. Indeed, it is a well- 
known fact that we have the following long exact sequence (cf. [HN2] and [NV]) 

... > H P ' q ( x )  > H P ' q ( ~ x \ M ( X ) )  > HP'q+I(IDIM(X))  > HP,q+I(x) > . . . ,  

where HP,q(~x\M(X)) are the cq-cohomology groups of currents on X \ M ,  which 
are extendable across M. Since X is Stein, it follows that  H P ' q ( x ) = o  for q_>l. 
Together with the well-known isomorphism HP'qgA/f~'~[JP'q+l[~ Y (X ~ (see [HN2] cur \  ]--  \ M \  ]] 
and [NV]), this yields 

H~ur(M ) p ' q  ~- H>q(:Dtx\M(N)) ~_HP'q(:D~(X))| , q >_ 1. 

Theorem 5.1 implies that HP,q(~lf}(X))=O for q)l. That >1 H~.ur(M)=0 for n > 3  is 
now an immediate consequence of the following lemma. [] 

L e m m a  6.2. Let X be. an n-dimensional Stein manifold and Q ~ X  a do- 
main with smooth boundary M. We assume that ~ is weakly pseudoconvex. Then 
H P , q ( # ~ ( X ) ) = 0  for l<q_<~-2 .  
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Pro@ We first prove the following claim: 

Let f~l and f~2 be two weakly pseudoconvex domains with smooth boundary such 
that f~l cf~2cX. Then HP,q(x, f t 2 \ f t l ) = 0  for 2_<q<n-1 and HP#~(X, f~2\gtl) is 
separated, 0 <_p<_n. 

Indeed, let f~C~,q(X,f~2\f~l)NKerS, 2<q<n-1. Then, since ft2 satisfies the 

assumptions of Theorem 4.2, there exists uEC~,q I(X, f~2) satisfying Ou=f in X. 

This implies that  6'u=O in f~l- Hence, since q-1_>1, there exists h~C~,q 1(~1) 

satisfying Oh=u in f~l (see [K1] and [K2]). Let h be a smooth extension of h 
to X with compact support in f~2 and set g=u-Oh. Then g satisfies Og=f and 
supp g C f~2 \ g  tl. The separation statement is proved similarly, using the separation 
statement of Theorem 4.2. 

With the same proof as the proof of Theorem 5.1, it follows fi'om the above 
claim that  HP'q(D~\51(X))  0 for O<_p<_n and l<_q<n-2. 

Now let ~bEC~176 be a strictly plurisubharmonic exhaustion function such 
that ~b<0 on f~ and set f~j {zcXl~/~(z)<j} , where we may suppose that  Oftj is of 
class C ~.  

..~.lp,q 
Let I ~ t ~ x \ ~ ( X  ) be c%closed in X\f~, l<q<n-2. As shown before, there 

~ l p , q  1 
exists SjC2)x\ ~ (X) satisfying 5Sj T in f t j \ ~ .  We then have c6(Sj+I-Sj)  0 in 

~ l p , q - - 2  
First assume q_>2. Then there exists HCg)x\ ~ (X) such that  OH=Sj+I-Sj 

in f t j \ ~ .  Setting Sj+I Sj+I-SH, we have 6OSj+I=T in  ~-~j+l\~ and S j _ _ I = S  j in 
~lp ,q - -1  

f~j \~ .  We can thus find a sequence (Gj)j~N, Gj ~:Dx\ fi (X), satisfying cqGj = T  in 
~ l p , q  1 

f~j\ft  and Gj+~=G 3 in f~j\fL Then (Gj)j converges to GEDx\ ~ (X) such that 

a a = T  in X \ ~ .  
Now suppose q= l .  Then Sj+I Sj is a holomorphic p-tbrm on f~j \~.  By the 

Hartogs phenomenon on Stein manifolds, Sj+I -S j  extends to a holomorphic p-form 
on ~2j. Moreover, we may approximate holomorphic p-forms on f~j uniformly on 
~j-1  by holomorphic p-forms on f~j+2, hence there is a holomorphic p-form H on 
aj__ 2 satisfying I { H - ( S j + I - S j ) ,  qo}l <2- J l~  I for every ~C~_p,n(X , ~-~j l \ a ) .  Let 

X~C~176 satisfy X=I  on f~j+i and supp xcf~j+2. Setting ~ j + I = S j + I - x H ,  we 
~ l p , q  1 . 

have Sj+~ ~Dx\f~ (X), O~;j+,=T o n  [~j+l \~  and I(Sj+,- Sj, p}I<_2 JlFl for every 
~lp ,q - -1  

p~C~_p,n(X, f~O_X\ft). Thus there is a sequence (GO)OeN, GO~:Dx\~ (X), so that  

OGj=T in ftj\ft and I ( G j + I - G j , ~ } [ < 2  J[~l for e v e r y  ~9~Cn~ ). It 
follows that  (Gj)j~N is a Cauchy sequence in the weak topology. Thus (Gj)yeN 
converges weakly to G, where G in fact is an extensible current on X\f~  satisfying 
5G=T in X \ f L  [] 
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7. Appl icat ions  to Levi flat C R  manifolds  

Here we want to solve the tangential Cauchy Riemann equation for currents 
on certain domains in Levi flat submanifolds of a Stein manifold. The submanifolds 

will be of any eodimension where the problem makes sense. More precisely, we 

consider the following set-up. 
Let M c X  be a smooth generic C R  manifold of real codimension k in an n- 

dimensional Stein manifold X.  We moreover assume that  M is globally defined 

by 

M = { z  ~ X 1 0 1 ( z )  . . . . .  0 k ( x ) - -  0},  

where the g, 's ,  l < u < k ,  are real C ~ functions in X satisfying 0g lA. . .A00k~0  

on M. 0m" most important  assumption is that  M should be Levi fiat, i.e. 

iaSo,(z) (r  r = 0 

for ~, 1, ..., k, z ~ M  and every ~EC n satisfying 

j = l  3 

for #=1 ,  ..., k. 

For . 1 , , k ,  we set ~.  0 . + r  052 and ~ 0 = -  2~=,  05+~ E ~  ~ 0~, 
where r is a strictly plurisubharmonic positive function of class d ~ on X.  Then for 
every ordered collection of k integers 0_<il < . . .< ik  < k  we have 0&~ A...A0&~ ~ 0  
on M. For an adequate choice of r we can teen arrange it so that  if we set 
f ~ , = { z e X l ~ , ( z ) < O } ,  u O, ..., k, then each f~, is a weakly pseudoconvex set and 

k k k k 

and 
u--0 u--0 u--0 u--0 

Let f~ be a piecewise C ~176 bounded weakly pseudoconvex domain such that  f~ 
intersects each ~ ,  transversally. 

P , q  If U is any open set in M, we denote by Ho~r (U) the cohomology groups of the 
tangential Cauchy Riemann operator acting on currents in U, 0_<p<n, 0_<q_<n k. 

T h e o r e m  7.1. Let ~I  and ft be as above, 0 < p < n  and 2<_q<_n-k. 

Then H~d~(MN~ ) O. 
Moreover, let f~ be any open set which is relatively compact in fL Then the 

restriction mapping 
Hguf (J~/:/N e )  > Hgulr (MNf~ ' ) 

is the zero mapping. In other words, let TE[T)'P'~](MN~I) such that OMT=O in 

MNf~.  Then there exists SE [D'P'~ satisfying O M S : T  in MOf~' .  
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Pro@ Since Q is Stein, we have the following well-known isomorphisms (cf. 
[HN2], [NV 1 and the proof of Theorem 6.1) 

p,q p q+k  1 ~ Hc~r(MNft ) --~ H ' (:Da\M(Q)) 

for q_>l. Without loss of generality, we nlay assume that  f~' is also weakly pseudo- 
convex. Then the above isomorphisms also hold with ft replaced by {~'. The theorem 
is then an immediate consequence of the following lemma. For the case q - l ,  note 
that  all diagrams induced by the restriction mapping are commutative. [] 

L e m m a  7.2. For" O<_p<_n and q->k+l we have HP'q(~\M(f t ) )=O. 
Moreover, let ft' be any open set which is relatively compact in ft. Then the 

restriction rnapping 

is the zero mapping. 

Proof. The proof follows an induction argument of [NV]. By induction on l, 
we show the following claim: 

Let ~, D0,.. . ,  Dz be piecewise smooth domains in X which are locally Stein 
and which intersect pairwise transversally. Set D--~NU~=o Dj and let ~' be auy 

relatively compact open set of ~. 
If TEl);'q(ft) satisfies OT 0 in DAft' ,  and q->l+l, then there exists SE 

satisfying 5 =T in Dnft ' .  
~ ' p , q  

First assume that  l 0 and let Tc2)Dona,(f t  ) satisfy c3T=0 in DoN~' ,  q > l .  
Without  loss of generality, we may assume that  ~ is a piecewise smooth domain 
which is locally Stein and which intersects Do transversally. Then ~ N D 0  has 
Lipschitz boundary and is relatively compact in ~. Moreover, since X is a Stein 

nlanifold and since ~ N D 0  is locally Stein, it follows from [El that  ft~ND0 is l o g s  
pseudoconvex for some Ks metric on X. We apply Theorem 5.1 and conclude 

that  there exists S E ~ q i ( f t )  satisfying 0S T in f t 'nD0.  This proves tile claim 
for l=O. 

Now assume the claim is true for l - ]  and let us prove it for l_> 1. Set U1 = 
~NU~.~ Dj and U2=~NDI. Let TC~'q(~) satisfy S T = 0  in DN~2', q->l§  Then, 

~ t p  q--1 
by the induction hypothesis, there exist S1,S2E:D D' (ft) such that  (~$1 T in 
U1NfY and OS2=T in U2N~2 ~. Then we have 0 : (S1-$2)=0  in U1NU2Nf2 ~. Again, 
since q 1>1, we may apply Theorem 5.1 to the domain U1NU2Nft~; note that 
U1NU2Nf~ ~ is relatively compact in f~ and locally Stein with Lipschitz boundary. 
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We conclude that there exists H E ~ ;  'q 2(~) satisfying OH=Ss-$2 in U 1 N U 2 ~ f t  I. 

We define the current S of bidegree (p, q - l )  on D by S=S1 in U~ and S=S2+OH 
in//2. Then S is well defined and OS=T in f~!~Uta=0 D~. Moreover, S is extendable 
to a current on ft. This proves the claim. 

Let us now prove that for every relatively compact subset ft' of ft and every 
~!p,q ~ -- 

T~Da\M(ft ) satisfying c~T=0 in f~\M, q>_k, there exists S ~ D ~ ( a )  such that 

OS=T in ~2'\M. 
k We recall that f~\M=U~ 0(f~Nft) and ~ 0 ft~=0. 

Let T ~ i ~ ( f t  ) satisfy c~T=0 in ft\M, q>_k. From the above claim, there 

~,p,v-1 //~ l(f~ ~f~,5 and OS2=T in f~Nf~'. exist $1, $2 ~ \ M  (ft) such that c~S~ = T  in ~=0~ ~ 
This settles the case ~=1, since in this situation, ft0Nf~' and f ~ f ~ '  are disjoint 
sets. 

Now we assume that k_>2. Then c~(S~-S2)=0 in 

k - 1  k - 2  

U = U 
P=0 ~ 0  

/c We set W1 U~=~(f~n~tkNf~') and W2=f~- lNf tkn~ ' .  Then, since 
W1 and W2 are disjoint sets. Thus, in order to solve the cg-equation for extensible 
currents on Vv5 UW2, it suffices to solve the cq-equation for extensible currents sep- 
arately on W1 and W2. Since q- l>k-1 ,  it then follows from the above claim that 

~lp ,q  2 
there exists GC~)f2\M (f~) satisfying 0 G = S 1 - S 2  in  (D3UW.2)NQ'. It tbllows that 
the current S defined by 

k 1 [ ~  ! 
S =  $1 inU~=0(~Af~) ,  

S2+OG in ftkC~lT 

is well defined, extendable to fl and satisfies c9S T in f t ' \M.  
We have thus proved the last assertion of the lemma. 
Now suppose that q_>k+l and let T E ~ ( f ~ )  satisfy cgT=0 ill f t \M.  Let 

( t ~ ) i E  N be an exhaustion of ft by smooth pseudoconvex domains. We have just 
v lp ,q  1 

proved that for every iEN, there is S~E2)a\ M (ft) satisfying 5S~=T in f ~ \ M .  
r ip ,q- -2  

Then 5(Si+l-Si)=O in ft~\M. Thus, since q-l>k, there is HicDa\ M (ft) satis- 

fying Si+l-Si=OHi in ft{\3,l. We s e t  S i + a = S i §  Then Si+l E ~ ) a \  M v l p ' q - I ( ~ ) ,  

0-S~+I=T in f t{+l\M and S~+s=& in ft~\M. Thus it is possible to construct a se- 
o .~lp,q 1 

quence (Sj)j~N, bj C/)a\ M (ft) satisfying gSj =T in ft} \M and Sj+I =Sj in ft} \M. 
Then (Sj)jcN converges to a current S CD~M 1 (f~) satisfying OS=T in f t \M.  [] 
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