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The O-problem with support conditions
on some weakly pseudoconvex domains

Judith Brinkschulte

Abstract. We counsider a domain  with Lipschitz boundary, which is relatively compact
in an n-dimensional Kéhler manifold and satisfies some “log d-pseudoconvexity” condition. We
show that the d-equation with exact support in £ admits a solution in bidegrees (p, q), 1<g<n—1.
Moreover, the range of 8 acting on smooth (p, n—1)-forms with support in € is closed. Applications
are given to the solvability of the tangential Cauchy—Riemann equations for smooth forms and
currents for all intermediate bidegrees on boundaries of weakly pseudoconvex domains in Stein
manifolds and to the solvability of the tangential Cauchy—Riemann equations for currents on Levi
flat C' R manifolds of arbitrary codimension.

1. Introduction

Let us consider a complex manifold X and Q€ X a relatively compact domain.
In this article, we will study the following question:

Let f be a smooth (p,q)-form on X satisfying df=0 on X and supp fC{ (in
other words, f vanishes to infinite order at the boundary of 2). Does the problem

) { du=f,
S —
P supp u C

admit a solution u, which is a smooth (p, g—1)-form on X7

The solvability of this -problem leads to extension results for dy-closed forms
on the boundary of 2, whenever 02 is smooth, and can thus be used to understand
the Jp-cohomology of 9Q.

More precisely, let {X,w) be an n-dimensional Kéhler manifold. We assume
that £ has Lipschitz boundary and is log §-pseudoconvex, meaning roughly that the
function — log(boundary distance with respect to w) admits a strictly plurisubhar-
monic extension to . Then the d-problem (%)p,q admits a solution for 1<g<n—1,
and the top degree 0-cohomology groups of smooth forms with support in Q are
separated.
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We will prove this by means of basic L? estimates on  with powers of the
inverse of the boundary distance as weight functions. Sobolev estimates for elliptic
operators whose symbol can be controlled by some power of the boundary distance
will be deduced in order to prove regularity results for the minimal L? solutions of
the J-operator.

Examples of domains satisfying the above log é-pseudoconvexity condition are
weakly pseudoconvex domains in Stein manifolds and weakly pseudoconvex domains
in Kéhler manifolds with positive holomorphic bisectional curvature.

We would like to mention that the case of Q€C™ with piecewise smooth bound-
ary was already settled in [MS], using kernel methods. Moreover, if X is compact,
then the solvability of the d-problem (x), , is equivalent to the solvability of the 9-
equation with smoothness up to the boundary in X\ in bidegree (p,g—1), as long
as the global d-cohomology groups of X in bidegree (p,q) and (p,q—1) vanishes.
This has been studied in [HI]. For some related work, one should also consult [O].

By duality, we also solve the d-equation for extensible currents on §2. These
currents were at first considered by Martineau [M]. The analogous results in the
strictly psendoconvex case can be found in [Sa] with a very different proof. We
then deduce the solvability of the d-equation in bidegree (0,1) for smooth forms
admitting a distribution boundary value and the vanishing of the Cech cohomology
groups of the sheaf of germs of holomorphic functions admitting a distribution
boundary value.

Moreover, we can apply the solvability of the -equation for extensible currents
to deduce the vanishing of some tangential Cauchy—Riemann cohomology groups for
currents on Levi flat C'R manifolds of arbitrary codimension embedded in a Stein
manifold.

I would like to thank the referee for carefully reading the manuscript and
providing helpful comments.

2. A regularity theorem for elliptic operators

In this section, we will study the regularity of the equation Lu=f, where L is
an elliptic operator on a bounded open set in R™ whose principal symbol can be
controlled by some power of the boundary distance.

More precisely, let 2 be an open set in R™, and let L:Z|a\:m aq(z) D>+
> 181<m bg(z)D? be a differential operator of order m with smooth coefficients
o, bgcC™(Q) on Q. Let A:2—R* be a smooth function on .

We say that L is an elliptic operator of polynomial growth with respect to A on
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Q if there exist k,/€N such that

(2.1) Z ae(2)€* > AF(z)|€|™  for every £ €R™
|e}j=m

and

(22) |DYa0(2)| AT (@), |DVbs(x)| S AT ()

for all multiindices «, 8 and ~.

Here we write aSb (resp. b2 a), if there exists an absolute constant C'>0 such
that a<Cb (resp. b>Ca); a~b signifies a<b and a>b.

Let us now recall some of the basic properties of Sobolev spaces.

Let D(R™) be the space of C* functions on R™ with compact support, and
S the Schwartz space of rapidly decreasing functions on R™. The Sobolev norms
| - |s of order s on R™, s€R, are defined by

2= [ iePylace) P de
rR"
where u€S and @ is the Fourier transform of u. If k is a positive integer, we have

lul2~ " |ID%u[? for all ues.
0<]a|<k

As usual the Sobolev space H,=H,(R"™) is the completion of & under the norm
[ Ils-

Now let QCR"™ be a bounded open set in R™ and m a nonnegative integer.
The Sobolev space H,,(Q2) is the completion of the space of all those C* functions
f:Q2—=C such that

1f11Z,0:= Z /QIDadex<+oo

lof<m

relative to the norm || - ||,, 0. The completion of the space D(Q) of C* functions
with compact support in Q relative to | - ||lm,o is denoted by H,,(€). If © has
Lipschitz boundary, then if f is of class C* on R™ and supported in (2, then f cHy ()
(see [G]). On the other hand, if feH,(§2) and s>k+2in, then it follows from the
Sobolev lemma that f is of class C¥ on R™ and supported in Q.

We define C"(R™, Q):={feC"(R")|supp fCQ}.
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Theorem 2.1. Let L be a differential operator of order m with smooth coeffi-
cients on an open set QER™, which is elliptic of polynomial growth with respect to
a smooth function AcC®(Q,RT). Assume that A has essentially the same features
as the regularized boundary distance function of S (as cited before Proposition 3.1),
i.e. A~d and |D*A|SdY1 for every multiinder .

Then we have the following a priori estimate

—t8 - 52
(2.3) g0 S IA™Lull3_p, o +IAT uf

for some t, TEN, all s>3>1 and ueC>().
Moreover, let Q0 have Lipschitz boundary and let wueC™(Q) satisfy

/Q (@A () dA() < +00

and LueCN (R",)NC>(Q). Then ucC* N (R, Q)NC®(Q), where s(N)~v/N for
all N>1.

Proof. We will first show that it suffices to prove the a priori estimate (2.3).
Let ueC™®(Q) satisfy [, lu(z)[PA~N(z) dA\(z)<+oo and LucCN(R™, Q)NC> ().
We want to show that ueC*™)(R™, Q)NC>®(Q) with s(N)~+v/N for all N>>1. As
noted above, it suffices by the Sobolev lemma to show that ue I—OIS(N) (Q).

Since §2 has Lipschitz boundary, it follows from a general result of Grisvard

that
/ IfI2d=2*d) < +oo}
U

(see |G, Theorem 1.4.4.4]). Hence the a priori estimate (2.3) together with the
assumptions on u yields ue H,(n)(2) with s(N)~VN .
Next, we define the open sets £; CQ2 by

CFR™, Q) C {feck(ﬂ)

1
d(z) > ——  €Qj41.
( ) ]_ 1 } J+1
For every j&N, it is then possible to construct x; €C°°(R™) with compact support in

;41 such that ;=1 in a neighborhood of { ;» and moreover, for every multiindex c,

(2.4) sup |[D%x;(x)] < Njoys2el.
TER™

We can also find functions 1; EC*(R") satisfying 0<n, <1, n,=1 in a neigh-
borhood of Q;11\€Y;, suppn; CQy42\Q;_1 and

sup |Dn;(z)] < M)y 54!
zER™

for every multiindex a.
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Let us now estimate Hu—xjquQ Using the a priori estimate (2.3) and (2.4),
we obtain
_ _ 2
lu=xsullZ o S IAT*Llu=x;u) |3 o+ 1A (w—xw) 1§ o

—tis - 82 sCS
SIAT* (Lu=x; Lu) [ o HIA™T (u=x50)lI5 0 +5% Insuli 10

for some large c€N.
We also have

lnsul® 10~ / (|2~ (o) |? de
RTL

(L+]g)y (€)1 de

/{€|1+§22j<4+c)5“}

+ / (1+[eP)~177(E) P de
{€]1+]g2gj(ate)st1y

L _ L2
N (¥ 1H77ju||§,Q+JCS H’?j“”%,n

~

i _ R A2
i npul g i T AT ullg
c s 2
ST Nl o HIIAT ullf o)

for some large ¢/, ¢’ €N; note that j SA™! on Q\Q;.
Combining this with the above inequalities, we obtain

— — 52
lu=x5ulls 0 SIAT* (Lu=x; Lu)[[ o +IATT (u=—x;0)[I5 0

S,Q ~

1 A 2
+3(HU||§,Q+||A “ullf ).

We have already shown that for some s~v'N , [[u]|2 o <+o00. By the hypothesis
on u, we also have ”A_CHS2UI|8’Q<+OO for some s~+/N , thus the last term in the
above inequality tends to zero, as j—-+oo. Moreover, the assumptions on « imply
that also the first two terms tend to zero, as j—-oo, for some s~v'N (see [G,
Theorem 1.4.4.4]). We have therefore proved the last assertion of the theorem.

Now, let us finally turn to the proof of the a priori estimate (2.3). We prove
this estimate by simply making explicit the dependence on A of all the constants
involved in the classical proof of the hypoellipticity of uniformly elliptic operators
(see [F]).

Let us fix o€ and let Bs(zp) be the ball of radius §<1 centered at zg. Let
u be a smooth function with support in Bs(zp).
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First, we assume that bg=0 for every multiindex 5. Then we have
Leyu(§)=i™ ) aa(z0)6a(8),
|oe|=m

where L., =L(z¢) is the differential operator with frozen coeflicients at z.

This implies

(L) @) <2m(L+f®)° ™ (1+ €™ a()
S AHER) ™ a(@) P+ A7 (o) (L+[E[*)* ™ | Layul€)

by (2.1). Integrating both sides and using the inequality [[u||s—m,0<|u|/s—1,0, one

obtains
”UHEQ N A_Zk(xo)||Lavou||§—m,97L ||U“§—1,Q-

Hence there exists Cp>0 such that
(2.5) [ull2 o < CoA™ (o) (|| Lagull?— o +lull2_1 0)-

We now wish to estimate
2

“Lxu—l’zouni—m,ﬂ =

S (Ga(®)~aa(z0)) D

lal=m s—m,Q2

The estimates (2.2) yield
|aa (@) —aq(2o)| < CLA™ " (z0)|mo—2]

for some C1>0, all o, z and o with $A(zg) <A(x) <2A(z0).

Set §=(8CoCin™AT2k21=2(54))~1/2 and assume that z, is close enough to
the boundary of Q in order that 5§%A(wo). Fix ¢€D(B3s5(0)) with 0<¢<1 and
$=1 on Bs(0). Suppose u is a smooth function supported in Bs{zo). Then

(@a () —aa(z0)) D u(z) = ¢(20—2)(aa(z) —aa(z0)) D u(x)
and

1
su —2)(aa(T) —ag(z0))|? <AC?A22 R ——
mEBsI()zo) I¢(x0 x)( (x) ¢ ( 0))| - («770) 2anOA72k(xO)

Hence by (2.2)

> /20

H(aa(l')*aa(xo))Dau”sfm,Q = m’m

+Co A 5750 () ||ul2_
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for some Cy>0 and sg, s €N.
Thus, since there are at most n™ multiindices « with |a|=m, we have

2
u
Lot Loy [ul5,0

—818—8 2
s—m.0 S ‘m(x—o)JrnmCEA 1 (o) |lulls-1,0-

Combining this with (2.5), we then obtain
[ull? o < CoA™2*(@o) (| Lulls_, o+ C2 AT~ (zo) 3 _1 o)+l o)

hence
luli? o S AT (zo) | Lul? 0+ A7 (z0) ul 31 o

5,00 ~>

for some my, ko €N.

Next, we consider the case bg£0. Replacing mo and ko by larger integers if nec-
essary, we can absorb the additional terms of Lu in the term A~05 ko (z4) ||uH§41§2
and still have the estimate

[ull 0 S AT (o) Lulli_p o+ (z0) [ull 1 o-

We emphasize that all the constants involved are independent of xg&f).

Next, one can cover 2 by balls Bs,(x;) of the above type, jeN, such that
there exists a partition of unity (8;);en with respect to this covering satisfying
Dlaj<s DO, * <0;1P (5;2)|, where P; is a polynomial of degree s in one variable.
One has

185ul? 0 S A2 (@) LOsull_ o+ AT (2;)]|65ull2_ o

for every smooth function u on .
Replacing mg and kg by larger integers if necessary, we get

16l sO(A-’fo<wj>||9jLu||z,m,Q+Amos’W(xj)nejunil,g
L A—mos—ko (x5) / 0; |u|2 d)\)
Q

SMA_mOS”kO(xj)( > /Q 0;|D*(Lu)|? dA

la|<s—m
oyl o+ [ ejwuwzdx)

for some C, M >0; note that 67 *~A~26-272(g,,),
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Moreover,
MAT™osko (z)[16;ull2_, ¢
=MATmR ) [ ey u O dx
Rn

= MA~—05=ko (4 ) (1+]€12)°=16u(€)? dX

/{€|1+|€|222MA’"05“’“0(%')}

+MA*m0$—k°(xj)/ (1+1€])° 1 18;u(€) P dA
{142 <2M A0 ko (z)}

< 1052 g+ Cr AT Emos—kostko () 19 3

for some C">0. Thus, by (2.6),

16ul? o < 9 AT DY (Lu)|? dA+ 9 A2T% 2 4N
ERY

|| <s—m

for some ¢, T€N and s>1. So

_7s?
29 u <Z||9 ull} o SIAT Lull_p oA ulf g,
jeEN 5,02 JEN

ull? o=

which completes the proof. O

3. Some L? cohomology groups of the
d-operator on log §-pseudoconvex domains

In order to prove a solvability result for the d-problem with exact support
in pseudoconvex domains, we have to make a global assumption on the ambient
complex manifold as well as an additional assumption on the domain itself.

We let (X,w) be an n-dimensional Kiahler manifold. Let Q&€X be an open
set. Let 0(z) be the distance from z€Q to the boundary of Q with respect to the
metric w.

Definition. We say that Q is logé-pseudoconver, if there exists a smooth
bounded function ¢ on Q such that

(3.1) i00(—logd+1) >w in Q.

In particular every log -pseudoconvex domain Q admits a strictly plurisubhar-
monic exhaustion function, therefore €2 is a Stein manifold.
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Example 1. Let X be a Stein manifold and let Q€X be a domain which is
locally Stein, i.e. for every €02, there exists a neighborhood U, of x in X such
that QNU, is Stein. It was shown in [E] that there exists a Kéhler metric w on X
such that  is log é-pseudoconvex.

The same remains true if X is only assumed to admit a strictly plurisubhar-
monic function (see [E}).

In particular, every bounded weakly pseudoconvex domain with smooth bound-
ary in C” is log é-pseudoconvex.

Ezample 2. Let (X,w) be a Kéahler manifold with positive holomorphic bisec-
tional curvature, that is TH°X is positive in the sense of Griffiths. Then every
(weakly) pseudoconvex domain QE€X is log é-pseudoconvex (see [T], for the case
X=P", [E] and [Su]).

In particular, the complex projective space P" equipped with the Fubini—
Study metric is a Kéhler manifold with positive holomorphic bisectional curvature.
By [SY] we moreover know that a compact Kéhler manifold with positive holomor-
phic bisectional curvature is isomorphic to P™.

In general, § is not a smooth function in . However, in [St, p. 171], the
existence of a regularized distance having essentially the same profile as ¢ is proved:
There ezists a function AeC>®(Q,R) satisfying

a16(z) <A(x) <c6(z) and —QA(x)gBa(5(x))1~lal,

i

where z=(x1, ..., Tan) are local coordinates on X. The constanls By, ¢1 and ¢z are
independent of ).

Let (E, h) be a hermitian holomorphic vector bundle on X, and let NeZ. We
denote by L3 (9, E, N) the Hilbert space of (p, q)-forms u with values in E which
satisfy

Julfy = [ JudYav, < oc.

Here dV,, is the canonical volume element associated with the metric w, and
| - |w,n is the norm of (p, ¢)-forms induced by w and h.

Proposition 3.1. Let Q be a relatively compact domain in a Kdhler man-
ifold (X,w). We assume that Q) is log-pseudoconvex. Let (E, h) be a hermit-
ian holomorphic vector bundle on X and let N>1 and 1<q<n. Suppose f&
L,%’q(Q,E,N)ﬂKerg. Then there exists u€ L2 , 1(Q, E,N) such that du=[ and
Jully < £l
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Proof. This follows immediately from standard L? estimates in the form of [D].
Indeed, since A has essentially the same features as d exp(—) (cf. (3.1)), it suffices
to prove the statement with A replaced by § exp(—%) in the definition of the spaces
Lz,q(Q, E, N). But for N sufficiently large, we clearly have

iO(E)+Nidd(—log5+¢)®ldg > wldp

by (3.1), thus the desired vanishing result follows from [D]; note that —log §+1=
—log(dexp(—y)). O

Proposition 3.2. Let ) be a relatively compact domain in an n-dimensional
Kihler manifold (X,w). We assume that Q is log d-pseudoconver. Let (E,h) be a
hermitian vector bundle on X and let N>>1. Suppose f€Lg ,(Q, E, —N)NKer d,1<
g<n—1. Then there exists uc L ,_;(Q, E,~N +2) such that ou=f and ||lu| -N+25
[fll-n-

Proof. Suppose 1<¢<n—1 and let feL (Q,E, ~N)NKerd, N>>1. We de-
fine the linear operator
Ly:0L2, (Q,E*,N-2)-—C
8_4,0»—)/ .
Q

Let us first show that Ly is well defined.
Indeed, let 1, p2€ Ly (2, E*, N -2) so that p1 =0py. Then (@1 —p2)=0,

and by Proposition 3.1, since n—g>1, there exists o€ L2 ,, ,_1(Q, E*, N—2) such
that o=, —p,. But then

/f/\(gpl‘gog):/f/\(“jazlim(—l)q fAa
Q Q

e—0 an
— —lim FfAda=—lim I A (p1—02)
£-0 O\ e—0 N

with (Q.).~0 being an exhaustion of Q by smoothly bounded domains such that
Q. 2{2€Q|A(z)>¢}. Here we have used Stoke’s theorem several times. The third
equality is obtained as follows: Fix ¢<0 and choose for each large j>2/c a C*®
function x; such that x;=1 on Qy,;, x;=0 on Qy,;, 0<x; <1 and |Dx;|<Cj. Set
a;j=x;0€D™™971(§2). Then we have

/ fAO; :/ Xjf/\goz—l-/ fAOX; A
Q\Q. Q\Q. Q.
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and

2

gc/ |f|iA*Nqu/ i%lal2 AN dV,
O\ Qe Ny

<CIfIZnlall R s

/ FADdx; N
O\

Hence the dominated convergence theorem gives

/ fAOda= lim fAda;=(—1)7 lim (f Nay)
Q\Q.

J—ro0 Q\Qs Jj—o0 Q\Qs

=—(=1)¢ lim fro;=—(-1)¢ fAa.
I J a0, a0,

Moreover,

1/2 1/2
/ fA(sol—w)g(/ |f|3A—N) (/ l@lsleiAN) 0,
Q. o\, Q.

as €—0. Thus Ly(p1)=Ls(p2).
Now let

¢ €Dom(0: L2 ,,_,(Q, E*,N-2) — L2

n,n—qg+1

(Q, B, N—-2)).

By Proposition 3.1, there exists g<L? (9, E*, N —2) satisfying 05=0¢ and

n,n—q

[Zllv—2 <110l v—2- This yields

iLf<éso>|Lf<5@t| [ irs

< I-wIly—2 S 11— 10| v —2-

<UAl-wllelv

Thus Ly is a continuous linear operator of norm < f||_n and therefore, using
the Hahn-Banach theorem, Ly extends to a continuous linear operator with norm
SlIfll-n on the Hilbert space L2, ., (Q, E*, N—2). By the theorem of Riesz,
there exists ue L§ , 1(Q, B, —N+2) with ||ul|- y+2 S| f]| -~ such that for every pe

L2, _.(Q, E* N—2) we have

n,n—q

(-0 [ undp=Ls(0)= /Q fre,

ie. Qu=f. O
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4. The 8-problem with exact support
In this section, we will show some vanishing and separation theorems for the
J-cohomology groups with values in a vector bundle E supported in Q:
{feCy, (X, E)|supp f C Q}NKerd
O{feCys 1 (X, E)[supp fC§}

p,g—1

HP(X,0,B) =

This is done by solving the d-equation in the L?-sense as in the last section and
then applying the results of Section 2 to the operator D_N:Q_B_iN +a‘iN5 for N >0.
Here 8y is the von Neumann adjoint of J: L2 QB -N+2)—~L2 . (Q,E,—N).
An easy computation shows that 8 yu=AN"29" (A Ny), where 8., is the von
Neumann adjoint of @ with respect to the metric w on X.

Theorem 4.1. Assume that Q has Lipschitz boundary. Let ueLi,q(Q, E,—N)
satisfy Ou=f and 8" yu=0 with feCY (X, Q, E)NC,(Q, E).

Then uEC;fév)(X,f_l,E)ﬂCgfq(Q,E), where s(N) is a function proportional to
VN, N>1.

Proof. The above theorem is a consequence of the results of Section 2. Indeed,
since 5iNu:AN_25:)(A‘Nu), where 3_:: is the adjoint of 0 with respect to the
metric w on X, it is clear that O_p is an elliptic operator of polynomial growth
with respect to A on €). Since a_iNu:O, and du=f, we have D,Nuza—iNf. From
general results on domains with Lipschitz boundaries (see [G, Section 1]), we deduce
that 8" yfeCy *o(X,Q, E)nC (2, E) for some ko not depending on N. The

P;g—1 p,g—1
result then follows from Theorem 2.1, using a finite partition of unity. [

We are now ready to prove the main theorem of this section.

Theorem 4.2. Let Q be a relatively compact domain with Lipschitz bound-
ary in an n-dimensional Kdhler manifold (X,w). We assume that Q is logd-
pseudoconver. Let E be a holomorphic vector bundle on X. Then we have

HP(X O,E)=0 for 1<q<n-—1
and HP™(X, (), E) is separated for the usual C*°-topology. Morecover,

aez, (X,0,E) = ) {fecgf’n(X,Q,E)‘/Qf/\h:O

NeN

for allhe L2 _, o(Q, E*, N)ﬂKera_}.
Proof. Replacing the vector bundle E by AP(TH0X)*@F, it is no loss of gen-
erality to assume p=0.
We will begin by proving the following claim:
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Let fEC(’f,q(X,Q,E)ﬂcgfq(Q,E)ﬁKera_, 1<g<n—1, k>1. Then there exists
weC)™ (X, Q, BYNC§S,_ 1 (Q, B) such that Bu=f with j(k)~Vk .

Indeed, general results on Lipschitz domains (see e.g. [G, Theorem 1.4.4.4])
show that feLj,(Q, E,—2k). Proposition 3.2 implies that there exists u€
L(2)7q71(Q,E, —2k+2) such that Ju=f in . Moreover, choosing the minimal so-

lution, we may assume 8_i2ku:O. Applying Theorem 4.1, we then have
wel™ (X, E)nCss, 1 (9, E)

with j(k)~Vk.

Let us now prove the theorem.

That H*!(X, 2, F)=0 follows immediately from the above claim and the hy-
poellipticity of 3 in bidegree (0, 1).

Now assume that 1<g<n—1 and let fngf’q(X,Q,E)ﬁKer 0. By induction,
we will construct uy eC{iq_l(X, Q, E)NC5S,_1(, E) such that Our=f and so that
| Uk1—Uk]j(k)—1 <27k, It is then clear that (uy)ren converges to ueCss, 1 (X, O, FE)
such that du={.

Suppose that we have constructed U1,...,U;. By the above claim, since f&
C5o,(X,Q, E), there exists a1 echt — (X, E)ﬂcoq (Q, E) such that f=0ag 1.
We have agy1—ur€Cf , (X, 9, E)NCSS, 1 (2, E)NKer d. Once again by the above
claim, there exists gECészQ(X, Q, EYNCE, 5 (Q, E) satisfying o1 —ur=0g. Since
C55, 2(X,Q, E) is dense in Cgfg(X, Q, E), there exists g 11€C5%, 2(X,Q, E) such
that [g—gr41j) <27, Define w1 =axi1—0gkh+1 EC(’)CZL(X, Q,E)NCs, (2, B).
Then Jupy1=f and |wgi1—ukljh)—1=109—gk+1i06)—1 <19~ g1 jom) <27F.

Thus wugt1 has the desired properties.

It remains to show that

aege, (X, 0,5 = {fecgfn(X,Q,E)!/fAh:o
NeN §

for all he L2 (9, E*, N)NKer 8_}.

This clearly implies that H%"(X,Q, E) is separated.
First of all, suppose f=0«a with aeCss, 1(X,Q,FE) and let he L7 o(Q, E*,N)N
Ker 0. Then we have

/f/\h /804/\h—hm aAh=—lim JdaAh=— lim AR
e—0 =0 Jorq. =0 Jo\Q.
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with Q. D{z€Q|A(z)>¢} and

1/2 1/2
/ f/\h‘ < ( / |f13,A—N-2) ( / |h13,AN+2) <ellfll-w-2lhlly —0,
O\ O\Q. O\

as £->0, which shows the inclusion C (notice that feCgS,(X ,Q, E) implies that
feL} ,(Q,E,—N—2) for all NcN, and see the proof of Theorem 3.2 for the justi-
fication of some of the equalities).

Now, let us take

fe N {f €Co, (X, E) } / fAh=0 for all hewa(Q,E*,N)ﬂKerg}.
NeN a
We first show that for each NeN, N>>1, there exists fyv€L§,, 1(, E,—N)
satisfying 08y =f. ,
To see this, we define the linear operator

Ly:Im(9: 12 4(, E*,N) — L2 (Q, E*, N)) — C,

5@%/ fAp.
Q

First of all, notice that Ly is well-defined because of the moment conditions
imposed on f.

By Proposition 3.1, Ly is a continuous linear operator and therefore extends
to a continuous linear operator on the Hilbert space L2 ,(Q, E*, N) by the Hahn—
Banach theorem. By the theorem of Riesz, there exists Sy €L§,,_1(€, E, —N) such
that for every p€ L2 (2, E*, N) we have

-1 Op=Ly(p)= ,
(—1) /QﬁN/\ o="L(p) /Qpr
i.e. 3_ﬂN:f

Now the proof follows the same lines as above, and we construct (ug)reN€
C§ . 1(X,Q, E) converging to ueCgs, (X, Q, E) such that Ou=f, which concludes
the proof. O

Corollary 4.3. Let QG X be a C*™-smooth domain in a compact Kdhler man-
ifold (X,w) of compler dimension n. We assume that ) is log é-pseudoconver.
Let E be a holomorphic vector bundle on X. Let fcCpS, (092, E)NKer Oy satisfy the
tangential Cauchy—Riemann equations on 08, ¢<n—2.

Then there ezists F€C(Q, E) such that Flog=f and IF=0.

For g=n—1, the same holds true if there exists fecgfn_l(fz, E) such that f|5Q=
f, Of vanishes to infinite order on O and Jo df ANh=0 for all heLl? ,o(Q,E*,N)N
Ker 8, for all NcN.
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Proof. Choose fEC];’f’q(X, E) such that flaQ:f and such that Jf vanishes to
infinite order on 92 (for the existence of such an extension see e.g. [Ra, Lemma 2.4]).
Applying Theorem 4.2, there exists heC%, (X, Q, E) such that 0h=0 f. The function
F:=f—h is then a d-closed C* extension of f to Q. O

Corollary 4.4. (See [HL}) Let QG X be a C*-smooth domain in a compact
Kdihler manifold (X,w) of complex dimensionn. We assume that Q is log §-pseudo-
convez. Let E be a holomorphic vector bundle on X. Assume that HP9(X, E}=0
and put D=X\Q.

Then for every O-closed form fEC]‘;Oq(E,E), which is smooth up to the bound-
ary, there exists ueCyS, (D, E) such that Ju=f, 1<qg<n—2.

For g=n—1, the same holds true if there exists f € oon—1(X, ) such that flo=

7, 5Jf vanishes to infinite order on 98} and fQ 5f/\h:0 forall hGL?prvo(Q, E*,N)n
Ker 0, for all NeN.

Proof. Choose f €Cpo, (X, E) such that fis=f. Then 8f vanishes to infinite
order on J€. By Theorem 4.2, there exists h€Cp (X, Q, E) such that 9h=3f. The
function F:=f—h is then a d-closed C*> extension of f to X. As H?9( X F)=0,

we have F'=0u for some 1€ o—1(X, E). Then u|p has the desired properties. [

Remark. Corollary 4.3 is related to the nonexistence of smooth Levi flat hy-
persurfaces in P™, n>3, which was proved by Siu [S]. Indeed, as observed in [S], to
establish this nonexistence result, it suffices to solve the equation Jyu=f on a Levi
flat hypersurface M in P", where f is a smooth dj-closed (0, 1)-form on M and u
is a smooth function on M. Since H%!(P™)=0, it then follows from Corollary 4.3
that this Op-equation can be solved if n>3. We thus get a different proof of Siu’s
theorem.

5. The J-equation for extensible currents

The results of the previous section will allow us to solve the d-equation for
extensible currents by duality.

Let 2CX be an open set in an n-dimensional complex manifold X. A current
T defined on € is said to be extensible, if T is the restriction to {2 of a current
defined on X.

It was shown in [M] that if © satisfies 0=0 (which is always satisfied in our
case), the vector space ﬁlg’q(X ) of extensible currents on  of bidegree (p, ¢) is the
topological dual of C° (X, Q)NDrPm9(X).

n—p,n—q
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Theorem 5.1. Let 2 be a relatively compact domain with Lipschitz boundary
in a Kihler manifold (X,w). We assume that  is log §-pseudoconvez.

Let Teﬁlg’q(X) be an extensible current on Q of bidegree (p,q), q>1, such
that OT=0 in Q. Then there exists Seﬁlg’q_l(X) satisfying 0S=T in .

Proof. Since € is relatively compact in X, we have

Co (X, )ND P UX)=C0 (X, Q).
Let Teﬁlg’q(X ) be an extensible current on  of bidegree (p,q), ¢>1, such that
9T=0 in .
Consider the operator
Lp:BC2 (X, Q) —C,

O — (T, ).

We first notice that L is well defined. Indeed, let pcC52,, (X, Q) be such
that 0p=0.

If g=n, the analytic continuation principle for holomorphic functions yields
©=0, so (T, p)}=0.

If 1<g<n-—1, one has p=0a with a€C ,,, ,_1(X,Q) by Theorem 4.2. As
DroPn=1=1(Q) is dense in C2,, ,,_,1 (X, Q), there exists (o)) jen eprrn-a-1(Q)
such that Joy—0a, as j—+oc, in €22, (X, ).

Hence (T, o)y=(T, 0a)y=lim;_, { o (T, dar;) =0, because 9T=0.

By Theorem 4.2, 0C° , ,,_ (X, Q) is a closed subspace of C2° ;. 1(X, ),

and thus a Fréchet space. Using Banach’s open mapping theorem, Ly is in fact
continuous, so by the Hahn-Banach theorem, we can extend Lt to a continuous
linear operator ET:Cﬁp)n7q+1(X, 0)—C, ie. Ly is an extensible current on {2
satisfying

(Ol ) = (~1)" ULy, Bg) = (~ 1) (T, )

for every peC® (X,%). Therefore T—(—1)P*99Ly. O

n—p,n—q
For the notion of differential forms admitting distribution boundary values,
which is used in the following corollary, we refer the reader to [LT].

Corollary 5.2. Let Q&@X be a C®-smooth relatively compact domain in a
Kaihler manifold (X,w). We assume that §) is logd-pseudoconver. Let f be a
smooth 0-closed (0,1)-form on Q admitting distribution boundary values on OS2

Then there exists a smooth function g on Q admitting a distribulion boundary
value on O such that dg=f on Q.
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Proof. As f admits distribution boundary values, we may view f as an ex-
tensible d-closed current on € (see [LT]). Applying Theorem 5.1, there exists an
extensible current S of bidegree (0,0) on Q such that 9S=T.

The hypoellipticity of d in bidegree (0,1) yields that S is in fact a C>°-smooth
function on 2. But a C*°-smooth function S, extensible as a current, such that
a5 admits distribution boundary values, admits itself distribution boundary values
(see [Sa, Lemme 4.3]). O

Corollary 5.3. Let QX be a C®-smooth domain in a Kdhler manifold
(X,w). We assume that Q is log §-pseudoconvezr. Then we have

HY(Q,00) =0
for every ¢>1, where Oq is the sheaf of germs on § of holomorphic functions
admitting a distribution boundary value.

Proof. We have the following exact sequence of sheaves on Q

0—Ogq — D)L LD x)—o0.

Indeed, that Ker(a_:ﬁlg’o(X) %5/%’1 (X))=0gq was proved in [LT], and the exactness
of the rest of the sequence follows from Theorem 5.1.
Then the de Rham—Weil theorem yields

5.450,q 75/0,q+1
H9(0,0g)= 0D ) Do (X)
Im(0:D &% (X)) —D g¥X))

and by Theorem 5.1, the right-hand side of the above isomorphism is 0 for ¢g>1. O

6. Boundaries of weakly pseudoconvex domains

Let 2€X be a domain with smooth boundary M in an n-dimensional complex
manifold X. We then denote by HP%(M) and HZ4(M) the cohomology groups
of the tangential Cauchy-Riemann operator on smooth forms and currents on M,

0<p<n, 0<q<n—1.

Theorem 6.1. Let X be an n-dimensional Stein manifold and QEX a do-
main with smooth boundary M. We assume that Q) is weakly pseudoconvex. Then
HPY(M)=H?2(M)=0 for 0<p<n and 1<q<n—2. Moreover, H?*(M), HZ,O(M),

HP"Y(M) and HEPY(M) are infinite-dimensional and, if n>3, separated.

In the case X =C", the statement about the cohomology groups HP4(M) was
already proved in {Ro].
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Proof. Tt follows from [HN1] and [HN3] that HPO(M), HP" (M), HEY(M)
and HP"~1(M) are infinite-dimensional.

Now let feCpS, (M) satisfy the tangential Cauchy—Riemann equations, 1<g<
n—2. It follows from Corollary 4.3 that there exists F'€Cy%, (€2) satisfying F|y = f
and F =0. Using Kohn’s result on the solvability of the d-equation with regularity
up to the boundary in weakly pseudoconvex domains [K1], [K2], there exists U€
Ceo,_1(Q) satisfying 0U =F in Q. Then u=U |y satisfies dpyu=f. Hence HP9(M)=
0 for 1<g<n—2.

Moreover, we know from abstract duality arguments (see [Se]) that HE2(M)
is separated if and only if H™ P"~9(M) is separated. Furthermore, if any one of
these equivalent conditions is satisfied, we have HZ9(M)~H""Pn—0=1 (M)’

Therefore we have HZ2(M)=0 for 2<q<n-2 and HZ? (M) is separated for
n>3; to complete the proof of the theorem, it remains to show that HZ:1(M)=0 if
n>3, 0<p<n.
To prove this, we note that we have a direct splitting
HE2 (M)~ HP (Do (X))@ HP (D' (X)),

g>1. Here Hp’q(ﬁéz(X)) (resp. Hp’q(ﬁ/X\Q(X))) denote the d-cohomology groups
for currents on 2 (resp. on X \2) which are extendable to X. Indeed, it is a well-
known fact that we have the following long exact sequence (cf. [HN2] and [NV])

o= HPUX) — HP9(Dy (X)) — HP (D) (X)) — HPITH(X) — L.,

where H nq(ﬁ’x\ (X)) are the d-cohomology groups of currents on X\ M, which
are extendable across M. Since X is Stein, it follows that H?9(X)=0 for ¢>1.
Together with the well-known isomorphism HZ2(M)~HP2(D}, (X)) (see [HN2]
and [NV]), this yields

HEI(M) = HP(Dy (X)) = HP(Do (X))@ HP (D a(X)), q2>1.

cur -

Theorem 5.1 implies that HP9(Dg,(X))=0 for ¢>1. That HF;L(M)=0 for n>3 is

cur

now an immediate consequence of the following lemma. [

Lemma 6.2. Let X be an n-dimensional Stein manifold and Q&X a do-
main with smooth boundary M. We assume that € is weakly pseudoconvexr. Then
~/ .
HPI(Dy\g(X))=0 for 1<q<n-—-2.
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Proof. We first prove the following claim:

Let 1 and Q3 be two weakly pseudoconvex domains with smooth boundary such
that Q1 €Q€X. Then HP4(X,Q:\Q)=0 for 2<q<n—1 and HP"(X,Q:\ Q) is
separated, 0<p<n.

Indeed, let feCrl, (X, 02\ Q1 )NKer 9, 2<g<n—1. Then, since ), satisfies the
assumptions of Theorem 4.2, there exists u€C;5, (X, Q2) satisfying du=f in X.
This implies that du=0 in ;. Hence, since g—12>1, there exists heCp%, (1)
satisfying Oh=u in € (see [K1] and [K2]). Let h be a smooth extension of h
to X with compact support in €y and set g=u—38h. Then g satisfies dg=f and
supp gC €2\ ;. The separation statement is proved similarly, using the separation
statement of Theorem 4.2.

With the same proof as the proof of Theorem 5.1, it follows from the above
claim that Hp’q(ﬁlm\f—21 (X))=0 for 0<p<n and 1<qg<n—2.

Now let ¥»€C>(X) be a strictly plurisubharmonic exhaustion function such
that <0 on € and set Q;={z€ X |9(z)<j}, where we may suppose that 0Q; is of
class C*.

Let Teﬁl}?’\qQ(X) be O-closed in X\Q, 1<q<n—2. As shown before, there

=p,q—1

exists S;€Dx\g (X) satisfying 05;=T in Q;\Q. We then have 9(5;41—S5;)=0 in
Q;\Q.

First assume ¢>2. Then there exists H 65;?’\%_ 2(X ) such that 9H=S;.1—S,;
in ;\Q. Setting S;11=S5;11—0H, we have 9S;41=T in Q; 1 \Q and S;11=5; in

Q;\ . We can thus find a sequence (G;);en, G Eﬁﬁ\qgl(X), satisfying 0G,; =T in

;\Q and Gj11=G; in Q;\Q. Then (G;); converges to Geﬁl)?’\qgl(X) such that
JG=T in X\

Now suppose ¢g=1. Then S;41—95; is a holomorphic p-form on Qj\Q. By the
Hartogs phenomenon on Stein manifolds, S;1 —S5; extends to a holomorphic p-form
on ;. Moreover, we may approximate holomorphic p-forms on Q; uniformly on
2;_1 by holomorphic p-forms on €2, hence there is a holomorphic p-form H on
Qj1o satisfying [(H —(S;31—55), )| <277 | for every peC® (X, Q;_1\Q). Let
XE€C™(X\Q) satisfy x=1 on 9., and supp xCQ; 2. Setting S;41=5;,1—xH, we
have S;11 675/;;’\%1()(), dS;41=T on 2;41\Q and |<§j+1 — S, )| <277]p| for every

peC® L (X,Q;-1\Q). Thus there is a sequence (G;);en, G 623;’;’\‘151()(), so that

n—p,n
0G;=T in Q;\Q and [(G;11—Gy,¢)|<277|¢] for every eeCr (X, Q1\Q). It
follows that (G;)jen is a Cauchy sequence in the weak topology. Thus (G,)jen
converges weakly to G, where G in fact is an extensible current on X \ ) satisfying

dG=Tin X\Q. O
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7. Applications to Levi flat C R manifolds

Here we want to solve the tangential Cauchy—Riemann equation for currents
on certain domains in Levi flat submanifolds of a Stein manifold. The submanifolds
will be of any codimension where the problem makes sense. More precisely, we
consider the following set-up.

Let M CX be a smooth generic C'R manifold of real codimension k in an n-
dimensional Stein manifold X. We moreover assume that M is globally defined
by

M={z€X]|01() = . = oa(2) = O},

where the p,’s, 1<v<k, are real C> functions in X satisfying g1 A...AQpr#0
on M. Our most important assumption is that M should be Levi flat, i.e.

1000, (2)(§,£) =0
for v=1,...,k, z€ M and every £€C" satisfying

~ o
18,2]‘

(2)§;=0
Jj=

for u=1, ... k.

E k k

For v=1,...,k, we set p,=0,+¢3 o7 and @o=—3__ 05t > 5, o7,
where 1 is a strictly plurisubharmonic positive function of class C* on X. Then for
every ordered collection of k integers 0<i; <...<ix <k we have Jg;, A...ADg;, #0
on M. TFor an adequate choice of ¢ we can then arrange it so that if we set

Q,={z€X |, (2)<0}, v=0, ..., k, then each , is a weakly pseudoconvex set and

k k k k
M=%, x\M=J92, x=J2 and Q=0
v=0 v=0 v=0 v=0
Let © be a piecewise C*° bounded weakly pseudoconvex domain such that €
intersects each (2, transversally.
If U is any open set in M, we denote by HE:2(U) the cohomology groups of the
tangential Cauchy-Riemann operator acting on currents in U, 0<p<n, 0<g¢<n—k.

Theorem 7.1. Let M and Q be as above, 0<p<n and 2<qg<n—k.
Then HP:Z(MNQ)=0.
Moreover, let Q' be any open set which is relatively compact in Q. Then the
restriction mapping
HEL(MNQ) — HEL(MNQ')

cur cur

is the zero mapping. In other words, let T€[D'PY(MNSQY) such that 0y T=0 in
M. Then there exists SE[D'PO)(MNQY) satisfying OnS=T in MNY.
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Proof. Since 2 is Stein, we have the following well-known isomorphisms (cf.
[HN2], [NV] and the proof of Theorem 6.1)

cur

HEZ(MNQ) ~ HPHR (D, ()

for ¢>1. Without loss of generality, we may assume that Q' is also weakly pseudo-
convex. Then the above isomorphisms also hold with Q replaced by €’. The theorem
is then an immediate consequence of the following lemma. For the case g=1, note
that all diagrams induced by the restriction mapping are commutative. [

Lemma 7.2. For 0<p<n and ¢>k+1 we have H”’q(ﬁ/gz\M(Q)):O.
Moreover, let Q' be any open set which is relatively compact in Q. Then the
restriction mapping

~/ ~/
Hp’k(DQ\M(Q)) — Hp’k(DQ/\M ()

is the zero mapping.

Proof. The proof follows an induction argument of [NV]. By induction on I,
we show the following claim:

Let Q, Dy, ..., D; be piecewise smooth domains in X which are locally Stein
and which intersect pairwise transversally. Set D:QOUE.:O D; and let Q' be any
relatively compact open set of .

If Teﬁle’q(Q) satisfies 0T=0 in DN, and ¢>1+1, then there exists S€&
25’5”’1(9) satisfying 0S=T in DNLY'.

First assume that [=0 and let Teﬁlggm,(fl) satisfy 0T'=0 in DyN¢Y', ¢>1.
Without loss of generality, we may assume that €’ is a piecewise smooth domain
which is locally Stein and which intersects Dy transversally. Then Q'NDy has
Lipschitz boundary and is relatively compact in €2. Moreover, since X is a Stein
manifold and since ¥’NDy is locally Stein, it follows from [E] that ©'NDy is log 6-
pseudoconvex for some Kéahler metric on X. We apply Theorem 5.1 and conclude
that there exists S eﬁle;qr;Ql () satisfying 9S=T in ¥’NDy. This proves the claim
for [=0.

Now assume the claim is true for I—1 and let us prove it for [>1. Set U;=
QNUj—g D; and Uy=QND;. Let TeD}(Q) satisty 5T=0in DY, ¢>1+1. Then,
by the induction hypothesis, there exist S;, S eﬁlg’q_l(Q) such that 05;=T in
UrNEY and 0So=T in UsNSY. Then we have 0(S1—55)=0 in U NU;NQ. Again,
since ¢—1>1, we may apply Theorem 5.1 to the domain U;NU2NEY; note that
UNU2N$Y is relatively compact in © and locally Stein with Lipschitz boundary.
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We conclude that there exists Heﬁg’qd(ﬂ) satisfying OH =S8, — S, in UjNU>NEY.
We define the current S of bidegree (p,q—1) on D by §=8; in U; and S=S2+0H
in Us. Then S is well defined and §S=T in &/ HU;:O D;. Moreover, S is extendable
to a current on (. This proves the claim.

Let us now prove that for every relatively compact subset 2’ of Q and every
Teﬁg{‘ﬁw(Q) satisfying 0T'=0 in Q\ M, ¢>k, there exists SeDg\i\/f (©) such that
0S=T in Q'\ M.

We recall that Q\M=J*_,(©2,nQ) and N*_, 2, =0.

Let TGD&%\J(Q) satisfy 0T=0 in Q\ M, ¢>k. From the above claim, there

exist S1, 52 GDgﬂwl(Q) such that 88, =T in Uﬁ;é(QyﬂQ’) and 8S,=T in Q,NEY.
This settles the case k=1, since in this situation, QN and ;NQ are disjoint

sets.
Now we assume that k>2. Then 9(S; - S)=0 in

k—1 k—2
U 2nQene’ = | (9NN (Qk—1NQ%NLY).
v=0 v=0

We set W1:U ( NENQ) and Wo=80, _ 1NQENQ. Then, since ﬂu o £, =0,
W, and W, are disjoint sets. Thus, in order to solve the 0-equation for exten&ble
currents on Wi UWa, it suffices to solve the d-equation for extensible currents sep-
arately on Wy and Ws. Since g—1>k—1, it then follows from the above claim that
there exists GED&%X(Q) satisfying 0G =S8, — Sy in (W UW2)NY. Tt follows that
the current S defined by

_{ S in JFZE (,n9Q),
B Sz+5G in QN

is well defined, extendable to © and satisfies 0S=T in '\ M.

We have thus proved the last assertion of the lemma.

Now suppose that ¢>k+1 and let TGD&%VI( ) satisfy T=0 in Q\M. Let
(Q)ien be an exhaustion of €2 by smooth pseudoconvex domains. We have just
proved that for every ¢€N, there is S; EDI&M () satisfying 09;=T in Q\ M.
Then 9(S;41—S:)=0 in Q;\ M. Thus, since ¢—1>k, there is Hieﬁgg\f(ﬂ) satis-
fying Sit1—S;=0H; in U\M. We set S;41=Sis; —9H;. Then Siy1eDas; (Q),
0S;i41=T1in ;|\ M and S;;1=S; in Q;\ M. Thus it is possible to construct a se-
quence (S;)jen, S; €Dy (Q) satisfying 5;=T in )\ M and S;41=5; in )\ M.
Then (S;) e~ converges to a current SE’D?{@M (Q) satisfying 0S=T in Q\M. [0
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