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Fundamental solutions of the acoustic and
diffusion equations in nonhomogeneous medium

Victor P. Palamodov(!)

Abstract. A fundamental solution of the acoustical equation with a variable refraction
coefficient is constructed. The solution satisfies the limiting absorption and radiation conditions.
The optimal high frequency estimate is proved for square means of the solution. The source
function for the diffusion equation is a by-product of this construction.

1. Introduction

Consider the generalized Helmholtz equation
(1) (A4w?n? +m)u=0

in a Euclidean space X with time frequency w and real variable refraction coeffi-
cients n and “mass” m. The acoustical (wave) equation in frequency domain is the
particular case (m=0). A fundamental solution for (1) is a function S(y,z:w) in
X x X that satisfies the equation

(Ap+wn?(z)+m(x))S(y. x:w) = 6{z—y).

We say that the fundamental solution satisfies the limiting absorption condition, if
it admits an analytic continuation to the halfplane C. (wgy)={w:Imw>0. |w|>wo}
for some wy >0 that tends to zero, as [w|—>>. We call such a fundamental solution
a source function of (1). The uniqueness of the source function is easy to check
(see below). The source function describes a divergent time harmonic wave with
the phase function ¢=—wt. We here state the existence of a source function for a
smooth medium in the plane X, which is homogeneous outside a compact set. We

(1) Partially supported by a stipend of the Mathematical Scientific Research Institute at
Berkeley, 2001.
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also give the estimate (Section 3) which shows the rate of decrease of the weighted
square means of the source function, as |w{—>c. This information is applied to the
analysis of near scattering fields, see [8].

The diffusion equation in the plane can be reduced to (1) and we show that
the decreasing fundamental solution can be obtained from the source function by
transformation of the frequency w.

[ thank Frank Natterer for many stimulating discussions.

2. Uniqueness

Proposition 2.1. If S is a source function for (1), then the integral

1
(2) E(y,x,t)iQ—/exp(—zwt)S(y,a::;u)dw? I'={w:Imw=wyp+7 and 7 >0},
mTJr

is the forward fundamental solution of the operator 3=A, —n?8? +m.

Proof. The integral (2) converges in the space of tempered distributions to a
fundamental solution of the wave operator. On the other hand. it does not change
if we replace I' by I'+77, 7>0. This gives the factor exp(—7t) in an estimate of E,
which implies £=0 for t<0, i.e. E is the forward fundamental solution of the wave
operator. [

Corollary 2.2. Any two source functions coincide.

Proof. This follows from the uniqueness of the forward fundamental solution.
To check the uniqueness, we note that the difference of any two forward funda-
mental solutions vanishes for <0 and consequently for all ¢ by compactness of the
dependence domain. O

3. The main result

We assume the following conditions:

(x) n€C3(X). n>0, and n=ny is constant in X\D. where D is a compact set
in the plane X;

(x*) the metric g=n® ds? is nontrapping in the plane, i.e. any geodesic curve
in D quits the set D in finite time;

(x+x+) meC?(X), and m=my is constant in X\D.
Denote by t(-,-) the distance function in the space (X,g) and by #o(y,z) the
distance for the metric go=min{n?(z).n3} ds>.
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Theorem 3.1. Under the conditions (x). (x*) and (xxx) there exist a positive
wo, and a source function S(y,z;w) in X x X xC,(wo) for (1) that salisfies the
inequality

(3) f lexp(Imwto(y, £))S(y. 2:w)* dx < i‘(C'lT‘f‘CQTS)
to(y.z)<T ||

uniformly for yc X and 7>0, that is holomorphic and continuous with respect to w
in the closure of C, {(wg) for x#y and in the sense of Loioc(X) near the diagonal
=Y.

Note that a result of N. Burq [4] contains the estimates ||S |=0(w™1/2) for
local operator Ly-norms in spaces X of arbitrary dimension for w— oc near the real
axis.

Given a forward fundamental solution E for the wave operator in a medium
with velocity n™!, we could find the source function by means of the inverse Fourier
transform of E, provided we can control the growth of E as t—oc. A local con-
struction of the fundamental solution E for second order operators with analytic
coefficients was done by Hadamard [7]. The case of smooth coefficients was consid-
ered by Sobolev [9]. Duistermaat and Hormander [5] have constructed the forward
propagator for arbitrary strictly hyperbolic operators by the method of Fourier in-
tegral operators. However, this approach is not easy to implement directly, even in
the situation of Theorem 3.1, since there is not enough information on the growth of
the fundamental solution as t—o0c. We here apply a more involved method. First,
we construct a forward parametrix P for the wave equation. For this we choose a
consistent chain of singular functions starting from Hadamard’s fundamental solu-
tion. Our construction is parallel to that of [5]. but we use simple singular functions
rather than Fourier integrals. The time Fourier transform of P will be a parametrix
for (1). Finding the correction term, we complete the construction.

Remark. The condition dim X =2 helps to keep the volume of this paper lim-
ited. No essential difficulty appears in the general case, except for that a more
detailed analysis of the energy in the caustic area is necessary.

Corollary 3.2. The forward fundamental solution for arbitrary T satisfies the
tnequality

/( . /|E6(y,x,t)|2dtd:1:SC’O(ClT+C275)10g5,
toly,x)<Tt /R

where
1 —
EE(y,x’t)ig/ exp(‘WOS)E(y,I.s)p<t S> ds
R




122 Victor P. Palamodov

and p is an arbitrary function in R with compact support such that
x ;
/ |Z(£expo)|’do < x.
0

Proof. By Parseval’s theorem,

/ |E Izdt———/ |\,.z () y X J./-f—lw())l d\.o

and we apply (3). O

Corollary 3.3. The source function has a symmetric kernel (the reciprocity
property), i.e. S(y,z;w)=S(z.y:w).

Proof. Take an arbitrary w. such that Imw>0: then for arbitrary y and x

Sy, z;w)= /Swa d~*/5 LO,.8(x. 2z w) dz

:/ Sz, z;w)0,.S(y. 2:w) 2:/ S(r.z:w)d(z—y)dz=S(x. y:w).
X X

where 0, =A, +w?n?+m and the function S(y. z:w) is fast decreasing with respect
to z according to (3). The equation S(y. r:w)= 5(1 y:w) is valid for real w because
of the uniqueness of the analytic continuation. [l

Corollary 3.4. The function S(y.x:) is real for v>wg.

Proof. The function S(y.z:w)=5(y.2: —&) is also a source function for the
real operator (1). By uniqueness it coincides with 5. O

Proposition 3.5. The source function satisfies the Sommerfeld radiation con-

ditions:

S(y,z;w)=0(r"*?) and (%—zun())S(y,a‘:w):O(r_3/2), asr=|z—y|— .

Proof. Apply the Helmholtz operator [ q=A,+w?’n3+mg for the homoge-
neous medium
uoS(y. z:w) =0, (x)+T (y. x:w).

where T(y, z;w)=[mg—m(x)+w?(n—n?(x))]S(y. x:w) and set

S(y, z:w) = Solz—y: w /So VT (y. z:w) dz.
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where Sy(z;w) is the source function in the homogeneous medium. We have

OooS(y. a:w)=08,+T(y. x:w).
It follows that OuoU(y.z;w)=0, where U=S—S. Note that the function S has
analytic continuation to the halfplane C.(0) since the function Sp has such a
continuation. Apply Proposition 16.1 for the coefficient pg=+/w?ni+mg. where
|w|>[mp|/?ng!, and Im p>0. This gives S=0(|w|3/2 exp(— Im po|z})) for large w;
this, together with (3), implies

(4) / lexp(Im wito(y. 2))U (y. z:w)|? dx < |;u]3(ClT+CgT5).
to(y,x)<t
The Fourier-Laplace transform

Viy,z. t) = /r exp(—wt)U(y. a:w) dw

is well defined for the curve '={w:Imw=7}. By (4) the integral converges for
arbitrary 7>0 in the distribution sense and satisfies gV =0. It decays to zero for
t<0, as T— o0, but, on the other hand, does not depend on 7. Therefore V=0 for
t<0; hence V=0, by the uniqueness theorem for the wave operator. It follows that
S=S. We check that S satisfies the radiation condition. It is true for Sy and also
for the term fD So(z—z:w)T(y. z;w) dz. since the integral is taken over the compact
set D. O

Remark. For Schrédinger-type equations. the limiting absorption principle and
the radiation conditions were studied by D. Eidus [6].

4. The diffusion equation
The diffusion equation in the optical tomography is

(5) %%—f—w, VYD pud =g,

where ®=®(z,t) - the photon density. ¢ the density of the source. p=p(z) is the
absorption coefficient measured in the unit metre™!. 5(x)>0 is the inverse diffusion
coefficient measured in metres, and c is the light velocity measured in metre/second.
This is the Pj-approximation to the transport equation, [1]. In frequency domain
it appears as

-~ A=
—<V.zV>¢>+u<I>+zE<I>:q.
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For the unknown function W=13'/2® the equation
A —1/2
AU+ | —1—+4m ¥ =—3 q
cx

holds, where m=—3"1/2A3'/2—5~1y Tt takes the form (1) for n=(cx)"'/2,

w?=—1\, where X is endowed by dimension second~?. Define

Sp(y.asA) = =28y (y. x: V—id),

where Sy is the source function of (1) and Imw=Im v —A >0.

Corollary 4.1. If the coefficients p€C°(X) and »€C3(X) are constant in
X\D for a compact set D and n=(cx)~/? satisfies the condition (xx), then there
exists a function Sp(y, z: \) defined in X x X x (C\iR.) that possesses the following
properties:

(i) it satisfies

(—(V, %V>+M+Z%>SD(ZJ, A =0(-—y);

(ii) it is holomorphic in A, and
(iii) 4t decreases fast as to(y, z)—oc and the inequality

A 1 -
/ : ]exp(\/|x\|—Im)\t0(y,;r))SD(y.x;)\)|2dfcSW(C&T%—Cﬂ‘“)
to(y,I ST

holds for 7>0, where ty is the distance function as in Theorem 3.1.

Corollary 4.2. The function

E(y,ar,t):%/I . OSD(y,x;)\)exp(z)\t)d/\
mA=7<

is a fundamental solution of the diffusion equation (5).

5. The parametrix of the wave equation

First, we construct a forward parametrix P=P(y.x.t) for the wave operator
0=A,-n?8?+m in space-time X x R. We shall use the coordinates x.?;{. 7 in the
phase space ®=(X xR)x (X xR)*. where £ and 7 are conjugate to the space-time
coordinates z and ¢t. This means that a=£ dx+7dt is the canonical contact form
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in ®, where & dz=¢; dz1+& dzo. The function n?(z)72—|£[? is the symbol of this
operator. Consider the Hamiltonian flow generated by h(z:£.7)=1(n?(z)7? - [¢]?):

L

dx B dt
- - =

&7—_67

(6) —n(z)Vn(z). r>0; 7=L1

Fix a point y€ X and take all the solutions with initial data
z(0)=y, t(0)=0, &0)eT;(X) and [£(0)]=n(y).

Let A, be the union of all trajectories of the flow. This is a smooth surface in ®. We
have |{|=n(z) and the contact form « vanishes in A,. by Jacobi’s theorem. This
means that the conic set in ® generated by A, is a Lagrange manifold.

Let 7: ®— X be the natural projection; the image of a solution of (6) is called
a ray. It is a geodesic for the metric g. The set L,=n(Ay) is the union of rays
starting at y; it is called the front of the wave which starts at y. The set Ky=
Ly+{(0,t):¢>0} is called the future conoid of y: the boundary GK, is the first
wave front. Consider the union K=/, x ({y} x K,)={(y. 2. t):t=>t(y.2)}.

Lemma 5.1. There exists a kernel P in X x X xR, supported by K such that
its Fourier transform in C,(0) satisfies the inequalities

~ . ) )
(7 / exp(2 Imwi(y, 2))| Py, ;)2 dz < —(Cy7+Cor).
ty,x)<r |
~ . ) )
¥ / exp(2Imwt(y. 2))|Q(y. z:w)|* do < W(Clr+cgr°),
t(y,x)<T o

where Q=[P —4§, .

The notation A is used for the time Fourier transform:
1

Alw)=F(A)= —/ exp(—wt)A(t) dt.
271' R

Proof. We construct the kernel P in several steps. We will let e be a real
smooth function with compact support in R that is equal to 1 in a neighbourhood
of the origin; it need not be the same in all steps.

Step 1. Choose 7>>0 so small that the geodesic coordinates are defined in the
neighbourhood Up={(y,z):t(y,2)<7o} of the diagonal in X xX. We define the
parametrix in Uy by Hadamard’s method:

Ao(yv T, t) = e(t_t(y7 w))e(t—t(y, ‘r))(tQ _'tQ(yt I))_l/za(yt T, t):
a(?/: T, t) = ao(yv $)+(t2 _tQ(y) x))al(ye I)

(9)
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Here t(y,z) denotes the distance from y to z in the metric space (X.g): it is a
smooth function in Uy. The amplitude a(y.x) is a smooth function with respect to
the polar coordinates centered in y such that

(10)  DOAo(y,z.t) =d(z—y)+0(t—t(y. 2))(t2 — 2 (y. ) 2b(y, x. t)+ By, 2, 1)

for some smooth functions b and B; where 6(¢)=1 for >0 and 0(t)=0 otherwise.

Step 2. We extend Hadamard'’s construction to Dy x Dy, where Dy is a compact
neighbourhood of D, by choosing a consistent chain of singular functions A, starting
with Ag. The union A={]J, ({y} xA,) is a smooth manifold in X x ®. Consider the
mapping m: A= X x®— X x X, that equals the composition of projections. For an
arbitrary y€X we denote by m,:A,—X the restriction of #. The rank of m is
equal to 1 or 2 in each point. since the projection 7,:+— X is an immersion for an
arbitrary trajectory ~ of the flow (6).

Take a point (y, A\)€A such that rank dr,(A)=2 and choose a generating func-
tion for the germ of A in the form o(y.z.t)=t—(y.x). where ¢ is an eikonal
function. We take the singular function

(11) AP (y. 2.1) io(y.az.t);l/Qa(y.x,t).

that depends on the phase ¢ and the amplitude a. Here and later we use the notation
s} =|s|* for £8>0 and s} =0 otherwise. The amplitude has the form a(y.z.t)=
e(d(y, z,t))ao(y, x)+20(y. z. t)a1 (y. ¥)]. where ag and a; are some smooth functions
and e(r)eD(R) is a function that is equal to 1 in a neighbourhood of the origin.
They are subjected to the system of transport equations

19 2(Ve. Vag)+A(p)ap =0.
(12) 2(Vp, Va)+[A(g)+mla; = Aag.

Note that the function Ag (see (9)) is of type A{?) everywhere in the set {(y,z.t):
z#y}. We take the kernel o(y. x. t):l/2 in (11). if the point (z,t=y(y.x)) belongs
to the first front, i.e. to the boundary of K, and also to any regular point of
L, such that the ray +{y,z.¢) from (y.0) to (x.f) has even Morse index. The
kernel ¢(y, z, t):l/ % is used for any regular point of L, with odd Morse index of the

corresponding ray v(y, x.t). We have
(13) O0A® =0} e(6)Aar +B.

where B is a smooth function.
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Lemma 5.2. The function e can be chosen in such a way that supp A® CK.

/2

. . . . -1 -
Proof. The choice of e is not important in the case of the kernel o, ', since

supp ¢ Y2 - K for an arbitrary eikonal function 2. The kernel 0:1/ 8 appears only if
the Morse index of the corresponding geodesic v(y. z.t) is odd. By Jacobi’s theorem
(see e.g. [3]) this implies that this geodesic is not the shortest path from y to .
Therefore the point (y, 7. ¢(y,x))€ L, does not belong to the boundary of K,. We
can choose the function e in such a way that the function e(¢(y.z.t)) vanishes
on OK. O

Step 3. Take an arbitrary point (y. A\)€A such that rank dr,(A)=1. We have
dt#0 in A and there exists a Euclidean coordinate system x=(u.v).t in a neigh-
bourhood of 7(A) such that £ dz=ndu+6 dv for the dual coordinates £é=(n, §) and
(y,u;0) is a local coordinate system in A. We have t=¢t(u.8) and v=v(u,6) in A
for some smooth functions. The phase function

Oy, x. t:0)=t—p(y. 2:0).  (y.2:0)=t{u.0)+0(v(u.0)—v).
generates a neighbourhood A’ of X in A. i.e.
N={(y,z.t:£,7):n=0¢(y,2.1:0). o(y.x.t:0) =0 and o}(y.r,t;0) =0}

is a neighbourhood of X in A. Indeed. the equations ty+6vj,=0, t), +6v, +1n=0 hold
in A, since a=0.

We shall use the notation pa(s)=slog(s+0t) —s. p1(s)=log(s+0v) and px 1 =p,
for k=—1,0,1,2. Take a singular function of the form

(14) AWV (y, 2, t) = /R e{@) Relpg(0)ag+p1{o)a;] d8.

where the phase function ¢=t— satisfies the generalized eikonal equation n?—
[Vo|*=pjty, where v¥=1(z, ) is a smooth function. It exists and is unique, since
the left-hand side vanishes as ¢,=v(u,)—v=0. The amplitude functions a;=
ag(y, r;6), k=0,1, are smooth and have proper supports (that is the projections
supp ax =X x X, (y,x;68)—(y, x) are proper). They are subjected to the transport
equations
(15) 2(V, Vag) +(vag)s +Alp)ao = 2ybo.

2(Vp,Var)+ (a1 )g+[A(g)+mla; = 2Aag+ ppby ~bhg

for some smooth functions by and b;. Note that {12) and (15) are the only points
where the coefficient m contributes to our construction.
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Lemma 5.8. If the functions ag and a1 are supported by X x X xO, where ©
is a sufficiently small neighbourhood of 89=6()\). we can choose a function e in such
a way that supp AN CK.

Proof. We argue as in Lemma 5.2. The Morse index of the ray ~v(y, x, t) changes
just when the curve passes a singular point 7(\)€ L, such that rank dry,(A)=1. This
point does not belong to 3K, due to Jacobi’s theorem. Therefore there is a space
for choosing an appropriate function e. O

Lemma 5.4. We have

(16)  OA®(z, )= / e(6) Re(p1 (0)(Aay (.0) b p(z. 8))) d6+ B(x. 1),
R

where B is a smooth function.

Proof. We calculate

OA® (z,1) = / Re p_(6)((V;2(x. 8))2 —n*(x))ao d6
R
+/ Rep_1(0)[((Ve)?—n?)a, —2(Vi. Vag) — Apag] db
R
+ / Repo(6)[—2(Vip. Var)— Apay +(A+m)ao] d6
R

+ / Re s (6)Aay o+ B.
R

The term B contains derivatives of (o) and is a smooth function. We integrate the
first term by parts using the eikonal equation,

/ p2(&)((V)> —n)ap df = — / poa(0)Fyran = / p-1(0)(va)) d.
R R R

Combining this with the second term we obtain

/Rp—l(cb)(((vw):‘—nz)al—2(V¢=Vao)—AwO—(vao)é)d@

__ / P 1(0)h(v0as +bo) db = — / po(6) (Va1 +bo), do.
R R

This together with the third term gives

/Rpo(qb)[—2<Vgp,Va1>—Apa1+(A+m)ao—(val+bo)g]d9:—/}{po(¢)p§,b1d9

- / p1(6)0, 6
R

and soon. O
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Step 4. Take a bounded convex set Dy that contains a neighbourhood of D;
we shall specify it later.

Lemma 5.5. There ezist a finite system of open sets {U;CX xX:0<i<i,}
that covers Dx Dy, a system of open sets {Ay:0<a<a.} in A, a mapping i=i(a)
for 0<a<a. such that m(Ay) CUsay for any a>0. and for any a a function As in
Ui(a) such that

(i) Uo is a neighbourhood of the diagonal in D x Dy and Ag is defined by (9):

(ii) for any a>0, A, is a function of form (11) or (14), where the phase
function ¢=¢a(y,z,t) and d=0d(y.z,t:8). respectively, generates Ay:

(iii) for arbitrary j and k the function

By= > Aa— > Aj

i(a)=j i(3)=k

can be represented in U;NUy as
Bir(y,z,8) = (6,(y.2.8))¥ by (y.2.1)

(17)
+Z/ Re(p2(0- (y. .t:6))b,(y. . :6)) db,

R
where the sums are taken over all v such that i(~)=j. k: and b, are smooth functions
with proper supports.

Proof. The function (9) is well defined in Uy. The projection w: Ag—Upg is
bijective for Ag=7"1(Uy)NA. Next, we construct the functions A, for all a=
1,...,a1 such that A, has a nonempty intersection with Ag. Then we find the
functions Ag for all 3=a;1+1,...,as such that AgNA,#0 at least for one a<a;
and so on. The initial conditions for the amplitudes are defined by means of (iii).
Consider one step of the continuation in detail. If the functions A, and Az are
of type A®®, and the phase functions ¢, and 3 coincide in m(Ay)N7w(Az). We
can take a smooth continuation of amplitudes a,x to asy for k=0.1 preserving the
equation (12).

Assume that A4, and Ag are of type A1), Suppose that there exists a point
(y,A)€A,NAg such that rank dmy(A\)=1. Then there exists a coordinate system
(v,m) in a neighbourhood of A such that #=0(n). z=x(v, n).

aa(x(v: 77); 9(77»

k =as(vin).
|779|

Pal(v,n);0(n)) =*ws(vin) and
The integral A, is transformed to Ag by the coordinate change. This transformation
also does not contribute to the sum By . If there is no such point A, we can
transform A, to Az through a function of type A®,
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The most complicated case is the transformation of a function A, of type AWM
to a sum of functions A of type A?). We assume for simplicity that a; =0. Take an
arbitrary point (y, A\) €AqMNAg such that rank dr,(\)=2 and set x=m,()). We have
§=05(z) in a neighbourhood of z. due to the rank condition and 934 (z; 03(x))#0
since ¢, is a nondegenerate phase function. Therefore we have

(18) Ya(x:0) =ps(x)£n?. where 3(x) = pa(x:03(x)).

for a smooth function n=n(xz.6) defined in a neighbourhood of (y.603(x)) such that
7570, where the phase function 03(z.t)=t—3(x) generates Az. By means of a
partition of unity we write the above integral as a sum of integrals of the form

Bg(z,t) :/ Re po(03+n)b(x. t:n) dn.
R

where b=al0; | is a smooth function with proper support. Write b(z.t:n)=b(z.t;0)+
c(z, t;m)n for a smooth function ¢ and get

Bg(x,t):Re[b(a:,t;O)/Rpo(03:tnz)dn] +/RR6P0(O.3I*:772)C(I~15?’7)"7(17)
1

(19) =7 Relb(x.t:0)((03); " *Frl05)= )]~ 5

/Rep_l(o(,)c;(x.t:n)dn.
R

The first term is the sum of functions A3 of type A(?). The second term is of type
AW we denote it B,3. We have AlY :Z(A(;) + B, 3). where the sum is taken over
all 8 such that A,NAz#0 and

Bus(z. t)= /R Repa(os(x, t)£n?)bs(z. 1) dn

for a smooth function bz with proper support.

We check that the system (15) for 2, is consistent with (12) for (3 in the hyper-
surface H={(z:n):(¢a)p(x:7)=0}. By (18). (ya)p==2nn,. where ny#0. and we
have Vgo=Vys in H={(z.6):n(z.6)=0}. From the generalized eikonal equation
and (18) we also have

(Pa)p¥ =02 —|Vo|? =n* = Vo3P F4n(Vis. Vi) —4n° V|
=—4n[£(Vs. Vi) +0|Vn|?]

which yields ¢=—2(np) " (Vis, V) =—2(n,) " (Viga. Vi) in H. Therefore the field
2(Vpa, V) +100p=2(Voa. V) —2(1,) " (Viza. Vn)dp annihilates the function 7 in H;
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hence this field is defined in H. It coincides with 2(V3. V) on functions which do
not depend on 6, g.e.d. This implies that we can continue the amplitude functions
from m(Aq) to m(Ag) and vice versa. Finally we conclude that

Bjp= Y AV AP =3"B.,
i(a)=j i(3y=k
and Lemma 5.5 follows. O
Step 5. Choose a family of functions {h;€D(U;)} such that >, hi(y.z)=1 in

DxDy. We set Pp=3_ hi(a)Aa: the sum is finite and A, are functions as in
Lemma 5.5. We have

(20) Qp=0Pp=Y_ 3 [h0A.+2(Vh;. VAL)+Ah;A]
i aii(a)=j
The term OA, is of the form (13) or (16). We show that the other terms cancel.

up to a function of the form (17). Take an arbitrary point (y.x)€D x Dy and fix
an arbitrary index j. We have at this point

> (VR VAl = > (Vh;.VA3)+Y (Vh;. VBj).
i(a)=j i(3)=k k
Take the sum with respect to j; the first sum on the right-hand side vanishes, since

>_; Vh;j=0. The second sum is of the form (17) according to Lemma 5.5. Therefore
the third sum in (20) is equal to the sum of AhjBj, which yields

(21) OPp=Y > h DAQ+QZ Vh;.VBj) +ZAh Bjy.

7 a)=j

6. The energy near the source point

Lemma 6.1. The following inequality holds for v<ry,

~ p ~ T
[ explemmatty.e)(Ao(y. i) +HeOuAo(y. i) do < cor
to(y.z)<T w
where O, =A+w?*n?+m.
Proof. We choose geodesic normal coordinates 2 in the set {{(y.x):to(y,z) <7}
such that 2(y, z)=|z|*=22+22. We have by (9).

Aoy, z;w) = aply, 2) / exp(wwt)(t? —|z)?) "V 2e(t—|z|) dt
£>1e]

(22)
+ai(y.2) />I Pl (1212 (i e e
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By changing s=t—|z|, we can write Ag(y.z:w)=exp(ww|2|)[ao(y, 2)1_+a1(y, 2) 1],
where

Iii/ exp(iws)(s?+2|z|s) 1/ 2e(s) ds.
0

We estimate I for large w; the only singular point in the integrand is the origin
of the ray {s>0}. We assume that e(7)=1 for |7|<1 and continue e as a smooth
function in C, which equals 1 in the unit disc. Following the Laplace method, we
replace the ray in (22) by the chain

Y =mUrUvs.
n={s=rexp(ir—argw):0<7 <1},
Y2={s=exp(w):0< |v|< in—argw}.
v3={s>1}

and get I =11 +1I>+13, where I; gives the main contribution:

1
= /0 exp(—wr)(= 72 +2ifz|r) "2 dr

OCex —wr)(27]2|) "2 dr
< [ expl-wm)erie) ™2

We have |s+2|z]s|>C(jz|+1) in 72Uvs and Rews<0. Integration by parts in
I+1I3 yields |I;+ 13| <Clw|~'(Jz| +1)~1/2. For the integral I, the same arguments
yield the estimate <C|z/w|'/?, which implies

w

. . dr
/ lexp(Im wi(y. 2)) Ao (y. ;)| dx < < ;¢ I'T—
tOST

el Jizi<r 12 w|

We can estimate the kernel 0, Ay in a similar way by means of (10). O

7. The energy in the perturbed domain

We estimate the Fourier transforms of Pp and of Qp=0FPp—d,9. For any
A€C, Re A>0 and arbitrary beD(R),

/R exp(ww) T2 b(7) dr =T (A) (0w F0) ™ [b(0)+0(%>] .
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consequently the Fourier transform of a function of type (11} equals
AP (z;w) =/ exp(wt) AP (z, t) dt :/ exp(zwt)(t—;,9);1/26(t—4,9)a(x) dt
R R

— 4 (imwF0)~ 2 exp(uws(z)) [a(:c)+0 ( %)} .

Note that for the function A,=A® the phase () coincides with the length of
a geodesic from (y,0) to (z,t). Therefore p(z)>t(y,z) and the exponential factor
does not surpass exp(— Imwt(y, z)). By (13) the function 00, A® =F(0OA®) has a
similar structure; hence

C

(23) |A®) (z;w) |+ [wD, A®) (z:w)| < BE

T w

exp(— Imwt(y, x)).

This inequality agrees with (7) and (8). For a singular function of type (14) defined
in an open set Y C X the estimate

- C
/ hexp(2Imwit(y, z))(|AD (z: w)? + T A (2 w)[2) dz < @l
b'e
holds for an arbitrary continuous function h compactly supported in Y. It can be
checked by the method of Lemma 11.1 below. In the same way we can estimate the
integrals of |[VBjx|? in (21), since each kernel VB;; is of type (14) or of type (11).
Summing these inequalities over & and taking into account (21), we get

@4 [ hesp(zImet(y,0)(Po(y. )P+l vz ) do < %

for any continuous A compactly supported in Dg.

8. Phase functions for constant velocity

Step 6. We extend the above construction for the domain D x X. First, we
choose a special generating function for A« =AN7~}(D x X\ D). Denote by T's the
solution of (6) with the initial data z,=y and £,=(n(y) cos s, n(y) sin s), 0<s< 2.
By (*) n=ny is constant in X\ D; the Hamiltonian system has the form

dac_

dz at o df
dr

- %—n, dr

0, 7=+=1.

and the ray v(s)=n,(T;) is a straight line in X\ D. We assume that Dy is a convex
neighbourhood of D with smooth boundary dDg. Denote by (2¢(s).&o(s)) the point
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in I';, where the ray ~v(s) reaches the boundary. The vector £(s)=—dz/dr cannot be
tangent to the convex curve Dy, because otherwise the ray +v(s) could not enter D.
The conditions (*) and () imply that z¢ and & are C*-functions in D xS*. The
ray v(s)\Dy is parameterized by

(25) z(s, 1) = —Eo(s)r+x0(s) and t(s.7) =n’r+to(s) >0

hence the parameter r vanishes just at @Dy. The ray ~(s) and its direction &(s) will
be called critical if £)(s)=0. The union = of all critical directions has zero angular
measure. The caustic set, i.e. the image of the critical set of m,. is contained in
VUG, where V' is an arbitrary open conic neighbourhood of = and G is a compact
set.

Consider the phase function ¢(z.t: s)=t—(z: s), where

(26) o(x;s) =to(s)+{Eo(s). xo(s)—z) =t(s. 1)+ (a(s). x(s.7)— )

and (-,-) stands for the inner product in X. This function satisfies the eikonal
equation |V, ¢|?=|&|?>=n?%. The function o vanishes in A for t=7(s.r) and

dip(x; s) = [dto(s)+{Eo(s). dzo(s))] —{&o(s). dr)+ (€ (s). xo(s) — ).

The first bracket vanishes in the Lagrange manifold A.. We have . (z:5)=
(€h(s), zo(s)—z) and by the eikonal equation. (£).&n)=0. Consequently the equa-
tion

—¢, =4 =(&(s). zo(s) —x(s.7)) =71(§(s). Lo(5)) =0

holds in A,. Vice versa, for any noncritical direction. the equation . =0 im-
plies that zo(s) —z=réy(s) for some r>0 and o(x.t: s)=t—7(s.r). Moreover, d, 0=
—dyp={(&,dz); hence ¢ generates the noncritical part of A..

Set 0= x&p; then |o|=n|&)|. For a vector v=(v1.v2) we let v*=(—vo.11):
then (v*, u)==v x u, where u is an arbitrary vector u and X denotes the cross product.

Lemma 8.1. The quantity j(s.ry=ro+a{x& is equal to the divergence of the
family of rays and

> 1
(27) s = i—o = = (roal)”

Proof. The divergence equals the Jacobian

- (9 12 1/ /
(28) J(s,r)=det arx_s) =z X1l =& x (—r&)+ay) =ro+rixE. O
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It follows that there is focusing near any critical ray. Calculate the transport
system in (s, r)-coordinates for the phase function (26). We have V,po=—&(s) and

a

1 .
A= (V. Vo) = ~(. 53) = —=(6- €0)
Hence (12) appears as
(29) dr(alj/?)=0.
It follows that L.(|a]?dx)=0, where L, is the Lie derivative with respect to the
field 8, =0/0r.
Lemma 8.2. The equations x(x & =0 and ;=0 have no common solution.

Proof. The vector zj, is tangent to dDy and the vector & is not. Therefore
the first equation is equivalent to x,=0. This together with the second equation
implies that s is no more a local coordinate in A for a point (sq. ro). which contradicts
Liouville’s theorem. [0

9. The parametrix in the nonperturbed domain

Step 7. Choose small numbers £>0 and 4 >0 such that
(30) lo| <3¢ implies [ xxy|>d

and set p1=maxXo<s<2x |€0(8) x24(s)]>0. We can assume that the set Dy chosen in
Step 4 contains a 2une~!-neighbourhood of D where n=ng. Take the covering of
A by the sets

As ={(s,7):]|o(s)] >}
Ac ={(s,7):]|0(s)| <3¢ and either r|o(s)| < 15 or r|o(s)| > 2u},
Ay = {(s,7):]o(s)| <3z and 26 <rla(s)| < 3u}.

[

By (25), nr=|z(s,7)—zo(s)|>2uns"" in X\ Dy. which yields r>2uz~". Therefore
rlo|>2p> 6o x zh|+p and |j]>rlo|— |z x&|>p in As. Hence there is no focusing
in A and we can use x as a local coordinate system. We have by (25).

31 —dp <lx—y| < dy. dp= max |r—y|.
(31) nr—dy <|z—y| <mpr+dp o Ilélgll}n‘l y|
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since |{g|=n. Take a smooth function h- in R such that h-(7)=1, if |7|>3¢, and
hs(1)=0, if |7|<2¢. Set
(32)

As(@t)= > (t—7(s,m))i Pe(t—7(s.7))a(s.1)hs(0(s)),  +1=sgnj(s,7),

z(s,r)=z

where the sum is taken over all points (s.7)€A- such that z(s. )=~ (s)r+zo(s)=
z, and the amplitude function ag is smooth and satisfies (29). We take the initial
data for a from the consistency condition with the kernel Pp. This means that the
difference A~ — Pp equals the sum of terms of type (17) in a neighbourhood of 0Dy.

Lemma 9.1. The number N(x) of terms in (32) that are nonvanishing for
€ X\ Dy is uniformly bounded.

Proof. We call an interval I CS' univalent if |o(s)|>¢ for s€I. The inequal-
ity |7{s,7)]>0 holds for r>pue~! in an arbitrary univalent interval. Consider the
mapping

(33) Ty I x (g, o) — X, (s.7)—> x(s.7),

which is affine with respect to r. It is an imbedding, since the Jacobian does
not vanish and I is connected. Hence for any z€ X\Dy there is no more than
one solution to the equation x=x(s,r). If the whole circle S! is univalent, the
number of terms is equal to 1. Suppose the opposite, i.e. there is a point s’ such
that |o(s’)|<e. We call an interval I=(sg.81) good, if it is univalent and |o(so)|=
|o(s1)|=2¢. We have |o(s)|<2e¢, if a point s does not belong to a good interval,
and the corresponding term in (32) vanishes since hs (0)=0. If two good intervals
have a common point, then their union is again a good interval and the number of
nonvanishing terms in (32) is bounded by the number N of maximal good intervals.
We show that N<oo. Indeed. for arbitrary consecutive maximal good intervals
(s0,81), (82,83)CS? such that s; <ss. there is a point T7€(s;. $2) such that {o ()| <e,
whereas |o(s1)|=|o(s2)|=2¢. These relations imply that s;—s;>2¢/max|o’(s)].
The same inequality holds for s+ 27 —s3. Therefore N <we !max|o’|. O

‘We have the inequality

where dl denotes the arc element of I'(7) and C does not depend on 7>75. This
follows from the equation dl=(1+O(r~1)) dz/dr, where the form dr and the density
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laj? dz are constant along any ray by virtue of (29). The number of terms in the
sum is uniformly bounded by Lemma 9.1. By (23) and (32) we find

(34) /F(T) |As (z;w)] dl<—/ la(s.r)hs (o)) dl < m
and

A (2 o
(35) /F(T)|A>(CE,4,)[ a<

where the constant C does not depend on 7 and w.

Step 8. Choose a smooth even function h. in R such that h.=1 in [07 %O} U
[#+2,00) and h=0 in [%5,;1—{—1]. Define the singular function which is similar
o (32):

(36) Ac(a,t)= Y (t—t(s.r)I"%e(t~7(s.1))a(s.7)(1~hs(o(s)he(ro(s)).

z(s,r)=x

where +1=sgn j(s,7) and the amplitude a is defined as in Step 7. Note that j#0 in
supp(1—hs Yh<; hence the equation z(s. r)=z has a locally smooth solution s=s(z),
r=r(x). The function A. is continued to Dx(X\DpxR) by setting A.=0 for
ze€X\(DoUmy(Ac)). It is smooth in Dx X.

Lemma 9.2. The number of nonzero terms in (36) is uniformly bounded for
SCEX\Do.

Proof. We argue similarly to the proof of Lemma 9.1. We call an interval
JCSY critical if |0|<3¢ in J. Let J be a critical interval. If s€J, the inequality
§(s,7)>46 holds for r<4/2|o|, because of (30), whereas j(s,7)>1 for r>2ul|o|™?,
o #0. Therefore the mapping Jx[0,5(2|o])~Hu[2p|o] ™. )= X like (33) is an
imbedding and for any € X there is no more than two solutions to z(s,r)=z, if
s€J, (s,r)€Ac. If |o|>2¢ everywhere in S!. the sum (36) vanishes since h~ (o)=
1. Suppose the opposite. We call a critical interval J=(s¢.51) good, if |o(so)|=
|o(s1)|=2¢. The nmumber of nonzero terms is bounded by the number N of maximal
good intervals. We show that this number is finite. Two different maximal good
intervals are disjoint. If a point s does not belong to a good interval, we have
|o(s)|>3e and the corresponding term in (36) vanishes since h~ (o)=1. For arbitrary
maximal good intervals (sg,s1) and (sg, s3), there is a point 7€(s7.82) such that
lo(T)|>3e, whereas |o(x1)|=|0(x2)|=2¢. This yields s2—s; >2=(max [o’(s)|)~" and
N<re lmax|o'|. O
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10. The parametrix near caustics

Step 9. The integral

(37) A:D(:r:,t)i/Re(o’(:zr.t;s))Re(po(o,(a:.t:s))ay(a:,s))h,(s,r) ds

represents the parametrix in the focusing area A,. Here e is a function as in
Lemma, 5.2,

Pz, t;s) =t—p5 (2. 8).
P> (. 5) = to(s)+(o(5). zo(s) — ).
B, (s. )=(1 hs{a(s))(1=h{o(s)r)).

r:F<§0(3)~IO(5)_I>-

and the amplitude a; is defined below. We have (ng), =0 and ¢}, =0 for z=x(s.7).
Therefore, since Ay, =0, (15) looks as follows:

(38) 20,4, =2(£0. Va,) = (5,).b

Introduce the variable u=n"2£ x(x—1¢): we have (p,),=(£).2—x9)=0ou. The
function a, should satisfy (38) in the surface u=0. We extend this function by set-
ting a,(z,s,7)=ay(x(s, 1), s)g(u). z(s.7)=x0(s)—r&(s). where geD((-1.1)) and
g=1 in a neighbourhood of the origin. It is easy to see that (38) now is satisfied
with =0 for any u.

Next we find the consistency condition for amplitudes in the set m(A.), where
Ay=(ASUA)NA,. First we change the integration variable s in (37) to u=u(x. s).
From w,=n"2(§)x (z~ :vo) &oxxy). by substituting l-ro—r§o+u§0 we obtain
w,=n"?(ro—& xzf)=n"2j(s.7). We have 26<r|o|<%0 or 1<r|o|<2u+2 in A
Therefore the derivative v/ is bounded from above and below. the function s=s(z, v)
is smooth, and we can write

Ap(z,t) i/ e(dy(x.t;8)) Re(palo, (. t: 8))a,(x. s))Mn2 du
R |5(s.7)]
Next we calculate this integral as in Step 4. We have 0, ¢, =05, (u},) ' =n?ouy
hence ¢,(z, s)=p(x)+x(s.r)u?. x=n%0(2j)"'. where o(x)=7(s.r) is the phase
function of A-. The function || is smooth and bounded from below since |j|> 36
and |o|>6/2r. As ¢,(xz.t;s)=t—p,(z:s), we can integrate by method (19). getting
o (2) n? du
7 (s.7)

(39) =Re((¢, V2 ”zafl/Q)b(l’.O)h,(I))—/RRepl(o,)c;,(x.v)h,(a:) du.

—1.

Ab(x,t):/R (¢+xv?) Re(po(o+xv?)a, (. s))
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where ¢=t—p(z), e=—sgn y and

b(z,v) =2Y21na,(z. s)|[jo| =2 = b(x. 0) +2ve(z. v).
Now we can write the consistency condition
(40) a(s,7) =b(z.0) =2"?xna, (z. s(z.0))|jo| ~1/2.

where z=xz(s,r), u=0 and a is the amplitude of A.. We see that the prod-
uct a(s,r){j|*/2=22mrna,(x, s(x,0))|o|~'/? does not depend on r, since a, sat-
isfies (38).

11. The energy in the caustic area

Now we estimate the integral of A,. First calculate the Fourier transform of
the functions px(¢), where ¢=¢t—yp. We have for w>0.

Flpo(6)) = ~2mrexp(—1w0).
Flpa(6)) =~ exp(—17).

F(po(0)) = F(p1(0)) =0:
for w<0 we need only to replace p; by pr. Therefore

Awi) = | explowpy (e 8))ae.s) ds By (a:).
where a(z, s)=2ma,{z, 3)h; (IZ, r) and |R,(z: )| <Clw| ! exp(— Imwit(y. z)). We get
|4, (2; w)|? S/ /Rexp(~z Rew®(z:5,5") —Imw¥(x: 5.8 ))a(x:s.8') dsds’
+TR‘D($=W)|2-
where

z,8") =tg(s)—to(s) +& () (xo(s) —a) —Eo (s ) (zo(s) — ).

(255,58 ) =@y, 8)— 2y (.
©b z.s'),

; (
U(z:s,8)=wp(x,8)+o(
a(z;s,s') =a(z,s)a(z,s).

Integrating over I'(r) for 7>17,, yields
/ [A, (z: )P dl < I(r.w)+R(T.w).
r(r)
where

I(T,w)i/r( )/R/R exp(—tRew®(x:s, 8" ) —Imw¥(2:5.5))a(z:s.s") dsds' dl.

R(r,w) ﬁ/ IR, (z,w)|* dl.
I(r)



140 Victor P. Palamodov

Lemma 11.1. The following inequalities hold

C
(41) [I{r,w)| < %Texp(— Imwr). R(r,w) < WTexp(—— Imwr), 7>0.
w w

Proof. We will apply the stationary phase evaluation. The function ¢, belongs
to C? since &, xo are of this class (see Step 9). Therefore the phase function @
is contained in C? too. Find the critical set of {®;=®,=®, =0} in the manifold
I'(1) x S* x S1. The I[-derivative can be written as dy=|z—y| ! (z —y) x 8z. Therefore
the first equation is equivalent to (&(s)—&(s’))x (z—y)=0 and implies &o(s)=
£0(s"). The second and third equations give (&,(s). x—z0o(s))=(&(s). x—x0(s'))=0
which imply z=2(s,r) for some 7 >0 and xo(s)=x¢(s’). It follows that I'(s)=T'(s"),
hence s’=s. Calculating the second derivatives in s and [ on the diagonal A(7) in
(1) xS*x S! defined by s=s", we get

(12)
2 L=goxie-v e-n = (~2+0(1) Jgwxat = (5+0(3) )7

2 ' ;
—ro°+oéy Xz 07
O, =7 (Ey o)+ (€h 7o) = —TIE I+ (Ep. 20y = ———5—— =

"o_
=

2
det V2 = (—1+o<1>> z.
T n

since 1tz —&, as T—oc, and r/7=1+0(r""'). We have |®7,|<4u|oin
|7]<4p in A,; hence all second derivatives in (42) are equal to O(|a|). We apply
Proposition 17.1 to the function @ for fixed s and z€I' (7). There is only one critical
point . =x(s)—7&y(s). We have ||b=1||=0(|o|~!) for b=1d?®(x:s.s). From (42)
we see that |V3.®|=0(1). Therefore the set {(s.xz):[s—s'|+|z—z.|<clo(s')} is
contained in Uy. Then we apply Proposition 17.2. All derivatives of first and second
order of a are bounded in A,. We have ,(z.s)>#(y. ). since the caustic is always
behind the first front of a wave. This vields ¥(z:s.s')>2t(y.x). Therefore by
Proposition 17.3 we obtain |I(7.w)|<Cjwo|™! exp(—ImwT). Taking into account
that £6<r|o|, we estimate |o| 1 <Cr<C7. This proves the estimate (41) for /(7. w).
The estimate for the remainder R is more simple. O

n? n?’

2 since

12. The parametrix in the homogeneous domain

Step 10. We set Py.=A- + A +A,. where we choose the amplitude functions
n (32), (36) and (37) according to the rule (40). Tt follows from (34), (35) and (41)
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that
~ 2 C
(43) | Poc (23 w)]? dl < ~—7 exp(— Imwr).
I'(r) """{
We estimate Qo =0P in Dx(X\DoxR). We have Q. =0(A>+A)+0A, and

(44)
D(As (2. )+Ac(z. )= Y e(0)oy *Aa(l—h,)

z(s,r)=c
~2 Y (V(e(0)o¥ ). V)~ N e(0)o¥ alrhs,.
z(s.1)=x x(s.r)=z

where ¢ is defined in (32) and

O4,(.8) = | e(0) Re(p (0)(A-+m)as ), ds
(45) R

+2/ (V{Rep;(¢)a,).Vh,) ds+/ Repy(d)a,Ah, ds,
R R

where gy, is defined in (38). We want to estimate the Fourier transform of the six
terms in (44) and (45). Write the sum as Q.. =Q°+Q'+Q?, where

Q= Y e(@)oi*(1—hy)(A+m)a+ / ¢(0) Re(p1(0)(A+m)a,)h, ds.
R

z(s,r)=z

Q'z=2 3 (V(e(6)6%a), Vh,)+2 /R (Ve(0) Re(ps (0)a,). Vhs) ds

z{s.r)=x

Q*=— > e(0)oy alh,+ / Repi(0)a,Ah, ds.
R

z(s,r)=zx

First, check the inequality
A0 2 c .
(46) |Q° (z;w)] dl_| |37'exp( Imwr).
I'(r)

For the first term in QP this follows from (23). We estimate the second term similarly
o (41), taking into account that derivatives of the amplitude a, are bounded.

The terms Q' and Q2 contain derivatives of the cutting functions k- and
h<. The derivatives Vi (o) and Ah- (o) are bounded by (27) and (31) since
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the dominator j has a positive lower bound. By similar arguments we show that
Vh(or)=0(|z|) and Ah(or)=0(|z|?). as |x|—>c: hence also

(47) h,=0(1), Vh,=0(|z]) and Ah,=0(|z|?).

Therefore

(48) / |@2(a:;w)|2dl§ ﬁgexp(—rlmw)(f:—’-i—v’).
r(r) w

The function Q* is supported in 7(A.). since Vh,=0 in the complement. We write
this function in a different form where no kernel Voil/ 2:cV(o)o;3/ * appears. For
this we apply (39):

/e(d>)Re(po(,@",)ag)ds:Re((oil/zizojlp)b(l’;0))_/ Rep;(0,)c, (z;v) du.
R R

where the first term in the right-hand side contributes to the main term of Q.
These terms cancel and the rest is equal to

Q' =-2 /R(Ve(o) Re(p1(o)c, (z:u)). Vh,) dv.

We estimate the Fourier transform of this integral as in (46). For this we need an
estimate for the amplitude. By Step 9. we have c(r:u)=(2u) " (b(z:u)—b(x:0)),
where b(z;u)=2"2rnay, (2. s)|j0| /2, in the second term. Therefore

max |¢, (z; u)| < Cmax |b, (z: 1) < Cla, (x. 8)| [jo| V2 < Cle—y|"?|as(x. )|

since the factor |j|~1/2 is uniformly bounded and |¢|<C/r in A.. otherwise Vh,=0.
Finally

~ . C
(49) / QY (z;w)|?dl < WT exp(—Imwr).
I'(T) «

The inequalities (46), (49) and (48) imply (8).

Step 11. Set U=|J,U;CX x X and take a smooth function hp€D(U) that is
equal to 1 in D x Dy; define P=hpPp+(1—hp)P. An estimate for P follows from
(24) and (43). By applying Lemma 5.5 we obtain (7). Next we find

(50) Q=0P—-6,0=(hpQp+Rp)+(1-hp)Qx.

where the term Rp=[0,hp]|Pp+[0.1—hp]P~x=[0.hp](Pp—Px) is smooth and
supported by KNU. The operator Pp— P-. can be represented in the form (17). By
Lemma 5.5 this implies an estimate for the kernel R p similar to (8). This completes
the construction for Lemma 5.1. O
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13. The Helmholtz equation with constant velocity

Step 12. Now we are going to find a kernel W such that the sum S =P+Wis
a fundamental function. This equation is equivalent to O, W =-Q. First we solve
the Helmholtz equation with constant velocity

(51) OaoWo=-Q.

Lemma 13.1. There exists a solution Wy of (51) that is analytic in the set
{wilnmw>0 and w#0} and satisfies

1
(52) / lexp(Im wto(y, ) Wo(y. x;w)|? dx < |—|4~(ClT+CZT ). TZ=To.
(y.x)<T

Proof. We solve this equation by means of the convolution

2

(53) Wo(y. o) / So(z—z:w)Oy. 2:w) dz

where S; is the source function for (51). This integral does not. however, converge
absolutely. We regularize it, using the spec1al structure (50) and set Q UD+U
where Use =(1~hp)Qme. The term Up=hpQp+Rp is supported by Dy, and hence
the convolution Wp= SO*U p is well defined. To estimate this convolution we use
the inequality

= C
(54) / |exp(Imwt(y. 2))Up(y. z:w)|* do < —= P
Dy &

which follows from (8) for Qp and Rp. We have

lexp(Im wto(y, 2))Wp(y, z:w)| =

/exp(Imwto(y.I))So(:c—z;w')ﬁp(y,z;w)dz
Do
S/ ]exp(Imwto(z,,J:))So(a:—z:;u)exp(lmw‘to(y,z))ﬁD(y-Z?¢~‘)|dZ
Do
since to(y, z) <to(y. z)+to(z. z). Therefore by Lemma 13.2,
/ lexp(Im wty(y, 2))Wp(y, z;w)|* dx
to(y.x)<7
2
(] explim wto . 2))Solw— 2 )| dz)
to(x.z)<t+70

X/DO lexp(Imwty(y. 2))Up (y. 2:w)|? dz
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where 7y is the diameter of Dy in the metric go. The second factor is bounded by
Clw|™3, due to (54) and the inequality to(y, 2) <t(y.z). The first factor is bounded

by
C e
—-</ |33—z|_1/2 dz) §—(T+T0)3,
|w| to(x,z) <7470 |W|

because of (64) and to(z, z) <ng|x—z|. This implies

. C
/ lexp(Im wto(y, ))Wp(y. z:w)|? dz < —4(T+7’o+7'1)3
to(y.2) <7 [l

since t(y, x)<to(y, x)+71. where 7; is the g-diameter of Dy.

Lemma 13.2. The inequality ||axb||2<||a|l2||b||ly holds for arbitrary a€ L>(X)
and be L, (X).

Proof. A proof can be done by the Fourier transform. U

Next, we define the convolution of the functions Sy and l?x =(1-h D)@x. For
this we will use analytic continuation in the variable r. We have

(55) Qs = F(OAS )+ F(OAL)+F(0A4,).

We consider the three terms separately. According to (32) and Lemma 9.1 the term
(1—hp)F(OAs (y, z,t)) equals the sum of the functions

(56) U (y, z;w) = Fl(t—7(s.7))5*e(t—(s.7)) (A+m)a(s. 1)h> (o))
— exp(or (s, 1))g(w)(A +m)a(s. 1)hs (0)(1—hp)

for n=1,..., N, where q(w)iF(t;/Qe(t)) and the right-hand side is a univalent
(and smooth) function of x=x(s.r). The sign +1=sgnj(s.r) is constant for each
n and the number N of terms depends on y. t. s and r. We wish to regularize the
integral

(57) Wiy, zw)=— / So(z—z:w)UZ (y. 2:w) dz.
X\Do

First, note that the integral converges absolutely for Imw>0, since Sp(z—z;w)=
O(exp(—Imw|z—2z|)) and UZ(y, 2;w)=0(exp(—Imwt(y. 2))) by (56). According
to (25) the function 7(s,r) is linear with respect to r, and a(s.r) is of the form
ag(s)r=1/2 by (28) and (29). The function (A+m)a is also analytic in 7, as can
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be seen from (27). Therefore the right-hand side has analytic continuation to the
domain {o=r+wv1:r>0 and v€R} and this continuation satisfies

U2y, z;w)] < Clg(w)] exp(— Imwr(s. o))
(58) < ML?’/Z exp(—Imw7 (s, 7)—RewnZu(r)).
since 7(s, 0)=7(s,7)+n3vs, 7(s,7)=t(y. z). Suppose that Rew>0. Then the right-
hand side is bounded in the halfplane v>0. First, we make the change of variables
2=2(r,s), where dz=j drds, j=j(s,r). Take into account that the integrand Sp(z—
z;w)UZ(y, z;w)j(s,7) admits a holomorphic continuation in r.

Shift the domain X\Djq to the chain X, defined by the mapping (s.7)—z=
z(s,r)=—Eo(s)(r+v(r)1)+zo(s) from S’ xR to the complex space Xc=X+1X,
where v(r) is a suitable continuous function, provided the function Sp(z—=2;w) has
a bounded holomorphic continuation to a 3-chain Z, in X¢ such that 0Z,=X\Dy—
Xu. The integrals over X\ Dy and X, will coincide by the Cauchy theorem. Ac-
cording to Proposition 16.1 this condition is satisfied if Im w\/{x—2)? >0 for z€ Z,,,
where w?=w?+w3. This follows from the inequality {ngImw—Imm|<C. Take a
positive number vg, to be specified later, and a continuous function v=uv(r) that
vanishes for 0<r <rg(z)=4ng " (|z|+max |z¢(s)|). and equals }(r—rg) for r>rg. Set
Zy={z=—&(s){r+7v(r)1)+z0(s):0<7<1} and show that

(59) Re(z—2)°>Tm(z—2)2>0 for z€ Z,.
This is obvious for r <rg(z), since v(r)=0. Otherwise, it follows from the equations

Re(z—2)? = (Eor+z—120)? — (noT2(r))?,

Im(z—z)? =2(Rez—z.Im z) = 27¢(r) (ndr+ (z — 20, &))-

This property implies that Z, is contained in the domain {w:Imw\/(z—2)? >0} for
Rew>0; the function Syp(x—=z;w) decreases exponentially in Z,, as r—oc. Then
we apply a version of Lemma 13.1 to the integral (57) taken over X,. The last
factor in (58) is bounded by exp(—cRewr) for some ¢>0. We have Rew>0 and
r>ng Yy—z|—ry for some 71, which ensures convergence of an integral like (57)
taken over X,,.

14. Quasianalytic continuation

Next we consider the second term in (55). It is a finite sum of the terms UZ
that are similar to (56) with the extra factor h<(ra). Vho(ro) or Ah.(rc). This
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o=r+21€C. except for the interval
K(S)i{rzéégﬂa(s)fﬁim}. This set might be unbounded near critical values of
the variable s. We continue h to the function in the complex plane:

factor has analytic continuation for complex g=

such that d h(0)=1v3h®¥ (r)=0(¢?) and also
(60) AI*H h(o) =003 1%, 1+k<2.
Now we regularize the integral
W2 (2 w) = —/ So(x—2z:w)Un(y. 2;w) dz.
X\Do
by means of the Cauchy—Green theorem as follows:
W2(xiw)= / So(z UZ(y.ziw)jdrds
/ So(x 0 L2y . ziw)jdodods.

where Z,={z=z(r4wv1,s):0<v<v(r)}CXc. The first integral is similar to that of
the function WZ2. The inequality |x—Re z|<Re \/(x—z)? holds for z€Z,, by (59).
On the other hand, RewIm /(x—2)% >0. This yields

Imw|z—y| <Imw{z—Re z|+Imw|y—Re z| <Imw+/(z—2)? +Imw|y—Re z|.

By this inequality

exp(Imwnolx—y]))/ So(x—z:w)0,UL (y. z:w)jdodods
Z,

< sup |exp(ng Imwy/(z—2)? ) So(x—=z; w)|

ZE€EZ,

x/ exp(Imwng|y—Re 2|)|0,U%(y. z;w)j| dv dr ds

<
PRE

/ exp(Im wngly—Re 2|)|0,U%(y, 2:w)j| dv dr ds.
z

v
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The supremum is finite by Proposition 16.1. Applying an inequality like (58) to UZ
and taking into account that Rewn3v >0, we get

(oI [ exp(timwmoly—Re s)|9,07% 4. 5.l v dr s
(61) z
SC/ (118oh1+1j8,Vh|+|jd,AR|) dv dr ds.

where iyz:fzgag)‘ To estimate the first term in the right-hand side, we use the
relations 0,h(c0)=0(c*|v|?), j=00+0(1). Then

/ZU 178k dv dr ds < C, /S (GP/K/OU(T) lo|*|j] dv drds

§C’2/ |a[5/ ((logr/ro)°+C) dr ds < Cs.
S1 K(s)

since o3 log(r/ro) is uniformly bounded. 7€ K(s). and s€S!. For the third term
in (61) we use (27) and (60) which gives |j8,Ah(00)|<C|o|*o*v. This estimate is
sufficient for the finiteness of the integral of |3,Ah|dv dr ds over Z,. The second
and third terms in (61) are estimated similarly.

Now we have only to consider the third term in (55). We have

O Ay (z;w) :/R exp(wip, (. 8)) Re g1 (w)(A4+m){a,(x, s)h,(r. s)) ds,

where ¢1(w)=F(p;(¢)) and the omitted terms contain derivatives of h,. The phase
function ¢, (z, s)=to(s)+nr for r=n;?(£(s). zo(s)—z) admits analytic continua-
tion with respect to 7 and Imy;,(z, s)=n3v. This function is nonnegative if v>0.
According to the choice (38) the function a,(z.s) does not depend on r at all.
Therefore only the d,-derivative of the factors (47) appear in 8,0, A4,. We esti-
mate the corresponding integrals as in the previous case. In this way we define the
regularized convolution W, =Sy*[1A,. Taking the sum Wy=> W2+ WE+W,,
we get a solution of (51) that admits an analytic continuation at the domain
{w:Imw>0 and Rew>0}, which satisfies (52). To get an analytic continuation
to the domain Rew <0, we replace v by —v in the above arguments. This completes
the proof of Lemma 13.1. O

15. The completion of the construction

Step 13. We have O, ((1—hp)Wy)+Q=—L. where hp€D(X) is as in Step 11.
By (51) the kernel L=hpQ—(Vhp.VWy)—AhpW; is supported in DxDy. We
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take into account (52) and estimate the derivatives of W by the standard energy
integral method

. C
/D lexp(Im wto(y. ) VW (y, z;w)* dz < EE
o w
This and (8) imply
2 Cr
(62) . lexp(Imwito(y, z)) L{y. 2:w)|* dz < ik

Now we look for a kernel R such that S=P +Wy+ R is a fundamental solution. It
is now equivalent to O, R=L. The kernel T =P+ 1V} satisfies O,T=4d,—L. By (7),
. 2 CT 5
lexp(Im wto(y. o)) T(y. 2: ) da < L (7 +7).
t{y.z) <t |‘°|

The sum S=T+R is a fundamental function, if R is a solution of the integral
equation

R(y,x;w)~/x Ly, z;w)R(z.x:w) dz :/X L{y. z2w)T (2, z;w) dz.
Write the solution by means of the Neumann series R=RW4+R@ 4 where
R(k)(y,x;w)i/X .../XL(y,zk:w) v L(z3. 201 w) L(z9. 2y w)T (21, 1 w) dz ... dzr.
For an arbitrary y€ D, we have by (62),

/X lexp(Imwto(y, 2))R® (3., 2: ) do

<J,

x/ / L{y.zp:w) ... L(z2. z1:w) T (21, i w) dzg .. d2y
X Jx

exp(Im wto(y, x))

2
dx

(63) §/X|exp(lmwt0(y, ) L(y. z:w)|? dz

X </D [ lexplimsto(z.2)) L(z. 220 d d)

x/ lexp(Imwito(z.2))T(z. 7:w)|* dz dz
X
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Lor

=l

k
<V(D) /X lexp(Im wto(y, 2))L(y. 2:w)[? dz)

< Cr(CLV(D))*
|w|2k‘+1

where V(D) stands for the volume of V. since to(y.z)<to(y,z2x)+...+to(z1.2).
The series converges if |w|?>CL V(D). and we obtain the estimate for |w|>wo=
(2CL V(D)2

Cr
V(D)
The inequality (3) follows from (7) and (63). This completes the construction of the
source function S that satisfies (3) for all yeD. The compact D can be magnified,
consequently the above arguments are valid for arbitrary compact subsets D of the
plane. The sequence of the corresponding source functions gives the global function
in X x X because of the uniqueness theorem. To complete the proof of Theorem 3.1
we only need to check that the inequality (3) is satisfied with some constants C; and
C> that do not depend on y€ X. Starting from a point y€ X\ D, in the first step we
use the source function Sy for the homogeneous space. It satisfies (3) with Co=0
according to Proposition 16.1 of the next section. Moreover. the arc integrals of the
density |exp(Imwto(y, z))So(y, z;w)|?> dl over I'(7) are uniformly bounded. Indeed,
if y is at the distance r from D, only the portion O{r~!) of the energy is scattered
on the inhomogeneity of the medium. This, together with the arguments of Steps
2-13 shows that the estimate (3) is uniform for y€ X. This completes the proof of
Theorem 3.1. O

/X lexp(Im wito(y. x))R(y. x:w)|* dx <

16. The source function in homogeneous medium

Denote by log ¢ the univalent branch that is defined for |arg (| <7 and is positive
for ¢>1. Set v/ =exp(3 log().
Proposition 16.1. If p is constant and Im p>0, then the source function Sy
of the operator A+p? has the form
1 .
So(z;w) = = Jo(V/(pr)? ) log(pz)* + A((PT)?).

where Jy is the Bessel function and A is an entire analytic function of order %
Moreover, it satisfies the inequality

(64) 1So(z; w)| < 87|/(px)? ‘71/2 exp(—Imp\/x_'z)

in the domain |arg(pz)?|<m, of the complex 2-space Xc.
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Proof. For real p the distribution Ey(z.t)=—(27)"18(t—p|z|)(t> —p?|z|?) /2
defined in X xR satisfies the equation (A—p29?)Eg=0dy. Set p=+/(px)? and cal-
culate

_271'80(:1:):/ eXp(tZ)(tQ—QQ)*l/Q dtt::gs/ exp(gsz)(SQ—l)_l/z ds
t>

s>1

=L exp(or) / exp(—o0) (=02 +201) "2 do.
0

The right-hand side admits an analytic continuation to the halfplane Re p>0. The
second factor is estimated by means of the Cauchy theorem as follows:

/ exp(—00)(—0?4201) "% do
0

/ exp(—o0)o Y2 (21—0) V2 do
0

o=pT

0

/Ox exp(—|o|*r)(or) " /? (21— 7)™/ dr|

/Ox exp(=|o|*7) dTI

19— 5|~ 1/2] |1/2
§111T21x|21 o7 ol 172

7r)1/2|g|71/2. O

=

K|

Remark. We apply this proposition to the coefficient p==+/w?n2+mg for pos-
itive mp. Therefore if Imw>0 and |w|>|my|*/?n;". the coefficient p is also in the
upper halfplane.

17. The quantitative stationary phase method

Introduce a norm in R™ and denote by

la]l the norm of an operator a in R".

Proposition 17.1. Let zo€R" be a critical point of a smooth phase function
w and U be a starlike neighbourhood of xg such that

(65) {75 () =27 (o) M {5 (20)} I < 3

for x€U. Then there exists a smooth coordinate system y=y(x) in U such that
y(z0)=0 and B(y(z))=¢(x). where 3(y)=3¢};(x0)y'y’.

Proof. Assume that o=0 and write p(z)—3(x)=_7 ,_; aij(z)z'a’. where

(66) aiy(z) = / / [l (st) — 2 (0)] ds .
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Look for a solution of form y(z)=x+zx. where z=z(z) is an unknown matrix
function vanishing at the origin, and z is written as a column. The equation
for z is f(z, zx)+8(2z, x)+8(zx, z2)=1"ax. where 2’ means the row of coordi-
nate functions and a= {a”} Therefore it is sufficient to solve the matrix equation
2+b712'b+b7 2 bz=c=b""a, where b={1y/,(z0)}. Since the matrices b and a
are symmetric, we have b=(c/)*b=c* for any natural k. Write z as a power se-
ries in ¢ such that 2(0)=0. The system takes the form 2z+2%=c and we find
z=2z(c)=(1+c)V/2 1. The series converges if {jc(z)||<1. We have by (66) and (65)
that

te(@)II < 157 [ la@)l < 20 {ef] (o)} MR () = 2 (o) Ml < 1. O

Proposition 17.2. Let 3(x)=3b;;z'x? be a nondegenerated form of signature
s and f be a continuous function such that f.geL,1(R"). The integral

I{w)= / ) exp(2mw3(x)) f(x)dz. w>0.

can be written in the form

exp Lins .
Iw)= — e [0+ /R exp(2ms3(2))g(x) de.
where
(67)

—Zaﬂ'(mfj, Z:l:jfj(:r):f(l*)—f(()). ol =a*d.  {?*}={by} "

Proof. A proof can be done by the regularization 3+ 32222 and partial inte-
gration. O

An estimate can be done for the function g¢:

Proposition 17.3. IfUCR"™ is an arbitrary starlike neighbourhood of the ori-
gin, then there exists a function g, that satisfies (67) and max;- |g| <maxy |a(D)f].
where a(D)=a’*8;0j.

Proof. A proof follows from the equations
1
0
ool 1
=— Z/ o’ (D)o; f(tx)t dt = — / a(D)f(tx)tdt. O
j=170 0
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