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Continuity of weak solutions of
elliptic partial differential equations

Visa Latvala

Abstract. The continuity of weak solutions of elliptic partial differential equations
div. Az, Vu) =0

is considered under minimal structure assumptions. The main result guarantees the continuity at
the point z¢ for weakly monotone weak solutions if the structure of A is controlled in a sequence
of annuli B(zg, Rj)\B(ro,rj) with uniformly bounded ratio R;/r; such that lim; ,c R;=0. As
a consequence, we obtain a sufficient condition for the continuity of mappings of finite distortion.

1. Introduction

This note deals with the continuity of weakly monotone weak solutions of the
elliptic partial differential equation

(1.1) div A(z, Vu) =0.
Here A:R™ xR™ 3 R"™ satisfies

a(z)[EP < A(z.€)-£ < 3(x)ElP

for some 1<p<n and for some measurable functions a.3:Q—=R,. We do not a
priori make any integrability assumptions on 3/a or a~*. \We do not even require
in Section 3 that a>0 a.e. in Q. The lack of these assumptions is replaced by the
assumption that u is weakly monotone. In fact. our main result (Theorem 3.1)
shows that weakly monotone weak solutions of (1.1) are continnous at the point
o €€ whenever there exists a sequence of annuli A;=B(zg. R;)\ B{(zo.7;) shrinking
to the point xo such that €, ;j<a<F<ey; in A, for some constants £ 5, £2 ;>0 with
finite supremums sup;(R;/r;) and sup;(2.5/21.5). The proof of this result is based
on Harnack’s inequality only. Theorem 3.1 is improved in Section 4 under the
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additional assumptions that n—1<p<mn, the function 3 is bounded, and a>0 a.e.
in Q.

The equation (1.1) is considered in [9], where the authors obtain among other
things that weak solutions of (1.1) are weakly monotone in the sense of [12] if
BeL>(2) and @>0 a.e. in Q. Thus by the known properties of weakly monotone
functions [12, Theorem 1], any weak solution of (1.1) has a representative which is
locally bounded and continuous outside a p-polar set, whenever n—1<p<n. For
p>n weakly monotone functions always have a continuous representative. There
are examples of non-continuous weakly monotone functions for p<n. In the case
1<p<n-1, the author is not aware of any general regularity results for weakly
monotone functions.

Our ideas have a relation to the theory of mappings of finite distortion. This
class of mappings has been intensively studied quite recently, see e.g. [1], (4], [5], [6],
[7], [8] and the references therein. The continuity and monotonicity of mappings
of finite distortion are studied in [5], where the authors prove continuity under the
additional assumption that the distortion function is exponentially integrable. We
comment on the continuity of mappings of finite distortion in Remark 3.2.

This paper is an improved version of the preprint [11]. In [11], Theorem 3.1
was proved by obtaining an annulus version of the well-known De Giorgi method.

Acknowledgement. A part of the research was done when the author was vis-
iting the Mittag-Leffler Institute. The author wishes to thank the Academy of
Finland and the Mittag-LefHler Institute for the support.

2. Preliminaries

We assume throughout that QCR™ is an open set for n>2, zp€€), and v is a
weak solution of (1.1) in € in the sense of Definition 2.1.

Our notation is fairly standard. The n-dimensional Lebesgue measure is de-
noted by | - | and |- |; denotes the 1-dimensional Lebesgue measure. We write

oscv=supv—infv
E E E

for the oscillation of a real-valued function v defined on ECR". The boundary of
an open euclidean ball B(z,r)CR"™ is denoted by S(z.r).

Recall that the Sobolev space u€ IV, ?(Q2), p>1. consists of functions u in
which are locally LP-integrable in Q and whose distributional gradient Vu is locally

LP-integrable in Q.
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Weak solutions of elliptic partial differential equations

Let 1<p<oo and let «, 5: Q— R, be measurable functions such that
0<a(z)<B(z)<oc forae zell

Suppose further that A: R” x R" - R™ satisfies the following assumptions:

(A1) the mapping z+— A(z, £) is measurable for all €R™;

(A2) the mapping &—A(x, ) is continuous for a.e. r€R™;

(A3) A(z,&)-£>a(z)|é|P for all E€R™ and a.e. zER™:

(A4) |A(z,8)|<B(z)|€P~! for all EER™ and a.e. reR".
The reason why assumptions (A1) and (A2) are required is that they ensure the
measurability of the composed function x+— .A(x.v(x)) for all measurable func-
tions v. Assumptions (A3) and (A4) describe the elliptic structure of A.

Definition 2.1. We call u a weak solution of (1.1) in Q if ue W,-?(Q) and

loc

/A($,VU($))-V¢($) dzr=0 for all o € Cj(Q).
0

Weakly monotone functions
Weakly monotone functions were introduced in [12] as follows.

Definition 2.2. A function u€W,.?(Q) is weakly monotone. if for every rel-
atively compact subdomain Q of Q and for every pair of constants m<A{ such
that

(m—u)* e Wy P()
and
(u—M)* € Wy P(Q)
we have
m<u<AM ae in.

If 3 is bounded in € and a>0 a.e. in 2, then a simple approximation argument
shows that one can as well test with all functions o€ W1-7(Q) whose support is
compactly contained in € ([3, Lemma 3.11]). In this case we have the following
result [9, Lemma 2.7).

Lemma 2.3. Weak solutions of (1.1) in Q are weakly monotone if 3€ L™(1)
and >0 a.e. in Q1.
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The uniformly bounded case 3€L>(Q2), a='eL>(Q). is studied in the cel-
ebrated paper [13] by Serrin. In this case non-negative solutions of (1.1) satisfy
Harnack’s inequality and the (local Holder) continuity follows by the standard iter-
ation argument.

3. Harnack’s inequality

In this section we prove our general sufficient condition for the continuity of
weakly monotone weak solutions of (1.1). The proof of the result is based on a
modification of Harnack’s inequality. We consider an arbitrary exponent 1<p<oc
in this section.

Theorem 3.1. Let A;=B(xo. R;)\B(x¢.7;) be a sequence of open annuli with
the properties

(ii) sup;en(R;/rj)=1s<oc.

(ili) &1,;<a<B8<ey; in A, for some positive constants £1; and <2 with
Supjen(€2,5/61.5)=:t<oc.
Then each weakly monotone weak solution u of (1.1) in B{zo.Ry) has a represen-
tative, which is continuous at zo.

Proof. Define u pointwise by

1
(3.1) u(z) =lim inf —-——————/ udr forall zeQ2
( |B(z.7)| JB(z.)

r—0

Aj=B(z0. Rj— 1 (R;—r;))\ B (0.1 + 1 (R; 1))
M; = sup u,

B(so. 3 (R;+75))
m; = inf .

B(zo. 3 (R;j+7;))

We are free to assume that R;i;<r; for all j. First. notice that u is bounded
in B(zo, %(Rj+7"j)) by the weak monotonicity. In fact, since u is a solution
of (1.1) in A; in the sense of [13]. u is continuous in A;. Hence (u—sup% u)*
belongs to Wol’p(B(fco, %(Rj+7‘j))), and Definition 2.2 implies that u§supA§ u a.e.
in B(xo,5(R;+r;)). The pointwise definition (3.1) guarantees that uSsupy, u
everywhere in B(zq, $(R;+7;)). Since the lower bound can be treated similarly,
we conclude that the numbers M; and mj; are finite. Consequently, v;=u—m;



Continuity of weak solutions of elliptic partial differential equations 99

is a non-negative solution of (1.1) in B(zo.A;+1). By {13]. v; satisfies Harnack’s
inequality
supv; < Cinf vy
B B
for all balls B such that 2BCA; ;. We may cover S(zq. 3(R;41+7541)) by balls
with radius (R;4+1—rj41) such that the number of balls in the covering only de-
pends on s and n. A repeated application of Harnack's inequality vields

sup v; <C inf 2.
S(zo. L (Rj41+7i41)) S(xo. 3 (Rjs1+ri1))

Here C depends only on n, p. s, and t. Using the weak monotonicity as above, we
infer
sup v <C inf (3
B(wo.3(Rj41+r5:1)) B(ro.3(Rj-1+7-1))

with a constant C depending only on n, p. s. and t. For shortness, we rewrite this
inequality in the form

(32) ]\f[j“-mj SC(inj+1-rnj).
We now proceed in essentially the standard way. Let A=(C—1)/C. where C>1 is
the constant of (3.2). Since 0<A<1, it suffices to show that
]\'[j+1_n1j+l S)\(]\[j—mj) for all ]

Suppose that m;.1 —m;<C~'(AM;—m;). Then by (3.2).

Mjpr=mjp1 = Mjpg —mj+m; —mj <(C=1)(m;p1—my) <A —m;).
The case mj1—m;>C~1(A;—m;) is obvious. since then

Mjiy=mjp1 S Mi—m;—(mjp —m;)
<Mj—m;—C Y A—m;}y=X1;-m;). O

Remark 3.2. The proof of Theorem 3.1 only requires the weak monotonicity
on B(zg, R1) and Harnack’s inequality in annuli A; for balls B such that 2BCA;.
The constant in Harnack’s inequality should be independent of j. We next discuss
a special case, which has some interest from the point of view of mappings of finite
distortion, see [5]. By definition, a mapping f: Q—R” is of finite distortion in Q

if the components satisfy fkél«Vli’cl () and there is a measurable function K{(z)>1
such that for a.e. z€Q

IDf(x)]" < K(z)J(x. f).
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Here Df(z) is the a.e. defined derivative matrix and J(x. f)=det Df(z) is the
Jacobian determinant. If moreover K:=esssup, ., K (z)<oc and fr€ WL (), the
mapping f is called K-quasiregular in .

Let 1<p<n and let f:Q—R"™ be a mapping whose coordinate functions fi,
k=1,...,n, belong to W.(Q) and are weakly monotone. Let zo€§ and assume
that R;>r;>0 are radii with the properties

(i) limj R;=0;

(i) supjen(R;/r;)<oc: B

(ili) f is K-quasiregular in each annulus A;=B(z¢. R;)\B(z¢.7;) with K in-
dependent of j.

Then f is continuous at xg. The claim follows from Theorem 3.1, since the co-
ordinate functions f; satisfy Harnack’s inequality in annuli 4; with a constant
depending only on n and K, see [3, pp. 269-271] and [13].

4. The case n—1<p<n

In this section we prove a sphere version of Theorem 3.1 under the additional
assumptions that n—1<p<n and 3€¢L>(2). The idea of the proof resembles the
one in Theorem 3.1, but we need more complicated arguments to obtain the sequence
of Harnack’s inequalities.

We assume throughout this section that n—1<p<n. the function 3 is bounded,
and o>0 a.e. in . Let

g9 =esssup 3(x).
zeQ
In this case each solution of (1.1} in £ is weakly monotone (Lemma 2.3) and we are
able to use the following special properties of weakly monotone functions obtained
in the proof of [12, Theorem 1].

Lemma 4.1. Let p>n—1 and let veW,.?(Q) be a weakly monotone function

loc
in Q defined pointwise by

1
v(z) =liminf ———— vdr for all z €M
r—0 |B(2 7)| B(z.r)

Then for any B(xo. R) €S there is a set EC(0. R) of linear measure zero such that
v 18 continuous tn S(zg,r) and

osc v= osc v foralre(0.R)\FE.
pOSC U o8 f (0. R)\

Moreover, oscs(z,.r) v is non-decreasing in (0, R)\E.
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Proof. The pointwise definition of v guarantees that v is p-quasicontinuous in Q
(2, pp. 161-162] and that

essoscv= _osc v for all balls B{zp.7) €Q.
B(zo,r) B(ao.r)

Hence the assertions hold by the proof of [12. Theorem 1. O

Lemma 4.2. Let u be a non-negative solution of (1.1) in € and assume that
there are numbers e,>0 and 0<8<1 together with radii R; and measurable subsets
Aj; of 10, R;[ such that

(i) lim;_, o R;=0;

(i) 4, 26R;;

(iii) a>e; in Urea, S{zo,T).

Then there is a sequence of radii r; €0, R;[ such that

sup u<C inf wu forallj=1.2... .
B(zo.ry) B(zo.ry)

The constant C' depends only on n, p, 6, and the ratio £2/21.

Proof. 1t is enough to prove the assertion for arbitrary v=u+1/k, k=1.2....,
if only the choice of the radii r; is independent of k. To do this, we first imitate a
standard trick. Let R; be such that B(zq.2R;)€Q and let vy eWy P (B(xo, 2R;)) be
a Lipschitz function with the properties 0<v; <1, v;=1 in B(x¢. R;), and |Vy;|<
2/R;. We choose 1;=4¢%v'~? as a test function for v in Q. Then

OS/QA(;U, V) -Vn; d;r:/nA(a:,Vv)(pwf—lt'l_pvvj—(p-l)v*pwva) dz,
so that
(p—l)/ v_pwj’?A(a;,Vv)-Vvdl‘Sp/ Uf_lvl"PA(I.Vv)-V-wj dz.
Q 0

By the structure assumptions (A3) and (A4). we obtain from Hoélder’s inequality
that

(p—l)/Qav_szijv]pdep/Qz;)f”lvl_ij(a:.Vv)ljVU]jd:c

<pe, / E APV VY, da
Q

(p—1)}/p 1/p
<pey (/ |Vv|Pv’pv;-’ dr) (/Q |V, P d;z:) )
Q
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It follows that

(1-p)/p
(/ a|Vlogv|P d;c) (/ |V log v|P d:c)
B(xo.R;) B(xo.Ry)

s L/p
gL“ (/ |Vuj]pdr) .
—1\JB(z0.2R;)

Assume that [V log v| takes positive values in a set of positive measure in B{xzq, R;).
Then (4.1) implies |V log v|€ LP(B(xo. R;)). This holds trivially if |[Vlogv|=0 a.e.
in B(zo, R;). Hence we may apply [9. Lemma 2.13] to conclude that log v is weakly
monotone in B(xo, R;).

Define v pointwise by

(4.1)

v(z )_hmmf{B(zr[/ - vdr for all z€ Q.

r—0

Then by Lemma 4.1, there is a set EC(0. R;) of linear measure zero such that logv
is continuous in S(zg. R) for all Re(0. Ry)\ E. osCg(y, ) logv is non-decreasing in
(0, R1)\E, and that

(4.2) osc logv= osc logv for Re(0.R1)\E.
S(IQ.R) B(l‘o.R)

We are free to assume that E is independent of k and that Sobolev’s inequality in
spheres holds for all R€(0, R})\ E, that is

(4.3) osc_(logv)? < e(n.p)RP~("~Y / |V log v|P dS.
S(zo.R) S(x0.R)

Letting
S(4;) = Sao.7)

it follows from (4.1) that

(4.4) / |V10gv|pdm§&/ |V P dz < c(n, p)a RI7F.
5(A;) (P—1)z1 JB(xo.2R;))

By assumption (iii), there is ;€ [$0R;. R;]\ E such that

lIr;. R;[NA;]1 = 30R;.
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Hence integrating (4.3} over the set [r;. R;]NA; yvields

P p
i—éRj( osc logv) 5/ ( osc 10g1‘> dt
S(zo.ry) [r;.RjINA; S(xo.t)
P
S/ ( osc log L‘) dt
[(6/2)R;.R;InA; “S(zo.t)

< c(n,p)/ pri-n (/ |V log v|? dS) dt
[{6/2)R; .R;)NA; S(xg.t)

gc(n,p)ijH_”/ |V log v| dx.

S(4;)

Here dS refers to integration with respect to the surface measure on S(zg.t). We
arrive at

P 1
osc lo L) <e(n. —.RI?_'I/ Vlog v|P dz.
(S(Io-m) 8 ( 'p)o ’ S(;-\J)& 2!

which together with (4.2) and (4.4) gives
(sezs, toev) = (gouc Joge ) <etnn) 3
osc logv}) = ¢ logv) <e¢(n.p)—.
B(zor;) = S(gf.rj) ost) = p dsq

Hence

su (3 ~o \1/p
log(M) = osC lOg l‘SC(n.p)( j2 ) '
lnfB(zg.rj) v B(xg.rj) LER]

The assertion of the theorem follows by exponentiating the last inequality. O
The continuity of u at z follows essentially the same way as in Theorem 3.1.

Theorem 4.3. Let u be a solution of (1.1) in Q such that a satisfies the
assumptions of Lemma 4.2 at xq. Then u is continuous at xy.

Proof. Using Lemma 4.2, we are able to proceed inductively and find a sequence
(r3)32, decreasing to 0 such that

sup u— inf ugC( inf  wu— inf u)
B(zo.rj4y)  Blzory) B(ro.r;+1)  Blro.ry)
for all j=1,2..... In fact, we may first choose any r;>0 such that B(zp.2r;)
is compactly contained in 2, and apply Lenuna 4.2 to the non-negative solution
u—infg(zy.ryu of (1.1) in B(xg.71). By Lemma 4.2. there is a radius ro<r; such
that
sup u— inf wu SC( inf wu— inf a).
Blzg.72) B{zg.r1) Blzg.r2) Bleo.r1)

We may continue this procedure step by step under the assumptions of Lemma 4.2.
Now the continuity of u at zg follows in the same way as in Theorem 3.1. O
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Remark 4.4. The local condition of Lemma 4.2 vields the following global con-
dition in terms of the p-fine topology. see [3. Chapter 12]. Suppose that « is p-finely
lower semicontinuous and satisfies a>0 everywhere in Q. Then the assumptions of
Lemma 4.2 are satisfied for o at each point of 2, see e.g. [10, Lemma 2.16] or [11].
Hence u is continuous in © by Theorem 4.3.
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