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Gabor analysis of the continuum
model for impedance tomography

Victor P. Palamodov

Abstract. We give a sharp upper estimate for the response of boundary current-voltage
measurements to perturbations of the admittivity in a body that are localized in space and fre-
quency. We calculate the differential of the measurement mapping and study the Gabor symbol of
this operator.

1. Introduction

The electric impedance imaging technique is used for determining the distri-
bution of electric conductivity and permittivity in a body from a series of measure-
ments of current and voltage on the body surface, see the surveys [2] and [4]. The
electric potential u in a body Q is governed by the Poisson equation

(1.1) V-AVu=0,

where y=7(z,w)=0(z,w)+we(x,w)i. The real part ¢>0 is the electric conduc-
tivity, ¢ is the electric permittivity of the body and w=wy is the frequency of the
applied current (it is taken to be constant). The coefficient v is called the admit-
tivity of the medium. We assume that the domain Q is an open bounded set in the
Euclidean space E of dimension 3 and that the boundary I' is of the class C?; 9,
will denote the unit inwards normal derivative on I'. The boundary values

U|F:f7 ’7anu|F:g

are voltage and current, respectively. Any measurement of the current-voltage pair
(g, f) gives a point in the graph of the operator R:g— f. The function g has zero
integral over T {conservation of charge), the voltage f is subject to the same condi-
tion and is uniquely defined. The inverse mapping L.: f++g is called the Calderén
(or “Dirichlet-to-Neumann”) operator. Suppose that we know the function f for any
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g, i.e. we know the operator R,. This assumption is called the continuum model for
the electrical impedance imaging. The mathematical problem is to reconstruct the
function y(z):=v(z,wp) in Q from the knowledge of R,. A similar problem arises
in geophysical prospecting (see, e.g. [13]). It is known that the admittivity ~y is
uniquely defined by this operator, that is, the mapping R:y— R., (and the mapping
L:~y— L., ) is one-to-one. This was proved in [11] and [9], see also the survey [12].
For the inverse mapping L.+ only a weak stability estimate is known [1].

The objective of this paper is to estimate the response of the operators R, and
L., to perturbations of the function y that are sharply localized both in space and in
frequency. The logarithm of the response decreases as the product of the distance
of the localization point to I' and of the local frequency. This implies that a very
limited volume of information on the function v could be extracted from any real
measurements. Roughly speaking, this volume grows at most as O(log N) where N
denotes the volume of reliable measurement data.

2. Differential of the measurement mapping

We assume, as customary, that the voltage u belongs to the “finite energy”
space H'(Q). (We use the notation H*(X) for the Sobolev space WF(X).) The
boundary value f is then an element of the space H/2(I'). Vice versa, the Dirichlet
problem for the equation (1.1) has a unique finite energy solution v for any function
fE€HY2(T). The normal derivative d,u is an element of the space Hy /*(T'); this
is the subspace of H~'/2(T") of functions in I' with zero mean. The Calderén oper-
ator L.: fr>g=~8,u is an elliptic pseudodifferential first order operator H/2(T")—
Ho_l/2 (T"). Write the Poisson equation {1.1) in the slightly different form

(2.1) Au+(Viogy, Vu)=0.

The solution does not change if we replace v by ¢y. Therefore the measurement
mapping L is homogeneous, that is L., =cL., ¢#0.

Let C'(Q) be the space of complex-valued functions in € whose first order
derivatives are continuous up to I. Tt is endowed with the standard norm | - ||V,
Denote by C1(Q) the open subset of non-vanishing functions. The mapping L: y—
L., is continuous from C}(Q) to the space of operators £:=L(HY?(T), H 1/?(T));
we call it the measurement operator. The response of the measurement data to
small perturbations of the admittivity can be evaluated by the differential of the
mapping L. The differential at a point v in the strong sense is a linear mapping
dyL: CH(Q)— L such that

Lyss =Ly =d, L)+ A,(8),  [[A,()lc =o(ll8]D), beC ().
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We will denote by || - [|% the standard norm in H*(X).

Proposition 2.1. The differential d. L exists for an arbitrary yeCL(Q) and
for any §€CY(Q) and fe HY?*(T) we have
dyL(8): f — (v8pv+60,u)|r,
where u 18 the solution of the boundary value problem ulpr=f for (1.1) and v is the
unique solution of the boundary value problem

(2.2) V-AVv=-V-Vu, v|r=0.

A similar statement was used in [10]. A proof can be done by standard argu-
ments.

3. An estimate of the differential

We estimate here the value of the differential d. L in the point d=e), where
(3.1) ex(z) :==exp(—mo(z—p)+2rmit(z—p)), A:=(p,£) € ExE"

for some choice of the parameter ¢ >0. A function of this form (in the case dim F=1)
was called an elementary signal by D. Gabor [6]; since “it occupies the small-
est possible area in the information diagram”, i.e. in Ex E*. Really, the func-
tion ey is sharply localized in the vicinity of p€ E, whereas the Fourier transform
éx(0):= [, exp(—2mifz)ex(x) dx is sharply concentrated near the point £ in the dual
space E*. We modify this construction for the bounded domain Q. The optimal
localization both in Q2 and in E* is attained if we fix the dispersion parameter o as

o= %, d:=dist(p,T), &#0.
Really, for an arbitrary dimensionless parameter s>0 we have
[ el de=(20) 92 ep(omstdie)
lz—p|>sd
which characterizes the localization of the test function in the vicinity of p and
[ el do=(20) V2 exp(-mstdi)
10—¢]>s¢]
which shows the localization of €y in the vicinity of £. Moreover, we have

max |ex(q)| < exp(—nd[¢]).
gel

Consider the complexification Ec:=EQC of the space E. Let I, denote the
closed r-neighbourhood of T' in E¢ for r>0 and ||A||"* stands for the norm of a
linear operator A: H*(T')— H(T).
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Theorem 3.1. Suppose that v has holomorphic non-vanishing continuation
to the set T, for some r>0. Then for some s>0 the operator function A—d~L(ex)
has the estimate, in the domain { =(p,&):wdl¢|>1, d<s},

(3.2) lldy L(ex) |22/ < (Cle[+1)(dI€)*/? exp(—mdl¢]),

where I(y):=supq,_|Vlogy| and C is a positive constant.

A similar estimate holds for the measurement mapping R:~vy+— R, in terms of
the “current-to-voltage” operator R.: H; 1 Q(F)%Hé/ ().

Corollary 3.2. Under the same conditions we have the inequality

(3:3) ld, R(ex)||7 12 < (Cle|+D(dI€])*? | exp(—nd|€l).

Proof. Really, we have dyR=—R,~d,L<R.; then (3.3) follows from (3.2) since
R, is bounded. O

Proof of Theorem 3.1. Let m:=supq, |o|supg |o|~" and take an arbitrary s<
(1+ev3m )_17". Consider the domain P:={(z,¢):(z—¢)2€C\R_} in Ecx Ec and
define in P the holomorphic function /(z—¢)? with positive real part. Set Gi=
{(2,q9):q€Ts, |z—q|<s}. O

Lemma 3.3. There exists a function ®(z,q) in the domain GNP that satisfies
the equation
Ve (2)V:2(2,q) =6(2—q)

and has the structure

#(z,q)

O(z,q)=
where ¢ is a holomorphic function in G.

Proof. We find the fundamental solution for (1.1) by Hadamard’s method [7],

) L O

= 1
O(z,q) = 0(2) ;)uk(27Q>Ek<z_Q)7 Ey(z—q):= WW, o= m

We use here the abbreviated notation w2 =(w?+w?+w32)*. The kernel Ex(z—q)
is the holomorphic continuation of the spherical symmetric fundamental solution

for A**1 to the domain P and wuy are holomorphic functions given by the recurrent
formula

! Alour)(g+t(x—q))

thdt, k=0,1,...
o(g+t(z—q))

uo=1, upr1{z,q9)= /
0
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The functions g and ¢! are holomorphic and bounded in the ball By:={z:|z—¢|<r}

1
lur(z, @)| < ,  Mg:=suplg|sup —.
( B, . ol

for an arbitrary point g€I'. We show by means of induction that for any &£>0,
(Bmg)*  (2k)!
P P
For this we estimate each derivative 8%uy/8%z;, j=1,2, 3, by means of the Cauchy
inequality. It follows that
k! 2k
. V2R < (3m.)F 12k,
(2k)'|uk(z7Q)(z q) |—( mq) T*IZ—‘Q| |Z Q| s
therefore the series A(z, ¢)=3 po ur(2,q)(z—q)?*k!/(2k)! converges in the ball {z:
|z—q|<(1+ey/3m, )_1r}. This ball contains the s-neighbourhood of g since m, <
m. O
Lemma 3.4. An arbitrary solution he HY(Q) of (1.1) has a holomorphic con-
tinuation h to G:={z=x+yicl',:|y|<dist(z,T")} such that
7 (15/2
1R < Cllnlh

Proof. 1t is sufficient to prove this statement for the subset G'=GNU, where U
stands for the s-neighbourhood of a point gy €I'. Take the fundamental solution ®
found in the previous lemma. The boundary values of the kernel 20, ®(x,q) in TV:=
A(UNQ) is equal I+ K, where [ is the identity operator and K’ is a pseudodifferential
operator of order —1. Therefore 2®(z, q) is a parametrix for the Neumann boundary
value problem in UNE. The function 8, belongs to H~/2(I") according to the
regularity theorem for elliptic boundary value problems. By solving the Fredholm
equation

aﬂq)(x7q)b(q) dq:anh(x)7 xerl’
™
we find a function be H~Y/2(I") such that Hb||1:,1/2§0||6nh}];,1/2§C|Ih||S12,. Tt fol-
lows that

h(z) =/ ®(z, 9)b(q) dg+ho
1"/
for a constant hg. For any g€I' the fundamental solution has a holomorphic con-

tinuation ®(z,q) to the domain G since Re(z—q)?=(z—q)*>—y%>d?—y?>0. Take
the continuation of h to IV by means of

W) = | @bl datho.

The boundary I has dimension 2 and codimension 4 in G; the inequality ||i~1||g/2§
C ||b||1:,1/ % holds because of the structure of the kernel ®. This together with the
above estimate of the norm of b implies the lemma. [
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Lemma 3.5. Let uc HY(Q) be an arbitrary solution to (1.1) and X be as above.
There exists a solution vy to the equation
(3.4) V-4Vuy =-V-exVu
that satisfies

(3.5) loallf/? < (Colé|+1)(d|e)>/? exp(—md|€]||ulld,-

Proof. Write the right-hand side as
w:=-V-exVu={—Vex+e,Vlog~, Vu) =w,+wo,

where w, is supported in the d-neighbourhood U, of the point p and wy vanishes
in Up. There is a unique solution vy of the selfadjoint boundary value problem
V -yVug=wo, vo|r=0. It satisfies the inequality

(3.6) lluolI* < Clluol| < Cllwo 1§, < (ClE|+1) exp(—md|€]),
where the last estimate follows from the obvious inequalities for e, and Vey. The

integral

wl0)= [ Saaua)de= [ olg. o) dr

14

satisfies V-yVv,=w,. Write the right-hand side in a different way. The function ey
is holomorphic in E¢ and u has a holomorphic continuation ¢ to G by Lemma 3.4.
The form ®(q, x)w(x)dz has for an arbitrary gq&I' the holomorphic continuation
a,=®(q, 2)wW(z) dz to G, where dz:=dz AdzsNdzz and w:=—V-e Vu. Consider
the chains in F¢,

Yi={z=a+iy:z €U, y=(1-e)d(x)le| '€},

B:={z=z+iy:2€dU,, y=td(z)|¢|7'¢, 0<t<1-¢},

where d(z):=min(dist(z,T),d) and :=(md|£])~! <1. We have (Y UB)=0%2. Thus

(3.7) vp=vy+vg, vy(q) :/Yaq dz, wvp(q) :/Baq dx
by Stokes’ theorem. In the chain Y we have
Re(—m0(z—p)* +27i€(2~p)) = —mo((z—p)* ~ (1) d* (z)) —2r(1-e)d(z)[¢]
= —mo((z—p)*—d*(x)+2d(z)d
+(2e—€?) d*(x) —2ed(x)d)
< —7o(q(x)+d*—2ed(x)d)

= —noq(x)—nd|&|+2med(x){€],
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where g(z):=(z—p)2—(d—d(2))?>>0 since d<d(z)}+|z—p|. We have 2red(z)|§|<2
since z€U,; hence
lex] < exp(—mog(z)+2) exp(—wd|E]).

We have also (z—p)><gq(2)+d?; hence |z —p|<q*/?(x)+d and
lo(z=p) —i€| S ole—p|+[€| < oq(w)/? +20¢|.
Therefore
Vex(@)| < (oq(x)"/? +2[¢]) exp(—moq(z)+2) exp(—md|¢]).

The first factor is estimated by C|¢]|, the second one is bounded by 1 and conse-
quently
sup leaVlogy—Vex| < (CI¢]+1) exp(—md[¢]).

Therefore

(38)  lualy < Sup eV log v~ Ve [lally < (CIE[+1) exp(=mdl¢])l|a]y -

The kernel of the integral transformation 4|y —vy has weak singularity O(|z—q|™1);
hence we have to apply the inequality |lvy ||5G/2 <C(e)||wl} with a constant C(e) that
may depend on the parameter €. To find a bound for this constant we estimate the
kernel V®|y of the operator br— Vii|y:

Ve®(z,@)ly =—((2-9)*) 2 (=) Az, q)+((2—q)*) /*V A(z,q)
_ B(2,9)
(x—q)2=(d")?(x)+2(x—q)yi)3/?’

where the kernel B(z, ¢) is bounded in P. The inequalities

c C ¢ CoVdE

Iq)(z’q)'S\/(:c—q)Q—(d’)Q(x)S\/dZ(w)—(d’)Z(x)S\/gd(fE)~ i@
c d|
(@) = B

hold in ¥V with d'=(1—¢)d and a constant C which does not depend on € and A.
This numerator comes into the estimate

IV®(z,q)[** <

oy 1% < Clloy |14 < C(dje? a5
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Together with (3.8} it finally gives
loy [l < (Cle|+1) (dIg 2 exp(—mdi€]) [ullé-

(Note that even a sharper norm of vy can be estimated in this way.)
A similar estimate holds for the function vg because the test function satisfies
in B the inequality

lexl = exp(—mo(d” —t2d*(2)) - 2td(2)|¢]) < exp(—nod?) = exp(—nd]¢])
since d(z)<d and t<1. These inequalities together with (3.6) imply (3.5) for the
function va:=v,+vo. O

Now we solve the Dirichlet problem hy|r=—v,|r for the equation (2.1). The
solution belongs to H?({2), because the boundary value problem is elliptic and the
boundary values fulfil (3.5). The function v=vx+h, vanishes at the boundary;
hence, by Proposition 2.1,

d,L(ex): f— g:=70,v+exOpu|r =7(0,vA+0nhx) +ex0npulr.
Estimate the boundary function g as
_ — —~1/2
lgliz* < IV 1BnvA+ bl >+ lleallf | dnull s 2,

where we have used the inequality llaﬂly‘g§C’HaH(F1)H)”H;/2 and || - Hg) denotes the
norm in the space C'(T"). To estimate the first term we use the inequality ||hx[|3 <
C||v>\|[§/2 and inequality (3.5) together with the estimate Hu||51)§C'||f||11/2 for the
solution of the Dirichlet boundary value problem for the elliptic equation (2.1).
For the second term we apply the estimates ||e,\||§1)§C’(|£|+1)exp(—7rd|§|) and
[Onull7* <ClullL. This gives

lglls"* < (Clel+D(dle])>/? exp(—mdleD £llE

and (3.2) follows. O

4. Remarks

Remark 4.1. In general terms, Theorem 3.1 says that the response of the differ-
ential of the measurement mapping to an elementary perturbation of the function
~ exponentially decreases if the dimensionless product d|¢] grows. It is true also if
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we take the normalized elementary signal éx:=cyey. It has unit Lo(X)-norm if we
take c\=(20)%%(1+0(exp(—27d|¢]))) (see Section 6). We get by (3.2),

ld, L(E)ITV/22 < ClEP/2(dI€])>* exp(—md€]).-

The right-hand side decreases exponentially, as d|¢}|— o0, anyway. The function
€ does not vanish on the boundary, but it is exponentially small since €x(z)|<
C|¢|3/? exp(—mnd|€]) for z€T.

Remark 4.2. We can conclude from (3.2) that the norm ||d- L( - )||~*/%/2 does
not dominate any reasonable norm | - ||;. Really, suppose that a norm | - || is
dominated by this norm. Apply this inequality to the test function ey and get
by (3.2),

lexlls < (ClE[+1)(dI€])*? exp(—md]€])

for any AeT™(Q) which is impossible for any standard norm. The conclusion holds
true if we compare || - ||» with the norm ||d,L(-)||*~"* for arbitrary real k.

Remark 4.3. In the n-dimensional case n#3 a similar estimate can be proven
in the same way.

Remark 4.4. 1t seems plausible that for an arbitrary smooth non-vanishing
function v a weaker estimate of the type (3.2) is valid with the exponential function
replaced by a fast decreasing function of d|¢|.

5. Response of the measurement mapping

Now we give an upper estimate for the responsibility of the measurement map-
ping to the perturbation y~>vy+6 of the admittivity by means of a function 4 that
is well-localized in a neighbourhood of a point pef). We shall see that the sensi-
tivity of the measurement mapping to the localized perturbation of the admittivity
coefficient is exponentially small with respect to the parameter d(p)w, where w is
the effective scalar frequency of the perturbation.

Proposition 5.1. We have for arbitrary v1,72.€CL(S),

1
Loy~ Loy = / AL (7 () dt,

where v(t), 0<t<1, is an arbitrary C-curve in CL(£2).
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A proof follows from the Newton—Leibniz theorem. Now we estimate the re-
sponse of the measurement operator for the perturbation of the admittivity of the

form
5(w) = / a(Nex,
B(w)

where « is an integrable density in the ball B(w)={¢:|¢{|<w} for some scalar fre-
quency w.

Proposition 5.2. We have the estimate
Ity = Ly | T/212 < (Cwt D) |d(p)w|*'? exp(—md(p)w),

where §(w) is as above and the density « is so small that |y|>|6(w}] in Q2.

Proof. The interval {7(t)=y+td(w), 0<t<1} is contained in C}(2). We apply
Proposition 5.1 and estimate the differential d. ;) L(6(w)) as in Theorem 3.1 taking
in account that the constant C in (3.2) can be taken bounded in this interval. O

6. Gabor analysis on a manifold

Gabor’s elementary signals appeared already in theoretical physics as “coherent
states” that form a representation of the Weyl-Heisenberg group. Later D. lagol-
nitzer and H. P. Stapp [8] proposed the “generalized Fourier transform” for microlo-
cal analysis of distributions. A. Cordoba and C. Fefferman [5] introduced the “wave
packet transform”, whose kernel is given by (3.1) with more general quadratic phase
function. They applied this transform to analysis of differential operators in R™.

In this section we develop a similar approach for analysis in an open bounded
set in R™ and on a compact manifold. In the next section we apply this analysis to
a detailed study of the measurement operator.

Definition 6.1. Let (X, g) be a smooth Riemannian manifold; we say that it
satisfies the condition () for a positive number rg, if X is complete and for any
point p€X the geodesic mapping y,: U,—ByCR" is a diffeomorphism from the
ball U, centered at p of radius 7y to the ball By of the same radius centered at
the origin. Supposing that X satisfies (x), we call a family of smooth halfdensities
{ha€Ly(X):AeT*(X)} a Gabor family in (X,g) if the following conditions are
satisfied for any A:

(1) {hx,hx)=1, where (-,) denotes the inner product in La(X);
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(ii) the density |hy|? is sharply localized at the point p where A=(p, ¢), i.e. for
any r, 0<r<rg,

Ck
Al < ——, k=0,1,2,...,
/dist(z,p)Zr (7'2|£|g)]c

where | - |4 stands for the norm of a covector in X;
(iii) the density |F'(¢hy)|? is sharply localized in the vicinity of the point £ for
an arbitrary peD(Up), i.e. for any >0,

Cr
[Floh))* < o) k=0,1,2,...,
/|n~5|>r§ (r2|€]4)*

where F' denotes for the Fourier transform of halfdensities with respect to the geo-
desic chart y,:

F(a)(?})::/ alyp) exp{—2minyy)\/dyp dn .
The constants C in both inequalities do not depend on A and r.

Denote by T*(X) the set of non-zero covectors £ in the cotangent bundle 7 (X))
of the manifold X. Define the distance function on this set by

2. dist(p, q)*|€]g nly+dist,y (&, n)?
' Elg+1nly ’

dist(A, ) A=(p,&), p=1(q,n),

where we set disty (€, n):=|{—np|g=|&;—nly if dist(p, ¢) <ro. Here n, stands for the
parallel translation of the covector n€7} (X) to the point p along the geodesic from
q to p; &, has the similar meaning and [{|, stands for the g-norm of the covector &.
We set disty (€, n)=0 if dist(p, ¢)>7o.

Proposition 6.2. Let {hy} be a Gabor family in (X,g). Then the function
(hx,hy) decreases fast off the diagonal DCTF(X)xT)(X), namely, it satisfies the
inequalities, for dist(p,q)<rg,

Ck

(6.1) [{hxs byl < Wa

k=0,1,2,...,

with some constants Cy.

These inequalities show how sharp the Gabor functions are localized in the
cotangent space.



180 Victor P. Palamodov

Proof. Assume first that d?|¢||n|>dist(£,n)?, where we set d:=dist(p,q), and
we omit subscripts g for brevity. By the Cauchy—Schwarz inequality and by (i), for
any positive numbers s and ¢ such that s+t=d we have

st < [ NI / N
dist(z,p)>s dist(x,q)>t

1/2 1/2
<(f o meE) (o me)
dist(z,p)>s dist(x,q) >t

Take s=djn|'/?/(|€["2+|n]'/?), t=d|¢]'/?/(|]'/*+|n|'/?) and apply (i) to both
terms in the right-hand side. We get the inequalities

, d2|»s||n|>*’“
ha, )| <C , k=0,1,2,....
[ B k(l&l+|nl

This implies (6.1) in virtue of the assumption. In the opposite case we have
d?)¢| In)<dist(€,1)?, hence d<rs. We assume that |¢|>|n|. Choose a real func-
tion weD(U,) that is equal to 1 in a neighbourhood of p, and write

<h,\,hﬂ> :/ <p2h)jlu+/ (1—<p2)h,\flﬂ.
b's s
By (ii) and the Cauchy-Schwarz inequality the second term is equal to O((|¢]+1)7%)
for arbitrary k and 4|¢|>2dist(£, n) >dist(A, u). Therefore the second term is equal

to O(dist(X, ) ~*) for any k. The first term is equal to (hy, h,) in virtue of the
Parseval equation where we set h, =F(ph,):

(6.2) / QOQhABMZ/ il,\zu.
X Ty (X)

Choose the numbers s and ¢ such that s|¢|+tn|=|{—n| and estimate this quantity
by means of (iii):

/ ﬁkﬁu S/ |’i‘/\hu +/ |fz,\fz#]
T3 (X) lo—€l>sl¢] |0—n|>¢In|
Eltlnl N 24y
)

< i+ [ h |2§ck< | < ,
/|05|2s15 ottt dist(&,m) ) ™ dist(X, p)*

which implies an inequality like (6.1) for (6.2). This completes the proof. O

Definition 6.1 is, in fact, axiomatization of the following examples.
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Example 6.3. In a Fuclidean space X=F the family of halfdensities hy:=
exeavdVg is a Gabor family for Ly(F), where the functions ey are given by (3.1)
with the dispersion coefficient o=|¢|+d for a constant §>0 and ¢y =(20)"/*.

Ezample 6.4. Take an arbitrary smooth compact submanifold SCE and con-
sider the family of functions e, 'S for covectors pu=(p, #) €S xT*(E) such that 6(n)=
0 for any vector n normal to S at p. The set of such covectors can be identified
with 7*(5). Consider the family of halfdensities f,:=c,e,|svdS, p€T*(S), where
dS is the FEuclidean area element in S. They form a Gabor family for La(S) if ¢,
are normalizing factors.

Example 6.5. Let X be an open bounded set in a Fuclidean space E endowed
with the conformal metric g(p)=d~2(p) ds, where ds? is the Euclidean metric and d
is a smooth positive function in X such that d(p)=dist(p, 9X) in a neighbourhood
X’ of the boundary. We call this metric hyperbolic; if X is the unit disc, it is
quasiconformal to the standard hyperbolic metric. The Riemannian manifold (X, g)
satisfies Definition 6.1 for some r4>0. Consider the halfdensities hy=crexvVdVz ,
where

(6:3) ex = exp(—noy(z—p)* +2mil(z—p)), ox= -d(fll'(i;é

and § is a positive constant. This choice of Gabor functions is close to (3.1) but we
blow up X with the centre at the boundary. The extra term § helps to define the
Gabor family for zero covectors.

Proposition 6.6. The set {hy:=crexVdV I AeT*(X)} is a Gabor family in
X, where cy=(20)"*(1+O0(exp(—27¢|,))).

Proof. The Riemannian norm ||, of a covector £ is equal to d|€|, where we
write d=d(p). Hence

d" exp(—27|€|,)

6.4 / e 2dV§/ exp(—2no\(x—p)?)dV <C
©4 E\XI A 2—p|>d ( A(@=p)’) (I€]g+0)n/2

Therefore

1+ Cd"(1+p)
e 2dV:/ e dev/ exl*dV = = ,
/Xl AI El >\| E\X| >\| (20/\)n/2 (|§lg+5)n/2

where the remainder o=0O(exp(—27|¢|,). Hence the factor cy=(20)"*(1+¢') fulfils
(i) with o’=—p(1+0)~!. To check the inequality (ii) we need to estimate an integral
like (6.4) taken over the set disty(x,p)>r, where r<rg. It is easy to show that
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this set is contained in the set |¢—p|>7'd, where r'=cr for a constant c. We
replace d by r'd and simultaneously £ by /¢ in (6.4). Thus we get the estimate
O(exp(—2mc?r?|¢|,)) and (ii) follows. We check (iii) by means of the equation
F(phx)=F(p)xF(hy). O

Definition 6.7. Let X be a Riemannian manifold as in Definition 6.1, ®(X) be
a linear topological space of halfdensities and {hy} C®(X) be a Gabor family in X.
If w is a linear continuous functional in ®(X) we call the function G, (X)={(u, hy)
the Gabor transform of u.

Let X and Y be Riemannian manifolds endowed with some Gabor families
{gx}, {h.}, and ®(X), ¥(Y') be some spaces of halfdensities such that {g\}C®(X)
and {h,}C¥(Y). For a linear operator A: ®(X)—¥(Y) we define the function
G a(A p):=(A(gx), hy)y in the bundle T*(X)xT*(Y). We call this function the
Gabor symbol of the operator A. We say that a conic subset V' of this bundle is
non-essential for the operator A if |G 4 (X, )| <C,(|¢|+1n|+1)~% in V for any natural
k, where A=(z,£) and p=(y,n). We call the complement S(A) in T*(X)xT*(Y)
of the union of all non-essential open conic subsets the essential support of A. The
Gabor support is a closed conic subset of the bundle.

Ezample 6.8. Let I be the identity operator in Ly(X) for a Riemannian man-
ifold as in Definition 6.1 and {g,} be a Gabor family in X. Proposition 2.1 implies
that the essential support of I is equal to the diagonal DCT™*(X)xT*(X).

Example 6.9. Let A be a differential operator of order m<0 in X. The essen-
tial support of A is again contained in the diagonal D and its symbol is equal to
Ga(\ N)=an(p, 278)+0(|¢]™™ 1), as |£|— o0, where A=(p,§) and a,, is the princi-
pal symbol of A.

7. Gabor analysis of the measurement mapping

Theorem 3.1 is, in fact, the first step to the Gabor analysis of the operator
d,L: CH(Q) — L:= L(HY?(D), H-Y*(T)).

We now do the next step and study the Gabor symbol of this operator. The func-
tions cyey, where e, are as in Example 6.5, form a Gabor family in Q for the
hyperbolic metric g=d~2?(p) ds?. The target space is ¥(Y):=L, where Y:=I'xT".
The space ¥ (Y ):=L(H~'/2(I'), HY/2(I"}) contains the subspace H'/2(T)@ H'/2(T).
Consider the family of halfdensities fﬂzzcueuhﬂ\/ﬁ as in Example 6.4 for S=T.
They form a Gabor family in the Riemannian manifold I'; this family is contained
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in HY/2(I"). Consequently the products f,® f,, (4, v)€T*(T) xT*(T')=1*(Y) form
a Gabor family in U(Y'). According to Definition 6.7,

(71) G, (s v) = (dy L(ex), Fu® f) = /F Fodo Liex)(fu) da

is the Gabor symbol. Now we find the essential support of this operator in the
bundle T*(9).

Theorem 7.1. Suppose that Q has an analytic boundary, i.e. that Q={zcE:
b(x)<0}, where b is a real function that has analytic continuation to & complex
neighbourhood Q of in Ec and db#0 in T:=0S). Suppose, moreover, that the func-
tion v has analytic non-vanishing continuation to a complex neighbourhood of T
Then the symbol of the operator dL decreases exponentially in any closed conic set

KCT*(Q) XT*(FXF)\S, where S:=5yUS1US5US3,

So={(\p, V) :p=qu =, &lp,ry+0,—6, =0},
Syi={(\ 1, v) :p=qu, &lr,ry+0,=0, 6, =0},
Sy i={(\p,v):p=qu, &ln,)—0,=0, 6,=0},
Sz:={( M v):qu=0qv, £=0, 0,—0, =0}

and we use the notation \:=(p,§)€T*(Q), (u,v)eT*(I'xT), u=(gy,0,) and v=
(20, 6,).

Corollary 7.2. It follows that the essential support of dL is contained in
SoUSlUSQU53.

Remark. Identify T*(Q)xT*(I'xT)=T*(QxI xI') and write the varieties S;
in the form

So:={(¢,4,4:€,m,Q) € T*(QXT'xT) : £, 0y +n = =0},
$1:={(¢,4:¢'3&n, Q) €T (QAXTXT) €|z, () +0 =0, (=0},
S2:={(¢:4',4:&,m, Q) €T (QXT'xT) : £, (ry =¢ =0, n=0},
S3:={(4,:4',¢'1§,n, Q) € T"(QXT xT) :£ =0, n—-(=0}.

Endow the bundle T*(QxT'xT") with the symplectic structure 3:=déAdx+dnA
dy—d{Ady. We denote the symplectic manifold by 7*(QxI'xI'); the manifolds
T and I are considered as the source and the target manifolds for the operator
space L(H'/2(I'), H~1/%(T")). This difference implies the negative sign in the above
formula for 3. The varieties S;, j=0,1,2, 3, are conic Lagrange manifolds in T™ (2 x
I'xI"). Really, the form a:=¢Adz+nAdy—(¢ Ady vanishes in S; which follows from
the above definitions. Since F=da, the form @ vanishes too.
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Proof of Theorem 7.1. First we replace the function b by the function b':=
(]Vb]2—b)~1/2b for convenience. This function is holomorphic in a neighbourhood
of Q. We keep the notation b for it and have |[Vb|=1 in I. We can write the
right-hand side of (7.1) in the form

(7.2) /F Fo doLiex)(f,) dz = excucy /F er(Ohortexdin) G
where u,, is the solution of the boundary value problem
VyVu, =0, uulr=eu,
U, 1 the solution of the problem
(7.3) V-V, =—-V-exVu,, vxlr=0,

and 8,:=(Vb,dz). We shall show that the right-hand side of (7.2) decreases ex-
ponentially in an open conic neighbourhood K of an arbitrary point w:=(\, u,v)€

T*(Q)xT*(T'xT)\S. We check this statement in several steps.

Case I: peQ and £#0. We take a closed cone K that does not contain any
point (XN, u', ") such that p(\)€l’. The norm of the operator dL(ey) is estimated
as in Theorem 3.1. Really, the inequality (3.2) can be proved for elementary signals
of the form (6.3) with minor modifications. For the next steps we need the following
lemma.

Lemma 7.3. Ifu is a solution of the Poisson equation such that the boundary
values f:=ulr have analytic continuation to a neighbourhood of I' in I'c. Then u
admits analytic continuation to the domain

Qp:={z=a+iyeQ:|y|<ec, |y, Vb)| < cb(x)},

where the number ¢>0 depends only on b.

Proof. Take an analytic field 7 in Q that is tangent to I'c and is real in €.
Consider the flow F, ;, 0<t <1y, in 0 generated by the field 7. The set Q;:=F, ;(£2)
is a real analytic manifold that is not characteristic for the Laplace operator A=
¥,;0%/ f)z? if 0<¢<ty for some small t5. The boundary I'y:=09€; is a real analytic
submanifold in I'g that is homotopic to I'. Consider the boundary value problem

(74) V’YvutZO in Qt, utlpt:(fl“

where V:=08/02:=5(8/0x—i(0y,/0z,0/8y)) and y=y:(x) is the equation of Q.
Since F; ¢: Q—€, is an analytic mapping together with its inverse, we can consider
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(7.4) as the Dirichlet problem for the Poisson equation with the coefficient y{z+iy;).
The kernel of this boundary value problem is equal to zero by virtue of the maximum
principle. Therefore this problem is uniquely solvable since the index equals zero.
We claim that the family of functions u; defines an analytic continuation Fr(u,) of
u,, over the union UT::U()gtgto Q. To check this assertion we differentiate (7.4)
with respect to t successively and estimate the derivatives of u; in £2;. From the
standard estimates for the elliptic boundary value problem we get the inequality
|0fus | <CBF¥k! for some B and C as long as the functions v and f are analytic and
the boundary value problem (7.4) is elliptic. Therefore the analytic continuation can
be performed for the step-size 1/B. Continuing in this way we get the continuation
Fr(u,) to Us.

The union of the sets U, taken over all fields 7 as above covers the set ; as
above. It can be proved by means of Lemma 7.4. The continuations Fr(u,) are
consistent with each other in €, since they coincide with the analytic function u
in Q. It can be shown that the functions wu; define a single-valued holomorphic
function in €. We shall not use this global conclusion and omit the details.

Lemma 7.4. For any point pel’, any neighbourhood veo, any vector Ty€
To(T) and any number £>0, there exists an analytic field T in Q that is tangent to
T such that 7{p)=7p and |7|<e in QO\V.

Proof. Extend 1 to Q as a constant field and set
T1. = |Vb|2T0—7’o(b)Vb.

We then get 71(b)=0 and 7(p)=70 and set 7:=exp(—g(x—p)?)y for sufficiently
large o. [

Case II: peQ, £=0, q,#q, and 0,,#0. Take a field 7 as in Lemma 7.4 such that
7(6,,)(gu)>0 and 7 is very small in a neighbourhood of ¢,. Consider the analytic
continuation of Fy(uy) as in Lemma 7.3. Take the function w, ¢:=F-(u,)|n, for
some small s>0. This is the solution of the equation (7.4) with the exponentially
small boundary value

ma |e,| < C exp(—cl6, )

for some positive ¢. This inequality is seen from the structure of e,. By the
maximum principle for the Poisson equation (7.4) the maximum of |u, | in Q,
is estimated by the right-hand side. A similar estimate is valid for the normal
derivative Gyu,, s|r, With creplaced by any ¢’ <csince the e, admits such an estimate
in a neighbourhood of I';. This estimate holds also for the solution vy, s of the
boundary value problem like (7.3) in the domain Qg since |ey| is bounded in T
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by a constant that does not depend on 4,,. This implies that the factor ay, s:=
OpUrp,s Fex0ptiy,s in (7.2) is exponentially small in Iy, as |0,,]—o00. We can replace
the chain I" by I'y in (7.2) by Stokes’ theorem since the integrand is a holomorphic
differential form in a neighbourhood of I'. The integral is equal to O(exp(—c|6,]))-
The numerical coefficient admits the estimate ¢,c, <Cl6,|, as the point (6,,60,)
tends to infinity. Therefore the right-hand side of (7.2) decreases exponentially.

Case III: peQ), £=0, q,7#q, and 6,#0. In this case we take a field 7 such
that 7(6,)(¢,)<0 and |7|<e in a neighbourhood V of g,,. Consider the flow F and
replace I" by I'y in the right-hand side of (7.2). We have e, =0(exp(—c|8.|)) in I's
for some s>0. Take the analytic continuation F;(u,) and consider the function
wy s =Fr(uy)lo,. We have u, ,=0(exp(es’|6,[)), where s'=s+0(s) for small s.
Therefore the integrand in (7.2) is again exponentially small, as |0, |—oc.

Case IV: peQ, £€=0, q,=¢q, and 6,—0,#0. We take a field 7 as in Lemma, 7.4
such that 7(6,—0,)(g,)>0 and argue as above. We get the estimates

max [tp,s |+ |vap,s| < Cexp(—s'7(60,)), max |e,] < Cexp(s'7(6,)),

where s'=s+o0(s) and s”"=s+0(s). This implies the estimate O(exp{—clf,,—6,]))
for the right-hand side in T'; s for some small s.
Case V: pel’, p=q,, and p#q,. Suppose that &|r, ) +0,7#0 and take a field T

as above with the property 7(£+6,)(p)>0 which is very small in a neighbourhood
of the point g,. Now we obtain the estimate

max [up, s [+ oru,s| < Cexp(=s'7(6+6,)), maxle,| < C exp(elé+0,l)

for some small e. This implies again that (7.2) is exponentially small if we replace
I by T's for some s>0. In the case 6, #0 we choose a field 7 such that 7(6,)(¢g.) <0
and 7 is small in a neighbourhood of ¢,. Then we argue as in Case IV.

Case VI: pel’, p=q, and p#q,. We show by similar arguments that (7.2) is
again exponentially small in the case {|p ) —0,%0 and in the case 6, #0.

Case VII: p=q,,=q, and {|pr)+0,—0,#0. Here we take a field 7 such that
7(€+6,—0,)(p)>0 and use the above method. O
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