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Gabor analysis of the continuum 
model for impedance tomography 

Victor P. Palamodov 

Abs t r ac t .  We give a sharp upper estimate for the response of boundary current-voltage 
measurements to perturbations of the admittivity in a body that are localized in space and fre- 
quency. We calculate the differential of the measurement mapping and study the Gabor symbol of 
this operator. 

1. I n t r o d u c t i o n  

The  electr ic  impedance  imaging  technique  is used for de t e rmin ing  the  dis t r i -  

bu t ion  of e lect r ic  conduc t iv i ty  and  p e r m i t t i v i t y  in a b o d y  from a series of measure-  

men t s  of cur ren t  and  vo l tage  on the  b o d y  surface, see the  surveys  [2] and  [4]. The  

electr ic  po t en t i a l  u in a b o d y  {2 is governed by  the  Poisson equa t ion  

(1.1) V . ' y V u  = 0, 

where  "7=7(z ,w)=~(z ,w)+wc(x,w)i .  The  real  pa r t  a > 0  is the  electr ic  conduc-  

t ivi ty,  c is the  electr ic  p e r m i t t i v i t y  of the  b o d y  and  c~=c~0 is the  f requency of the  

app l ied  cur ren t  (it is t aken  to  be cons tan t ) .  T h e  coefficient 7 is cal led the  admi t -  

t i v i ty  of the  med ium.  We assume t h a t  the  doma in  f~ is an open  b o u n d e d  set in the  

Euc l idean  space E of d imens ion  3 and  t h a t  the  b o u n d a r y  F is of the  class C2; 0r~ 

will denote  the  uni t  inwards  n o r m a l  der iva t ive  on F. T h e  b o u n d a r y  values 

~ l r  = f ,  7 0 , ~ l r  = g 

are voltage and current, respectively. Any measurement of the current-voltage pair 

(9, f) gives a point in the graph of the operator _~: g~+f. The function g has zero 
integral over F (conservation of charge), the voltage f is subject to the same condi- 
tion and is uniquely defined. The inverse mapping L~: fF-~g is called the Calderdn 
(or "Dirichlet-to-Neumann") operator. Suppose that we know the function f for any 
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g, i.e. we know the operator R~. This assumption is called the continuum model for 
the electrical impedance imaging. The mathematical problem is to reconstruct the 
function ~/(x):=-y(x, c~0) in f~ from the knowledge of Rz. A similar problem arises 
in geophysical prospecting (see, e.g. [13]). It is known that  the admittivity "y is 
uniquely defined by this operator, that is, the mapping R: "y~-+R~ (and the mapping 
L:'y~-~L~) is one-to-one. This was proved in [11] and [9], see also the survey [12]. 
For the inverse mapping L~r-~ /only  a weak stability estimate is known [1]. 

The objective of this paper is to estimate the response of the operators R~ and 
L~ to perturbations of the function -y that are sharply localized both in space and in 
frequency. The logarithm of the response decreases as the product  of the distance 
of the localization point to F and of the local frequency. This implies that  a very 
limited volume of information on the function "y could be extracted from any real 
measurements. Roughly speaking, this volume grows at most as O(log N) where N 
denotes the volume of reliable measurement data. 

2. D i f f e r e n t i a l  o f  t h e  m e a s u r e m e n t  m a p p i n g  

We assume, as customary, that  the voltage u belongs to the "finite energy" 
space Hl( f t ) .  (We use the notation Hk(X) for the Sobolev space W2~'(X).) The 
boundary value f is then an element of the space H 1/2 (F). Vice versa, the Dirichlet 
problem for the equation (1.1) has a unique finite energy solution u for any function 

f~H1/2(F). The normal derivative Onu is an element of the space Ho~/2(F); this 
is the subspace of H-1 /2(F)  of functions in F with zero mean. The CalderSn oper- 
ator Lv:f ~-+g=7Onu is an elliptic pseudodifferential first order operator H 1/2 (F)--+ 
Hol /2(F) .  Write the Poisson equation (1.1) in the slightly different form 

(2.1) zx + ( v  log 7, w )  = 0. 

The solution does not change if we replace 7 by c7. Therefore the measurement 
mapping L is homogeneous, that  is L~=cL~, c#O. 

Let C 1 (Q) be the space of complex-valued functions in f/ whose first order 
derivatives are continuous up to F. It is endowed with the standard norm ]]. II (1) 
Denote by C. 1 (f/) the open subset of non-vanishing functions. The mapping L: 7~--~ 
L~ is continuous from C.X(f/) to the space of operators s 1/2(F)); 
we call it the measurement operator. The response of the measurement data to 
small perturbations of the admittivity can be evaluated by the differential of the 
mapping L. The differential at a point -y in the strong sense is a linear mapping 
d~L: C 1 (f/)-+s such that  

L~+5-Lv=d~L(d)§ I Ia~(a) l lc  = o(ll~ll(~)), (~ e C1(~).  
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We will denote by ]]. II~: the standard norm in Hk(X).  

P r o p o s i t i o n  2.1. The differential d~L exists for an arbitrary ~'ECI.(f~) and 
for any 5cC1(~2) and fEH1/2(F) we have 

d~L(5): f ~ - f  (0'&~v+b&~u)lp, 

where u is the solution of the boundary value problem u jp=f  .for (1.1) and v is the 
unique solution of the boundary value problem 

(2.2) V.3,Vv = - V . b V u ,  vlr =0 .  

A similar statement was used in [10]. A proof can be done by standard argu- 
ments. 

3. A n  e s t i m a t e  o f  t h e  di f ferent ia l  

We estimate here the value of the differential d~L in the point 5=e~, where 

(3.1) e~(x) := e •  +2~ i~ (x -p ) ) ,  ; , :=  (p,~) C E •  

for some choice of the parameter (7 > 0. A function of this form (in the case dim E = 1) 
was called an elementary signal by D. Gabor [6]; since "it occupies the small- 
est possible area in the information diagram", i.e. in E x E*. Really, the func- 
tion e~ is sharply locMized in the vicinity of pEE, whereas the Fourier transform 
~ (0):= f z  exp(-2~i0x)e~ (x) dx is sharply concentrated near the point ~ in the dual 
space E*. We modify this construction for the bounded domain i2. Tim optimal 
localization both in f~ and in E* is attained if we fix the dispersion parameter (7 as 

( 7 :=~ - ,  d :=d i s t (p ,F) ,  { r  

Really, for an arbitrary dimensionless parameter s>0  we have 

l~,_vl>sd le~ I ~ dx = (2(7) -3/2 exp(-rcs2d]~I) 

which characterizes the localization of the test function in the vicinity of p and 

'lo I~A 12 dO = (2(7) 3/2 exp(_rrs2digl) 
-~l>sl~l 

which shows the localization of ~ in the vicinity of ~, Moreover, we have 

max le~(q) l _< exp(-Trd]~l). 
qcF 

Consider the eomplexification E c : = E ~ C  of the space E. Let F~ denote the 
closed r-neighbourhood of F in E c  for r > 0  and ]]A]] z'k stands for the norm of a 
linear operator A: H k (F)--+ H l (F). 
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T h e o r e m  3.1. Suppose that ~/ has holomorphic non-vanishing continuation 
to the set Fr for some r>0 .  Then for some s>O the operator function A~-+d~L(ex) 
has the estimate, in the domain {)~=(p,():Tcdl(l>l , d<_s}, 

(32) IId L(e )tt <_ (cl l+t)(dl l) 

where/(7):=supa.,. ]Vlog~] and C is a positive constant. 

A similar estimate holds for the measurement mapping R: 7~-~R~ in terms of 

the "cm'rent-to-vottage" operator R~: H 0 i/2 (F )~H0/2  (F). 

C o r o l l a r y  3.2. Under the same conditions we have the inequality 

(3.3) Ild-,R(e),) II 1/2,-a/2 _< (Cl~ I +l)(dl~l)3/21 exp(_Trdl~l)" 

Pro@ Really, we have d~R=-Rzod~LoR~; then (3.3) follows from (3.2) since 
Rz is bounded. [] 

Proof of Theorem 3.1. Let m:=supa,.  Ig/supa,. Ig} -1 and take an arbitrary s<  

( l + e  3~m)-Xr.  Consider the domain P :={(z ,  q) : ( z -q )2EC\R_}  in E c  x E c  and 

define in P the holomorphic function x / ( z -q )  2 with positive real part. Set G:= 
{(z,q):q~F~, ]z-q]_<s}. [] 

L e m m a  3.3. There ezists a function ~(z, q) in the domain GNP that satisfies 
the equation 

V~ .7(Z)Vz~(Z, q) = ~(z-q)  

and has the structure 
q)- 

where r is a holomorphic .function in G. 

r q) 

Pro@ We find the fundamental solution for (1.1) by Hadamard's method [7], 

oo 
42"z,q'=o/z'V-'u~:'z,q'Ek~z--q ) ~ )~_.J [ ) ~ ) Ek(z--q):= (--1)k+lk[ (z--q)2k 1 

k=0 47c(2k)! ~ '  ~0 = ~1/2" 

We use here the abbreviated notation w2k= 2 2 2 (Wl +W2 +W3) . The kernel Ek(z-q)  
is the holomorphic continuation of the spherical symmetric fundamental solution 
for A k+l to the domain P and uk are holomorphic functions given by the recurrent 
formula 

~o I A(Ouk)(q+t(z-q)) tk u 0 = l ,  u~+a(z,q)= Q(q+t(z-q)) dr, k = 0 , 1 , . . . .  
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The functions ~ and ~ 1 are holomorphic and bounded in the ball Bq:= {z: I z - q  I< r } 
for an arbitrary point qcF .  We show by means of induction that  for any k_>0, 

( 3 . ~ )  ~ (2k)! 1 
I~k(z,q)l<_ ( r _ l z_q l )2  k k ~ '  mq:=Supl~lsup--Bq ,q 161' 

For this we estimate each derivative O2uk/O2zj, j = l ,  2, 3, by means of the Cauchy 
inequality. It follows that  

(2k)! luk(z' q)(z-q)2kl- < (3mq)k r-lz-qle iz_ql2k; 

therefore the series A(z, q)=2k~ uk(z, q)(z-q)2~k!/(2k)[ converges in the ball {z: 

I z - q l <  ( l + e  3x/~Tq)-lr}.  This ball contains the s-neighbourhood of q since mq<_ 
m .  [] 

L e m m a  3.4. An arbitrary solution hEH~(t2) of (1.1) has a holomorphic con- 
tinuation h to G:={z=x+yiEF~: lYl <dist(x,  F)} such that 

5/2 ]I/~IIG -< CllhlI~. 
Pro@ It is sufficient to prove this statement for the subset G~=GNU, where U 

stands for the s-neighbourhood of a point q0 EF. Take the fundamental solution (I) 
found in the previous lemma. The boundary values of the kernel 20~fl~(x, q) in F ~ := 
O(UNf~) is equal I+K,  where I is the identity operator and K is a pseudodifferential 
operator of order -1 .  Therefore 2(I)(x, q) is a parametrix for the Neumann boundary 
value problem in UNft. The function O~hlr, belongs to H-1 /2 (F  ~) according to the 
regularity theorem for elliptic boundary value problems. By solving the Fredholm 
equation 

, O,~e(x, q)b(q) dq = Onh(x), E F', 2g 

we find a function bEH-~/2(F ') such that  I]bllr,1/2<CIlO~hN~)/2<_CIIhlll,. It fol- 
lows that  

P 

h(x) = / ~(x, q)b(q) dqq-ho 
J r  / 

for a constant ho. For any qEF the fundamental solution has a holomorphie con- 
tinuation (I)(z, q) to the domain G since R e ( z - q ) 2 =  ( x - q ) 2 - y 2  >d  2_y2 >0. Take 

the continuation of h to F ~ by means of 

it(z) = f q2(z, q)b(q) dq+ho. 
Jp r 

- 5 / 2  
The boundary F ~ has dimension 2 and codimension 4 in G; the inequality Ilhlla < 
CIIbllrY 2 holds because of the structure of the kernel ~. This together with the 
above estimate of the norm of b implies the lemma. [] 
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L e m m a  3.5. Let uEH~(~2) be an arbitrary solution to (1.1) and A be as above. 
There exists a solution v~ to the equation 

(3.4) 

that satisfies 

(3.5) 

V.~/Vva = - V .  ex Vu 

IIv~ll/2 ~ (C01~l-4-l)(dl~l) 3/2 exp(-~rdl~l l lul l~" 

Pro@ Write the right-hand side as 

w := - V - e x V u  = ( - V e x + e a V  log 7, Vu) = wp+wo, 

where wp is supported in the d-neighbourhood Up of the point p and wo vanishes 
in Up. There is a unique solution Vo of the selfadjoint boundary value problem 

V'TVvo=w0,  vol t=0.  It satisfies the inequality 

(3.6) ilVo [[~/2 _< Ciiv ~ I1~ -< CIIwo II ~ -< (C[~I +l)  exp(-Tcdl@, 

where the last estimate follows from the obvious inequalities for ea and Vex. The 
integral 

P P 

satisfies V.TVvp=wp. Write the right-hand side in a different way. The function ea 
is holomorphie in E c  and u has a holomorphie continuation g to G by Lemma 3.4. 
The form q~(q,x)w(x)dx has for an arbitrary qEF the holomorphic continuation 
ctq=~(q,z)w(z)dz to G, where dz:=dzlAdz2Adza and ~ : = - V . e A V g .  Consider 
the chains in E c ,  

Y:={z=x+iy:xcU~, y = (1 - c ) d ( ~ ) l~ l - ~} ,  

B : = { z = x + i y : x c O g p ,  y=td(x)l~]-a~, 0 < t < l - e } ,  

where d(x):=min(dist(x, F), d) and ~:--(~dl~l) -~ _<1. We have O(YUB)=O~2. Thus 

(3.7) Vp=Vy+VB, vy(q)=./yctqdx,  vB(q )=~ozqdx  

by Stokes' theorem. In the chain Y we have 

ae(-Tco-(z-p)  2 +27rib(z-p)) = -Tccr ( ( x - p )  2 - (1 -c)2d2(x)) - 27r(1 -c)d(x)I~1 

= -Trc~((x-p)2 _ d 2 (x) +2d(x)d  

+ (2~ - ? )  d ~ (x)  - 2~d (~) d) 

< -Tro-(q(x) + d 2 -  2cd(x)d) 

= -Tco-q(x) - 7rd[~[ + 2wed(x)/~l, 
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where q(z):= ( z -p )  2 - (d-d(z))  2 >_0 since d<d(x)+ Ix-pl. We have 2reed(z)I{I_<2 

since x E Up; hence 
lexl _< exp( - rc~q(z )+2)  exp(-~dl~l). 

We have also (x-p)2<_q(x)+d2; hence Ix-pl-<q~/2(x)+d and 

IO'(Z--p) --i~[ ~ o-lx-- pl q- I~l -< o" q( x ) 1/2 -r- 21{l" 

Therefore 

IVe~(z) l < ((Tq(z) 1/2 § exp(--rco-q(x)+2) exp(-Trdj@. 

The first factor is est imated by cl~l, the second one is bounded by 1 and conse- 

quently 
sup lexV l o g ' r - V e x l  _< (cIg/+5 exp(-rrdlg]).  y- 

Therefore 

(a.s) I1~11 ~ < sup lexV log'r-X7exl  I1~11~ -< (C lg l+z )exp( -~d lg l ) l l ~ l l~ -  
Y 

The kernel of the integral t ransformation ~lY ~ vy has weak singularity O ( I z -  q I- ~); 
hence we have to apply the inequality lilY II~/2-<C(c) II~ll ~ with a constant C(c) that  
may depend on the parameter  c. To find a bound for this constant we estimate the 

kernel V~lY of the operator b~V~ly:  

Vq~(z ,q)[y=-( (z -q)2) -a /2(z -q)A(z ,q)+((z -q)2) - l /ZVA(z ,q)  
B(~,q) 

((r  

where the kernel B(z, q) is bounded in P.  The inequalities 

I~(~, q) l -< 

IV~(~, q)l 2/a <_ 

C C C < < 

~/(~-q)2-(dO2(x) - ~ / d 2 ( x ) - ( d , ) 2 ( x )  - 4 7 d ( ~ )  
C dJ~l 

(z-q)2-(d ')2(x)  -<Cd2(x) 

d(~) 

hold in Y with d ' = ( 1 - g ) d  and a constant C which does not depend on e and A. 
This numerator  comes into the est imate 

s/2 
IIw[[~/~_< Cllvr c -< c ( < ~ l )  3/2 II~ll~. 
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Together with (3.8) it finally gives 

IIvY I1~/~ ~ (Cl~l+Z)(dKI) 3/2 exp(-~dl~l)ll~ll~. 

(Note that  even a sharper norm of vy can be estimated in this way.) 
A similar estimate holds for the function vB because the test function satisfies 

in B the inequality 

levi = exp(-rc~r(d 2 -t2d2(x)) -2td(x)I{I)  -< exp(-rccrd2) = exp(-rcdl{l) 

since d(x)<d and t < l .  These inequalities together with (3.6) imply (3.5) for the 
function vx :=Vp + Vo. [] 

Now we solve the Dirichlet problem h x l r = - v x l p  for the equation (2.1). The 
solution belongs to H2(~) ,  because the boundary value problem is elliptic and the 
boundary values fulfil (3.5). The function v=v~,+h;~ vanishes at the boundary; 
hence, by Proposition 2.1, 

Estimate the boundary function g as 

IlgllF 1/2 5 CIl~ll~ 1) II0nvm +&~h~ I1~ ~/2 + Ilem II<F ~) II O~ull~ ~/2, 

1/2 (1) 1/2 
where we have used the inequality Ilafllp <_Cllallr Ilftlp and I1" II(r 1) denotes the 
norm in the space C 1 (F). To estimate the first term we use the inequality I Ih~ U~-< 

CIIv~II~/2 and inequality (3.5) together with the estimate Itull~<CIIfll~/u for the 
solution of the Dirichlet boundary value problem for the elliptic equation (2.1). 

For the second term we apply the estimates Ile~ll(rl)<_C(L~l+l)exp(-rrdKI) and 

llOn~llrl/2 <_Cllull 1. This gives 

Ilgll~ ~/~ ~ (Cl~l+l)(dl~l) 3/~ exp(-~dKI)llfll 1/2 

and (3.2) follows. [] 

4. R e m a r k s  

Remark 4.1. In general terms, Theorem 3.1 says that  the response of the differ- 
ential of the measurement mapping to an elementary perturbation of the function 
7 exponentially decreases if the dimensionless product dl{ I grows. It is true also if 
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we take the normalized elementary signal ~a:=cAex. It  has unit L2(X)-norm if we 
take ca=(2cr)3/4(l+O(exp(-27cdl~l))) (see Section 6). We get by (3.2), 

[ld~L(~x) 11-1/2'x/2 ~ C1~15/2(d1~[)3/4 exp(-zrdl~l). 

The right-hand side decreases exponentially, as d]~t--+oc , anyway. The function 
ex does not vanish on the boundary, but it is exponentially small since I~(x)l_< 
CI~I 3/2 exp(-rrdl~l) for xEF.  

Remark 4.2. We can conclude from (3.2) that  the norm Ild.rL(. )11-~/2,~/2 does 

not dominate any reasonable norm I1" 117. Really, suppose tha t  a norm I1 II? is 
dominated by this norm. Apply this inequality to the test function ea and get 

by (3.2), 

Ile~ll? -< (Cl~l+l)(dl~l) 3/~ exp(-Trdl(t) 

for any AET*(f~) which is impossible for any standard norm. The conclusion holds 

true if we compare I1" 117 with the norm IId~L(" )11 k-l 'k for arbi trary real k. 

Remark 4.3. In the n-dimensional case n r  a similar est imate can be proven 
in the same way. 

Remark 4.4. It  seems plausible that  for an arbi trary smooth non-vanishing 
function 7 a weaker estimate of the type (3.2) is valid with the exponential function 
replaced by a fast decreasing function of dl~ I. 

5. R e s p o n s e  of  the  measurement  mapping  

Now we give an upper  estimate for the responsibility of the measurement map- 
ping to the per turbat ion 3,~+'y+5 of the adnfittivity by means of a function 5 that  
is well-locMized in a neighbourhood of a point pEf~. We shall see tha t  the sensi- 
tivity of the measurement  mapping to the localized per turbat ion of the admit t ivi ty  
coefficient is exponentially small with respect to the parameter  d(p)w, where w is 

the effective scalar fl'equency of the perturbation.  

Propos i t i on  5.1. We have for arbitrary 71,'y2EC.~(~2), 

L~(1) -L~(0) = f01 dL~(t)('y'(t)) dr, 

where ~(t), 0_<t<l ,  is an arbitrary Cl-curve in C1.(~2). 
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A proof follows from the Newton-Leibniz theorem. Now we estimate the re- 
sponse of the measurement operator  for the per turbat ion of the admit t ivi ty  of the 
form 

(~) 

where a is an integrable density in the ball B(c~)={~: [~1 <c~} for some scalar fre- 
quency w. 

P r o p o s i t i o n  5.2. We have the estimate 

IIL~+5(~) -L~ I1-1/2,1/2 ~ (C02~-l)Id(p)~l 3/2 exp(-~rd(p)~), 

where (~(w) is as above and the density c~ is so small that 171>1~(~)1 in ~.  

Proof. The interval {7(t)=7+t(~(w),  0_<t_<l} is contained in C,1(~). We apply 
Proposition 5.1 and estimate the differential dv(t)L(5(c~)) as in Theorem 3.1 taking 
in account that  the constant C in (3.2) can be taken bounded in this interval. [] 

6. G a b o r  a n a l y s i s  o n  a m a n i f o l d  

Gabor ' s  elementary signals appeared already in theoretical physics as "coherent 
states" that  form a representation of the Weyl-Heisenberg group. Later  D. Iagol- 
nitzer and H. P. Stapp [8] proposed the "generalized Fourier transform" for microlo- 
cal analysis of distributions. A. Cordoba and C. Fefferman [5] introduced the "wave 
packet t ransform",  whose kernel is given by (3.1) with more general quadratic phase 

function. They applied this t ransform to analysis of differential operators in R ~. 

In this section we develop a similar approach for analysis in an open bounded 
set in R *~ and on a compact manifold. In the next section we apply this analysis to 
a detailed study of the measurement operator. 

Definition 6.1. Let (X,g)  be a smooth Riemannian manifold; we say that  it 
satisfies the condition (,) for a positive number r0, if X is complete and for any 

point p E X  the geodesic mapping yp: U p - + B o C R  ~ is a diffeomorphism from the 
ball Up centered at p of radius r0 to the ball B0 of the same radius centered at 
the origin. Supposing that  X satisfies (,),  we call a family of smooth halfdensities 
{ h ~ E L 2 ( X ) : A E T * ( X ) }  a Gabor family in (X ,g )  if the following conditions are 
satisfied for any A: 

(i) (hA, h ~ ) = l ,  where ( - , . )  denotes the inner product in L2(X); 
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(ii) the density Ihxl 2 is sharply localized at the point p where A=(p,~), i.e. for 
any r, O<r_<r0, 

.s iha[2 < C ~  /c=0, 1,2, 
ist  (sc,p) > v  - -  (r=l~lg) k'  " " '  

where l" 19 stands for the norm of a covector in X; 
(iii) the density IF(~hx)l 2 is sharply localized in the vicinity of the point { for 

an arbitrary pC~D(Up), i.e. for any r>0 ,  

( 21 IgF' k=O, 1,2,. . . ,  

where F denotes for the Fourier transform of halfdensities with respect to the geo- 
desic chart yp: 

The constants Ck in both inequalities do not depend on A and r. 

Denote by To* (X) the set of non-zero covectors ~ in the cotangent bundle T* (X) 
of the manifold X. Define the distance function on this set by 

dist (~, #)2 := 
dist (p, q)2l~lg Irllg +distg (~, r/) 2 

)~ = (p, ~), # = (q, rl), 

where we set distg(~, rl):=l~-rlp[g=l~q-r/[g if dist(p, q)<_ro. Here rip stands for the 
parallel translation of the covector ~CT~ (X) to the point p along the geodesic from 
q to p; ~q has the similar meaning and [~lg stands for the g-norm of the covector ~. 
We set distg(~, rl) =0 if dist(p, q) >ro. 

P r o p o s i t i o n  6.2. Let {hx} be a Gabor family in (X,g). Then the function 
(hx, h,} decreases fast off the diagonal DCTO*(X) xTO*(X), namely, it satisfies the 
inequalities, for dist(p, q) <_to, 

Ck 
(6.1) I(hx,h~}l_<dist(A,p)k , k = 0 , 1 , 2 , . . . ,  

with some constants Ck. 

These inequalities show how sharp the Gabor functions are localized in the 
cotangent space. 
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Proof. Assume first that d2l~l I~1 >dist(~, r]) 2, where we set d:=dist(p, q), and 
we omit subscripts 9 for brevity. By the Cauchy Schwarz inequality and by (i), for 
any positive numbers s and t such that s+t=d we have 

I(hA' h"}l ~ .~dist(x,p)>_s IhAhttl-~- ~ddist(x,q)>_t IhA~tt~l 

<-- (fdis,(x,p)> lhxl2)l/2+(~dis,(~,q)>_tlh"'2) l/2" 
Take s=dl~]ll/2/(l~la/2+l~ll~/2), t=dl~ll/2/(l~l~/2+lrJI ~/2) and apply (ii) to both 
terms in the right-hand side. We get the inequalities 

I{ha,h,}l<Ck\~ , k = 0 , 1 , 2 , . . . .  

This implies (6.1) in virtue of the assumption. In the opposite case we have 
d2l~l I~l<dist(~,~l) 2, hence d_<r0. We assume that I~l_>l~l. Choose a real func- 
tion ~E~D(Up) that is equal to 1 in a neighbourhood of p, and write 

By (ii) and the Cauchy Schwarz inequality the second term is equal to O((141 + 1) -k) 
for arbitrary k and 4Kl_>2dist(~, r~)_>dist(A, p). Therefore the second term is equal 
to O(dist(A,p)-~) for any k. The first term is equal to {ttx, h,} in virtue of the 
Parseval equation where we set tt, = F ( p h , ) :  

(6.2) ~ ~2hxh, = /~:;(x) hxX ,. 

Choose the numbers s and t such that sl~l+t]r/l=l~-rll and estimate this quantity 
by means of (iii): 

/T;(x)  ~ ) ' ~  -</0-r 

-< 3(o ~1>~1~1 

which implies an inequality like (6.1) for (6.2). This completes the proof. 

Definition 6.1 is, in fact, axiomatization of the following examples. 

la~X" I +/io-~,l>_.,i Ih~;. I 

J r0-~l_>tl~l - dTst~, ~) ] <- 
2kCk 

dist (A, #)k'  

[] 
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(6.4) /E\x 
Therefore 

Example 6.3. In a Euclidean space X = E  the family of halfdensities hA:= 
eaeadx/d-V~E is a Gabor  family for L2(E), where the functions ea are given by (3.1) 
with the dispersion coefficient ~=1~1+6 for a constant 6>0  and ca=(2a) ~/4. 

Example 6.4. Take an arbi trary smooth compact  submanifold S C E  and con- 
sider the family of functions e , l  s for covectors > =  (p, 0)E S x T* (E) such that  O(n)= 
0 for any vector n normal to S at p. The set of such covectors can be identified 

with T* (S). Consider the family of halfdensities f~ :=  cge~ I s ' ~ J S ,  # E T* (S), where 
dE is the Euclidean area element in S. They form a Gabor  family for L2(S) if c~ 
are normalizing factors. 

Example 6.5. Let X be an open bounded set in a Euclidean space E endowed 
with the conformal metric 9 (p )= d  -2 (p) ds 2 , where ds 2 is the Euclidean metric and d 
is a smooth positive function in X such that  d(p)=dist(p, OX) in a neighbourhood 

X '  of the boundary. We call this metric hyperbolic; if X is the unit disc, it is 
quasiconformal to the s tandard hyperbolic metric. The Riemannian manifold (X, 9) 
satisfies Definition 6.1 *br some r0>0.  Consider the halfdensities ha=caead~/-dVEE, 
where 

d(p) KI+6 
(6.3) ea :=exp(-Tro~(x-p)2+27ci~(x-p)), (Ta-- d2(v ) 

and 5 is a positive constant. This choice of Gabor  functions is close to (3.1) but we 
blow up X with the centre at the boundary. The extra  t e rm 5 helps to define the 
Gabor  family for zero covectors. 

P r o p o s i t i o n  6.6. The set {ha :=caea  dx/dV :ACT*(X)} is a Gabor family in 
X,  where cA = (2cr)'~/4(l+O(exp(-27cl~lg))). 

Pro@ The Riemannian norm I~l~ of a covector ~ is equal to dl~ I, where we 
write d=d(p). Hence 

i exp(-27c[~[9) leal 2 dr <_ exp(-27rcra ( x - p )  2 ) dV <_ cd~41~1~+6),~/2 
pl>d 

  leal2dW=s leal  v= 1+6 _ cd' (l+v) 
\ x  (2~a) 'r~/2 (l~lg+6) ~/2' 

where the remainder 0=O(exp(-2~rl41g). Hence the factor ea : (2c r ) '~ /4 ( l+ t / )  fulfils 
(i) with t / = - 6 ( 1 +  t))-1. To check the inequality (ii) we need to est imate an integral 
like (6.4) taken over the set distv(x,p)>_r , where r<_ro. It  is easy to show that  
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this set is contained in the set [x-p[>_rld, where r~=cr for a constant c. We 
replace d by r~d and simultaneously ~ by rt~ in (6.4). Thus we get the estimate 
O(exp(-27rc2r2[~[s)) and (ii) follows. We check (iii) by means of the equation 
F(qoh;O=r(~)*F(h; O. [] 

Definition 6.7. Let X be a Riemannian manifold as in Definition 6.1, q)(X) be 
a linear topological space of halfdensities and {h~ } C ~5 (X) be a Gabor family in X. 
If" u is a linear continuous functional in ~ (X)  we call the function G~(A)=(u, ha) 
the Gabor transform of u. 

Let X and Y be Riemannian manifolds endowed with some Gabor families 
{g~}, {h,},  and qs(X), ~(Y)  be some spaces of halfdensities such that  {g~}Cqs(X) 
and { h , } c ~ ' ( Y ) .  For a linear operator A:q~(X)-+~(Y) we define the function 
GA(A, #) :=(A(ga) ,  h , ) r  in the bundle T*(X)xT*(Y). We call this function the 
Cabot symbol of the operator A. We say that  a conic subset V of this bundle is 
non-essential for the operator A i f [Ga (A, #)]_< CYN (l~l q - t~lq-1)-k in V for any natural 
k, where A= (z, {) and # =  (y, rl). We call the complement S(A) in T* (X) x T* (Y) 
of the union of all non-essential open conic subsets the essential support of A. The 
Gabor support is a closed conic subset of the bundle. 

Ezample 6.8. Let I be the identity operator in L2(X) for a Riemannian man- 
ifold as in Definition 6.1 and {ga} be a Gabor family in X. Proposition 2.1 implies 
that the essential support of I is equal to the diagonal D C T* (X)•  T* (X). 

Eccample 6.9. Let A be a differential operator of order m<_0 in X. The essen- 
tial support of A is again contained in the diagonal D and its symbol is equal to 
GA(A, a)=a,~(p,  27C~)+O([~lrn-1), as I~l---~cxD, where A=(p,~) and a,~ is the princi- 
pal symbol of A. 

7. Gabor analysis of  the measurement  mapping 

Theorem 3.1 is, in fact, the first step to the Gabor analysis of the operator 

dTL:Cl(~) > s 

We now do the next step and study the Gabor symbol of this operator. The func- 
tions caea, where ea are as in Example 6.5, form a Gabor family in f~ for the 
hyperbolic metric g=d 2(p)ds 2. The target space is ~ ( Y ) : = s  where Y : = F x F .  
The space ~ '  (Y) := L(H- 1/2 (F), H 1/2 (F)) contains the subspace H 1/2 (F) | H 1/2 (F). 

Consider the family of halfdensities f , :=c,%lrv~S as in Example 6.4 for S = F .  
They form a Gabor family in the Riemannian manifold F; this family is contained 
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in H1/2(F). Consequently the products f#| (>, u)<T*(F) xT*(F)=T*(Y) form 
a Gabor family in ~(Y). According to Definition 6.7, 

(7.1) Gd.rC(A; #, ~) = (dTL(ex), f~,(gf,) = fir L d~rL(ex)(f,) dx 

is the Gabor symbol. Now we find the essential support of this operator in the 
bundle T* (f~). 

T h e o r e m  7.1. Suppose that ft has art analytic boundary, i.e. that f t = { x E E :  
b(x)<0}, where b is a real function that has analytic continuation to a complex 
neighbourhood ~ of ~ in Ec  and dbT~O in F:=0f t .  Suppose, moreover, that the func- 
tion ~/ has analytic non-vanishing continuation to a complex neighbourhood of F. 
Then the symbol of the operator dTL decreases exponentially in any closed conic set 
KcT*(~) • • r)\S, where S:=SOU&U&USO, 

So : :  {(a ;~ ,~) :p=q.  :q~,  ~lTp(>)+o.-o~ :o} ,  

Sl  :=  {(/~;/t, / / ) : p = q l z ,  ~[Tp(p)-~0~, = 0 ,  0tJ = 0 } ,  

&:={(a;~,~):p=q., glT~(r)-0.=0, 0.=0}, 
&:={(a;iz, z.):q.=q~, ~=0, 0.-0.=0} 

notation a:=(p,{)ET*(fi), (~ , . )~T*( r •  ~=(q. ,0 .)  and . =  and we use the 
(q,,@). 

C o r o l l a r y  
S 0 U S l  U S2 U S 3 . 

7.2. It follows that the essential support of d~L is contained in 

Remark. Identify T* (~) x T* (P x F) =T* (f~ • P x P) and write the varieties S d 
in the form 

So := {(q, q, q; ~ , , ,  r ~ T*(9 • 2 1 5  ~lr~(r) + r j - r  = 0}, 

& :={(q,q,q';{,r;,<) CT*(ftxPxI?):{Ir~(r)+V=0, (=0}, 
& := {(q, v', v;~,~,c)  ~ * ( ~ • 2 1 5  ~lTq(p)-r = o, ~/= o}, 

So:={(q,q',q';e, rl,r .-C=0}. 

Endow the bundle T * ( ~ x F x P )  with the symplectic structure /3:=d(Adx+drlA 
dy-dCAdy. We denote the symplectic manifold by T* (f~ • P • P~); the manifolds 
P and F b are considered as the source and the target manifolds for the operator 
space s H 1/2(F)). This difference implies the negative sign in the above 
formula for/3. The varieties S~j, j = 0, 1, 2, 3, are conic L agrange manifolds in T* (ft • 
F x F~). Really, the form c<=~Adx+rlAdy-(Ady vanishes in Sj which follows from 
the above definitions. Since/3=dc~, the form/3 vanishes too. 
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Proof of Theorem 7.1. First we replace the function b by the function b~:= 
(l~bl2-b)-l/2b for convenience. This function is holomorphie in a neighbourhood 

of ~. We keep the notation b for it and have IVbl=l  in F. We can write the 
right-hand side of (7.1) in the form 

(7.2) ~ f-~d~L(ex)(f~)dx=cx%c, f r  e,',/CObv~,+e~Ob'~,) dV 
db ' 

where u~ is the solution of the boundary value problem 

V . ~ V u , = O ,  u , [ r = % ,  

v ~  is the solution of the problem 

(7.3) V ' T V v ~  = - V . e ~ , V u , ,  v~,[r =0 ,  

and 0b:=(Vb, cqx). We shall show that the right-hand side of (7.2) decreases ex- 
ponentially in an open conic neighbourhood K of an arbitrary point :v := (A, #, ~)E 
T* (~t) x T* (F x F) \ S. We check this statement in several steps. 

Case I: pcf~ and ~=0. We take a closed cone K that  does not contain any 
point (A', #', , ' )  such that  p(A 0 cF.  The norm of the operator d~L(e~) is estimated 
as in Theorem 3.1. Really, the inequality (3.2) can be proved for elementary signals 
of the form (6.3) with minor modifications. For the next steps we need the following 
lemma. 

L e m m a  7.3. If u is a solution of the Poisson equation such that the boundary 
values f : = u l r  have analytic continuation to a neighbourhood of F in Fc .  Then u 
admits analytic continuation to the domain 

~ b : = { Z = X + i y C S : I y I < c ,  I(y, Vb)l<eb(x)}, 

where the number c>0 depends only on b. 

Proof. Take an analytic field 7 in ~ that  is tangent to F c  and is real in ft. 
Consider the flow F~,t, 0<t<_t0, in ~ generated by the field iv-. The set f t t :=F; , t ( f t )  
is a real analytic manifold that  is not characteristic for the Laplace operator A =  
EjO2/Oz 2 if 0 < t < t 0  for some small to. The boundary I~t:=Of~t is a real analytic 
submanifold in Fc  that  is homotopic to F. Consider the boundary value problem 

(7.4) V - T V u t = 0 i n f ~ t ,  ut[r~=e,, 

where V:=O/Oz:=�89 O/Oy)) and y=yt(x) is the equation of ~t. 
Since F~,t: f~-~f~t is an analytic mapping together with its inverse, we can consider 
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(7.4) as the Dirichiet problem for the Poisson equation with the coefficient ~/(x+iyt). 
The kernel of this boundary value problem is equal to zero by virtue of the maximum 
principle. Therefore this problem is uniquely solvable since the index equals zero. 
We claim that  the family of functions ut defines an analytic continuation F~(u~) of 

u .  over the u n i o n  g ~ : = U 0 < t < t  ~ ~ t .  To check this assertion we differentiate (7.4) 
with respect to t successively and estimate the derivatives of ut in f~t. From the 
s tandard estimates for the elliptic boundary value problem we get the inequality 
IO~utl<_CBkk! for some B and C as long as the functions ~ and f are analytic and 
the boundary value problem (7.4) is elliptic. Therefore the analytic continuation can 
be performed for the step-size 1/B.  Continuing in this way we get the continuation 
F~(u,) to U~. 

The union of the sets U~ taken over all fields 7 as above covers the set t~b as 
above. It  can be proved by means of Lemma 7.4. The continuations F~(u, )  are 
consistent with each other in ftb since they coincide with the analytic function u 
in ft. It  can be shown that  the functions ut define a single-valued holomorphic 
function in ftb. We shall not use this global conclusion and omit the details. 

L e m m a  7.4. For any point pEF, any neighbourhood VCf t ,  any vector TOE 
T~(F) and any number e>0 ,  there exists an analytic field 7- in ft that is tangent to 
F such that 7(p)----T0 and I71<c in f t \ V .  

Proof. Extend To to Q as a constant field and set 

~-1 = IVbl2To-To(b)Vb. 

We then get n ( b ) = 0  and 7~(p)=70 and set T:=exp(--~(x--p)2)7-1 for sufficiently 
large p. [] 

Case lI: pet2 ,  ~=0,  q,#q~ and 0~#0. Take a field ~- as in Lemma 7.4 such that  
T ( 0 , ) ( q , ) > 0  and 7 is very small in a neighbourhood of q~. Consider the analytic 

continuation of F~(u, )  as in Lemma 7.3. Take the function u , ,~ :=Fr  ~ for 
some small s>O. This is the solution of the equation (7.4) with the exponentially 
small boundary value 

max le, I -< C exp(-~10, I) 
F~ 

for some positive c. This inequality is seen from the structure of e , .  By the 
maximum principle for the Poisson equation (7.4) the max imum of lu,,~l in ft~ 
is est imated by the right-hand side. A similar est imate is valid for the normal 
derivative 0vu~,~ lr~ with c replaced by any d < c since the % admits  such an est imate 
in a neighbourhood of F~. This est imate holds also for the solution vx,,~ of the 
boundary value problem like (7.3) in the domain f~s since lexl is bounded in Fs 
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by a constant that  does not depend on 0u. This implies that  the factor ax~,~:= 
Ovva,,~+eaObuu,~ in (7.2) is exponentially small in F~, as 10,1-+oo. We can replace 
the chain F by Fs in (7.2) by Stokes' theorem since the integrand is a holomorphic 
differential form in a neighbourhood of F. The integral is equal to O(exp(-clO, D ). 
The numerical coefficient admits the estimate c,c,<_CIO~l , as the point (0~,0,) 

tends to infinity. Therefore the right-hand side of (7.2) decreases exponentially. 

Case III: pCt2, ~=0,  qu#q~ and 0~#0. In this case we take a field 7 such 

that  ~-(0~)(q~)<0 and I~-I<_e in a neighbonrhood V of q,.  Consider the flow F~ and 
replace F by F~ in the right-hand side of (7.2). We have ~,=O(exp(-cl@l) ) in F~ 
for some s>0 .  Take the analytic continuation F~(%) and consider the function 
u.,s:=F~(u.)l~. We have u.,~=O(exp@s']O~l)) , where s'=s+o(s) for small s. 
Therefore the integrand in (7.2) is again exponentially small, as I 0" I--+cc. 

Case IV: p E ~ ,  ~=0,  qa=q. and 0~-0.7/:0. We take a field r as in Lemma 7.4 
such that  r(O.-O.)(q.)>0 and argue as above. We get the estimates 

m a x  Cexp(-s'w(Ou)), m a x  Cexp(s"r(O )), 
F~ F~ 

where s'=s+o(s) and s"=s+o(s). This implies the est imate O(exp(-cIO~-O.I)) 
for the right-hand side in F~,~ for some small s. 

Case V: pEF,  p=q. andp#q~. Suppose that  ~ lT~( r )+0 . r  and take a field T 
as above with the property r(~+O.)(p)>0 which is very small in a neighbourhood 
of the point q.. Now we obtain the estimate 

m a x  m a x  < Ce p( r +0 l) 
F.~ F~ -- 

for some small c. This implies again that  (7.2) is exponentially small if we replace 
P by Fs for some s>0 .  In the case 0 , # 0  we choose a field w such that  ~-(0,)(q,)<0 
and T is small in a neighbourhood of q~. Then we argue as in Case IV. 

Case VI: pEF,  p=q, and P#qu" We show by similar arguments that  (7.2) is 
again exponentially small in the case ~IT(F)--0, 50 and in the case 0ur  

Case VII: P=qu=q, and ~[W(r)+O~--O,%O. Here we take a field r such that  
T(~+O~--O~)(p)>O and use the above method. [] 
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