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Very weak solutions of parabolic
systems of p-Laplacian type

Juha Kinnunen and John L. Lewis(!)

Abstract. We show that the standard assumptions on weak solutions to certain parabolic
systems can be weakened and still the usual regularity properties of solutions can be obtained. In
order to do this, we derive estimates for the solutions below the natural exponent and then apply
reverse Holder inequalities.

1. Introduction

Our work is motivated by the classical Weyl’s lemma: If a locally integrable
function satisfies Laplace’s equation in the sense of distributions, then it is real
analytic. In other words, only a very modest requirement on the regularity of a
solution is needed for a partial differential equation to make sense and then the
equation gives extra regularity. We are interested in nonlinear parabolic systems of
partial differential equations so that a counterpart of Weyl’s lemma is too much to
hope for, but the question of relaxing the standard Sobolev type agssumptions on
weak solutions and still obtaining regularity theory is the objective of our work.

We consider solutions to second order parabolic systems

Ou; . .
(1.1) 81; =div A;(z,t, Vu)+ B;(x,t,Vu), i=1,...,N.

In particular, we are interested in systems of p-Laplacian type. The principal pro-
totype is the p-parabolic system

aui
ot

=div(|VuP~?Vu,), i=1,..,N,
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with 1<p<co. Equations of type (1.1) have recently received new interest, see for
example [D| and [KLi]. Solutions to (1.1) are usually taken in a weak sense and
they are assumed to belong to a parabolic Sobolev space of order p. However, the
weak formulation of (1.1) makes sense under a weaker agsumption that the solution
belongs to a Sobolev space of order r for some r<p. Thus we define very weak
solutions of (1.1) to be those functions which satisfy the usual integral identity
associated with the weak formulation of (1.1) and which belong a priori to a weaker
Sobolev space than the usual one. We show that very weak solutions are actually
weak solutions when p>2n/(n+2), so possess the usual regularity properties of
such solutions as boundedness, Hélder continuity and higher integrability, see [D]
and [KLe]. In short, we are able to pass from an exponent below to an exponent
which is above the natural Sobolev exponent for such a partial differential equation.
We conclude this paper by making some brief remarks concerning the singular case
1<p<2n/(n+2). We remind the reader that for this range of p, weak solutions do
not have to be even locally bounded.
In the elliptic case when the system is

(1.2) div Az, t, Vu)+ B;(z,t,Vu) =0, i=1,...,N,

it is known that very weak solutions are weak solutions. When p=2 and the system
is linear this is due to Meyers [M]. Elcrat and Meyers [ME] extended the result to
cover the case 1<p<oo. They used a duality argument which is not available in
the nonlinear situation. Later Iwaniec and coauthors (see [I] and [IS]) developed
methods which proved the result for equations of p-Laplacian type and an alterna-
tive approach which also worked for higher order systems was given in [L]. Even
though none of these methods apply directly to the parabolic case, our result is
based on [L].

The major difficulty in dealing with a very weak solution u is that u times
a cutoff function cannot be used as a test function in the weak formulation of the
equation. This is a consequence of the assumption that u belongs to a Sobolev space
below the natural exponent p. In [L] suitable test functions are constructed by using
the Whitney extension theorem to extend w off the set where a certain maximal
function is bounded. This approach appears to have first been used in [AF]. In
the present case we encounter major difficulties with this approach. For example
there is no natural maximal function of [Vu|. We use the so called strong maximal
function. Extension of u off the set where this maximal function is bounded has
to be done relative to weighted parabolic rectangles whose side length in either
space or time depends on the given bound. Showing that such an extension can
be used to get the usual Caccioppoli type inequality for the parabolic p-Laplacian
involves some very delicate estimates especially as regards this inequality on time
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slices. Finally we obtain reverse Holder inequalities similar to those obtained for
weak solutions in [KLe].

Another problem is that in [L] an important part of the argument uses the fact
that the Hardy—-Littlewood maximal function raised to a sufficiently small positive
power is an A, weight in the sense of Muckenhoupt, thanks to a result of Coifman
and Rochberg. In the parabolic case the strong maximal function need not have
this property. We give an alternative argument which turns out to be somewhat
simpler than the one in [L] even in the elliptic case.

As outlined above our argument is rather delicate and somewhat technical. In
fact in an early preprint this paper was combined with [KLe] but in order to keep
the reader from being swamped with technicalities we decided to divide it into two
papers. Thus the reader is advised to have [KLe] at hand as we simply refer to the
relevant parts in [KLe] instead of repeating all details here.

As far as we know there are no earlier results which deal with such fundamental
questions as integrability below the natural exponent for the gradients of solutions
to systems of nonlinear parabolic partial differential equations. Our results appear
to be new even when p=2.

2. Main result for very weak solutions

Let QCR™ be an open set and let W7(Q)) denote the Sobolev space of real
valued functions g such that g€ L"(2) and the distributional first partial derivatives
dg/0x;,i=1,2,...,n, exist in Q and belong to L™ (). The space W17 (Q) is equipped
with the norm

dg
-

ol =l D) &
i=1 g

7,0

Given OCR™ open, N a positive integer, —co<S<T <co, let
w= (.., un): Ox(S,T) — RN

and suppose that whenever p>max{2n/(n+2),1}, —co<S<S, <T1<T <0 and
QCO we have

(2.1) w€ L(Qx[S1, Ti))NL"([S1, Tu]; W (),

where p— 3 <r<p. Here the notation L"([S1,T1]); W"(Q2)) means that for almost
every t, Sy <t<Ty, with respect to one-dimensional Lebesgue measure, the function
zru(x,t) is in WHT(Q) componentwise and

T

N
(2.2) O L L / S s Dt < oo
=1

S
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Let Vu denote the distributional gradient of u (taken componentwise) in the x
variable only.
We suppose that A=(A1, ..., Ay}, where

A;=Ai(z,t, Vu): Ox (S, T)xR"™ — R",
and B=(Bj,..., By), where
B; = B;(x,t,Vu): Ox (S, T)xR™ — R,

are (n+1)-dimensional Lebesgue measurable functions on O x(S,T). This is the
case, for example, if A; and B;, i=1,2, ..., N, satisfy the well-known Carathéodory
type conditions. We assume that there exist positive constants ¢;, i=1,2,3, such
that

(2.3) |Ai] < 1| VulP~ +hy,
(24) 1Bl| SCQ'VUlpwl—FhQ,
and
N
(2.5) > (Ai Vi) > e3|Vul” —ha,
i=1

for i=1,2,..., N, and almost every (z,t)€Ox(S,T). Here (-,-) denotes the stan-
dard inner product in R™ and h;, i=1,2,3, are measurable functions in Ox (S, T)
so that

(2.6) ca=|hPllg.oxs,1) <00,

where ¢>1 and
1P = (ha[+1he )P/ P+ [ha].
Finally v satisfying (2.1) is said to be a very weak solution in O x (S, T’} to the

nonlinear parabolic system

8ui
ot

if the structural conditions (2.3)-(2.6) hold and

(2.7) //Z( uza‘b’ + (A, V) — qs) dedt=0

for every test function ¢=(¢1, ..., on)€CS(Ox(S,T)). Observe that if r is replaced
by p in (2.1), then w is said to be a weak solution.

=div A;(z,t, Vu)+B;(z, 4, Vu), i=1,..,N,
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The following theorem is our main result.

Theorem 2.8. Let p>2n/(n+2). Then there exists 3>0 such that if v is a
very weak solution to (1.1) with r=p— 0, then

u e LQ(Q X [Sl,Tl])ﬂLp—i_ﬂ([Sl, T1]7 Wl"er’G(Q)),

where >0 depends only on n, p, § and ¢;, for i=1,2,3, while ||u|p+s,0 depends
on these quantities as well as N, 2, S1, T1 and cq4.

We present the proof of our main result in Section 4.

Remark 2.9. Theorem 2.8 implies that u is a weak solution to (1.1}, so as in [D]
it can be shown for N=1 and h;=0, i=1,2,3, that u has a representative which is
Hélder continuous on compact subsets of O x (S, T).

3. Preliminary reductions
Given r,5>0, (z,t)eR"L let
Dyxy={yeR":|ly;—zs|<r, i=1,2,...,n}
and
Qrs(z,t) =D (z)x (t—s,t+5)

a rectangle in R"™!. Let |E| denote the (n+1)-dimensional Lebesgue measure of
the measurable set F and if f is integrable on E with 0<|E|<oo, then the integral

average of f over F is
1
fdxdt= —/ fdzdt.
fo = 1w ),

If Qps(2,7)COX(S,T), then
;/ u(z,t)dx
m(Do(2)) Jpyey

whenever T—s<t<7+s. Here m denotes Lebesgue measure in R™ and the integral
is taken componentwise.
Let @ be a rectangle in R™+!, We write

]Q(t) = Ig(tv U, 2, T) =

a=a(Q)={(a1(Q),...,an(Q)), where a;(Q) :][ u;dedt for i=1,2,...,N.
Q
We begin with a useful lemma, which was proved for weak solutions in [KLe]
(see Lemma 3.1). However, the same proof gives the result for very weak solutions
as well.
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Lemma 3.1. Suppose that u is a very weak solution to the system (1.1) with
r>min{p—3,1}. If Qups(2,7)COX(S,T), then there exists 9, p<(¢<20, and a
constant c dependmg on p, n, c1 and co, such that

cs

Tale) L)< S £ (VP e+ do
e Q2Q,S(Zv"')

for almost all t; with |t;—T1|<s, i=1,2.

We assume that u is a very weak solution to {1.1) and
max{p—3, 5(1+2p)} <r=p—fF <p.

To prove Theorem 2.8, we essentially prove analogues of Propositions 4.2 and 4.14
of {KLe| with p replaced by p— 3.
We assume, as we may, that 7=1 and (&, )=(0, 0), since otherwise we consider

v(z,t) =u(d+rz, t4+rPt)

for (z,t)€Q10,100(0,0). It is easily seen that v is a weak solution to a partial
differential equation similar to (1.1} and with the same structure. Proving claims
for v with r=1 relative to (0,0) and then transforming back we get the result for
the original w.

Let 6€Cg°(—1,1) be such that 6 equals a constant which is greater than ﬁl)ﬁ
on (—2,3) 0 is even, positive and

/R O(r)dr=1.

If f:Q10,10»(0,0)—~R is locally Lebesgue integrable we put

e == [ s S5 )o( B2 ) dyar

whenever 0<e< 15 and (x,t)€Qsg»(0,0), where ¢ is chosen so that

o [ om0l dry=1
Rn+1

and ~>0 will be chosen later. Next let Q= Q1025,1065(%, T) C Q2,20 (0,0), with 9<o<
1004, and §<s<10%3. Set

won-(22 ()
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whenever (z,t)€R™L. Note that for fixed z€R™ the function ¢(z,-) is constant
on (7—12s,7+12s), ¢ is constant on Qs, 125(2,7), PECG(Q4p,165(2, 7)), and

§H|ng§|||oo+’sl" %Hw <e(n) < oo.

Let Q,,s(2,7)=Q, fix ¢ with 0<e<107® min{p, s} and put

(’U,(:C, t) _a(Q))€¢(x» t)) when (ZL’, t) € Q&SP(O: O))

, otherwise.

@z, t) = {
Let ¢=max{p—3,%(1+p)} and
(3.2) ﬁ:f@uwﬂm)é da dt.
Next for a locally integrable function g: R™—[—00, o], let Mg be the strong max-
imal function defined by

Mg(x,t):sup][~ lg| dz d,
Q Y@

where the supremum is taken over all rectangles CNQ with sides parallel to the coor-
dinate axes and (z,t)€Q. An iteration of the one-dimensional Hardy-Littlewood
maximal theorem implies that

[Mgllo <c(n,o)liglls

for o>1.
Let A>c5(n, p)Ai=A2, Q" =Qs0,365(2,7), E=max{p—1,1}, and set
BN = {(z,t) € R™: (M((IVul+ k) xg+) (2, )¢ <A},
S={(z,t) eER"!: |t —7| <165},
(3.3) S'={(x,t) eR" " :[t—7| <65},
" ={(z,t) R |t—7]| <125},
E(\)=E(M)NS.
Here x g+ is the characteristic function of Q. From our definition of a weak solution

and the Hardy-Littlewood maximal theorem it follows that there is ¢5(n,p)>1 so
that

(3.4) EMNQ#D when A> .

We shall need an analogue of Lemma 3.1 for .
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Lemma 3.5. Lel 0<e<10=5min{p, s}, v=A2"F and A=max{\] 'sp=2 A}.
Suppose that
Qr,'yrz (‘7:7 t)ﬂE(C5>\) 7&@

for some A> X1 and Qy yr2(x,t)CS". Then there ewists r*, r<r*<2r, such that for
Lo (8) =T (5,0, 2, t), i=1,2, we have

[Zpe (ta) — Tpr (£1)] < cA min{r, ¢},

whenever |t;—t|<yr?, for i=1,2. Here ¢ depends onn, N, p and ¢;, 1=1,2,3,4.

Proof. To prove Lemma 3.5, let 6,7>0 be small, ¢, €C§°(t1 —n,t2+n) with
¥1=1 on (t1,12) and P2 €C5( Dy y5(x)) with Y2=1 on D,-(z). Let

6;=(GUnthr)e, J=1,2,.., N.
We use (0, ..., ¢;,...,0) as a test function in (2.7). If we denote

¢: ((bh 7¢N)7
<A( ) 7V&>7v¢> = ((A] ( : ,Vu), V¢1>, ceey <AN( : ’Vu)) V¢N>)7
Bé=(Bi¢1,...., BNon),

we get using simple properties of convolutions that

K1 :/ i 0 (1/)11/)2) dzdr
Rnt1

i
or

(3.6) :—/Rnﬂ(u—a(Q))gd)lwg% dsz—f—/RnH((A(z,T, Vu), V) —Bo)dzdr
=Ko+ Kj.

Letting first 70 and then § =0 we find that

(3.7) = — I (L) 4+ Ire (T1).

m(D;-(@))

We have K»=0, since (E(J;,) is constant on [r—12s,7+12s]. Also as 7,6—0, we
see that K3 converges to the N-vector whose ith component is

(3.8) / / (As(z, 7, Vi), V) — (B)e ) dz dr— / (Ai(o, 7, V)e, 1) b dor dr,

1D, () D e ()X ($1,82)



Very weak solutions of parabolic systems of p-Laplacian type 113

where v is the outer unit normal to D,-(z) considered as a subset of R", and o is
(n—1)-dimensional surface area on the boundary of this set. The integrands in (3.8)
are understood to be zero outside the support of ¢.

Now we consider two cases. First suppose that r> 1009 Since g5 vanishes
outside of Qup165(2,7), it is easily seen that r*, ¢* and #, can be chosen so that
r<<r*<2r, ﬁggg* <209 and

/ ity dz = / (2, 1) dz,
Dg*(i‘) Dr*(x)

whenever t€R. Thus we can replace r* by ¢* in (3.6)—(3.8). Using (3.8), (2.3) and
(2.4), we find for properly chosen ¢* and ¢;,t;€R that

| K|
B9 D, @)

52 cs ][ (VP4 [ |+ ha]) dz dr < cho.

Next if 7< 1550, we see from the definition of E(X) in (3.3) that (3.9) is still
valid. To be more precise, if '=2r+2¢ and s'=+(2r+2¢)?, then there is r*, r<
r* < 2r, such that we have

(3.10)  lim ||

SCW‘][ VulP~ ! +|ha |+ hal)x + dzdr < chr.
n,éaOm(Dr*(x)) o /(xt)(l t 1|+] |) Q

From (3.6)—(3.10) we conclude that Lemma 3.5 is valid. O

Since E()\) is closed and A is as in (3.4) we can use a Whitney type argument
(see [S, Chapter VI]), to divide R""'\ E(}) into rectangles Q;=Q,, ,2(zi,t:), i=
1,2, ..., with

(3.11) ——d\(Qi, E(V) <

1 ~
010 051, (Q“E(A)),

where
(3.12)  da(G, H)=inf{|zz—21 |+ AP 22|y =7y V21 (21,711) €G, (22,72) € H}.
With & and A fixed as in Lemma 3.5, we define v=v(-,e,\) on R**! by

W, t), when (z,t) eE),
vz, t)= { a1y B
Yoo a(Qi, @)wi(x,t), when (z,t) e R*I\E(N).
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Here {w;}5°; is a partition of unity of R"+? \ E(A) adapted to the covering {Q;}32; .
By this we mean that for i=1,2, ..., we have w; €C§°(Qay, 4yr2 (i, 1:)), 0<Swi <1,
szC(n)_l on Qi7

1 Ow;

e e

and -
Z wi(z,t)=1 for all (z,t) e R\ E(\).
i=1

We collect the basic properties of the function v into the following lemma.

Lemma 3.13. There erists c>1 with the same dependence as in Lemma 3.5
such that for every A> Ay the following claims are true:

a) HleRn'H\E(A)mOOSC)\Q;

(b) the function v(-,t) is locally Lipschitz on S’ with Lipschitz constant inde-

pendent of € and t;
(c) the function v is locally Lipschitz on S\ E(\) with Lipschitz constant in-

dependent of e;

@

ov _ 2 dr 2 AP 2ipntl E _ 2 > dT
[p B @] dedr <A TR BN L [ u-alQP
(©

(|Vu|+h)p‘1 |v—| +|Vv| ) dzdr < c5\2/\p’2|R”+1\E()\)|
SN\E(N) 0

+E / lu—a(Q)|? dz dr;
Q+

S

() the function (i—v)? has distributional partial derivatives in t on S'.

Proof. Suppose that

~

Q1010nr 41020022 (2, )N E(X) # 0

and let r'=2r+2¢ and s'=v(2r+2¢)2. Choose @~ so that Lemma 3.1 holds with
Qs,s(2,7) replaced by @~ and Qs 25:(2,7)CQ~ CQ*'. We claim that

(3.14) T:][ lu—a(Q)|xg- dzdr < coN.
Q1 s/(ac t)
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la(Q)—a(Q7) SC][Q_ lu—a(Q )xg- dz dr < coX

as we find from using Poincdre’s inequality and Lemma 3.1. Thus it suffices to
prove (3.14) with @ replaced by Q™.

If '>p, this inequality follows once again from Lemma 3.1 and Poincdre’s
inequality. Otherwise, let | be the least positive integer such that 2/>p. Choose
Q;=Q o (x,t) such that 2'r' <r; <27y’ for i=1,2, ..., 1 and Lemma 3.1 holds with
Qs.5(z,7) replaced by Q. Using the triangle inequality, Lemma 3.1, Poincdre’s
inequality, (3.2) and (3.3) we get

I
TSCZ][ lu—a(Q})|xq- dsz+][ lu—a(Q)|xg- dzdr
i=1" Qj Qi
1
<er'A Z 2% +col < col.
i=1

Thus claim (3.14) is true.
Now suppose that (z/,#)€Q; CR"T\ E()). Let

pi={j:w;#0on suppw;}, i=1,2,...,
and observe from (3.11) and (3.12) that (3.14) holds with r=r;. Hence
(2, ") |<CZ (Qj,|a)) <ch Q))e| dz dr < col.
JEM jens V@i

From this inequality we conclude that (a) is valid.
Next let Q; be a Whitney rectangle as above and suppose that Q;NS’#0.
Choose r and (z,t)€E(X), so that

(3.15) U supp w; C Qr ~4r2(,t)
JEWi

and

(3.16) r

<7r;<c(p,n)r forjepy,.
o) =19 = AP

Again the existence of r follows from (3.11) and (3.12).
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We consider two cases. If Q,. ,,2(x,t)CS”, let r* be as in Lemma 3.5 and set
Q*=Q yr2{x,t). From Lemma 3.5, (3.14) and Poincére’s inequality we deduce for
JE€u; that

0(Q;, ) —a(@", @)| < f - a(Q", )| dz dr

*

gc][ \u—Ip«(T)|dzdr+c  sup  |L-(t')—I-(t)]

[ —t|<vyr?
< cmin{r, Q}][ IVii| dz4cmin{r, Q};\
Q*
1 .
< cmin{r, @}Z)][ [(u—a(Q))eX@s,.250 (,r) 92 dT-+cmin{r, o} A
Q*
< cmin{r, Q}S\

We conclude that

, C - 5 ~ 2
(3.17) Vel@, ¢) < = 3 la(@Qs @) - a(Q", 1) < ed,
J€Us
and
ovl, , C - s o~ C/h\/\p_2
(3.18) 2| 1)< 2y 2 1a(Q D) —a(Q B < —

Jems

for almost every (¢/,t')€Q;. If Q, 2(z, )N(R"T1\S”)#£0 then c(n)yrZ>s and so
using (3.14) we find as in (3.17) and (3.18) that

ch cj\)\(z_p)ﬂg

7 !
(3.19) Vol(e!,#) < 22 < S0
and

ov CAQ
3.2 — (', )< L=

for almost every (z/,t')€Q;. Thus (c) is valid.

To complete the proof of (b) let (z/,t')eS'NE()) and (z,t)€Q,. If (2”,t') is
a point in E()) on the line segment connecting these two points and closer to (z, ')
than to (z',t'), then for |z—2’| small enough we deduce from (3.17), (3.18) and the
continuity of v that

[o(z, t")—v(, )| <|v(z, t)—v(@” )|+ vz, ) —v(z”, )]
<cAz—z'|+|o(’, t) —v(z", ).



Very weak solutions of parabolic systems of p-Laplacian type 117

We observe that
o2, 1) —v(z", t)| =z, t)—a(z",¢)|.
Suppose that |z—2’| is so small that Qg 4,2 (2',t')CS” when r=2[z'—z"|. Let r*
be as in Lemma 3.5 and set Q5=0Q~ 1,2 (2,t’). Then clearly
la(z’, t")—a(2", )| <|u(z', ') —a(Qf, @) |+ |u(z", ') —a(Qf, w)|.
To estimate the first term on the right-hand side of this equation, let
Q;:QZ‘jr,'y4“jr2(x/7t,)7 ]:1727 .
Using Lemma 3.5 and arguing as in the proof of (3 17) and (3.18) we find that

(@41, w) —a(Q], 4)| < Iw -2,

for j=1,2,.... From this inequality and the contmulty of @ it follows that

[ee)
[z, ')~ (@5, )| < D |a(Q 41, 1)~ a(Q}, )| < eAa’ ~z"

j=1

The term |u(z”,t')—a(@4, 4)| can be estimated similarly. Hence
lu(z’, ") —v(z,t)| < cA|lz—a].
If (z,# )€ E{A) we can repeat the above argument with (z, ¢) replaced by (z,1), to
see that the above inequality is true. In view of this inequality, (3.17) and (3.19)
we conclude that (b) holds.
To prove (d) and (e) we let ©; be the set of those indices ¢ for which there exists
Qr ~r2(z,t) satisfying (3.15) and (3.16) with supp w;NS’'#0 and Qa, 4.2 (2,1)CS".
Put
Oy ={i:suppw;NS’ #0 and i ¢ O1}.

From (a), (3.17), (3.18) and the same argument as in proving these inequalities, we

obtain
Z / (I i
ico, JQins’ ot

< eANPT2 Z / —|u—a(Qi,u)| dzdr
QNS

.
1€0; v

|a—v|+(|Vu|+h)P"1(| ’+|W|>> dzdr

(3.21) el Y / (IVu|+h)P~ dzdr

1€0 sNS’

e 3 0SS 100, ) a0l
i€ o Gems

<ENATE N Qi S APNTERMM\ BV

1€0
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Also using Holder’s inequality, (3.3) and the fact that c(n)yr?>s if i€04, we obtain

: [ﬁ—v[+([Vu[+h)p1<] I+{Vv[))dzd7

Ov
POy
Z > 1QinSla(@y, ) +C)\Z/ (|Vul|+R)P~ dzdr

5 6, jem: i@, Y QiNS’

(2-p)/2
(3.22) /\31/2 Z/ (|Vu|+R)P~ 1dszZa(Qj,]ﬂ])

€02 NS’ JEB

<23 D IQinSla(@g fal)?+eA Tt Y [Qins]

2682 JEM; €O,

g%/ lu—a(Q)? dz dr+cANP~HR I\ E(N)].
Q+

Here we have used the fact that E(A)=E(A\)NS. Clearly, (3.21) and (3.22) imply
the claims (d) and (e).

To prove (f), observe from the usual Whitney type argument that @—v is
continuous in R™*! and vanishes on E()). This fact, the claim (d), and a standard
argument give (f}. The proof of Lemma 3.13 is now complete. 0

With A still fixed we let e—0 and note from simple properties of convolutions
that v(-,e,A\)—=w(-,A) pointwise for almost every (z,t). In fact if

o' (z,1) V{ (u(z, t)—a(Q,w))p(x,t), when (z,1) € Qup16s(2,7),
o 0, otherwise,

e w(z,t)= { u'(z,1), when (z,t) € E(M),

S0 a(@iyu)wi(z,t), when (z,t) e R"T\E(N).
Clearly (a)—(e) of Lemma 3.13 and (3.17)-(3.20) are valid with v replaced by w.
Moreover, Lemma 3.5 holds with % replaced by v’

Lemma 3.23. For almost every t with (R™ x{t})NS’#£0 the following is true:
If i€©; and suppw; N(R™ x{t})#£0, then for A> Xy we have

cANP2

(324 [ =a@u e as| < o

and

(3.25) [ [ —al@s ), w Qs wil(a, 8 dr| < AN,

where ¢c>1 has the same dependence as in Lemma 3.5.
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Proof. We prove only {3.25) as the proof of {3.24) is similar. To begin we note
from a now well-known argument (see (3.14), {3.17) and (3.18)) that

(3.26) / lu* —a(Qs, u*)w; da dt < cAmin{rs, 0}|Qul,
Rn+1

whenever u*=u' or @;CQt and u*=u. This inequality and the same proof as
in (3.17) and (3.18) imply that

(3.27) 1(w—a(Qi, u))wil oo < cAmin{ry, o}
We consider two cases. If ;> -2%9, we can argue as in (3.14) to get
|a(Qi, )| < eAmin{r;, o}

From this inequality and (3.27) we find in this case that

)/ | [t —a(@sw), w—a(Qu u))wi](x, 1) da

(3.28) Sc:\zAp2|Q¢|+~A (v, w—a(Q;, v ))w;](x,t) dx
=cAAP2|Q; ]+ 1.
To estimate the integral I let vy €C§°(t1—n, t2+n) as earlier. We define
05 = Q(W;—a(Qi, up)hwity, j=1,2,....N,

where w; denotes the jth component of w and use (0, ..., ¢;,...,0) as a test function
in (2.7) for 7=1,2,..., N. Setting 4=(@1,...,4n), where

iy = (@@ i, G=1,2.0 N,

and letting n—0 we get for almost every t; <ty with [t—tr]|<yr?, k=1,2, that

|0
<C/ o 5
+c[m+l(lvla|p71+|m|+|h2[)(;v¢[+|¢|)dsz

< 65\2)\p72|Qi|.

‘/ a(z,ta)—u(z,t1)) dz (w—a(Qs,u'))w,;)| dz dr
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The last inequality is obtained using (3.17) and (3.18) for w, (3.26) and (3.27). We
deduce from the above inequality that

c t+yr? ) 2o (2
< —5 @] dz dT+eX2 NP 72|Q;] < cA*NPT2|Q; ).
T t—yrZ JR™

Combining this inequality with (3.28), we get (3.25) when r>g-o.

Otherwise we note that either v'=0 on suppw; DQ; in which case the integral
in (3.25) is trivially zero or Q; CQsp,125(2,7). In this situation we once again use
the fact that ¢(z,-) is constant on (1 —12s,7+12s) to get for (z,t)€supp w; that

0(Qu 1) =6 )a(Quu—al@)I < f - [u=a(@w]6(z,)~ldys

cr;
o

< |u—a(Q,u)idxdt§05\ri,
Q

where the last inequality follows from (3.14). From this inequality and (3.27) we
obtain

/ ' —a(@i ), w—a(Qi, u)ywi) (2, 1) do

<A Q| [ (u-a(@uu)do-a(@uuYul(a, o) do|.

We can now define

(bj:d)('ﬁj_a(Qiau;‘))wiwh j:1327“'7N7

and proceed as in the previous case to estimate the last integral. Doing this we
get (3.25). In view of our earlier remark we see that Lemma 3.23 is true. [

The next lemma, is rather delicate and crucial for Theorem 2.8 to hold.
Lemma 3.29. For almost every t with (R™x {t})NS’'#B, we have for A> X2
that

/ P — w8 de > — AR B())
R\ {a:(z,0) €E(\)}

—c/ lu~a(Q)|? dz dr,
Q+
where c>1 has the same dependence as in Lemma 3.5.

Proof. Let

A ={i: |/ |+|w|#£0 on suppw;N(R™x{t})#0}
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and put Aa=A;NO3 and A=A;\A;. To prove Lemma 3.29 we write

2 —w z, z = U 2 2
/Rn\{xz(m)eém}[lui — | —w?(z,t)d ZGZA/ wi(ju' 2w —w|?)](z, t) dz
(3.30) +Z/ il P ol — w2 ) d
i€Ag
:P1+P2.

To estimate P> we observe that c(n)yr2>s, when i€ Ay, and argue as in (3.22) to
find that

[P = Z/ fwi(2u'w—w?)](z,1) d=
1€Ag
(3.31) Z/n u'ww](z,t) dz|+ Z Z a(Qj, [v')*QiNS|
i€Ag 16A2]€M
<2 uw'ww;)(z,t) d lu—a(Q)|* dz dr.
Zg\:/ 2 / u—a zdr

To estimate the last sum in this display we put
¢;=owjwiyr, j=1,2,...,N,

where 91 is defined following (3.28), and use (0,...,¢;,...,0) as a test function
in (2.7) for j=1,2,..., N. Arguing as in (3.22) and Lemma 3.23 we get

(3.32) | P, | gc;\2/\p_2|R"+1\E()\)|—|—§/Q+ lu—a(Q)}* dz dr.

To estimate P; set a;=a(Q;,v’) and write

=Y / (o P — ' —w[2)](z, 1)

i€A
(3.33)
= zlulz [u—a[)ztdz [wilw—a;]%](z,t) dz
ZA/ wi( ) 2}/ e
+22/n[wl(u —a;, w—a;)](z,t)dz
i€

=L1+Ly+Ls.
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To handle L; we use (3.24) to obtain

L1—Z/ wille P~ —asP)) (2 ) d

€A
_2/ Uag, o —a3)+|as 2w (2, ) dz
(3.34) iea JRT
> 2 Y "“'szuzw/ wilz 1) d
ieh " i€EA
=Ly +L1s.

We note that if w;#0 on R™ x {t}, then there exists a Whitney rectangle ¢); with
w;>e(n,p)~t on Q;N(R™x{t}) and suppw;Nsuppw;#P. Either jEA or jEA,.
Let A’ denote the set of those i’s for which j€A. In this case we see from the same
argument as in (3.17) and (3.18) that

la(Qi,v) —a(Q;,u)| < cAmin{p,;}.

Using these observations we find for some ¢g>1 that

Iy >—Z“Z |Qil—cA*AP72 Y 1@l

€A’ r €A

To estimate Li; observe that if i€ A\A’, then c¢(n)yr?>s, so we have

AN _2|0sz

i

@il <~ Iazl |Qul+eA* AP 21Q|

while if 1€ A/, then

MP=2|g; e(n)dAP—2]g;|? A2)\p—2
~L|Qi|§—(—)r—2—‘—|@i|+ 3

i

|Qil.

i
Choosing §>0 sufficiently small and summing the above inequalities, we see for
some ¢>1 that

_)\p 2 |ai[? 12 \p—2 | ntl _¢ _ a0V dzdr
bz =2 3 Q- R B S/wlu (Q)F dzdr.

Putting these inequalities for L;; and L2 in (3.34) we conclude for ¢>1 large
enough that

—eN2 AP RMTI B(A );{/ lu—a(Q)|* dz dr.
Qt
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Moreover, from (3.27) we deduce that

Ly > —cA2AP 2R\ E())|
and from (3.25) we have

Ly > —cA2AP 2R\ E(N).
Using these inequalities in (3.33) we conclude first that

A2)\p—2 c

P> |R"+1\E()\)|—§/Q+ lu—a(Q)I2 dz dr

c

and thereupon from (3.32) and (3.30) that Lemma 3.29 is true. O

4. Proof of the main result

We continue under the assumptions and notation introduced in Section 3. Re-
call that Q=Q, (2, 7), Q=Q1035,100:(2, T), 0<0<100p and §<s<10*3. Let

_ S
(4.1) A2 P:E

and assume that for some cz=c7(p,n)>1

p-f _ 2
As §][ |VulP~? dxdt—l—a(p)][ <1u—a(ﬁﬂ+hp_ﬂ> dz dt
cr Q Q §A5

~

_ 2
(4.2) <er ][A \VulP~? dz dt+c7a(p) ][A (%Qﬁl +h”_ﬁ> dx dt
Q Q SA3

<ENTP,

where a(p)=1 for 2n/(n+2)<p<2 and a(p)=0 for p>2. For fixed A> X2 and >0
small we construct v(-,&, ) as in Section 3 and put

¢;=(v;¢1)., j=1,2,...,N,
where ¢1 €C§5°(t1—n,t2+n). We use (0,...,¢;,...,0) as a test function in (2.7). If

¢=(1, ..., dn), we obtain using the same notation as in (3.6) that
ot
J1 = /Rn+1 <5t~,v>’¢1 dx dt
(4.3) :/ <(u—a(Q))5,v>w1% da:dt—/ ((A(z,t,Vu), Vo) —Bg)da dt
Rn+1 ot RnH1

=Jo+Js.
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We observe from Lemma 3.13(d) and (f) that

i 1 G,
J= YT vddt+—/ —|t|*9y do dt
' /I{"+1\E(A)<8t ’ u>¢1 T e el

1 J N 1 d
(44) = 2/1-{”4.1 agll) u| [ d$dt+§ /Rn+1 atIUI iy da dt

+/ <@,v~ﬁ>¢1dxdt,
Rn+1\E‘(}\) ot

when ¢, —7|<6s—n, i=1,2. Letting n—0 in (4.4) we deduce that

iz t2 ov
—,v—u ydzdt
t—t1+/tl/n<8t’v u> v

for almost every t; <tq, with |[t;—7|<6s, i=1,2. The last integral in this display
can be estimated using Lemma 3.13(d). Thus

=g [ laP-ja=fle.t do

1 2]
(45) le—/ [|ﬁ|2—|ﬂ—v|2](m,t) dl’t +€1:J(t2)—J(t1)+€1,

2 Jr~ t=ty
where

ler] < eAZAP2 R \E()\)H-E / lu—a(Q) dedt=J.
8 Q+
Letting n—0 in Jy and J3 we deduce from Lemma 3.13(e) that
to 8(5
(4.6) Jo — / ((u~a(Q))5,’u>E dz dt = J3
t1 "
and
tz - -
J3—— / ({(A(z,t, Vu)e, V(vd)) — Bev) da dt

t; JR™
(4.7) z—/ ((A(z, t, V)., V(ip)) — Boiig) da dt +e3

E()N{(z.t):t1<t<ta}

=J3 +es,

where |eg|<.J for ¢ sufficiently large.
We now let £—0 through a properly chosen sequence. For almost every £ <t,
with [t;—7|<6s, i=1, 2, we see that J(¢;)—J'(¢;), where

) =5 [ (Pl ~wPl(e.t)da.
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We choose t1, T—65<t; <7—48, so that
(4.8) J(t)<— / lu—a(Q)| dz dt.
S Q+

Next from Lemma 3.29 we see for almost every o that

(4.9) J(ts) =2

/ [u'(z,t2) > do+ef = J" (t2)+€)
2 JRnO{2:(z,t2)EEO)}

and —¢} <.J. We also have J5—.J} and J§ —.J4, where

(4.10) A 1/ <u-a(@),w>@ dedt| < J,
2 Jratt ot
and
(4.11)
Jh=— / ((A(z,t, V), V(u'¢))— Bu'¢) dx dt+ e} = —J§ +ej,
EMWN{{z,t)it <t<ta}

where |e4|<.J. Combining (4.3)-(4.11) we conclude for ¢ sufficiently large that
(4.12) J"(tg)+J4 < J.

Put R )
[z, t) = M((IVul+ k) xq+) "/ (2, 1)

125

for (z,t)€R™!. We multiply both sides of (4.12) by A=+ and integrate with
respect to A over {Ag,00), where Aa<),. It is easily seen that for almost every #;
and t; we can interchange the order of integration. For the term corresponding to

J"(t2) we obtain

K(to) _ [T J(t2)
5 :/A N

g
2,3/\4’8 RrN{z:(z,t2)€E(Xq)}

] / L A
+— |u'(z,t2)] (/ —— |dzx
2 J{ei(a,t2)2 EOW)} Uayts) NP

1 |u'(z,t2)]?
_2/6 R» m(x7t2)ﬁ

|u' (z,t2)|? da
(4.13)

dx,
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where m=max{A4,}. Similarly,

K oo " 1 2 1 )~ , -
(4.14) 5" N Aliﬁ dr= 3 /t1 /Rn W((A(:r,,t,Vu),V(u ¢))—Bu'¢) dx dt.

We now consider two cases. First suppose for Ay and A3 as in (3.4) and (4.1)
respectively, that

(4.15) Az <6As,

where 0<§< 1073 will be chosen after the proof of Lemma 4.19 to depend only on
the constants listed in Theorem 2.8. To estimate the term involving J we note
from (4.1) and the definition of A in Lemma 3.5 that A<e on (A, 00) when p>2
while A<eAP~IA2 P 4¢A on this interval when 2n/(n+2)<p<2. If (4.15) holds we
put \y=46)\3 and use the above fact to obtain from the Hardy-Littlewood maximal
theorem that

/ NTEERMINE(W dA < (0P +1) | PP dwdt
A

4 Rn+1

<c(6P241)[QT (A7

(4.16)

Inequality (4.16) implies that

o0

J
(417) " WdAgc(5P*2+l)|Q+|)\§*ﬁ+
3

C

B(0A3)Ps

Combining (4.12)—(4.14) and (4.17) we get, provided §42-1) >3 and >0 is suffi-
ciently small

/ lu—a(Q)[? da dt.
Q+

(4.18) K(t2)+Klgi/ lu—a(Q)? dw di+e,
Q+

)\’gs
where OSGSﬂI/Q)\g_’B‘Q+l.

We use (4.18) to prove a form of Caccioppoli type estimate tailored to our
situation.

Lemma 4.19. Let u be a very weak solution to (1.1) for p>2n/(n+2) and
suppose that (4.1), (4.2) and (4.15) are valid. Then there exists >0 and ¢>1 with
the same dependence as the constants in Theorem 2.8 such that

_ 2
|Q* X8 P+ esssup / —_|u(x,t2)ﬂa(Q)[ dx
ta€(T—4s,7+65) J D3,(2) m
— P
(4.20) Siﬂ lu—a(Q)|2dxdt+£/ %d$d‘t+6/ hP=8 dz dt.
sAy Jot o® Jor m Q+
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Proof. From (2.5), the fact that ¢ is constant on Qs 125(2, 7) with support in
Qup165(2,T), and T—6s<t1 <T—4s, we deduce for to, 7—4s<ty<7+6s, that

io P 2 _ hp—l
Ly e QU
T—4s I D3, (z) TV € 1JQup165(2,7)

mP
(4.21)

:KQ(tg)—K;g.

Here ¢>1 depends only on p, n, ¢1, ¢2 and c3. Thus,

1
(4.22) ess sup K(t2)+K2(T+63)§C(T/ |u—a(Q)|2d:rdt+e+K3>‘
(r—4s,7+65) )\33 Q+

Let
E={(z,t) € D3,(2) x (1—48,7+63) : |Vul|(z,t) > Bl{x,t) and I(z,t) > A3}

Then .
Ky (1+6s) > —/ |Vu|p_[3 drdt=Kj,.
B° g

We may suppose that >0 is so small that ,8*52%. Then from (4.2) and the
Hardy—Littlewood maximal theorem we see that

n+1

T+6s
/ / [VulP~? de dt < 2K, +c0P PN P|QF |+c8P 7 / 1P=P dx dt
T—4s J D3,(z) R
<2K4+edPPARTP |01,

since 3<§*(?~P), Thus if §<&y and 8 >0 is small enough (depending on the con-
stants listed in Theorem 2.8), we deduce from (4.2) and the above inequality that

AP0+
(4.23) K42w—c WA dg dt — — lu—a(Q)|* dz dt.
4 g
C7 Q+ sy Jo+

From Young’s inequality, and the fact that Q% =Qe,,365(2,T), We also obtain

N7 e [u—a(Q)|P
4.24 Kyl ™ 1, = 2 dxdt.
(4.24) 151 < 32¢r +Q”/Q+ mP *

Putting (4.24) and (4.23) into (4.22) we find that Lemma 4.19 is true. O

Fix §>0 so small that Lemma 4.19 is true. Next we use Lemma 4.19 to prove
a Sobolev type estimate for the very weak solution.
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Lemma 4.25. If the hypotheses of Lemma 4.19 are satisfied, p=max{p, 2}
and -
npp
n+2)p—p(2+p)’
then for 8>>0 sufficiently small there exists 9, p<0<2p0, such that whenever 0<e<
1075, we have

=1

V|l dx dt+e X2
3

Qs,s(2)

[ wo-ntapaas @) (dod |
Qs,s(2)

for some c(e)>1.
Proof. Choose g, p<<3<2p, such that Lemma 3.1 is valid with ¢ replaced by g.
Set 0=2(p—/3)/p and define q by ¢(1+0/n)=p.
We proceed as in the proof of Lemma 3.3 in [KLe]. Let ¥ €C§°(Q25,25(%, 7))
be a cutoff function such that ¥=1 on Qs (2, 7) and |[Vi|<10/p. Let
v(z, 1) = |u(z, 1) —L5(t) ¢ (2, £).
Set 0*=2¢. Holder’s inequality implies that

J:/ o(z, )1/ gy
Dy ()

1/n (n—1)/n
< </ o(5,1)° dm) (/ o, )@ Ha=De/mn/(n=1) dx) _
Dy (2) Dy (2)

We use Sobolev’s theorem for functions in Wh1(D,-(2)) to deduce that there is
constant c=c(n) such that

(n—1)/n
( / o, £) =V /) / (1) dx)
DQ* (Z)

c/ v(z, ) VA Gy (2 1) | da
Dy (2)

(q—1)/4q 1/q
c(/ v(z, )10 +o/m) dx) </ |Vu(z, )| dx) :
Dy« (z) Dy (2)

1/q 1/n
J<egeNia (/ |Vv(x,t)|qd:r) (/ o(z,1)° dx) .
D+ (z) Dy« (z)

(AN

IN

Thus
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The same argument as in the proof of Lemma 3.3 in [KLe] gives

1/q 1/q
</ [Vu(z,t)|? dx) gc(/ [Vu(z, )] da:)
D+ (2) Dy« (2)

and

1/n 1/n
(/ v(z, )7 dw) Sc(/ lu(z,t)—1,(t)|7 d:r)
D (2) Do (2)

1/n
Sc(/ Ju(z, t)— Iy (t)]? dx) .
Dg»(2)

Collecting the obtained estimates we arrive at

q/n
(4.26) ch/ V(e £ do (/ (i, £)— e ()] dx> .
Dyx(2) D« (z)

We note that the right-hand side of (4.20) is smaller than cAy °|Q*|. If
2n/(n+2)<p<2, then this note is a direct consequence of (4.1), (4.2) and Hélder’s
inequality. If p>2 and I, is defined relative to (z,7), then this note follows from
the Sobolev inequality,

|u(z,t) T, (t)] < coM(|Vulxg+ ) (z,t) <col(x,t), (z,t)eQT,

Lemma 3.1, (4.1) and (4.2) (see (3.8} and {3.9) in [KLe]). Using this note, Holder’s
inequality, Lemma 4.19 and the definitions of o and ¢ we see that

</D@(z) Pl t) = L d$>q/n = (/D?,g(z) %M dm)qo/%

(1~a/2)q/n
X (/ mp—# da:)
Dso(2)

Ba/np
(4.27) <c(NSTP|QH e/ < / mp—P dm) ‘
D

30(2)

Putting (4.27) into (4.26) and integrating over (7—s,7+s) we get using Hol-
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der’s inequality and the definitions of ¢, § and o that

) T+s Bq/np
/ o7 da di < (NP1 Q )97/ / (/ m(x,tf’“’dx)
Qs,5(2) T8 D3, (=)
x(/ ]Vu(x,t)]qdac>dt
Ds,(2)
S()\g‘ﬁ(@+')q/ngﬁq/p</
Q

<@t (eei f

(4.28) i
[Vul? dz dt)

3,5(2)

[Vul? dz d‘é—keké’),

5.s(%

where to get the last line we have also used Young’s inequality for small € in the
form

2 \T = A\7/(r—1)
e GO 1))
r r
with
_ DIQe i gtalg
()\3g)15fl/q ’
(4.29) r=_1 TP

Cg-q B¢

B ‘V,&lj{ ><I/<?
b={(A3p)? — : d

(( 3@) /(jzg,s(z)< AS dx dt )

as well as (4.1) and (4.2). The proof of Lemma 4.25 is now complete. [

Lemma 4.30. Let u be a very weak solution to (1.1) for p>2n/(n+2) and
suppose that (4.1) and (4.2) are valid. Then there exists 3>0 and c>1 with the
same dependence as the constants in Theorem 2.8 such that

B (p—8)/7
NP < c( ][ [Vul? da dt) + ][ rP=8 dz dt,
Qes,365(2,7) Q125,365 (2,7)

where g=max{p—2,G} when p>2 and g=max{5(1+p), G} when 2n/(n+2)<p<2.

Proof. Note that if (4.15) is false, then Lemma 4.30 is trivially true. Thus
we assume that (4.15) is true. To prove Lemma 4.30 we can copy the proofs of
Lemmas 3.4 and 3.20 in [KLe] with minor changes except that we now replace p
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by p—f and use Lemma 4.19 (with p=¢ and s=3§), as well as Lemuma 4.25 (with
0=60 and s=365), in place of Lemma 3.2, (3.11) and (3.24) in [KLe]. We omit the
details. O

Proof of Theorem 2.8. Using Lemma 4.30 in place of Lemmas 3.4 and 3.20
in [KLe] we can repeat the argument given in the proof of Propositions 4.1 and 4.14
in [KLe] with p replaced by p— /3. The covering argument used in the proof of these
propositions guarantees the existence of ¢7, § and § for which (4.1) and (4.2) hold.
Also since the constants in Lemma 4.30 are independent of 8 for 8 sufficiently small,
it is clear from the proof of Propositions 4.1 and 4.14 in [KLe] that

|Vu| € LPYP(Q, 5(2,7))

for 3>0 small enough with the same dependence as in Theorem 2.8. Again we omit
the details. O

Remark 4.31. We do not know if one can replace L?(2x(S1,71)) in (2.1) by
L2=B(Qx (51, T1)) for small >0 and still get the same conclusion in Theorem 2.8
for 2n/(n+2)<p<2. Although this seems plausible it would for example require
a different estimate of the error term in Lemma 3.29. This query is false when
p=2n/(n+2) as can be seen from the example

ekt

U(l’,t) = W’

where k:—(%n)_%/ (n+2) gy can be easily checked that u satisfies the parabolic

2n/(n+2)-Laplace equation

Ou —d; Vu
ot~ T\ [V D)

for zeR™\{0}. Moreover, u satisfies (2.7) and the weakened form of (2.1) when
p=2n/(n+2). One also easily sees for 0<k’ <k, that
k't

e
Ut =~ i og o]

is a weak subsolution to the above equation near (0,0) (in the sense defined in
Section 2), but u¢ L?+#(Q, ,(0,0)) for any small 3, o>0.
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