
Ark. Mat., 39 (2001), 339-359 
(~) 2001 by Institut Mittag-Leffler. All rights reserved 

Best approximation in the supremum 
norm by analytic and harmonic functions 

Dmitry Khavinson and Harold S. Shapiro 

1. Introduct ion 

In this paper, we study the problem of finding, for a given bounded measurable 
function f on a domain ~t in R n, a harmonic function on fl that  best approximates 
f in the supremum norm, as well as (when n=2) the corresponding problem of 
approximating f by analytic functions. The analogous problem of approximating 
a bounded measurable function on the boundary of a plane domain (especially, 
the unit disk) by the boundary values of bounded analytic functions in the interior 
has been studied very extensively (see, e.g. [G]), but the present problem (which, 
as we shall see, is quite different in character) has received very little attention. 
There have been some studies, by Luecking ILl], [L2], Hintzman [H1], [H2] and 
Romanova [R1], [R2], pertaining to approximation by analytic functions. 

Concerning the harmonic approximation problem in R ' ,  its s tudy seems to 
originate in a paper of Hayman, Kershaw and Lyons [HKL] from 1984. Our main 
motivation has been to refine and extend some of the results of that  paper. This we 
have been able to do, in part by making greater use of functional analysis than they 
do. Those tools, per se, are well known. In the interest of a unified presentation, 
we have included proofs of some previously known results. The main novelty of the 
paper is Theorem 4.1 which, in the two-dimensional case, gives an affirmative answer 
to a question asked by Walter Hayman in 1984. Theorem 3.5 contains an answer 
to another question of Hayman. (These questions were contributed to the session 
on "New and Unsolved Problems" at the conference where [HKL] was presented, 
see p. 608 of the conference proceedings.) Also, several of our counterexamples are 
new, or sharper than previously known ones of similar character. 

The present paper can be seen as complementary to [KMS], where the anal- 
ogous problems were studied in L p norm (with respect to volume measure) for 
l < p < o c .  
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We shall use the following notation. By [2 we denote a bounded, open connected 
set in R n and by dx Lehesgue measure on R n. Then LP([2; dx) (often abbreviated 
LP(~)) is the usual Lebesgue space, and L~ dx)--L~C(f~) the (Banach) space of 
bounded measurable functions on 9t, endowed with supremum norm I1" I[or When 
working with harmonic approximation we shall tacitly assume all functions are real- 
valued, and when working with analytic approximation complex-valued. 

Let C([2) and C(~)  denote the subspace of Lzr consisting of functions 
continuous on [2, and of those elements of C(~t) which extend continuously to the 
closure ~ of ~, respectively. 

By HLP([2) we denote the subspace of Lv(~) consisting of harmonic func- 
tions (and analogously with HC(~)). For [ 2 c R  2, ALP(f2) denotes the subspace 
of (complex-valued) LP(~) consisting of analytic functions. When working in the 
analytic context, we shall usually denote a generic point of R 2 - C  by z = x q-iy and 
Lebesgue area measure on C by dA. 

We shall denote by B(x ~ R) the open ball in R n with center x ~ and radius R. 
When n = 2  we shall usually denote B(0, 1) by D, in the context of analytic functions. 
For a compact set K c R  n, M(K) denotes the space of real-valued Borel measures 
/~ with support supp#  in K.  (Again, in the analytic function context in R 2, M(K) 
shall be a space of complex measures; this will always be made clear.) By V (# )=  
II[~IIM=IllAIIM(K) w e  denote the total variation of the measure #. 

2. E x i s t e n c e  o f  a b e s t  a p p r o x i m a t i o n  

Given f in L ~ ( ~ ) ,  let 

(2.1) A := inf{ II f - u l l  : u e HL ~c ([2)}. 

It is elementary and well known that  there exists at least one u # in HL~162 such 
that  IIf-u#11 =A. (Such a function u # is called a best approximation to f . )  Indeed, 
if (uj}CHL~162 with IIf-ujll-+A, the uj are uniformly bounded, hence there is 
a subsequence converging uniformly on compact subsets of 12 to an element u # in 
HL~ and it is easy to check that  IIf-u#11=A. The corresponding result for 
approximation by elements of AL~(f~) ( [ 2 c R  2) is proved similarly. As was noted 
in [HKL], even if [2 is a ball and f is very regular, there need not exist a best 
approximation which extends continuously to ~. We shall show below that  even for 
polynomial f ,  there need not exist a best approximation in HC(~). 
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3. Annihilating measures, duality 

A measure # in M(~)  is said to annihilate a subset E of C(~) (which we write 
#@E) if f f dp=O for all f in E. The set of all # in M(~)  annihilating E will be 
denoted E ~. 

T h e o r e m  3.1. Given f in C(B), where B is the open ball of R n, 

(3.1) min{llf-ull,uEHL~ f fd# : # E H C ( B )  ~, [[#HM=I}. 

Moreover, the supremum is attained for a suitable measure ##. 

Remarks. (i) We could as well replace B by any domain with sufficiently regular 
boundary, the proof being essentially the same as what follows. 

(ii) This kind of result is in principle familiar ([K 1], [K2], [RS] and many others), 
but is not immediately contained in extant general theorems on "dual extremal 
problems" because f need not have a best approximation in HC(B). 

For the proof we require a lemma (essentially the same as one used in [L1]). 

L e m m a  3.2. For any f in C(B), 

(3.2) min{llf-u]]:uEHL~ 

Proof. It is clearly enough to show, for any u in HL~(B) and e>0  that  there 
exists v in HC(B) with 

(3.3) IIf-vll < IIf-ul l+~- 

Now, for each t, 0 < t < l ,  and x in B, 

If(tx) -u(tx)l <-Ilf-ull, 

hence 

SO 

If(x) - u(tx) I _< If(x) - f (tx)l + II f - u]] 

sup If(x)-u(tx)] < I i f - u l i §  If(x)- f(tx)]. 
xEB xEB 

The second summand on the right is less than e if t is chosen sufficiently close to 1. 
Then defining v(x):=u(tx), vEHC(B) and satisfies (3.3). [] 

Theorem 3.1 now follows easily. Indeed, a standard corollary to the Hahn-  
Banach theorem given in virtually all textbooks of functional analysis (e.g. [DS, 
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p. 64, Lemma 12] or [Si, p. 18, Theorem 1.1] states that  the distance of an element 
f of a Banach space from a subspace equals the supremum of the numbers I~y(f)] as 

ranges over all linear functionals on that Banach space having norm 1 and anni- 
hilating the given subspace, the supremum being moreover an attained maximum. 
In our case, with the underlying Banach space being C(/~), the dual space is M(B). 
Thus the general theorem gives that  inf{ ]] f -  v]]:v E HC(B) } equals the right-hand 
expression in (3.1). But, by Lemma 3.2 this infimum equals the left-hand term in 
(3.1), and that  concludes the proof. [] 

The following is no doubt well known. 

L e m m a  3.3. If p in )~I(B) annihilates HC(B), its restriction to S=OB is 
absolutely continuous with respect to hypersurface measure a on the sphere S. 

Proof. Let v be the measure on S defined as the restriction of # to the Borel 
sets contained in S, and #i:=p-v.  It is enough to show that  if G is a compact 
subset of S with a(G)=0, then v(G)=0.  

Suppose that  ~ belongs to C(S) and satisfies 

(i) ~2(Y)=l, i fyeG,  
(ii) 0 <  ~ ( y ) <  1, i f y E S \ G .  

(For example, if ~(y) is defined as the Euclidean distance from y to G, ~(y)= 
1 - e r  for suitably small positive e satisfies (i) and (ii).) 

Let Um denote the solution of Dirichlet's problem for B with boundary values 
~m, i.e. umEHC(B) and Ur,(y)=~(y) m on S, where m is a positive integer. 

Since #@HC(B) we have 

O= j a m ( x ) d # ( x ) = / a m ( x )  dpi(x)+ / ~ ( y ) m  d~(y). 

Suppose now that  m-~co.  By Lebesgue's bounded convergence theorem the second 
summand tends to v(G). Hence the lemma will be proved if we show that  the 
first summand tends to zero and, again by Lebesgue's theorem, it suffices (since 
0<um(x)_<l)  to show that  lirnr,-~r u,~(x)=O for each x in B. But, 

Um(X ) : / ~(y)mP(x; y) da(y), 

where P(x; y) is Poisson's kernel. For fixed x, P(x; y) is a continuous function of y 
in S, so the limit of the integral on the right as m--+oc is fa P(x, y) da(y)=O. This 
completes the proof of Lemma 3.3. [] 

C o r o l l a r y  3.4. If p in 2~I(B) annihilates HC(B), then every u in HL zr (B) 
is integrable with respect to #, and moreover f u d#=O. 
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Here, the values of u on OB are understood as the radial limits of u from B, 
where they exist; observe that  the subset E of S where the radial limits fail to exist 

satisfies a(E)=O, and consequently (in view of Lemma 3.3) i# t (E)=0,  where IPi 
denotes the total  variation measure associated to #. Thus, u is well defined on B 

almost everywhere with respect to I#1 and f u d# makes sense. 

Proof. Since u(x)=limt-~l u(tx) holds almost everywhere with respect to ]#t, 
we have by Lebesgue's theorem 

f ud#= ~im Ju( tx )d#(x)  

and the integrals on the right vanish in view of our hypothesis, since x~-+u(tx) is 
in HC(B). [] 

T h e o r e m  3.5. Given that f belongs to C(B), the necessary and sufficient 
condition that u in HL~(B)  be a best approximation to f is: there exists # in 
M(B) of norm 1, annihilating HC(B) such that 

(3.4) f (x)-u(x)=cl l f -ul locs(x  ) almost everywhere with respect to ]pJ, 

where c is a unimodular constant (1 or - 1 )  and s(x) is the signum function of p, 
i.e. the Radon-Nikodym derivative dp/dll~ I (and hence Is(x)l--1 almost everywhere 
with respect to I#1). 

Proof. If u # in HL~ is a best approximation of f and p #  is an extremal 
measure in (3.1), then 

(3.5) / f dp # = IIf-u#11~ 

and, in view of Corollary 3.4 the left member  of (3.5) equals I f ( f  -u#)  dp#1 �9 In- 
spection of the condition for equality in the inequality 

j ' ( f  --u#) dp#l <_ ,,f --u#,,~,,p#,,M 

now yields the necessity of condition (3.4). For the sufficiency, suppose some uE 

HL~(B),  #CM(B), # has norm 1 and (3.4) holds. Let v in HL~(B)  be any best 
approximation to f .  Then, 

 li:-.li  J .l.i J.(x)..(x) 
and from (3.4) the last te rm equals 

f (f-u)du= f (f-v)dp, 
hence IIf-ull~<_llf-vll~ll~ll=llf-vll~ so that  u is a best approximation.  [] 
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Remark. The proof shows slightly more than we claimed, namely any best 
approximation u, and any extremal measure # in (3.1), satisfy (3.4). 

With very slight changes, all the above analysis carries over to approximation of 
complex-valued functions in L ~ (D) by functions in AL=C(D). The main change is 
that  Lemma 3.3 requires a different proof. If #, a complex measure on D, annihilates 
AC(D) we cannot conclude that  it also annihilates H C ( D ) ,  and apply Lemma 3.3. 
We reason instead as follows: let G be a closed subset of the unit circle with linear 
measure zero. It is well known (Rudin-Carleson theorem, [Ga, p. 58]) that there 
exists g in AC(K)) with IIglI=l, g=l on G, and ]gl<l  on D \ G .  Then for positive 
integer m, fgmd~=O, and letting m-+~c and applying Lebesgue's convergence 
theorem, we get #(G)=O. This implies that  ]#l restricted to 0D is absolutely 
continuous with respect to linear measure. 

The only other modification is in (3.4), where now the unimodular constant c 
is complex, as well as s which becomes the conjugated signum of #. We state the 
result in the following theorem. 

T h e o r e m  3.6. Given a complex-valued function f E C ( D ) ,  an element g of 
AL~(~)),  and a complex measure # of norm 1 on [) which annihilates AC(r)), if 

(3.6) f ( z ) - g ( z )  =cll f-gl ls(z)  (almost everywhere with respect to IPt), 

where c is a complex constant of modulus 1, and s is the Radon-Nikodym derivative 
d#/dlp I (thus, I s (z ) l= l  I#l-almost everywhere), then g is a best approximation to 
f from A H ~ ( D ) .  Conversely, i fg  is any best approximation to f ,  there exists p 
in M(D)  of norm 1 annihilating AC(D) such that (3.6) holds, and indeed for # we 
may take any extremal measure in (3.1) (adapted to the AHCC(D ) scenario). 

Remark. In place of the unit ball we could take any bounded domain 12 with 
fairly regular boundary (indeed, it suffices that  the boundary be everywhere regular 
for Dirichlet's problem) and establish the corresponding results. There is only 
one point where a non-trivial change is required: in the proof of Lemma 3.2 we 
regularized u(x) to u(tx) which tacitly used that  B is star-shaped with respect 
to 0. Let us indicate briefly the ideas needed for the general case. One requires the 
following lemma. 

L e m m a  3.7. Let 12 be a bounded subdomain of R n, each boundary point of 
which is regular for Dirichlet's problem. Given that f E C ( ~ )  we have 

(3.7) m i n { t t f - u l l : u E g L ~ ( ~ ) } = i n f { i i f - v i i : v E H C ( ~ ) } .  

Proof. If h in HC(~) solves the Dirichlet problem in 12 with h = f  on 012, we 
can write F : = f - h  where now F vanishes on c~l}. It is clear that  it suffices to prove 
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(3.7) with F in place of f ,  i.e. there is no loss of generality to assume (as we shall 
henceforth) 

(3.8) f = 0  o n 0 f L  

Suppose tha t  u # EHL~(12), and that  

] [ f -u#[ [  = ~ := min{[[f-u[[:u C H L ~  (f~)}. 

We must show that  for each positive x, there is v in HC(~) such that  

(3.9) I l l -vi i  <- ,X+c. 

Note first that ,  because of (3.8) we have Ilu#11_<A. We shall require the following 
lemma. 

L e r n m a  3.8. If  uEHL~(12), where 12 is as in Lemma 3.7, there exists a 
sequence {vj}~= 1 in HC(~) such that Ilvjll<_ Ilull and vj(x)~u(x), for each xe~. 

Assume this for the moment.  Then, constructing the sequence {vj}j~_l for the 

function u #, we have tha t  Ilvjll~<~ and v j ( x )~u# (x )  for all x, and it is clear 
that  the convergence is uniform on each compact  subset of 12. Let now K = { x E f ~ :  

If(x)l___c}. Because of (3.8), K is compact.  Hence for some sufficiently large j we 
have 

If(x)-vj(x)l<_A+e, x E K .  

For x not in K we have If(x)-vj(x)l<c-q-Ilvjll<~q-)~. Hence tlf--vjtl<__/~q-~, veri- 

fying (3.9) and proving Lemma 3.7. [] 

Proof of Lemma 3.8. We only sketch the details. We suppose that  12 is regular 
enough so that  u is the Poisson integral of a bounded measurable function p on 012. 

Then, there is a sequence {TJ}~-l ,  belonging to L ~r (Ol2;dm), where m denotes 
harmonic measure with respect to some arbi trary (but fixed) point of fL such that  

I I~ j l l~<l l~ l l~  and ~j(y)--+qo(y) m-almost  everywhere for y in 0ff. It  is now easy 
to check tha t  the Poisson integrals vj of the ~j  satisf-y the requirements of the 
lemma. [] 

One further remark: it is easy to show using the preceding ideas a harmonic 

analog of Sarason's "H  ~ + C  theorem" (see [G]). 

C o r o l l a r y  3.9. If  12 satisfies the hypotheses of Proposition 3.7, HL~ 
C(ft) is a closed subspace of L~(f~). 

Outline of proof. It  is sufficient to prove there is a constant M such that  

every f in HL~(12)+C(~) can be represented in the form f = u + g  where uE 
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H L ~  (ft), gEC(~) ,  and Ilull+llglI-Mllfll, because then a Cauchy sequence {fn },~--1 
from HL~(~2)+C(~) can always be represented as f . = u . + g ,  with {u.}~=l and 
{g,~}n~__l being Cauchy sequences in HL~(12) and C(~) ,  respectively. Now, we can 
write f = U + G  with UEHL~(12) and GEC(~ ) .  Let h be the solution of Dirichlet's 
problem for gt with boundary values G. Then 

(3.10) f =u+g, u:=U+h, g : = G - h .  

Since g vanishes on 0f~, the bounded harmonic function u satisfies 

lim sup lu(x)l < Ilfll 
x--+y 

for each yE0f2, hence [[utl _< IIfll by the maximum principle, and 

Ilgll = I I f - u l l  ~ 211fll. 

Thus, (3.10) gives the desired representation of f ,  with M = 2 .  [] 

4. Uniqueness of  best approximations 

Even in the unit ball B of R" ,  it is not known whether every f in C(B)  has a 
unique best approximation from HL ~ (B). (It is easy, though, to show, as [HKL] 
did, that  f has at most one best approximation that  also is in C(B).) However, in 
two dimensions we can prove it, and this is one of our main results (in this section 
we work always in B, for simplicity but all the results extend readily to domains 
with sufficiently regular boundaries). 

T h e o r e m  4.1. Every (real-valued) f in C(D), has a unique best approxima- 
tion from H L ~ ( D ) .  

T h e o r e m  4.2. Every (complex-valued) f in C(D) has a unique best approxi- 
mation from AL ~ (D). 

The proofs are similar, but diverge at some points, and it seems slightly simpler 
to prove Theorem 4.2 first. We emphasize that  the novelty in our results is that 
we prove uniqueness in the class of bounded approximants. Thus, uniqueness in the 
class AC(D) was already established in [H1] and some later work. As the referee 
pointed out to us, these results extend by conformal mapping to arbitrary Jordan 
domains. 
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Proof of Theorem 4.2. Let gl and g2 be best approximations from AL~C(D). 
By Theorem 3.6 there is a complex measure # on D of norm 1 satisfying 

(4.1) tt@AC(D). 

(4.2) f ( z ) -g i ( z )  =)~s(z) Ipl-almost everywhere (i = 1.2), 

where )~=llf-glll=llf-g211 and s is the signum of #. (We have dropped the uni- 
modular constant c in the right member of (4.2): this c depends only on p, and can 
always be taken equal to 1 upon replacing p by c#.) Writing equation (4.2) for i=1  
and i=2, and subtracting gives 

g l ( z ) -g2 (z )  = 0 Ipl-almost everywhere. 

To complete the proof, therefore, it suffices to prove the following result. 

P r o p o s i t i o n  4.3. Suppose that hEAL=~(D) and that h vanishes almost eve- 
rywhere on f) with respect to ]#1, where p is a complex measure on ~) of norm 1 
satisfying (4.1). Then h=O. 

Indeed, applying this to h=gl -g2  finishes the proof of Theorem 4.2. It is 
essential to note that  h is, as a bounded Borel function on D u E ,  where E denotes 
the set of points ( on 0D where limr-~l h(r() exists, t#l-measurable, since as we 
showed, (4.1) implies that  I#1 vanishes on subsets of 0D of length zero. and hence 
on (0D) \ E .  

Proof. If [#[ restricted to 0D is not the zero measure, then [# l (F)>0  for some 
F c O D  of positive linear measure since, by virtue of a well-known theorem of F. 
and M. Riesz, cf. [Ga, Theorem 7.10], # is absolutely continuous with respect to 
arc length measure on the unit circle. By hypothesis, h(()=O almost everywhere 
on F and so by another theorem of F. and M. Riesz h vanishes identically. We 
are left with the case where [#[(OD)=O, i.e. the support (in the measure-theoretic 
sense) of # lies in D. By hypothesis, supp p is contained in the zero set of h, so 
unless h vanishes identically, # is supported by a countable subset {zj}~r of D 
w i t h  ~'-~,j~C=l(1--1zjl)<oo. But then p cannot satisfy (4.1)! For, (4.1) implies that  
for every ~ E A L ~ ( D ) ,  # annihilates ~(tx) whenever t < l  and hence also ~ (by 
the bounded convergence argument we have used several times). Thus there exist 
complex {cj }y~--1 with ~-~j~--1 [cj[= 1 such that 

(4.3) 
j = l  
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holds for every p in A L ~ ( D ) .  And this is impossible: choose k so that  ck~0, and 
take for ~ in (4.3) a Blaschke product  formed with the zero set {z j : j r  and we 
obtain a contradiction. 

Thus Proposition 4.3, and Theorem 4.2 are proven. D 

Proof of Theorem 4.1. In precisely the same way as above, the proof reduces 
to that  of the following result. 

P r o p o s i t i o n  4.4. Suppose that u c H L ~ ( D )  and that u vanishes almost eve- 
rywhere on D with respect to I#I, where # is a (real) measure on D of norm 1 
satisfying 

(4.4) #@HC(E}). 

Then u=0 .  

Remark. Again, it is in order to emphasize that  u, defined on D except in a 
boundary set of length 0, is ]#l-measurable, so the hypothesis makes sense. Proposi- 
tion 4.4 is rather deeper than Proposition 4.3 (for one thing, there is no easy way to 
rule out that  I~1 charges some subset of 0D)  and perhaps of independent interest. 
It makes good sense in R n, but we can only prove it when n=2 .  

Proof. There is no loss of generality in assuming (as we shall) that  t/~1 does not 
charge any set of positive area, for otherwise u vanishes on such a set and, being 
real-analytic in D, identically. Write 

M(~) := / dp(z) 
z - ~ '  ~ E C \ s u p p # .  

For any polynomial P,  since ( P ( z ) - P ( ~ ) ) / ( z - ~ )  is a polynomial in z (for any 
fixed r we have by hypothesis (4.4) 

hence 

/ P ( z ) - P ( r  
" z - ~  d # ( z )  =0, 

(4.5) P(r162 = f P(~) du(z), ~ E C\suppp. 

Now, M is holomorphic on the open set D \ s u p p  #. Moreover, it is not identically 
zero there. Indeed, M vanishes on {~:t~l > 1} because of (4.4), so if it also were zero 
on all of D \ s u p p #  it would vanish almost everywhere on C (with respect to area 
measure). By a well-known theorem on Cauchy transforms (see [Ga, p. 461) this 
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would imply #--0, a contradiction. Hence, there is a non-empty disk Do contained 
in D and on which M is analytic and non-vanishing. From (4.5) 

1 f P tz3  
(4.6) P ( ~ ) =  I ~ d # ( z ) ,  ~EDo. 

M(~) J z - ~  

Now, (4.6) can be interpreted so: to each ~ in Do, there is a complex representing 
measure vr on D, where 

1 d~,r .- d~,(z) 
M(~)(z-~) 

for "point evaluation at ~", i.e. P(~)=fPd~,r holds for every polynomial P and 
hence, by an approximation argument, when P is replaced by any element of the 
"disk algebra" AC(D). By virtue of a known result on function algebras ([Ga, 
p. 33]) there must also exist another representing measure me, i.e. a measure on 
satisfying 

(4.7) f(f)= f f dmr a l l f i n A C ( D ) , ( i n D o ,  

and with the additional properties 

(4.8) 

(4.9) 

me > 0, 

me is absolutely continuous with respect to ]vr 

(And hence, me is absolutely continuous with respect to ]#t.) 
It is now easy to finish the proof. Since me is real, (4.7) continues to hold when 

f is replaced by its real part, so 

(4.10) u(r162 ~ED0,  

holds for all harmonic polynomials u, and hence all bounded harmonic functions 
on D. Indeed, every such function, considered as defined on D U E,  where E is 
the subset of 0D where u has radial limits, is the pointwise limit of a bounded 
sequence of harmonic polynomials, almost everywhere with respect to the measure 
which assigns to each Borel set FC~) the linear measure of FNOD, and hence also 
[#i-almost everywhere, and so finally mr everywhere since me is absolutely 
continuous with respect to IP]. 

Thus, in sum, (4.10) makes sense whenever uEHL~(D). And (to return to 
the hypotheses of Proposition 4.4) if u vanishes I#]-almost everywhere on D it also 
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vanishes ]m;/-almost everywhere so by (4.10). u (~ )=0  for all ~ in the disk Do. and 
thus finally u=0 .  [] 

Remark. One of the main results of [HKL] is: Every f in C(B) admits at 
most one best approximation from HC(B),  where B is the unit ball of R ' ,  n_>2. 
(The analogous result for approximation from AC(g)) had been proved earlier by 

Romanova [R1] and Luecking [L1].) 

A proof in our context goes as follows: In view of the preceding, it is enough 
to prove that  if gEHC(B) and g vanishes almost everywhere with respect to I#1, 
where #E_AI(/J) has norm 1 and annihilates HC(B),  then g=O. To show this. 
let K denote the closure of supp p. Then C \ K cannot be connected, otherwise 

(see IBr], [DI) HC(B)t K would be dense in C(K) forcing p = 0 .  Hence g (because 
it is continuous on/~!)  vanishes on the boundary of some non-empty open subset 

of B. By the maximum principle it vanishes on this open set. and hence identically. 

Additional remarks. It might not be amiss to draw attention to some interest- 
ing, purely potential-theoretic sidelights of the preceding discussion. 

First of all, if p is a (say, real) measure on ~. where f~ is a smoothly bounded 

domain in R ~ then, splitting P=Pi-~-Ftb, where Pi and fib denote the restrictions of 
# to the interior, and boundary respectively of ~, the condition p@HC(~) can be 
restated in terms of the balayage concept (see, e.g. [La D as: pb is the balayage of 
-# i  to Of~. Thus, our Lemma 3.3 to the effect that  Pb is absolutely continuous with 
respect to hypersurface measure da on 0~t, for every annihilating measure p, can be 

restated as: the balayage onto O~ of any bounded real measure on 12 is absolutely 
continuous with respect to da (hence. if not identically zero, its support  has positive 
area; consequently, a non-trivial measure supported on a subset of 012 having area 
zero cannot be obtained as a balayage of any signed measure (charge distribution) 
on ~). 

This result is not deep, and doubtless known, but we have not found explicit 

mention of it. Also, it is in a sense best possible: using results of Bonsall [B] one can 
show tha t  every measure on 0fL absolutely continuous with respect to da, is the 
balayage of a (real) measure on ~. even one supported on a countable set clustering 
nowhere in fL (Of course, measures on 0 ~  arising by balayage of positive measures 
in f~ are more restricted: obviously their Radon Nikodym derivatives with respect 
to harmonic measure are bounded away from zero.) The countable sets in question 
are those such that  almost every boundary point of ~ is the non-tangential limit 
of some sequence chosen from the set. Such sets seem first to have occurred in the 
context of the unit disk in [BSZ]. It is easy to see that  these sets always support  
non-trivial measures annihilating bounded harmonic functions. 

In a similar vein, the proof of Proposition 4.4 contains an argument (essentially, 
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the result quoted from [Ga] on representing measures) which, in an electrostatic 
interpretation, says the following is true for planar simply connected domains f~: 

If there is a real measure # which (considered as a charge distribution on ~) 
produces the same electric field outside ft as does a point charge 6r at some point ~ in 
f~ \ s u p p  it, then there is also a positive charge distribution m absolutely continuous 
with respect to [#[, producing the same field outside fL (The absolute continuity 
implies, in particular, that  m is not permitted to place charges anywhere off supp #.) 

This result seems not unreasonable, on "physical" grounds also in more than 
two dimensions. It is not known to us if it is true when ft is e.g. the unit ball of R 3. 

5. Counterexamples ,  (a): best approximation may not be unique 

In this and the next section, we construct examples to show (a) that  uniqueness 
of the best approximation may fail if the function being approximated has even one 
single point of discontinuity, and (b) that  a continuous best approximation need 
not exist, even if the function being approximated is very regular. 

Theorem 5.1. There is a function bounded in the unit disk D, and continuous 
in D \  {1} with more than one best approximation. 

Remark. A similar example was given in [HKL] but their function has a whole 
line of discontinuity points. 

We precede the proof by a lemma that  also will be needed in the next section. 

Lemma 5.2. Let ~ be a smoothly bounded domain in R",  and let f be a 
bounded real-valued continuous function on 12. Suppose that b is an open ball with 
center y such that [~C~. If further f ( y ) = l ,  and f ( x ) = - I  for all x in Ob, then 

(5.1) dist(f ,  gn~(f~))  > 1. 

Remark. In place of b we could take any other domain D with D homeomorphic 
to a ball, and D C ~ .  

It is instructive to give two proofs of the lemma. 

Proof ~1 (by duality). In view of Theorem 3.1 it is enough to construct a 
measure # in M(~)  of norm 1, annihilating HC(ft), and such that  [fd#[=l. We 
can take 2#=Sy-U, where u is normalized Lebesgue measure on Ob (so that  f f d u  
is the mean value of f over the sphere Ob). 0 

Proof #2. We proceed by contradiction. Suppose hEHL~C(f~) and IIf-h]l= 
d< 1. Then 

-1 -d<_h(x)<_- l+d ,  xCOb. 
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By the maximum principle, h(y) <_ - 1 + d. On the other hand h(y) >_ f ( y )  - d= 1 - d, 
and the last two inequalities contradict one another. [] 

Remarks. 1. Proof  # 2  shows that  it is sufficient for (5.1) if f(y)>_ 1 and f(x)< 
- 1  on Ob. 

2. For a later purpose, observe that if d = l  in the second proof, then h < 0  
on Ob while h(y)_>0, so, by the strong form of the maximum principle, h vanishes 
identically. Therefore we obtain the sharper conclusion: 

Under the hypotheses of the lemma, if moreover Ilfll--1 then the function iden- 
tically zero is the unique best approximation from HL~(f~) .  

Proof of Theorem 5.1. We begin by an auxiliary calculation: examine the set 

(5.2) E := {(x, y) e lyl < 1 - x  2 - u 2 } .  

It is easy to see that  E is the open lens-shaped set bounded by two circular arcs of 
radius �89 centered at (0,�89 and (0 , - � 89  

D Now, let { i}i=l, be pairwise disjoint open disks with centers zi and radii ri, 
contained in E and such that zi--+l as i-+gc. One can construct a function ~ on 

such that  

(i) ~0(zi)=l, i=1 ,2 , . . . ;  
(ii) ~o (z )=- I  for zEODi, i=1 ,2 ,  ... ; 
(iii) -1<_~<1  on E; 
(iv) ~ = 0  on OE; 
(v) 

Indeed, we define ~o to be 1-21z-z~l / r i  in Di and extend ~o to E so that  (iii), (iv) 
and (v) hold. Now, extend ~ to b as 0 on D \ E and call the resulting function ~. 
Finally, define f by f ( x , y ) = ( x 2 + y 2 ) ~ ( x , y ) .  Then f E e ( D \ { 1 } ) .  Also, ]]fl]= 
1 and dist(f,  HL~C(D))>l since by Lemma 5.2 dist(~.HL~C(Di))>_l, i - -1 ,2 , . . . .  
Hence, the function identically zero is a best approximation to f from H L  ~ (D). 

To complete the proof, we now show that y is also a best approximation to f .  
Indeed, 

If(x, y)- l < y)l+l l < 
(x2+y2)+(1-x2-u ) on  E, 

- - ( IYl on  D \ E ,  

where in the first estimate we need (5.2). Hence ]f(x,y)-y]<_l on D, and y is a 
best approximation. [] 

Remarks. I. Since the set of all best approximations is always convex, in the 

present example all the functions cy, - I  <_c<_ l, are best approximants. 

2. As pointed out to us by the referee, this example also shows, e.g., that a func- 
tion symmetric with respect, to a line may admit non-symmetric best approximants 

(for the Di can all be centered on the real axis). 
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6. C o u n t e r e x a m p l e s ,  (b):  smooth  functions 
wi thout  continuous best approximation 

A function continuous in, say, the closed ball of R n may possess only discontinu- 
ous best approximations from HL ~ (B), i.e. such which do not extend continuously 
to all o f / ? ,  or are from AL~(D)  in the analytic case. An example of the latter 
was given by Hintzman [H2] in 1975. The same fact was remarked later in [HKL] 
in the H L ~ ( B )  context, and an example is presented there (Example 4.3) which, 
however, is faulty: the function approximated is in fact not continuous as claimed! 
Correct examples follow from our next theorem. 

T h e o r e m  6.1. Let f~ be any bounded domain in R n. Every h in HL~C(f~) 
appears as the unique best approximation to some function in C~C(f~) (the class of 
infinitely differentiable functions with compact support). 

Proof. Without loss of generality, assume that  f~ contains 0, and hence the clo- 
sure of some ball ~ := (x:lx I < Q}. We begin by constructing an auxiliary function ~. 
Fix r < 0  and construct ~ E C ~ ( ~ )  such that  

(i) ~ (0 )=-1 ;  
(ii) ~ = 1  on a neighborhood of {x:ixi=r}; 
(iii) 0<~o_<1 for r<ixl<_Q; 
(iv) i i~ii~=l.  
It is clear that  such ~ exist, with ~(x) radial, that  is, of the form p(ixl), where 

p is a suitably defined function on [0, 0]. 
Let us now be given any hEHL~(f~) with ilhll=l (clearly this implies no loss 

of generality). We claim that  the function f defined by 

f ~ + h ,  IxJ<r, 
f / ~+~h,  r<_lxl_<0, 

and extended as 0 to f ~ \ ~  fulfills the requirements of the theorem, i.e. h is its 
unique best approximation from HL ~r (f~). 

Now,  

{ ~, Ixl _< r, 
f - h =  ~+(c2 -1 )h ,  r_< axe < o, 

-h, xEgt\B. 

In each case we see that  I f ( x ) -h (x ) l< l .  For example, when r<lxl<o we have 

I f (x) -h(x) l  <_ ly)(x)l+ly)(x)-II  Ih(x)l < ~o(x)+(1-~2(x))= 1 

in view of (iii). Hence ]if-him < 1. 
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On the other hand, in view of Lemma 5.2 the unique best approximation to 
on the ball { [x l<r  } by a bounded harmonic function is identically zero. This 

is equivalent to saying that  the only harmonic function that  approximates f with 
error at most 1, even on the set {x:[x[<r}, is that  identically equal to h. 

Hence, h is indeed the unique best approximation to f .  [] 

Remarks. 1. Our construction is based on local behaviour: given h we can 
even construct f as in the theorem, with support in any given ball. 

2. A similar result can be proved, in like manner, for approximation in D, 
say, by bounded analytic functions. This shows an essential difference between 
the character of the approximation problem by bounded analytic functions when 
the norm is that  of L ~ ( D ) ,  and the (classical) one where the norm is that  of 
L ~ ( 0 D ) .  In the latter case, it is known, e.g., that  a HSlder continuous function 
has (a unique) best approximation which is moreover in AC(D),  see [G] for details 
("Carleson-Jacobs theorem") and references. 

3. The metric projection map (see [Si]) is the set-valued map which assigns to 
each function its set of best approximations. In view of our results in Section 3, this 
map assigns to each real-valued f ,  continuous on the closed ball B of R 2, a unique 
best approximation from H L  ~ (B), so the restriction of the metric projection map 
to C(B)  is a map from C(B)  into (and, in view of Theorem 6.1 onto) HL~ A 
consequence of Theorem 6.1 is the following result. 

C o r o l l a r y  6.2. The metric projection map from C(B) to H L ~ ( B )  is discon- 
tinuous, with respect to the norm topologies of these spaces. 

Indeed, let h be any element with norm 1 of HL ~ ( B ) \  C(B) (i.e. not continu- 
ously extendable to/~) .  Let {t~ }j=l be a strictly increasing sequence on (0, 1) with 
t j-+ 1, and define hj (x)=h(t jx) .  The construction used in the proof of Theorem 6.1 
gives us a function f whose unique best approximation is h, and to each j a function 
f j  whose unique best approximation is hj/II hj II. Clearly II f j -  f II ~ 0 since this only 
depends on the uniform convergence of hj (and hj/]]hj[[) to h on each compact 
subset of B. But, the best approximant hj/[[hj [[ of course cannot tend in norm to 
h since that  function is not continuous in B. [] 

Our final example will show that even for such regular functions as polynomials, 
the best approximation need not be continuous! 

T h e o r e m  6.3. Let g be defined in the closed unit disk E) by 

g(x, y):= y(x2+y2-1) .  

Its unique best approximation from HL~C(D) is -ch,  where h is the harmonic func- 
tion in D with boundary values 1 and - 1  on the upper and lower halves, respectively, 
of the unit circle and c is a uniquely determined positive constant. 
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Proof. Consider on the upper half D+:=DM{x+iy:y>O} of D the functions 

Ft:=g+th, where t is a positive parameter .  Observe that  Ft is subharmonic and its 
supremum on D + is t. It  is clear that ,  for sufficiently small t. inf Ft on D + is negative 
(indeed, an at tained minimum) at some point of D + that  can, in principle, be 
computed. For t-+0, inf Ft tends to a negative limiting value, namely the minimum 
of g on D +. Thus, the continuous function in fFt+supFt  (always relative to D +) 
is negative for small t, positive for large t and so takes the value zero for some t. 

Let c be the smallest such value of t. We then have that  Fc has supremum c, and 
(attained) minimum - c  in D +, and moreover equals c on the upper  half of the unit 
circle. 

Since g and h have odd symmet ry  with respect to the x-axis, a similar reasoning 
applies on D - : = D M { x + i y : y < O } .  We conclude that  IiFci]=c, moreover Fc equals c 
on the upper  half, and - c  on the lower half of the unit circle, and for some z0ED + 

we have Fc(zo)=-c, Fc(zo)=c. 
We now claim tha t  any function having these properties admits 0 as its unique 

best approximation from HL ~ (D). Transferring this to g gives now the assertion 
of the theorem. 

In proving this claim, the value of c is irrelevant, so we shall have proved the 
theorem if we show the following "Assertion". It will be convenient to denote by 
X ( D )  the analog of Sarason's "H  ~ + C "  space for the disk, namely 

X ( D )  := HL~C(D)+C(D). 

[By earlier remarks, this space is closed, but that  is not important  here, only that  

each element of X has boundary values in L X ( 0 D ) ,  whose essential supremum 
(with respect to Haar  measure) cannot exceed its L x (D) norm.] 

A s s e r t i o n .  Suppose v E X ( D )  and that v satisfies 
(i) [[vii=l; 
(ii) v = l  a.e. on the upper, and v = - I  a.e. on the lower half of the unit circle; 
(iii) for some z0ED +, v(zo)=--1 and v ( 5 0 ) = + l .  

Then 0 is the unique best approximation to v from HL~C(D). 

Suppose that  u c H L  ~ (D) and that  IIv-u[[ < 1. We shall show that  u=0 .  First 
of all, ]v(z)-u(z)]<_l on the unit circle, so u_>0 on the upper  half, and u_<0 on 
the lower half of the unit circle. Moreover u(zo)<_O<_u(5o). But, the only bounded 
harmonic function satisfying these properties is 0. Indeed, u( z ) -u (5 )  is harmonic 
in D + and bounded, non-negative a.e. on 0D + and less than or equal to zero at z0. 
By the strong maximum principle u( z ) -u (5 )  vanishes identically in D +, and hence 
also in D. But then u_>0 on the upper  half-circle, so that  u is zero a.e. there, 
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and likewise for the lower half-circle. Thus u=O, proving the assertion and with it 
Theorem 6.3. [] 

Remarks. 1. The last part of the proof could also be formulated in terms of 
annihilating measures. The gist of it is that  for every z0ED + there is a measure # 
annihilating H C ( D ) ,  whose support is 0DU {z0, 50} and with the following further 
properties: #]0D is absolutely continuous with respect to Haar measure, and the 
derivative of # with respect to Haar measure is positive on the upper half, negative 
on the lower half of the unit circle. Moreover #({z0})<0 and #({~0})>0. 

Indeed, we have only to observe that  5zo - Pzo dO, where Pzo denotes the Poisson 
kernel corresponding to z0 and dO is Haar measure, annihilates harmonic functions 
on D, as does 5Co -Pzo  dO. Hence so does their difference, which gives the required p. 
It is easily verified that  Pzo-Peo is positive on the upper half-circle and negative 
on the lower half-circle. 

2. Possibly one could prove a variant of Theorem 6.1 in which f is constructed 
to be, instead of an element of C~r a function real-analytic on a neighborhood 
of ~. 

7. C o n c l u d i n g  r e m a r k s  

From the results of Section 6 it is clear that  no amount of regularity of f 
can guarantee even continuity of its best approximation. However, other kinds of 
conditions can, as observed in [HKL]. 

T h e o r e m  7.1. (Essentially from [HKL].) Let ~ be a domain in R n all of 
whose boundary points are regular for Dirichlet's problem, and suppose that f E  
C(~).  Let u denote the (unique) function in HC(~)  equal on 012 to f . I f  f - u  does 
not change sign on 12, the unique best approximation of f from HL~(12) is of the 
fo~n u+c for a suitable constant. More precisely: In case f - u > O  on ~ and f - u  
has a positive maximum value M then u+ �89 is the unique best approximation. 

1 Similarly, if f - u ~ O  and f - u  has a negative minimum value - M ,  then u - ~ M  is 
the unique best approximation. 

C o r o l l a r y  7.2. If  ~ satisfies the hypotheses of the theorem, and f E C ( ~ )  
and f is superharmonic in ~, or subharmonic in ~, its best approximation from 
HL~(12) is unique, and continuous on ~. 

This is proved in [HKL]. Let us give an alternative proof, since it is very short 
and illustrates well the usefulness of duality (Theorem 3.1). 

Suppose e.g. f - u > O  on ~ and the maximum value M > 0  of f - u  is assumed 
at a point y in ~. Then, ]I f - (u+�89189 and f - ( u + � 8 9 1 8 9  on 
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all of Oft, and 1 5 M  at  y. Therefore, in view of Theorem 3.1, it is sufficient to verify 
that  there is a measure # supported on 0flU{y} of norm 1 annihilating HC(~), 
with # ({y} )>0  such that  the restriction of # to Oft is a non-positive measure. But, 
such # is given by 

where Vy is the "representing measure" on Of/for  evaluation at y, i.e. the harmonic 
measure on Oft, associated to the point y (which, in case Oft is sufficiently smooth, 
is Py da, where de denotes Lebesgue measure on Oft and Py is Poisson's kernel for 
the point y). [] 

Despite its simplicity, Theorem 7.1 yields a large class of functions where best 
approximation can in principle be calculated (at any rate, reduced to the solution 
of Dirichlet's problem). 

Further extension of this class can be given using the ideas we employed in 

proving Theorem 6.3. We shall merely illustrate the idea by an example. Let Zl 
and z2 be any two distinct points of D,  and let 

P j ( ( ) = l R e f ( + z J ~  j = 1,2; ICI=I ,  
\ i - z j  ]' 

be the corresponding Poisson kernels. Writing r it, we have a measure p on 
annihilating HC(f)), given by 

P = [Szl - P1 dt] - [6~ - P2 dt]. 

The signum of this measure on its support  is +1 on {Zl} and on the subset 
F1 of the unit circle where Pe(q')>P1 (r it is - 1  on {z2} and the subset F~ of the 
unit circle where PI( r  The sets F1 and F2 are easy to compute explicitly. 
It  then follows that  if f E C ( D ) + H L ~ ( D )  and uEHL~C(D), and f and u are such 

that  I I f -u l l=M and f - u  equals + M  at zl and a.e. on F1, and f - u = - M  at 
z2 and a.e. on F2, then u is the unique best approximation to f from H L ~ ( D ) .  
Theorem 6.3 exemplifies the special case where zl ~ D  +, z2=21. In that  case F1 and 
F2 are, respectively, the lower and upper  halves of the unit circle. 

This enables us to construct, backwards as it were, explicit smooth functions f 
in C(D)  whose (unique) best approximation from H L ~ ( D )  is the harmonic function 
u equal to 1 on F1 and - 1  on F2: we have only to construct f vanishing on 0D,  
and such tha t  t l f-u[l=l,  f ( z l ) - u ( z l ) = l ,  f ( z2 ) -u ( z2 )=- l .  Further details are 
left to the reader. 

These are the simplest instances, in our context, of a well-known technique 
in the general theory of best uniform approximation: the signa of measures which 
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annihilate the space of permissible approximants  ("extremal signatures", cf. [RiS], 
IS]) play the role tha t  al ternating sequences of =kl play in the classical Chebyshev 

theory of polynomial approximation.  
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