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Jensen measures and boundary
values of plurisubharmonic functions

Frank Wikstrom

Abstract. We study different classes of Jensen measures for plurisubharmonic functions, in
particular the relation between Jensen measures for continuous functions and Jensen measures for
upper bounded functions. We prove an approximation theorem for plurisubharmonic functions
in B-regular domain. This theorem implies that the two classes of Jensen measures coincide in
B-regular domains. Conversely we show that if Jensen measures for continuous functions are the
same as Jensen measures for upper bounded functions and the domain is hyperconvex, the domain
satisfies the same approximation theorem as above.

The paper also contains a characterisation in terms of Jensen measures of those continuous
functions that are boundary values of a continuous plurisubharmonic function.

1. Introduction

If € is a bounded domain in C", we will use PSH (2} to denote the set of
plurisubharmonic functions on £ which are continuous on § as functions into the
extended real line [—co, c0).

Let u be a real-valued upper bounded function on the bounded domain Q. We
define u*: Q— R as the upper semi-continuous regularisation of u, i.e. if z€Q,

u(z) = Q@ZU(C)-

If  is plurisubharmonic on €, then uw*=u on , and it is reasonable to call u*|s0
the boundary values of w.

Definition 1.1. Let  be a bounded domain in C™, and let y be a positive,
regular Borel measure on Q. We say that p is a Jensen measure with barycentre
2 for continuous plurisubharmonic functions, if

waséuw
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for every function u€PSH(2). We denote by J¢ the set of Jensen measures for
continuous plurisubharmonic functions having barycentre z. Similarly, if

u'(z) < [ u* du
Q

for every upper bounded function ue PSH(Q), we say that p is a Jensen measure
with barycentre z for upper bounded plurisubharmonic functions. We write 7, for
the set of all such measures. Clearly, J,CJ¢.

This paper is devoted to studying the relation between 7 and J¢. In Section 4
we prove that on B-regular domains, upper bounded plurisubharmonic functions can
be approximated from above on the closure of the domain using functions in PSH°.
This implies that for a B-regular domain Q, J,=J¢ for all z&Q. Conversely, if
is a bounded hyperconvex domain such that J,=J¢ for all z, {2 satisfies the above
mentioned approximation property. At this point, it is unknown to the author
whether J=7°¢ holds for every hyperconvex domain. We give an example showing
that this equality is not valid for every pseudoconvex domain.

In Section 3 we give an exact characterisation of those continuous functions on
082, Q being a bounded domain, that can be extended to a function in PSH{$2).
If © is hyperconvex, the necessary and sufficient condition on ¢€C(9Q) for this to

hold is that
@(z) :inf{/ ¢d,u:u€j§}
o)

for every 2€0€). As an easy corollary of this, we show that PSH(2)|sq is uniformly
closed if € is hyperconvex.

The author would like to thank Magnus Carlehed and Ragnar Sigurdsson for
helpful suggestions.

2. The basic duality theorem

The main reason for introducing Jensen measures is that upper envelopes of
plurisubharmonic functions can be expressed as lower envelopes of integrals with
respect to Jensen measures. This section is devoted to a proof of this result, which
goes back to Edwards [6]. The result is little more than a thinly disguised version
of the Hahn—Banach theorem, but for convenience we develop the necessary ideas
here. This section closely follows the presentation in Chapter 111 of the monograph
by Cegrell [3].
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Let X be a compact metric space, and let F be a cone of upper bounded, upper
semicontinuous functions on X containing all the constants. If ¢ is a real-valued
function on X, we define

Sg(z) =sup{u(z):ueF, ulg}.

Let z€ X and define a class of positive measures by
MF = {,u:u(z) S/ udy for all uET}.
X

It is not difficult to verify that M7 is a convex, weak-* compact set. If g is a
bounded function on X, we define Ig(z)=inf{ [, gdu:pcM7}. Note that every
measure in M7 is a probability measure.

Theorem 2.1. (Edwards’ theorem) With F as above, and if g is a bounded
Borel function on X, then Sg(2)<Ig(z). If g is lower semicontinuous, then Sg=1Ig.

Proof. For the inequality Sg<Ig, just note that if u€ F, u<g, and pc M7 is

arbitrary then
U(Z)S/ udué/ gdp.
X X

Hence Sg(z)<Ig(z). For the second part, first assume that g€ C(X). Also, without
loss of generality, we may assume that ¢g<0. The functional § satisfies the following
properties:

(i) S(ag)=aSg, a>0;

(i) S(g1-+2)>S(g1)+5(g2);

(i) if g1 <g2<0, then S(g1)<S5(g2).
Take any z€ X. By the Hahn—-Banach theorem and Riesz’ representation theorem,
we can find a (real) measure s on X, such that [, gds=Sg(z) and [y ¢ ds>S¢(z)
for every ¢peC(X).

Clearly, if $>0, [ x ¢ ds>S$>0, and hence s is a positive measure. Now take
any ueF. Since u is upper semicontinuous and upper bounded, we can find a
decreasing sequence u;€C(X) such that u; \u. Then

/ uds= lim [ w;jds> tm Su;(z) > Su(z) > u(z).
X j—oo

jooo Jx

Hence se M7 and thus Ig(z)=Sg(z).
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If g is lower semicontinuous, take a sequence g; €C(X), such that g; g. Then,
for every >0, for every j we can find pj, such that for every fixed k,

R S
Sal)> Jim So5(2) = lim To,(2)> im [ gy duy—

Z.hm/gkd,uj"'f:/ gx dp—e,

where f is a weak-* limit of ;. Letting k— o0, we get Sg(2)> [ g du—e, and hence
Sg(z)>1Ig(z)—e. But e>0 was arbitrary, and it follows that Sg(z)>Ig(z). O

(2.1)

Tt is straightforward to verify that PSH and PSH® are cones satisfying the
conditions in Theorem 2.1, hence we obtain the following corollary.

Corollary 2.2. Let Q be a bounded domdin in C", and let ¢ be a real-valued
lower semicontinuous function on Q. Then, for every z€XQ,

sup{u*(z) :u € PSH(Q), u*‘<¢}:inf{/_¢)d,u:uejz},
Q
and

sup{u(z):u e PSH(Q), ugqﬁ}:inf{/_qﬁdu:uej;}.
o)

Remark. Poletsky has in a series of papers studied similar methods of con-
structing plurisubharmonic functions as lower envelopes of “disc functionals” [10],
[11]. His methods have recently been expanded and generalised by Larusson and
Sigurdsson [9]. Their approach shows that if ¢ is upper semicontinuous on €2, then

sup{u(z):u € PSH(Q), uS(Zﬁ}:inf{/Qd)du:,uejz}.

In fact, Poletsky showed that it is enough to take the infimum over Jensen measures
that are push-forwards of the Lebesgue measure on the circle under closed analytic
discs. His approach, however, does not allow for boundary values in the same way
as Edwards’ theorem does.

Note that we cannot in general expect Edwards’ theorem to hold for upper
semicontinuous functions ¢. For example, if F only contains continuous functions,
and ¢ is a discontinuous function which is the pointwise limit of a decreasing se-
quence {¢,} of functions in F, then clearly I¢,=¢, for all n, and hence Ip=4¢.
On the other hand, S¢ is a supremum of a family of continuous functions, so S¢
is lower semicontinuous. Hence, we cannot expect that S¢=171¢ if F only contains
continuous functions and ¢ is not lower semicontinuous.
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3. Boundary values of plurisubharmonic functions

Often in pluripotential theory, hyperconvex domains is the natural class of
domains to study.

Definition 3.1. Let Q be a domain in C™. We say that Q is hyperconvex if
there exists a negative plurisubharmonic function he PSH(€2), such that for every
e>0, the set {z€Q:h(z)<—¢} is relatively compact in €. Such a function is called
a bounded plurisubharmonic exhaustion function for €.

If 2 is hyperconvex, it is always possible to find a bounded plurisubharmonic
exhaustion function h for , which is continuous on €. In fact, it is even possible
to take hRe PSH(Q)NC>®(Q). (See Blocki [1] for details.) Clearly, every hyper-
convex domain is pseudoconvex, and every pseudoconvex domain with Lipschitz
boundary [5] is hyperconvex.

Even if Q is a hyperconvex domain, it can happen that some continuous func-
tions on AN are not the boundary values of any plurisubharmonic function. Take
for example the (unit) bidisc in C? and let ¢ be a continuous function on 8A?, such
that ¢laaxsa=0, and #(0,1)=1. The maximum principle shows that ¢ is not the
boundary values of a plurisubharmonic function. Using Jensen measures and the
duality results from Section 2, it is possible to give an exact characterisation of the
functions on 02 that are boundary values of plurisubharmonic functions.

Lemma 3.2. Let Q be a bounded domain in C™. Let {z;}CQ be a sequence
of points converging to z. For each j, let u;€J,,. Then there is a subsequence pj,
and o measure (€ T, such that p;, converges weak-* to p.

Proof. With the help of the Banach—Alaoglu theorem, by passing to a subse-
quence, we may assume that y; converges to some probability measure supported
on €. We claim that p€J¢, since if u€ PSH(S2), then

wdy= lim udp; > lim u(z;) =u(z).
[ wdu=im [ ;> tim uies) = u(z)
This shows that peJ;. O

Remark. In general, it is not true that peJ,. See Example 4.6.

Lemma 3.3. Let Q be a bounded domain in C" and let ¢€C(OQ). Then
there exists o function u€ PSH(Y) such that ulaa=¢ if and only if there exists a
continuous extension of ¢ (also denoted ¢) to 0 such that

(3.1) ¢>(Z)=inf{/ﬁ¢du:uejf}
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for every z€09.

Proof. Assume that ¢=u|gq for some ue PSH(Q). Take 20 and let pe J7.
Then

6(2) =ul(z) < / wdy

9]
which implies that ¢(z) <inf{ {5 udu:pe J¢}. Taking u=4. shows that this inequal-
ity is in fact an equality. Hence u is a continuous extension of ¢ to Q satisfying (3.1).

Conversely, extend ¢ to a continuous function on €, satisfying (3.1) and let
So=sup{u(2):uePSH(Y), u*<¢}. Edwards’ theorem implies that

S¢(z)=inf{/ﬂ¢du:uejz}.

Assume that lim. , S¢(C)<¢(z) for some 2€9Q. Then we can find £>0 and a
sequence (;— z such that S¢((;) <¢(z)—¢ for every j. Hence, there is a measure 1, €
Je; such that [5 ¢ dp; <é(z)—e. By passing to a subsequence and using Lemma 3.2,
we can assume that p; converges weak-* to some peJ¢. Hence

[ odu=lin [ odu; <o),
Q I Ja

This contradicts the assumption that ¢(z)=inf{ [5 ¢ dp:pe JF}. Therefore, we have
lim, , S¢(¢)>¢((). Clearly, since ¢ is continuous, lim¢_,, S¢(¢)<¢(2). Hence
(S¢),=(S¢)"=¢ on 8. By a theorem of Walsh [13], (S¢)" is a continuous pluri-
subharmonic function with boundary value ¢. O

If we assume is addition that the domain is hyperconvex, then the situation is
more satisfactory, since we do not require an extension of the boundary function.
To prove this, we will require (a part of) a theorem from [2].

Theorem 3.4. Let Q be a bounded domain in C". Then ) is hyperconver if
and only if, for every z€0Q, every Jensen measure p€JS is supported on ).

Proof. Let h be a continuous bounded plurisubharmonic exhaustion function
for Q2. Let 2€0€) and take any p€J7. Then

O:h(z)S/_hdu.

Q

But, h<0 on € and p is a positive measure, thus h=0 p-a.e. Since h<0 in €, this
implies that y is supported on 9. For the converse, we refer to [2]. O
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Theorem 3.5. Let Q2 be a bounded hyperconvex domain in C" and let ¢&€
C(0). Then there exists a function w€ PSH (L) such that ulsa=¢ if and only if

(3.2) P(z) = inf{

for every z€09Q.

¢du:uejzc}

[219]

Proof. If 200 and peJE, by Theorem 3.4, p is supported on 992. Hence the
integral [ ¢ dp only depends on the values of ¢ on 99, and the theorem follows
from Lemma 3.3. O

Exzample 3.6. As a straight-forward consequence of Theorem 3.5 we may con-
clude that ¢€C(8A?) extends to a continuous plurisubharmonic function on A? if
and only if ¢ is subharmonic on each analytic disc in the boundary, that is if and
only if the functions (—¢(e*?, () and (+—¢{(,e¥) are subharmonic in ¢ for every
real 6.

It is easy to see that the subharmonicity of the slice functions is a necessary
condition. Assume that ue PSH(A?) is an extension of ¢. Then u,=u(rz;,rzs)
converges uniformly to « on the closed bidisc as r /1, and each u, is subharmonic
along each analytic disc in the boundary of A%. Hence, the same is true for ¢.

Conversely, let us first note that if 2€9A2?, say z=(e', () for some §cR. and
CEA, every peJFf must be supported on {e’} xA. The reason for this is that
the function v(2)=|z;+€"|—2 is in PSH(A?), v<0, and {z:v(2)=0}={e¥} x A.
Hence, if p€J¢, we have that

O:v(z)g/ﬁvd‘u

which implies that u must put zero mass on the set where v<0. In a similar fashion,
we can show that if z€0A XA and peJ2, it follows that p=46,.

Hence, any Jensen measure for a boundary point z can be viewed as a Jensen
measure for subharmonic functions on A after a canonical projection, and con-
versely, any Jensen measure on A can be lifted to a Jensen measure for a boundary
point in A% Thus, if ¢ is a continuous function on dA? such that every slice
function is subharmonic, then condition (3.2) is satisfied.

The class of domains admitting a strong plurisubharmonic barrier function at
every boundary point was introduced and studied by Sibony [12]. These domains,
known as B-regular domains, are in some situations natural. For example the
Dirichlet problem for the complex Monge-Ampere operator is always solvable in
B-regular domains. (With continuous data and continuous solution.) We refer
to Blocki (1] for details. We will use the following (equivalent) definition of B-
regularity.
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Definition 3.7. Let Q be a bounded domain in C™. If every real-valued function
peC(IN) can be extended to a plurisubharmonic function ue PSH(2), we say that
Q is B-regular.

In [2], hyperconvexity was characterised in terms of Jensen measures for bound-
ary points. As a corollary to Theorem 3.5 we obtain a similar characterisation of
B-regularity. (This fact was already proven by Sibony in [12].)

Corollary 3.8. A bounded domain QCC™ is B-regular if and only if for every
boundary point z€0Q, Jf={4,}, where §, denotes the Dirac measure ot 2.

Proof. Assume that (2 is B-regular, take a boundary point 2€9Q and let e J¢.
Since € is hyperconvex, supp pC IS, Construct a continuous function ¢ on €2 such
that ¢ attains a strict maximum at z. Since €2 is B-regular, we can extend ¢ to a
function in PSH(Q?). Hence

<Z>(z)§/§_2¢du§(Srl%%);@/ﬁduzab(@-

Consequently, ¢=¢(z) p-a.e., which implies that supp p={z}. Hence yp=4,. Con-
versely, assume that J2=1{4,} for every z€9Q. Theorem 3.5 then implies that every
continuous function on 94 is the boundary value of a function in PSH(Q2). O

It is also possible to use Theorem 3.5 to show that on hyperconvex domains,
the set of boundary values of continuous plurisubharmonic functions is closed under
uniform limits.

Corollary 3.9. Let 2CC"™ be a bounded hyperconver domain. Then the set
E=PSH()|sn is uniformly closed.

Proof. Let ¢;€C(09Q) be a sequence of functions in F converging uniformly to
some ¢€C(95Y). Assume that

¢(z)>inf{ qbd,u:,uejzc}

o0

for some z€8Q. Then ¢(z)> [, ¢dp for some peJ¢ and consequently ¢;(z)>
/. 20 ®; di for j sufficiently large. This contradicts the assumption that ¢; is the
boundary value of a function in PSH(Q2).

On the other hand, assume that

¢(z)<inf{ qﬁd,u:,uejzc}

oQ
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for some z€9Q. Then there is an £>0 such that ¢(z)< [, ¢ dpu—e for every pe J¢.
Choose j so large that supyq |¢—¢;| < %s. Then

¢j(Z)§¢(Z)+%€S/ag¢d'u‘_%€§/ag¢jd'u_%g

for all pe J¢. Using Theorem 3.5, this contradicts the assumption on ¢;. Hence,

¢(z):inf{[90¢du:u€j;}

for all z€0€2, which by Theorem 3.5 implies that pc&. O

Remark. This corollary can also be proved by extending the boundary func-
tions to maximal plurisubharmonic functions, and taking a limit of these. This
argument requires some theory of solving the complex Monge—-Ampeére equation on
hyperconvex domains, whereas the approach taken here is more self-contained.

4. Global approximation of plurisubharmonic
functions on B-regular domains

In this section we will show that upper bounded plurisubharmonic functions
can be approximated from above with plurisubharmonic functions continuous up to
the boundary on B-regular domains. This generalises a result by Cegrell [4].

Theorem 4.1. Let QCC” be a bounded B-regular domain and let v be an
upper bounded plurisubharmonic function on Q. Then there exists a decreasing
sequence u; EPSHE(Q), such that u;\u* on €.

Remark. If we only assume that € is pseudoconvex, then Theorem 4.1 is no
longer valid. For an example, take Hartogs’ triangle Q={(zy, z2) €C?:|z1|<| 22| <1},
and let u(z1, z2)=|21|/|22|. Then ue PSH(?) and u<1. Also, note that u*(0,0)=1.
Assume that there is a sequence u; EPSH(Q), such that u;\u* on Q. Let
K={0} x0A;/,CQ. Note that u is identically 0 on K, and hence in particular,
u is continuous on K. Consequently, by Dini’s theorem, u; converges to 0 uni-
formly on K. Choose J so large that uj<% on K for every j>J. By applying the
maximum principle to u; on {0} x A/, we must have that u;(0,0)<% for j>J.
This contradicts the assumption that w;(0,0)\u*(0,0)=1.

On the other hand, if € is pseudoconvex and u€PSH(Q) (v not necessarily
upper bounded), we can always find a sequence (see Fornass and Narasimhan [7] for
a proof) u; €PSH(Q)NC>(2), such that u;\u on . But as the example above
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shows, these functions can in general not be extended to continuous functions on 2
such that the extensions decrease to u* on 942.

Furthermore, if we do not even assume that € is pseudoconvex, there are
examples showing (see e.g. Fornass and Stensgnes [8]) that there is a domain Q and a
function ©€PSH(Q) such that there is no sequence of continuous plurisubharmonic
functions u; such that u; \u on €.

These examples show that for Theorem 4.1 to hold, we must assume that
the domain has some kind of “convexity”, and that pseudoconvexity itself is not
sufficient. At this point it is unknown to the author whether Theorem 4.1 holds in
every hyperconvex domain.

Proof of Theorem 4.1. Since €} is hyperconvex, we can find a smooth plurisub-
harmonic exhaustion function v for Q such that v]sn=0. (See Blocki [1].) First
note that u* is upper semicontinuous on the compact set Q. Hence, we can find a
sequence ¢;€C(02) such that each ¢;>u* and ¢; \u* on OS2

Because () is B-regular, we may extend ¢; to a maximal plurisubharmonic
function on €2, which is continuous on ). (We will use the same notation, ¢;, to
denote this extension.)

For each j, the function w*—¢; <0 is upper semicontinuous on 0 and thus
attains a maximum value. In other words, we can find £;>0, such that u*—¢; <
—£;<0 on 8. By the maximality of ¢;, we must have

(4.1) u*(2) <¢j(2)—e;, z€Q.

Yor each j, choose r; >0 so small that

T4 <d; ::dist({z:v(z)<—2—;3},89>,

and so that u,; <¢; on €,,. By shrinking r; further, we may also assume that {r;}
is a decreasing sequence. Here u,, denotes the convolution of u with a standard
regularising kernel v, with support in B(0,r;) and Q,, ={z€Q:dist(z,0Q)>r;}.
The second condition on r; can be fulfilled because equation (4.1) implies that

uxtps < (B —ej) x5 = pjxbs—e; < §;

if ¢ is sufficiently small. (We recall that ¢;*1s converges uniformly to ¢; as §—0.)
Define

(4.2) i (2) :max{urm(z)— % mv(z)+¢m,(z)},
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and let u;(z)=sup,,>;{m(2)}. In (4.2), note that u, , is not defined if z is close
to 9. The definition of @y,, should be taken as mv(z)+ ¢, (2) for such z.

We claim that u; e PSH(S). First, note that if z is a point in € such that
dist(z, Q) <d,,, then v(z)>—1/2m? and hence mv(z)>—1/2m. By the construc-
tion of r,, in the previous paragraph, we also have that u,_, (z) <¢y,(2). Hence, for
such a z, we see that

()= < fu(z) = 5= <)+ 9 (2)

This implies that each @, is plurisubharmonic on €2, continuous on € and equal to
¢m on 0. Thus u;, being the upper bound of a family of continuous functions, is
lower semicontinuous. To prove the claim that u; is a continuous plurisubharmonic
function, all that remains is to show that u; is upper semicontinuous.

Rewriting u;, we obtain for any K >7,

)= sup fmanfun, ()L o) +om)

mz23

- i‘g{mﬂ{um(z)y m”(2)+%+¢m(z)} _ %}

(4.3)
K>mz>j m

< maX{ max {maX{urm(Z% mo(z)+ % +¢m(2)} L }
futo 0+ 2 rnta}

The inequality in (4.3) follows from the estimate:

1 1 1
(4.4) max{urm,mv—f—h—quﬁm}—g gmax{uTK,K'erE—i—qSK}, m> K.

To prove (4.4), just note that max{u,, , Kv+1/K+¢x} is decreasing in K. (Each
term is decreasing.)
To finish off, we observe that

maxq max < max3 u, (2), mu(2)+—+¢m(2) e
{azms Lned o}

K>m2>j
max{u,K (z), Kv(2)+ % +¢K(Z)} }

is a sequence of continuous functions, decreasing to u; as K —o0o0. Hence u; is upper
semicontinuous. This completes the proof. [

To make the following discussion clearer, let us introduce a piece of terminology.
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Definition 4.2. Let Q be a bounded domain in C". If every upper bounded
plurisubharmonic function on § can be approximated from above on Q by functions
in PSH(Q) as in Theorem 4.1, we say that  has the approzimation property.

Corollary 4.3. Let QCC" be a domain having the approrimation property,
and let z€Q. Then J¢=J7,.

Proof. Clearly J,CJ¢. Conversely, let u€J? be arbitrary and take any up-
per bounded plurisubharmonic function u on €. Since  has the approximation
property, there is a sequence u; EPSH(Q), such that u;\u*. Hence, using the
monotone convergence theorem

/ udp=lim [ ujdp> lim u;(z)=u"(z).
This means that p is in fact a Jensen measure for every upper bounded plurisub-
harmonic function on Q. O

In particular, the two classes of Jensen measures coincide for B-regular do-
mains. Conversely, if 7,=J¢ for every 2€Q and if  is hyperconvex, then {2 has
the approximation property.

Theorem 4.4. Let Q) be a bounded hyperconver domain in C™ and assume
that J,=JE for every z€Q. Let u be an upper bounded plurisubharmonic function
on Q, with u*lag=3¢. Then there exists a sequence 1;€C(0Q), such that ;¢
and 1; EPSH (D aa.

Proof. Since ¢ is upper semicontinuous on 92, we can find a sequence of contin-
uous functions ¢; €C(08), such that ¢;\¢. For each j, extend ¢; to a continuous
function on € in such a way that the extensions still form a decreasing sequence of
functions. For each j, define

S°h;(2) :sup{v(z) 10 EPSH(Q), v<¢; on Q },
So;(z) :sup{v(z) W EPSH(Q), v <¢; on Q}
Using Edward’s theorem and the assumption that J,=J¢, we have that
se6,)=int{ [ 6;duine gz | =int{ [ 6;duine g} =50,

for every z€). Hence S°p;=5¢;. On the other hand S¢; <¢; and ¢; is continuous.
This implies that (S¢;)*<¢,, and since (S¢;)* is plurisubharmonic, it follows that



Jensen measures and boundary values of plurisubharmonic functions 193

(5¢,)*=S¢,. Inparticular, S¢; is upper semicontinuous on . However, S¢;=5°;
and S¢; is lower semicontinuous, being the supremum of continuous functions.
Consequently, S¢;=5°; e PSH ().

Define ;=S¢ ;|aq. Clearly, ¢;<¢;. Furthermore, if 2€0Q, and pe J.=7;,
then

¢(2)ZU*(Z)§/Qu*du:/m¢du,

since €2 is hyperconvex, and thus u must be supported on 9§ by Theorem 3.4.

(z)(z)ginf{/ﬁ(bd,u:uejz}:inf{/(;gbdu:uejzc}

ginf{/Q b, duz,uejj} = 5%;(2) =1 (2)

Hence,

for every 2€0Q. It is clear that 1; decreases, and from the calculation above, it
follows that 9; converges to u*=¢ on 0Q2. O

Corollary 4.5. Let Q be a bounded hyperconvex domain in C™ such that J,=
TE for all z€Q. Then Q has the approzimation property.

Proof. Let u denote an arbitrary upper bounded plurisubharmonic function
on 2.

Examining the proof of Theorem 4.1, we see that the only thing that is required
for the proof to go through in hyperconvex domains, is the existence of a decreasing
sequence ¢; of continuous functions on 02 tending to u* such that each ¢; can be
extended to a maximal plurisubharmonic function.

Theorem 4.4 provides us with a sequence ¢; EPSH(Q)|sn decreasing to u*.
Since Q is hyperconvex these functions can always be extended to mazimal pluri-
subharmonic functions on  (see Blocki [1]). O

In general J,& J5 as shown by the following example.

Ezample 4.6. Define h: C?\{2:2;=0} >R by h(z)=|z[°¢1**|25]. Then h is
plurisubharmonic where it is defined, because log h(z)=(log |21])%+log |22| which
shows that log h is plurisubharmonic on z;#0. Hence the same is true for h. Let
O={2eC?:h(2)<]1, 0<]z1|<1, |23]<1}. It is easy to verify that  is pseudocon-
vex, but since € is Reinhardt and 0€9%Q, Q is not hyperconvex (see [2]) and h is
plurisubharmonic and upper bounded on €.

Let u{z)=max{h(2),{z1],|22/} —1. Then u*=0 on 0. Hence, if z€IQ and
uneJ,, then

O=u"(2) < [ u" du,

Q
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which implies that v* =0 p-a.e. Hence p must be supported on 9. On the other
hand, since {1 is not hyperconvex, there exists a measure p€J§ which is not sup-
ported on 9. (See [2].) This is, of course, another example which shows that
Theorem 4.1 is not valid in every bounded pseudoconvex domain.

Inspired by the above example, we introduce the following definition.

Definition 4.7. Let £ be a bounded domain in C®. If there is a function
uePSH(QY), u0, such that u*|sn=0, we say that Q is almost hyperconvex.

As in the example, it follows that if  is almost hyperconvex, then for every
2€0Q and every peJ,, supp pC Q. We also note that the notion of almost hyper-
convexity is not biholomorphically invariant. The reason is that a biholomorphism
@: £ — €y does not necessarily extend to a homeomorphism between the closures.
As an example, take Q1 =A2\{z:20=0}. Clearly, if u is plurisubharmonic on
and upper bounded, we can extend u to be plurisubharmonic on AZ. Hence, if
u*|50, =0, the maximum principle forces v to vanish identically, which means that
2 is not almost hyperconvex. However, f(z1,22)=(2122, 22) is a biholomorphism
between ; and Hartogs’ triangle, which is almost hyperconvex. ‘

Recall that Hartogs’ triangle is defined by T'={(21,22)€C?:|21|<|z2|<1}. To
see that 1" is almost hyperconvex, note that the function v(z)=max{|z1|/|22|, |22|} —
1 is plurisubharmonic and satisfies v*=0 on 9T

Let y1 denote the normalised Lebesgue measure on {(21,22):21=0, |z2|=3}.
Note that ue Jg, but u¢ Jy. The reason for this is that if u€ PSH is upper bounded
on Hartogs’ triangle, the value u*(0) is not determined by the restriction of u to
the disc {0} x A, in which supp pu is contained. This allows for the existence of
a function u in PSH(), such that u*(0)>u|supp,. The function v above is an
example of such a function.

It is possible to strengthen some of the previous results to a wider class of
domains than B-regular ones. In particular, it is possible to show that the bidisc
has the approximation property. We begin by stating some preliminary lemmas.

Lemma 4.8. If {u;}52, is a sequence of positive measures such that p; con-
verges weak-* to p and if ¢ is an upper semicontinuous function with compact
support, then

lim | @du; < / @ dp.
=00 Ja ) Ie]

The lemma follows easily from the monotone convergence theorem. For the
details, see Lemma I:1 in Cegrell [3].

Lemma 4.9. Let Q be a bounded domain in C™ and let p€J¢, where z€S).
Assume that, for every sequence {zj}, 2; €82 converging to z, there exists a corre-
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sponding sequence of measures pu;€J,, such that u; converge to p in the weak-*
topology. Then peJg,.

Proof. Let © be an upper bounded plurisubharmonic function and let {z;} be
any sequence in 2 converging to 2. Take {y;} as in the statement of the lemma.
Since each j1; €7, we have that

u*(zj)gﬁu*duj.
9

Letting j— o0, and using Lemma 4.8, we see that

j—oo oo

fim o’ (z;) < Tim u*dujg/u*du.
Q Q

The sequence {z;} was arbitrary and hence u*(2)< [5 u* dy. Thus pe7,. [0

For star-shaped domains, we can show that the equality J¢=J, holds for every
interior point z. Recall that a domain © is said to be star-shaped (with respect to 0)
if for any z€€Q, the (real) line segment connecting 0 with z is a subset of €.

Theorem 4.10. Let Q220 be a bounded star-shaped domain in C". Then, for
every z€Q, Ji=7..

Proof. Let u be any upper bounded plurisubharmonic function on €2 and take
any z€Q. Let neJ¢ and define u,.({)=u(r(s,...,7¢,). Then for any 0<r<1, u,
is plurisubharmonic on a neighbourhood of Q. Hence u, can be approximated
monotonically from above on by functions in PSH(Q2), and consequently

up(2) < /Q up(C) dp(C)

by the monotone convergence theorem. Letting 7 71, and using Fatou’s lemma, we
obtain

lmu(2)<lim [ w,.du<
1 ()_r/‘l a " /1’_/(2

But, since a (real) line segment as a subset of C™ is not plurithin at its endpoints,
we conclude that

Hurdg/u*d.
i ur dp < | dp

()= T u(¢) = i . (2),

and hence that u*(2)< [ u* du, ie. that pe7,. O
Remark. Note that this proof fails for z€9Q. If z€0), we cannot assert that
*(2)=1lim .
u*(2) lim u(2)
Using these results, we can prove that a polydisc has the approximation prop-
erty.
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Theorem 4.11. The unit bidisc A>2CC™ has the approximation property.

Proof. Since the bidisc is hyperconvex, by Corollary 4.5, it suffices to show
that J=J, for every z€ A%, The bidisc is star-shaped, so from Theorem 4.10 we
see that the equality holds for every interior point. It remains to show that J7¢=7,
for every z€9A2. We may assume that z€ A x DA, the other case being completely
similar.

Let peJy. From Example 3.6 we know that the support of u is contained in
the analytic disc in 9A? determined by z. (In the case where z€JA x A, the disc
is not uniquely determined, but that does not matter.) Furthermore, p is the lifting
of a Jensen measure fi on A for subharmonic functions.

Take any sequence {z;}, zj:(zy), zj(?)) in A? converging to z. For a€ A, define
(—a
ma(Q)= ;.

i.e. my is the canonical Mdbius transformation interchanging a and 0. For each j,
we define an analytic disc f; by

fi(Q)= (m;&) Omz§1> (€), zj(,z)).

The first component of f; is a M6bius transformation interchanging zj(-l) and z(1),
Put yo;=(f;)«fi. Then pi €I =7J.; (by Theorem 4.10), and since the first compo-
nent of f; converges uniformly to ida as j—oo, it follows that p1; converge weak-*
to u=(id, 2?), i. Invoking Lemma 4.9, it follows that p€.7.. Hence any measure
in J¢ is a Jensen measure for upper bounded plurisubharmonic functions. [

5. Different kinds of boundary values for plurisubharmonic functions

Given an (upper bounded) plurisubharmonic function uePSH(S)), there are
several reasonable ways to define boundary values of u. In this paper, we have
used the upper semicontinuous regularisation «* as a convenient way to extend u
to Q. The obvious advantage of using u*|5n as boundary values of u is that u* is
upper semicontinuous on the compact set Q which simplifies some things. On the
other hand, u*—the unrestricted upper limit of u—is the largest reasonable choice
of boundary values for u. If we can use another, smaller, choice of boundary values,
many results would (at least formally) be sharper than for »*. In this final section,
we will look into other ways of introducing boundary values for u. To simplify some
of the concepts, we will restrict the discussion to the case of the unit ball B in
C?, even though the concepts we will introduce can be adapted to more general
situations.

First we will introduce radial boundary values.
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Definition 5.1. Let u€ PSH(B) be an upper bounded plurisubharmonic func-
tion. If 2€0B, we define the radial boundary value of u, denoted uf?, by

R\ — T

We extend the function uf? to B by defining u®(z)=u(z) if 2¢9B.

Remark. For a bounded domain  with C! boundary, one could define radial
boundary values by taking the upper limit along the (real) normal to €2 at z. In
general 4™ will not be upper semicontinuous on B.

Looking at boundary values of bounded holomorphic functions, the theory is
most satisfactory when studying non-tangential approach regions (in one variable)
and the even larger Kordnyi-Stein approach regions (in several variables). With
this in mind it is natural to look at boundary values of plurisubharmonic functions
in a similar fashion. We recall the definition of a Kordanyi—Stein region.

Definition 5.2. Let a>1 and let (€9B. We put

Da(2)={z€B:[1-(2,0)| <a(1- 21%)}.

Remark. Note that D, is non-tangential in complex tangential directions, but
parabolic in the complex normal direction. In more general domaius, one can define
the Kordnyi—Stein regions using the Kobayashi metric. In strictly pseudoconvex
domains, the shape of D, is roughly as in the ball.

Using these approach regions, we define a non-tangential boundary value for
plurisubharmonic functions.

Definition 5.3. Let u€ PSH(B) be an upper bounded plurisubharmonic func-
tion. If z€9B, we define the a-admissible boundary value of u, denoted u®, by

o _ Tiv
uie)= (g)glC%U(C).

We extend the function u® to B by defining u®(z)=u(z) if 2¢0B.

Even though v and u® are not in general upper semicontinuous on €, they are
Borel functions. Hence it is meaningful to introduce Jensen measures modelled on
these boundary values. If z€ B, we define JX as the set of regular Borel measures
i such that

uR(z)g/ ufdp
Q
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for every upper bounded plurisubharmonic function u on B. Similarly, for a>1, we
define J2 in the same way, with u® replaced by u®.

Clearly uf<u®<u* (for any a>1) and u*<u” if 1<a<pB. Hence if z€B,
u*(2)=u"(2)=uf(z) and consequently,

JEcTcd.
for any a>1 and
Ty c Ty

for a<pg.
For 2€0B it is less obvious if the same inclusions of Jensen measures hold, but
for interior points, the inclusions above are actually equalities.

Proposition 5.4. Let z€ B. Then (for every a>1),

T.=T=JF.

Proof. Fix ueJ, and let u be an upper bounded plurisubharmonic function
on B. From the proof of Theorem 4.10, we see that

u(z) gﬁuR du,

Q

and hence that pc 7. Tt follows that J,c JF. O

Since J,=J2=JF, it would be natural to conjecture that u*=uf y-a.e. for
every u€J,. This conjecture fails dramatically, as shown by the following example.

Ezxample 5.5. Define
|22]?
1—]z1]*

V(z)=log

Note that on B, |22)?<1—]|z1|%, and hence that V(z)<log1=0 on B. Also, V is
plurisubharmonic on B, since —log(1—|¢|) is minus the log of the distance from
CEA to OA, and hence subharmonic.

Clearly VE(¢,0)=—co for every (€A, since V(z;,0)=—00. On the other
hand, it is easy to verify that V*(¢,0)=0 for every (€0A.

These observations show that

07 22 7é 07

-0, 22 =0
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and
V*(2)=0, 2€8B.

Hence VT and V* disagree on the set A x {0}, which is the support of some Jensen
measure p€Jp. (Take p as the 1-dimensional Lebesgue measure on 9A x {0}.)

A more careful calculation shows that V*((,0)=log(1—1/2«) for (€OA and
hence that each of the different boundary values differ on a set of full y-measure.

Remark. Note that this example of a function such that u* #u®, is not a several
variable phenomenon. In fact, it is well known that there even exists a bounded
harmonic function h on the unit disc in C, such that h*#h* on a large part of the
circle.
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