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Invariant metric estimates for 0
on some pseudoconvex domains

Jeffery D. McNeal(')

1. Introduction

Let Q&C™ be a smoothly bounded, pseudoconvex domain of finite type (see
[D’A] for the definition of finite type). Call Q simple if it satisfies at least one of
the following conditions: (i) §2 is strongly pseudoconvex, (ii) Q is convex, (iii) n=2,
or (iv) Q is decoupled (see [M5] for the definition of decoupled).

The main result in this paper is the following result.

Theorem 1.1. If Q is simple, there exists a constant C such that if o is a
0-closed (n,1)-form on §, then there exists an (n,0)-form u solving Ou=a with the
estimate

(1.1) [ullr <Clledr,

where || - ||; denotes the norm associated to any one of the metrics of Carathéodory,
Bergman, or Kobayashi on the domain Q.

The result follows in two steps. First, the three invariant metrics, acting on
a given tangent vector, are shown to be comparable to each other and to a fairly
explicit pseudometric which directly encodes the geometry of bQ2. If {2 is convex, this
result was obtained by Chen [Ch] in his thesis; as this result has not been published
elsewhere, we give a proof of Chen’s theorem in Section 2. For the other types of
simple domains, the estimates on the metrics are due to several authors and we
collect the references to those works also in Section 2. Second, the estimate on the
solution u is proved by exploiting a variant of the usual L? inequalities for & due to
Hoérmander. This variant has its origins in the work of Donnelly—Fefferman [DF] and
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Ohsawa—Takegoshi [OT] though recently more transparent proofs of the inequality
have been given by Berndtsson [B], McNeal [M5] and Siu [S]. Estimate (1.1) is,
as usual, shown by duality. The point of the new inequality is that it allows (non-
bounded) weight factors to be introduced, which have large hessians, without having
to change the volume form in the integrals due to the weight function’s behavior
at be2.

Since the three metrics vanish at b2, when acting on forms, in a measured
way, (1.1) is a non-isotropic, base-level, regularity result about a solution to the
O-equations. For the Carathéodory and Kobayashi metrics, as far as we know, this
kind of result has not been formulated previously in the literature. However for
the Bergman metric, our theorem is a special case (p=n, g=1) of the cohomology
vanishing theorems obtained by Donnelly~Fefferman [DF] and Donnelly [Do]. In
our view, though, the proof of (1.1) given here for the Bergman metric is simpler
than the proofs in [DF] and [Do]; in connection with this see also the paper [BC].
Furthermore, the condition (3.2) we use in order to exploit inequality (3.1) is less
restrictive for certain kinds of potential functions than a related condition of Gro-
mov [G]| (which is used in [Do]) and may be useful in extending the vanishing
theorems to wider classes of domains.

I would like to thank Bo Berndtsson for several stimulating conversations about
the topics discussed here.

2. Metrics and volume forms

We first recall the definitions of the infinitesimal invariant metrics.

If U;cC™ and U;CC™ are open sets, let H(Uy,Us) denote the holomorphic
mappings from Uy to Us. Let B™ denote the unit ball in C". Let X €C"™ and view
it as a (1,0) tangent vector. If QCC™ is a domain and z€(), the Carathéodory
length of X at z is defined as

(2.1) Mc(z X) =sup{|X f(2)|: f € H(Q, B"), f(2)=0}.

Here X acts naturally on f as a derivation.
Let e1=(1,0,...,0)€C". The Kobayashi length of X at z is given by
(2.2)
Mgk (z; X)=inf{r > 0:there is f € H(B™, Q) with f(0) =z and f'(0)-e; =X/r}.

We mention that the use of B™ in both definitions is not universal and that other
choices of model domains exist in the literature, e.g., a polydisc.
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To define the Bergman metric, we consider two L? extreme value problems:

(2.3) D(z,z) =sup{|f(2)|: f € H(Q,C) and [[f[2 <1},
(24)  N(zX)=sup{|Xf(2)|: f € H(Q,C), f(z)=0, and ||fll2<1}.

Here [|f(|2 denotes the euclidean L? norm of f on Q. The square D(z,z)? gives
the value of the Bergman kernel function, associated with €2, at the diagonal point
(z,2) in QxQ. The Bergman length of X at z is defined as

N(z; X)

(245) MB(Z;X)Z D(Z Z) .

We mention that there is an alternative, equivalent way to express the Bergman
metric. Let

2

_ 9 2
(2.6) bip(z) = m log D?(z, z),

where (21, ..., 2n) are the standard coordinates on C™. If X=>"}" | 4;8/0z, then

n 1/2
Z bix (z)al&k) .

(2.7) Mp(z; X)= (
Lk=1

This representation of the Bergman metric shows that it is a Hermitian (indeed,
Kihler) metric on 77%(Q).

It is very difficult to calculate the exact value of the above metrics, except in
a few special cases of domains with high degrees of symmetry. For our purposes,
though, it will be sufficient to know that the three metrics are comparable to each
other, in a certain sense, as z approaches b§2 and, also, that each metric can be
approximated by a reasonably explicit pseudometric defined using the geometry
of Q). For the various kinds of domains which make up our class of simple domains,
these approximate size results have been obtained by several authors (see references
below) using somewhat different techniques and notation. The estimates, however,
may all be cast in a unified way, which we proceed to indicate. As the basic ideas
and notation are easiest to state in the convex case, we concentrate on this situation
first. For notational convenience, we write A< B if there exists a constant C so that
A<CB and use the symbols > and = similarly. In practice C will be independent
of certain parameters on which A and B depend; usually, the parameters are the
point g€£) and the positive real number ¢.

Let Q€C™ be a smoothly bounded, convex domain of finite type, and r a
(smooth, convex) defining function for Q: Q={z:r(2)<0} and dr#0 when r=0.
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We will assume, without loss of generality, that the sets {z:r(z)<n} for —c<n<c,
¢>0, are also convex.

Let pebQ and >0 be given. We recall some local measurements related to the
order of vanishing of r near p introduced in [M4]. For geUNQ, U a neighborhood of
p, and A€ S?"~1 let o(g, A, ) denote the distance from g to the set {z:7(z)=¢} along
the complex line generated by A. Set 71(q,¢)=¢ and let L; €S?"~1 be a vector so
that o(q, L1,e)=71(q,£). We distinguish the (essentially) maximal distances from
q to {z:7(z)=¢} along independent directions and, for convenience, do so in an
orthogonal fashion. Define

72(q,€) =max{c(q, A\, e} : AL L1},
and let Lo be a vector such that o{q, L2, £)=72(q, ). Inductively, define
71{q,€) =max{o{q, A\,e): XA Lspan(L1, ..., Ly_1)}
for k=3, ...,n. Note that
(2.8) T1(g,8) < (g,€) <...<ma(q, €).

The following result is proved in [M4].

Proposition 2.1. For every qcQNU and every £>0 sufficiently close to 0,
there exist coordinates (z1,...,2n) centered at q and points pi,...,pn€{z:r(2)=
e+r(q)} such that, in the coordinates (z1, ..., 2y), the defining function r satisfies

3 m (q,E) < or N < 71 (qa 5) i<
(i) (g,6) ~ —azi( il < 2.5 for 1<i<n,
-5 ar Tl(qa E) .p . .

— ()<
(11) azi (p.]) ~ Ti(q, 8) 9 ZfZ < .7;
0 U
(iii) (—ag(pj) =0, ifi>jg.

Also, if we define the polydisc

PE(Q) = {Z el: \le <7 (q, 8)7 veey lZn! < Tn(Qa 5)}7
then there exists a constant C>0, independent of qeQNU, such that CP.(q)C
{zeU:r(z)<e+r(q)}.

The coordinates given by Proposition 2.1 simplify all the subsequent construc-
tions and estimates. The first important construction is of a family of plurisubhar-
monic functions which are, in a sense, maximal with respect to the polydiscs P.(q).
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Let p€b€ be fixed. For €20, let C; .€C™ be a smoothly bounded, convex domain
such that

{zeU:r(z) <r(q)+e} CCye,

{zeU:r(z)=r(g)+e} CbCy.,
for some neighborhood U of p. Without loss of generality, we may assume that
dist(Cye, {2:7(2)=r(q)+eta})=dist({z:r(z)=r(q)+¢c}, {z:r(2)=r(q) +e+a}), for
small a>0. We will suppress the index ¢ when ¢=0. The following result is proved
in [M4], see also [M3].

Proposition 2.2. Let Q2 be a smoothly bounded, convexr domain of finite type
and the notation be as above. Let qeUNS and let €>0 be small. There exists a
constant ¢>0, independent of q, and a function ¢, 6EC"X’(C ) so that

() I¢q,e( z)| <1, Zqu:

(ii) ¢q.e is plurisubharmonic on Cy;

(iil) if z€ Pe.(¢)NCy, then

& (b € - |£z|2
Z 82252 2 NZ 7i(q,€)?’

2,j=1 i=1

The next step is to show that the Bergman kernel associated with 2 satisfies
estimates related to the polydisc structure in Proposition 2.1. For this, the functions
in Proposition 2.2 are used as weight functions in Hormander’s inequality. The proof
of the following result is given in [M4], following closely a method developed in [C].

Proposition 2.3. Let Q be a smoothly bounded, convexr domain of finite type
and the notation be as above. There exists a neighborhood V€U so that if ge VNEY,
oo
BQ q,q)~ T N9
( ) E Ti(Q) 6)2
where e=|r(q)| and the constants are independent of q.

At this point, we are in a position to derive the main estimates for the Bergman,
Carathéodory, and Kobayashi metrics on convex domains of finite type. In order to
state these estimates, we first define a convenient pseudometric on €. Let g€, set
e=|r(q)|, and let (z1,..., 2, ) be the coordinates given by Proposition 2.1 relative to
gand e. If X=%"7" | 0;0/0z, define

29) Matpi )=

As mentioned in the introduction, the following result was first obtained by Chen,
[Ch], in his Purdue PhD dissertation; we give a proof here for completeness.



126 Jeffery D. McNeal

Proposition 2.4. Let Q be a smoothly bounded, convex domain of finite type
and the notation be as above. There exists a neighborhood V' of p so that, for all
qeVvNQ,

My(q; X)~Ma(g; X), XeC,

with constants independent of q. Here I=B, C, K.

Proof. By a result of Lempert [L]
Mg (q; X)=Mc(q; X)
in our situation. And, in general, one has the inequality
Mc(q; X) < Mp(g; X),

see [Hal]. So we are reduced to showing that Mpg(q; X)SMa(g; X) and Ma(q; X)S
Mc(q; X). Now fix ¢, let e=|r{g)|, and let (21,..., 2z, ) be the coordinates given by
Proposition 2.1.

To obtain the upper bound on the Bergman metric, observe that Cauchy’s
estimates imply that for any f€L?(Q)NH(Q,C)

Vol P.(q)]/2]|£l2
Ti(‘]? E)

%(Q))S[

with uniform constants. It follows that, if X=Y ., 0;8/0z,

NgX)$) Tlla” <ﬁ7’l(q,5)>_l.

=1 (2,€) =1

Combining this with Proposition 2.3, we obtain
Mp(q; X) S Ma(g; X),

with constant independent of ¢ (and X).
For the lower bound on the Carathéodory metric, consider the linear functions

Lk(z):(z_pk)ar(pk)a kzla'“ana
where py, ..., p, are given by Proposition 2.1. Define

gi(z) = elr)/e,
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The estimates in Proposition 2.1 imply that the value of each g at ¢ is independent
of ¢ and e. Also, the convexity of € implies that Re Ly(2)<0 for z€Q. Setting
Te(2)=gx(2)—gx(¢) and considering the mapping f=(f1,..., fn) We have that

(2.10) f(@)=(0,..,0) and [|fllzee() <1

for a constant independent of g.
If X=>"7", d/0z, it follows from the definition of f and the estimates in
Proposition 2.1 that

|as| |an|
2.11 Xflq Zmax{ yeees .
1) XTI ) o)
Since (2.10) shows that f is a candidate for the supremum defining Mc(g; X}, (2.11)
gives the desired lower bound. This completes the proof.

Remarks. 1. For the other types of simple domains the analogs of Proposi-
tions 2.3 and 2.4 have been established by various authors. Although the original
techniques were somewhat varied, these estimates can all be obtained in the manner
outlined above.

If © is strongly pseudoconvex, the analog to Proposition 2.3 and the size esti-
mate on Mp(z; X} analogous to Proposition 2.4 were obtained by Diederich [D1],
[D2]. We mention that much more precise estimates were later given by Feffer-
man [F]. The estimates on M (z; X) and Mg(z; X), in the strongly pseudoconvex
case, were obtained by Graham [Gr]. For § a finite type domain in C2, the es-
timates on B(z,z) and all three metrics were obtained by Catlin [C]. In the case
that 2 is decoupled and of finite type, the estimates on the Bergman kernel and the
three metrics were obtained by McNeal [M2].

2. We have stated the estimates in Proposition 2.3 and 2.4 locally, near a fixed
point in bQ. However, the smoothness of B(z,z) and M;(z; X) for ze K€ and
the boundedness of Q imply that the estimates hold on all of Q) (after extending the
definitions of 7; and M4 in any reasonable fashion).

We thus have the following result.

Theorem 2.5. Let Q&€C™ be a simple domain defined by a smooth defining
Junction r. Then for gefl,

(2.12) Bal(q,q) H

i1 Ti Q7 ‘T

for some positive numbers 11, ..., Ty.
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Also, for each qe€) there exist coordinates (21, ...,28)=(z1,...,2,) centered at

q, so that if X=3"1" | 0/0/0z and Ma(q; X) is defined by (2.9) (using the positive
numbers 7;(q,|r(q)|) above), then

(2.13) Mi(q; X) ~ Ma(q; X)

for I=B, C, K. In both (2.12) and (2.13), the constants are independent of q
{and X).

In the next section, we shall also need estimates on the derivatives of the
Bergman kernel.

Theorem 2.6. Let QEC” be a simple domain defined by a smooth defining
Junction r. Then for 3 any multi-index, there exists a constant Cg so that for all

g€, there are coordinates such that if 9/0z; are the associated coordinate vector
fields and DP=(8/82,) ... (8/02,)°", it holds that

N
(g, [r(g))>7%

The techniques that establish Theorem 2.6 are somewhat different than those
mentioned above and so we simply give references to the proofs: for strongly pseu-
doconvex domains, see Diederich [D1] (or Fefferman [F]); for finite type domains
in C?, see McNeal [M1] or Nagel-Rosay—Stein-Wainger [NRSW]; for convex, finite
type domains, see McNeal [M4]; and for decoupled domains, see [M2].

The Carathéodory and Kobayashi metrics also act naturally on 1-forms, by
duality. For instance, if w is a (1,0)-form and I=C, K, define

D?Ba(g,q)| < Cs []

=1

(2.14) Mi(z;w) =sup{|w(X)|: M(z; X) =1},

where w(X) represents the action of w on the (1,0)-vector X. In a similar way, we
obtain a natural definition for the length of a (0, 1)-form, using complex conjugation
in (2.1), (2.2), (2.5), and (2.14) in the obvious way. However, the Carathéodory and
Kobayashi metrics are simply Finsler metrics (not necessarily Hermitian) and their
natural extension to forms of higher order is not obvious.

In view of the comparability of the three metrics given by Theorem 2.5, we will
base the length of a (p, ¢)-form in the Carathéodory and Kobayashi norms on the
Bergman length of a (p, g)-form. The Bergman metric does have a natural exten-
sion to higher order forms and we recall this standard lifting trick from Hermitian
geometry. If (b (2))]'y—; is the matrix with entries given by (2.6), define

Mp(z;w)= (Xn: b”“(z)m@)l/z,

1,k=1
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where w=3Y""| w; dz; and (b"*(z))7", _; is the inverse of (b (2))]"—,- For notational
ease, if a=) 7, a;dz; and =377, B;dz;, let (o, B)=3"7",_; b* ;. The spaces
of (1,0)-forms and (0, 1)-forms are declared to be orthogonal. Then, if I=(i1, ... ,p)
and J=(j1,...,J,) are multi-indices, dzf=dz;, A...Adz;,, and dz’=dz;, A...AdZ;,,
define

. ) dzy, dzg V)P 0
2.15 dzI Adz7 dzI AdzT) = det <(< o Tk k=1 _ ) .
215) | ) 0 ((d71, 4230 oo

(The right-hand side of (2.15) is a (p+4q) x (p+q) matrix with large blocks of 0
entries.) Linearity and (2.15) give the definition of the Bergman inner product
on (p,q)-forms. Forms of different bi-degree are declared to be orthogonal (thus
extending (-,-) to the full Grassman ring), though this will play no role here.

For the reason mentioned above, the Carathéodory and Kobayashi metrics do
not have naturally associated volume forms; indeed, there are several reasonable
choices, see [K]. The choice made here is motivated by simple affine volume consid-
erations. For z€Q and I=C, K, define

A1 (2) =sup{M;(z X)?:|X|=1}.
Here |X| denotes the euclidean length of X. It follows from (2.13) and (2.8) that

1

M) = e

Let Iy be a complex line such that M;(z;13)*=A}(z), and denote by O; the (eu-
clidean) orthogonal complement of I; in C™. Define

N (z)=sup{M(z; X)?: X €Oy and | X|=1},

and continue inductively to define A3, ..., A\7. As a pointwise definition, set
dvi(z) = (H Aﬂ,'(z)) dVg, I=C, K,
j=1

where dVg is the euclidean volume form.
Since it is Hermitian, the Bergman metric does have a naturally defined volume
element
dVB(Z) = det(b[k (Z)) dVE,
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where, as before, (b (2)),—; is the matrix given by the entries in (2.6). Let
e1(2), ..., en(2) be the eigenvalues of the matrix (b (2))7's—;, ordered (at the tem-
porarily fixed 2) e1(2)>...2en(2). If V is a linear subspace of C”, set

n n 9 n
#(V) :SUP{ Z bk (2)vvg 1 v :Zvlbz €V and Z |vl|2 = 1},
=1 =1

I,k=1

The minimax theorem from linear algebra implies that ex(z)=inf{s(V):dimV =
n—k+1}. It thus follows from the estimates on Mp(2; X) in Theorem 2.5 that for
simple domains e;(2)~7,12-;(2,|r(2)]) 2 for j=2,...,n and e1(2) =71 (2, |r(2)]) 2,
with constants independent of z.

Thus, we have the following result.

Theorem 2.7. Let Qc&C™ be a simple domain defined by a smooth defining
function r. For I=B, C, K, the pointwise inequalities
dvi(z) = ﬁ ! zefl
)= 7= )
UG @

hold, with constants independent of z.

Finally, we define the L? norms with respect to the three metrics. For the
Bergman metric this is standard: if « is a (p, ¢)-form, define

laf3 = / (a,a) dVs,

where (-,-) is the extended Bergman inner product defined above. Notice that if
a is an (n,0)-form, (2.15) implies that

lall3, = /Q (=) dVi(2),

and, if 8 is an (n, 1)-form, that

1812 = /Q Mg (2 ) dVi(2).

As before, dVg is the euclidean volume form. The cancellation of metric volume
form that occurs in this case, for these form levels, suggests the following as natural
definitions: if I=B, C, K,

ol = [ lo(2) aVp(z), o an (0,0)-forn,
(2.16) Q
1817 :/QMI(ZSQ)Q dVg(z), B an (n,1)-form.
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3. Estimates in the Bergman metric

From the point of view of L? estimates for 3, the Bergman metric is easier to
work with than the Carathéodory and Kobayashi metrics as it is defined in terms
of a global potential. Using this potential function as a weight in Hérmander’s
identity, for example, one produces the Bergman metric as a certain curvature term
in the basic inequality. However, this technique also distorts the volume element by
the factor e~ ¢, where ¢ is the potential function, and so the usual duality argument
does not give (1.1) (for I=B).

We show that a slight variation of the standard argument does, however, imply
{1.1) for the Bergman metric in the case of simple domains. There are also simi-
lar, related variations which imply the estimate, see Donnelly [Do] and, especially,
Berndtsson-Charpentier [BC], and could be invoked in our situation. The argument
given here, especially its explicit use of the two perturbation factors, is very simple
and suggestive of further applications, perhaps justifying its inclusion.

We first introduce some notation. If X is a real-valued function in L (), for

loc

Q={r<0} a domain in C", define the weighted Z? norm of a function f by

112 = /Q FPe Vs,

and let L2(£2, A) be the functions on Q for which || f|lx<oco. The volume form dVg
will usually be suppressed when we write integrals below. We denote the associated
inner product by {-,-)» and extend these definitions to forms by linearity. Let
AP1($)) denote the (p, q)-forms with coefficients which are smooth on € and let 95
denote the L? adjoint of 0 relative to the above inner product. The formal adjoint of
0, ¥, is defined by the equation (Ju,v)y=(u, 9\v)x when uc AP 1(Q), ve AP 1(Q),
and at least one of them has compact support in 2. The first 9-Neumann boundary
condition on a form g€ AP4(Q) is (9, dr)¢=0 on bSY, where o(A, b) is the principal
symbol of A in the direction b. Set

DP9 — {pe AP9(Q) : (I, dr)p =0 on bS2}.

When ¢&DP4 it happens that Sf\qb:ﬁ,\qs,

If pcA%(Q), let

n 2

IVigls.= >

7,k=1

0¢;
Vi PN

A

If keC>(Q) and z€4, let

n 2
B0K(zi9) = Y 5 (I ()u(2)
k=
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and

sapa

zgi):z

Proposition 3.1. Let Q€C" be smoothly bounded and let I, \e C*°(8), with
1>0 on Q. Then, if D%,

(156, ) + (1356, 33 8)r = VIG5 o+ /Q (106 —801) () e~
(3.1)

5r e_>‘— e -_e"\
v /b 100r(g) ™ =2R /ﬂ U(8)-Ind

A proof of Proposition 3.1 is given in [M5]—displayed (2.14) in that paper—
and also appears in [S] and (as a differential identity) in [B]. This type of energy
identity for the d-complex goes back to [DF] and [OT].

In order to exploit Proposition 3.1, the last term in the right-hand side of (3.1)
needs to be controlled.

Definition 3.2. Let \,1€A%9(Q), 1>0. Then [ is quasi-hyperbolic to the pair
(A, 1) if there exists a constant ¢>0 such that

(3.2) %|8l(z; VY2 < cl108A—081)(; V)

for all z€Q and all vectors VeC™.
The main L? estimate in this paper is the following result.

Proposition 3.3. Let Q€C"™ be a simple domain. There exists a constant
C>0 so that, if o is a d-closed (0,1)-form on Q, there exists a solution to Ju=a
which satisfies

/ u(2)|2dVig(2) < C / Mp(z;a)? dVg(2),
Q Q

assuming the right-hand side is finite.

Proof. We will first work on a relatively compact subdomain, €., of 2 and we
will superscript the norms and inner products with ¢ to indicate that the integrations
occur over £Q,.

Let >0 and define

l(z)=Bp(z,2)7".
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Note [€C™® (). If pc A1 (Q,),
(3.3) 901(z; ¢) = —v(=z Z bjk(2)¢b+v°1(2)|0llog B)(z; ¢)|”

J,k=1

and

(3.4) |0U(z; 9)1? = v*1*(2)|0]log Bl(z; 9)I*.

Theorems 2.5 and 2.6 imply that

(3.5) |8[log B](z; ¢)|* < Z bik(2)djbr, 2€9Q,

J,k=1

for a constant independent of z and Q.. Choosing v small enough, (3.3)—(3.5)
show that [ is quasi-hyperbolic on Q to the pair (A1) for any plurisubharmonic
function A. The exponent v is now fixed. Using Cauchy—-Schwarz on the last term
in (3.1) then yields, for A€ C*°(Q.), the inequality

(36)  (106,06)5+2(15;0, 55 > /Q 100M(@) e, €D ().

Let A\(z)=vlog Bq(z,z) and note that A€ C*(Q,). The inequality (3.6) implies

BT) (0000520050505 >0 [ 1 bussde, 4D (0)

7,k=1

Now let o be a (0, 1)-form, =0 in Q. On the subspace {V195g:9€ D% ()},
define the linear functional
Vidigr—s (g, )5.

If g€ Null(9), we obtain

I(g,a)ils(/ LY byrgsdic )/(/ 3 bhayay e )1/2

C]kl gkl

_”\[3A “ (/ Z 4 %Oék>/2,

C]k 1

(3.8)

by (3.7) and the choice of [ and A\. On the other hand, (3.8) obviously holds if
g is orthogonal (in the X inner product) to Null(d), since in that case (g, a)x=0.
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Also, a standard approximation argument, see [H], shows that D%!(Q.) is dense in
Dom(v18%). Thus (3.8) actually holds for all geDom(v19}). The Riesz repre-
sentation theorem implies that there exists a v€ L?(Qc, A) such that (vVI1d%g,v),=
(g, @) with a norm estimate given by (3.8), i.e. 3v1 (v)=a and

s (G [, 2 v

Cjk 1

Setting uc:\/i V. gives Au.=a and

(3.9) | e ) / S braydy.

¢ j,k=1

To obtain the desired estimate on €, let {Q.}, c€N, be an exhausting sequence
of domains as above. Inequality (3.9) and a diagonal argument give a sequence of
functions {u;} which converge weakly to a function u in each L%(£2.). Obviously
Ou=a. Furthermore, if ¢ is fixed,

2 n

2 .
3.10 /Iu2—hm [u412_<_<—)/ E vra;ay,
(3.10) Q | ioe Jo, v/ Jae 2y !

c

by dominated convergence. Letting c—oo in (3.10) completes the proof.

Proof of Theorem 1.1. Suppose that « is an (n, 1)-form which satisfies a=0
in . If 0‘:2?:1 aj dzni A Adz, AdZ; in some coordinate system, note that the
(0,1)-form 377, av; dz; is also d-closed. The desired estimates now follow directly
from (2.16), (2.13), and Proposition 3.3.

Remarks. 1. For the finite type domains which make up our class of simple
domains, the inequality (1.1) implies the (sharp) subelliptic, L? Sobolev, estimate
on a solution to Ju=q. For example, if Q={r <0} is strongly pseudoconvex, (1.1)
says

(3.10) | /Q ? < /Q il P4+ rPlaw 2,

where a=ar+ay is a decomposition of « into tangential and normal components
relative to 4. The inequality (3.10) implies that half the L? Sobolev norm of u
is dominated by the L? norm of a. For information about relationships between
Sobolev norms and L? norms weighted by factors of 7, see Kohn [Koh].

2. Theorem 3.2 may perhaps hold on a general smooth, pseudoconvex domain,
but Theorem 2.5 definitely does not. See Diederich-Fornass-Herbort [DFH] for an
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example where the three invariant metrics are not comparable to each other and
Herbort [He] for a (related) example where the Bergman kernel has log factors in
the principal term of its asymptotic series.

3. Our definition of simple domains is clearly artificial and what we have really
presented is a recipe for obtaining (1.1) in the presence of good metric estimates.
For example, the class of finite type domains in C? could be enlarged to finite type
domains in C™ whose Levi form has at most one degenerate eigenvalue. It also
seems likely that h-extendible domains or semi-regular domains, see [Y] and [DH],
and finite type domains where all of the (possibly degenerate) eigenvalues are com-
parable, see Koenig [Koe], are cases to which the recipe is applicable.
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