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Invariant metric est imates  for c9 
on some pseudoconvex  domains  

Jeffery D. McNeal(1) 

1. I n t r o d u c t i o n  

Let f t G C  n be a smoothly bounded, pseudoconvex domain of finite type (see 

[D:A] for the definition of finite type). Call ft simple if it satisfies at least one of 

the following conditions: (i) ft is strongly pseudoconvex: (ii) ft is convex, (iii) n=2 ,  

or (iv) f~ is decoupled (see [M5] for the definition of decoupled). 

The main result in this paper is the following result. 

T h e o r e m  1.1. I f  ft is simple, there exists a constant C such that i f  c~ is a 

O-closed (n, 1)- form on ~2, then there exists an (n ,O)- form u solving Ou=c~ with the 

est imate 

(H) <- cll lb, 

where II " III denotes the norm associated to any one of the metrics of Carathdodory, 

Bergman,  or Kobayashi on the domain ft. 

The result follows in two steps. First, the three invariant metrics, acting on 

a given tangent vector, are shown to be comparable to each other and to a fairly 

explicit pseudometric which directly encodes the geometry of bfL If ft is convex, this 
result was obtained by Chen [Ch] in his thesis; as this result has not been published 

elsewhere, we give a proof of Chen's theorem in Section 2. For the other types of 

simple domains, the estimates on the metrics are due to several authors and we 
collect the references to those works also in Section 2. Second, the estimate on the 

solution n is proved by exploiting a variant of the usual L 2 inequalities for 0 due to 

HSrmander. This variant has its origins in the work of Donnelly Fefferman [DF] and 

(1) Research supported by an Alfred P. Sloan fellowship and by a grant from the National 
Science Foundation. 
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Ohsaw~Takeg0shi [OT] though recently more transparent proofs of the inequality 
have been given by Berndtsson [U], McNeal [M51 and Siu [S]. Estimate (1.1) is, 
as usual, shown by duality. The point of the new inequality is that  it allows (non- 
bounded) weight factors to be introduced, which have large hessians, without having 
to change the volume form in the integrals due to the weight function's behavior 
at bft. 

Since the three metrics vanish at bft, when acting on forms, in a measured 
way, (1.1) is a non-isotropic, base-level, regularity result about a solution to the 
c~-equations. For the Carath~odory and Kobayashi metrics, as far as we know, this 
kind of result has not been formulated previously in the literature. However for 
the Bergman metric, our theorem is a special case (p=n, q = l )  of the cohomology 
vanishing theorems obtained by Donnelly-Fefferman [DF] and Donnelly [Do]. In 
our view, though, the proof of (1.1) given here for the Bergman metric is simpler 
than the proofs in [DF] and [Do]; in connection with this see also the paper [BC]. 
Furthermore, the condition (3.2) we use in order to exploit inequality (3.1) is less 
restrictive for certain kinds of potential functions than a related condition of Gro- 
mov [G] (which is used in [Do]) and may be useful in extending the vanishing 
theorems to wider classes of domains. 

I would like to thank Bo Berndtsson for several stimulating conversations about 
the topics discussed here. 

2. M e t r i c s  a nd  v o l u m e  forms  

We first recall the definitions of the infinitesimal invariant metrics. 

If U 1 c C  '~1 and U 2 c C  n~ are open sets, let H(U1, U2) denote the holomorphic 
mappings from U1 to U2. Let B n denote the unit ball in C n. Let X E C n and view 
it as a (1,0) tangent vector. If f ~ c C  n is a domain and zCf~, the Carath~odory 
length of X at z is defined as 

(2.1) Mc(z; X) =snp{IX f(z)l: f C H(f~, Bn), f(z) =0}.  

Here X acts naturally on f as a derivation. 

Let el =(1, 0, ..., 0 ) c C  n. The Kobayashi length of X at z is given by 
(2.2) 

MK(Z; X) = inf{r > 0: there is f c H(B '~, f~) with f(0)  = z and f ' (0 ) . e l  = X/r) .  

We mention that  the use of B n in both definitions is not universal and that  other 
choices of model domains exist in the literature, e.g., a polydisc. 
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To define the Bergman metric, we consider two L 2 extreme value problems: 

(2.3) D(z,z)=sup{[f(z)l:feH(ft, C ) and [[f[[2 < 1}, 

(2.4) N(z;X)=sup{lXf(z)l:fEH(ft, C), f ( z ) = 0 ,  and ILfll2<l}. 

Here IIf[12 denotes the euclidean L 2 norm of f on ft. The square D(z,z) 2 gives 
the value of the Bergman kernel function, associated with ft, at  the diagonal point 
(z, z) in ft x ft. The Bergman length of X at z is defined as 

MB(z; X)  - X(z;  X)  
z) " 

We mention that  there is an alternative, equivalent way to express the Bergman 
metric. Let 

02 
(2.6) blk(z)- OztO2k log D2(z, z), 

where (Zl, . . . ,  zn) are the s tandard coordinates on C% If X = ~ I  atO/Ozz, then 

(2.7) X)  = 
l,  --1 

This representation of the Bergman metric shows that  it is a Hermit ian (indeed, 
Kghler) metric on T x,~ 

It  is very difficult to calculate the exact value of the above metrics, except in 
a few special cases of domains with high degrees of symmetry.  For our purposes, 
though, it will be sufficient to know tha t  the three metrics are comparable to each 
other, in a certain sense, as z approaches b~ and, also, that  each metric can be 
approximated by a reasonably explicit pseudometric defined using the geometry 
of bft. For the various kinds of domains which make up our class of simple domains, 

these approximate  size results have been obtained by several authors (see references 
below) using somewhat different techniques and notation. The estimates, however, 
may all be cast in a unified way, which we proceed to indicate. As the basic ideas 
and notation are easiest to state in the convex case, we concentrate on this situation 
first. For notational convenience, we write A<B if there exists a constant C so that  
A<CB and use the symbols > and ~ similarly. In practice C will be independent 

of certain parameters  on which A and B depend; usually, the parameters  are the 
point qEft  and the positive real number  e. 

Let f t � 9  ~ be a smoothly bounded, convex domain of finite type, and r a 
(smooth, convex) defining function for ~: f~={z:r(z)<O} and d r # 0  when r = 0 .  



124 Jeffery D. McNeal 

We will assume, without loss of generality, that  the sets {z:r(z)<~} for - c < ~ < c ,  
c>0,  are also convex. 

Let pEbft  and c > 0  be given. We recall some local measurements related to the 
order of vanishing of r near p introduced in [M4]. For qEUAf t ,  U a neighborhood of 
p, and ACS 2~-1, let a(q, A, e) denote the distance from q to the set {z :r (z )=e}  along 
the complex line generated by A. Set Tl(q, e ) = e  and let Lz ES 2n-1 be a vector so 
that  or(q, L1, e)=~-z(q, e). We distinguish the (essentially) maximal distances from 
q to {z:r (z )=e}  along independent directions and, for convenience, do so in an 
orthogonal fashion. Define 

T2(q, c) = max{a(q, A, e): A • L1}, 

and let L2 be a vector such that  a(q, L2, e)=T2(q, e). Inductively, define 

Tk(q, C) = max{o-(q,/~, E): )~ • span(L1, ..., Lk-1)}  

for k=3,  ..., n. Note that  

(2.8) Tl(q, c) < ~-n(q, c) _~ ... < T2(q, c). 

The following result is proved in [M4]. 

P r o p o s i t i o n  2.1. For every qEf~AU and every c > 0  sufficiently close to O, 
there exist coordinates (Zl,. . . ,  zn) centered at q and points Pl , . . . ,Pn � 9  
E+r(q)} such that, in the coordinates (zl, ..., z~), the defining function r satisfies 

< (pd < for l < i < n ,  (i) Ti(q,c) ~ . ~'i(q,c) 

(ii) O~z ~ (pj) ~< ~-l~i(q, (q' e) ' ~) i f  i < j ,  

(iii) ~rzi(pj) =0 ,  i f  i > j .  

Also, i f  we define the polydisc 

Pc(q) = {z  �9 U:  IZll < T 1 (q, E), . . . ,  Iznl < Tn(q, c)}, 

then there exists a constant C>O, independent of q c ~ N U ,  such that CPe(q)C 

The coordinates given by Proposition 2.1 simplify all the subsequent construc- 
tions and estimates. The first important  construction is of a family of plurisubhar- 
monic functions which are, in a sense, maximal with respect to the polydiscs P~ (q). 
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Let pEbf~ be fixed. For c>0 ,  let Cq,~�9 "~ be a smoothly bounded, convex domain 
such that  

{z �9 u :  r(~) < r (q)+c} c Cq,~, 

{z E U: r(z) = r (q )+c}  C bCq,~, 

for some neighborhood U of p. Without  loss of generality, we may assume that  
dist(Cq,r { z : r ( z ) = r ( q ) + e + a } ) = d i s t ( { z : r ( z ) = r ( q ) + e } ,  { z : r ( z )=r (q )+e+a}) ,  for 
small a>0 .  We will suppress the index e when c=0 .  The following result is proved 
in [M4], see also [M3]. 

P r o p o s i t i o n  2.2. Let f~ be a smoothly bounded, convex domain of finite type 
and the notation be as above. Let qEUNf~ and let e > 0  be small. There exists a 
constant c>0,  independent of q, and a function eq,~ffC~(Cq) so that 

(i) Ir ~�9 
(ii) eq,e is plurisubharmonie on Cq; 
(iii) if  z cP~(q )NCq ,  then 

~ 02r I~il ~ 
Oz~O~j (z)~j > ~ ~,~(q, c )  2 . 

i , j  1 i = 1  

The next step is to show that  the Bergman kernel associated with [2 satisfies 
estimates related to the polydisc structure in Proposition 2.1. For this, the functions 
in Proposition 2.2 are used as weight functions in HSrmander 's  inequality. The proof 
of the following result is given in [M4], following closely a method developed in [C]. 

P r o p o s i t i o n  2.3. Let f~ be a smoothly bounded, convex domain of finite type 
and the notation be as above. There exists a neighborhood V ~ U  so that if  q ~VNf t ,  

1 

~=~ ~(q, e) 2' 

where e=l r (q)  l and the constants are independent of q. 

At this point, we are in a position to derive the main estimates tbr the Bergman, 
Carath~odory, and Kobayashi metrics on convex domains of finite type. In order to 
state these estimates, we first define a convenient pseudometric on ~. Let qCf~, set 
c=Ir(q) l  , and let (z~,...,  z,~) be the coordinates given by Proposit ion 2.1 relative to 
q and e. If  X = ~ L 1  azO/Ozh define 

lazl (2.9) ~ (p; x )  = ~(q, ~). 
l=1  

As mentioned in the introduction, the following result was first obtained by Chen, 
[Ch], in his Purdue PhD dissertation; we give a proof here for completeness. 



126 Jeffery D. McNeal 

P r o p o s i t i o n  2.4. Let ~ be a smoothly bounded, convex domain of finite type 
and the notation be as above. There exists a neighborhood V of p so that, for all 
q~VA~ ,  

MI(q;X) ,~MA(q;X) ,  X E C  ~, 

with constants independent of q. Here I = B ,  C, K.  

Proof. By a result of Lempert  [L] 

M (q;X) =Mc(q;X) 

in our situation. And, in general, one has the inequality 

Mc(q; X) <_ MB(q; X),  

see [Ha]. So we are reduced to showing that  MB(q; X)<MA(q; X)  and MA(q; X ) <  
Me(q; X).  Now fix q, let c=lr(q)l  , and let (Zl, . . . ,  Zn) be the coordinates given by 
Proposition 2.1. 

To obtain the upper bound on the Bergman metric, observe that  Cauchy's 
estimates imply that  for any fEL2(~)NH(~ ,  C) 

~z(q)  <~ [V~ 1/21]f112 

X with uniform constants. It follows that,  if = ~ z = l  azO/Ozt, 

,)1 
N(q;X)  < lazl ~z(q,c . 

l=1 "l-I (q' c) -l=1 

Combining this with Proposition 2.3, we obtain 

M. x) % (q; x), 

with constant independent of q (and X). 
For the lower bound on the Carath6odory metric, consider the linear functions 

Lk(z)=(z--pk)'Or(pk), k =  1, . . . ,n ,  

where Pl ,-- . ,Pn are given by Proposition 2.1. Define 

gk(z) = e L~(~)/~. 
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The estimates in Proposition 2.1 imply that  the value of each gk at q is independent 
of q and c. Also, the convexity of ft implies tha t  R e L k ( z ) < 0  for zE~.  Setting 

fk(z)=gk(z)--gk(q) and considering the mapping f = ( f l ,  ..., f , )  we have that  

(2.10) f ( q ) = ( 0 , . . . , 0 )  and I l f l l r ~ ( a ) < l  

for a constant independent of q. 
If X=~ln=l azO/Oz~, it follows from the definition of f and the estimates in 

Proposition 2.1 that  

(2.11) IXf(q) l > , l ax  ) ' " "  ~ ( q ,  e) J 

Since (2.10) shows that  f is a candidate for the supremum defining Me(q; X),  (2.11) 
gives the desired lower bound. This completes the proof. 

Remarks. 1. For the other types of simple domains the analogs of Proposi- 
tions 2.3 and 2.4 have been established by various authors. Although the original 
techniques were somewhat varied, these estimates can all be obtained in the manner 
outlined above. 

If ft is strongly pseudoconvex, the analog to Proposition 2.3 and the size esti- 
mate on MB(z; X)  analogous to Proposition 2.4 were obtained by Diederich [D1], 
[D2]. We mention that  much more precise estimates were later given by Feffer- 
man IF]. The estimates on Mc(z ;  X) and M~c(z; X), in the strongly pseudoeonvex 
case, were obtained by Graham [Gr]. For ft a finite type domain in C 2, the es- 
timates on B(z, z) and all three metrics were obtained by Catlin [C]. In the case 
that  ft is decoupled and of finite type, the estimates on the Bergman kernel and the 
three metrics were obtained by McNeal [M2]. 

2. We have stated the estimates in Proposition 2.3 and 2.4 locally, near a fixed 
point in bfL However, the smoothness of B(z,z)  and 5/Is(z;X) for zEK| and 
the boundedness of ft imply that  the estimates hold on all of f~ (after extending the 
definitions of Tj and MA in any reasonable fashion). 

We thus have the following result. 

T h e o r e m  2.5. Let f ~ C  ~ be a simple domain defined by a smooth defining 
function r. Then for qEf~, 

(2.12) q) [-[ fr(q)l)2 /=1 

for some positive numbers T1, ..., Tn. 
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Also, .for each qEf~ there exist coordinates (z?, ..., z~)=(z l ,  ..., z~) centered at 
q, so that if  X=E~n l alO/Ozt and MA(q; X )  is defined by (2.9) (using the positive 
numbers Ir(q)l) above), then 

(2.13) Mi(q; X )  ~ MA(q; X )  

for I = B ,  C, K .  In both (2.12) and (2.13), the constants are independent of q 
(and X). 

In the next section, we shall also need estimates on the derivatives of the 
Bergman kernel. 

T h e o r e m  2.6. Let f~cC  n be a simple domain defined by a smooth defining 
function r. Then for/3 any multi-index, there exists a constant C;~ so that for all 
q~f~, there are coordinates such that if O/Ozi are the associated coordinate vector 
fields and D ~ (O/Ozl) ~1 ... (O/Oz,n,) ;~n, it holds that 

n 1 

I DZB  (q, q) l -< Ca I ]  (q, Ir(q) j l  Tj 

The techniques that  establish Theorem 2.6 are somewhat different than those 
mentioned above and so we simply give references to the proofs: for strongly pseu- 
doconvex domains, see Diederich [D1] (or Fefferman IF]); for finite type domains 
in C 2, see McNeal [M1] or Nagel Rosay-Stein-Wainger [NRSW]; for convex, finite 
type domains, see McNeal [M4]; and for decoupled domains, see [M2]. 

The Carath~odory and Kobayashi metrics also act naturally on 1-forms, by 
duality. For instance, if w is a (1, 0)-form and I C, K,  define 

(2.H) =snp{l (X)l: : 1}, 

where co(X) represents the action of co on the (1, 0)-vector X. In a similar way, we 
obtain a natural definition for the length of a (0, 1)-form, using complex conjugation 
in (2.1), (2.2), (2.5), and (2.14) in the obvious way. However, the Carath4odory and 
Kobayashi metrics are simply Finsler metrics (not necessarily Hermitian) and their 
natural extension to torms of higher order is not obvious. 

In view of the comparability of the three metrics given by Theorem 2.5, we will 
base the length of a (p, q)-form in the Carath4odory and Kobayashi norms on the 
Bergman length of a (p, q)-form. The Bergman metric does have a natural exten- 
sion to higher order forms and we recall this standard lifting trick from Hermitian 
geometry. If (b,k(z))z~}a:~l is the matrix with entries given by (2.6), define 

MB (z; co) lk = b (z)coz~kj 1/2, 
l ,  1 
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where a ~ = ~ j  1 c~d dZd and ~k ~, z '~ ~ (b (z))l,k= 1 is the inverse of (blk())l,k=l" For notational 
_ /~  n 

ease,  i f ~ = ~ j n  1 Cej dzj and/~=2}~ 1/~j dzj, let ( c ~ , ) = ~ l , k = l  blkctl~k" The spaces 
of (1, 0)-forms and (0, 1)-forms are declared to be orthogonal. Then, if I=( i l ,  ..., ip) 
and J= (jl, ..., jq) are multi-indices, dz z =dZil A...Adzi~, and d2 J =d2j~ A...Adzj~, 
define 

(2.15) (dzi Ad~J,dzi  Ad2J} = de t (((dziz,dzik})~,k=l 0 ) 
0 ({dZl, d~'jk q " >)l,k=l 

(The right-hand side of (2.15) is a (p+q)x (p+q) matrix with large blocks of 0 
entries.) Linearity and (2.15) give the definition of the Bergman inner product 
on (p, q)-forms. Forms of different bi-degree are declared to be orthogonal (thus 
extending {. , .  } to the full Grassman ring), though this will play no role here. 

For the reason mentioned above, the Carath6odory and Kobayashi metrics do 
not have naturally associated volume forms; indeed, there are several reasonable 
choices, see [K]. The choice made here is motivated by simple affne volume consid- 
erations. For zEft  and I=C,  K, define 

/~ ( z )=  sup{Mr(z; X)2:  Ixl = 1}. 

Here IX[ denotes the euclidean length of X. It follows fl'om (2.13) and (2.8) that 

1 

/~ l (z) - TI (Z, Ir(~)l) 2 

Let ll be a complex line such that Mi(z; l l )z=s and denote by O1 the (eu- 
clidean) orthogonal complement of ll in C ~. Define 

A2(z) = sup{Mi(z;  X)2:  X E O1 and Ixl- 1}, 

and continue inductively to define A~, ..., ~ .  As a pointwise definition, set 

dVl(Z)= ..Vx(z dVE, I = C ,  K, 

where dVE is the euclidean volume form. 
Since it is Hermitian, the Bergman metric does have a naturally defined volume 

element 

d r . ( z )  = det(btk(z)) riVE, 
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where, as before, (btk(z))~,k= 1 is the matr ix  given by the entries in (2.6). Let 
Z n el(Z), ..., en(z) be the eigenvalues of the matr ix  (blk())z,k 1, ordered (at the tem- 

porarily fixed z) el(Z)>_...>_e~(z). If V is a linear subspace of C n, set 

;4(V) = sup bzk(z)vzgk :v = - -  E V and ]vii2 = 1 . 
"l,k--1 / = 1  l 1 

The minimax theorem from linear algebra implies that  e k ( z ) = i n f { • ( V ) : d i m V =  
n - k + 1 } .  I t  thus follows from the estimates on MB(z; X )  in Theorem 2.5 that  for 
simple domains e j ( z ) ~ ' G ~ + 2 _ j ( z  , ]r(z)])  -2  for j = 2 ,  ... ,n  and e l ( z ) ~ r l ( z ,  Ir(z)l) 2 

with constants independent of z. 
Thus, we have the following result. 

T h e o r e m  2.7. Let f~GC ~ be a simple domain defined by a smooth defining 
function r. For I = B ,  C, K ,  the pointwise inequalities 

n 1 

l = l  

hold, with constants independent of z. 

Finally, we define the L 2 norms with respect to the three metrics. For the 
Bergman metric this is standard: if a is a (p, q)-form, define 

where ( . , .  } is the extended Bergman inner product  defined above. Notice that  if 
a is an (n, 0)-form, (2.15) implies tha t  

Ilall~ =f~ I~(~)l 2 dV~(~), 

and, if/3 is an (n, 1)-form, that  

11/311~ = ~ MB(z;/3)2 dV~(~). 

As before, dVE is the euclidean volume form. The cancellation of metric volume 
form that  occurs in this case, for these form levels, suggests the following as natural  
definitions: if I = B ,  C, K,  

(2.16) 
I~(~)I ~ dV~(~), ~ an (~, 0)-form, 

Mz(z;fl)2 dVz(z), /3 an (n, l)-form. 
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3. E s t i m a t e s  in t h e  B e r g m a n  m e t r i c  

From the point of view of L 2 estimates for c0, the Bergman metric is easier to 
work with than the Carathdodory and Kobayashi metrics as it is defined in terms 
of a global potential. Using this potential function as a weight in HSrmander's 
identity, for example, one produces the Bergman metric as a certain curvature term 
in the basic inequality. However, this technique also distorts the volume element by 
the factor e -r where r is the potential function, and so the usual duality argument 

does not give ( I . I )  (for I=B). 
We show that a slight variation of the standard argument does, however, imply 

(1.1) for the Bergman metric in the case of simple domains. There are also simi- 
lar, related variations which imply the estimate, see Donnelly [Do] and, especially, 
Berndtsson-Charpentier  [BC], and could be invoked in our situation. The argument 
given here, especially its explicit use of the two perturbation factors, is very simple 
and suggestive of further applications, perhaps justifying its inclusion. 

We first introduce some notation. If k is a real-valued function in L~oc(ft), for 
D={r<O} a domain in C n, define the weighted L 2 norm of a function f by 

Ilfll~ = L I/1% x dVE, 

and let L2(~t, A) be the functions on ~ for which Ilfllx<oo. The volume form dVE 
will usually be suppressed when we write integrals below. We denote the associated 
inner product  by ( - , - )~  and extend these definitions to forms by linearity. Let 
AP'q(fi) denote the (p, q)-forms with coefficients which are smooth on ~ and let c9[ 
denote the L 2 adjoint of ~ relative to the above inner product. The formal adjoint of 
~, 0x, is defined by the equation (0u, v )a=(u ,  0xv)a when uEA p,q-1 (~), vEAP'q(~), 
and at least one of them has compact support in ~. The first 0-Neumann boundary 
condition on a form CEAP'q(~/) is (T(~x, dr)C=0 on b~, where ~(A, b) is the principal 
symbol of A in the direction b. Set 

7) p'q = {r E A"q(f i ) :  a(Ox, dr)r = 0 on bft}. 

When CE'DP,q, it happens that  c~ r162  
If CEA~ let 

j , k=l  

If k E C ~ ( f t )  and zEft ,  let 

f i  o~j-~-zk (z)r162 o0k(z; 4~._. -- o k - 
j , k = l  
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and 

j : l  <(Z)~j(Z). 
P r o p o s i t i o n  3.1. Let f~GC ~ be smoothly bounded and let I, A c C ~ ( 9 ) ,  with 

l>O on fL Then, if r  )~ 

(3.1) 

-. . s  (l&5, &5)A ~-(IOAr O~,qS)~, = 11~r =+ lOgA-O~lJ(r e -~' 

+/b lOar( )e- -2aes 
A proof of Proposition 3.1 is given in [M5]--displayed (2.14) in that  pape r - -  

and also appears in [S] and (as a differential identity) in [B]. This type of energy 
identity for the c5-complex goes back to [DF] and lOT]. 

In order to exploit Proposition 3.1, the last term in the right-hand side of (3.1) 
needs to be controlled. 

Definition 3.2. Let A, lcA~176 l>0.  Then 1 is quasi-hyperbolic to the pair 
(A, l) if there exists a constant e>0  such that  

(3.2) ~-IO/(z; v)l ~ ~ c[la&-O~l](~; V) 

for all z Eft and all vectors V E C *~. 

The main L 2 estimate in this paper is the following result. 

P r o p o s i t i o n  3.3. Let f t ~ C  ~ be a simple domain. There exists a constant 

C > 0  so that, i f ( ,  is a O-closed (0, 1)-form on ft, there exists a solution to Ou=c~ 
which satisfies 

]o lu(z)l 2 dV~ (z) < C s M~(z; <2 dV~(z), 

assuming the right-hand side is finite. 

Proof. We will first work on a relatively compact subdomain, f~c, of ft and we 
will superscript the norms and inner products with c to indicate that  the integrations 
Occur over ~c. 

Let ~>0 and define 

l(~): B~(~, ~)-~. 
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Note IEC~(~k). If r176  

(3.3) 

and 

(3.4) 

OOl(z; r = -ul(z) ~ byk(z)OyCk +yil(z)lO[log B](z; 0)12 
j , k = l  

[Ol(z; r = ~212 (z)[0[log/3 l(z; r 

Theorems 2.5 and 2.6 imply that  

n 

(3.5) 10[logSl(z; r < ~ byk(z)OjCk, z C ac, 
j , k= l  
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(3.7) (10r c -* -*  ~ ~ ~ 0r162162 >u 1 bykCjCke -)', r176 
j , k = l  

Now let a be a (0, 1)-form, 0 a = 0  in ft. On the subspace { ' v / l g ~ g : g e ~ ) O ' l ( ~ c ) } ,  

define the linear hmetional 
vqOlg, > 

If gcNull(3) ,  we obtain 

(3.8) 
I(g'~)Xl -< c lj,k=l ~ bjkgjOke-X) c lj,k=l 

c j , k=l  

by (3.7) and the choice of l and A. On the other hand, (3.8) obviously holds if 
g is orthogonal (in the A inner product) to Null(ch), since in that  case (g, a )~=0.  

(3.6) (/c5r 0r162 -* c 0~q~)A_) / 0 0 ~ ( r  - '~ ,  r  
c 

Let A(z) = u log Ba  (z, z) and note that  A �9 C ~ (fi~). The inequality (3.6) implies 

for a constant independent of z and ftc. Choosing u small enough, (3.3) (3.5) 
show that l is quasi-hyperbolic on ftc to the pair (A, l) for any plurisubharmonie 
function A. The exponent u is now fixed. Using Cauchy-Schwarz on the last term 
in (3.1) then yields, for AEC~ the inequality 
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Also, a standard approximation argument, see [HI, shows that  ~D 0'1 ([~c) is dense in 
Dom(x/~@,). Thus (3.8) actually holds for all g6Dom(v~@,).  The Riesz repre- 
sentation theorem implies that  there exists a v EL2(fto, A) such that  (vq 0~g, v)~ = 

(g, a)x with a norm estimate given by (3.8), i.e. 0 x / l ( v ) = a  and 

j , k = l  

Setting u~=v/lvr gives Ou~=oe and 

(3.9) f lUcl2 ~ bJkozj~k. 
c ~ j ,  - - 1  

To obtain the desired estimate on ~, let {fQ}, cEN, be an exhausting sequence 
of domains as above. Inequality (3.9) and a diagonal argument give a sequence of 
functions {uj} which converge weakly to a function u in each L 2 ( ~ ) .  Obviously 
(~u=c~. Furthermore, if c is fixed, 

n 

(3.10) /~o [u12: j-+eclim Jftc / [uJ[2 ~ ( 2 )  2 ~r bjkc~jC~k' 

by dominated convergence. Letting c--+oo in (3.10) completes the proof. 

Proof of Theorem 1.1. Suppose that  a is an (n, 1)-form which satisfies c~a=0 
n in f~. If a = ~ j = l  ctj dZlA...AdznAd2j in some coordinate system, note that  the 

n (0, 1)-form ~j=l aj d2j is also 0-closed. The desired estimates now follow directly 
from (2.16), (2.13), and Proposition 3.3. 

Remarks. 1. For the finite type domains which make up our class of simple 
domains, the inequality (1.1) implies the (sharp) subelliptic, L 2 Sobolev, estimate 
on a solution to 0 u = a .  For example, if f~={r<0} is strongly pseudoconvex, (1.1) 
says 

(3.10) ~ ,U,2 ~ ~ ,r, ,OZT]2-]-,r,2,(~N, 2, 

where oz=ozT~-a  N is a decomposition of a into tangential and normal components 
relative to bfL The inequality (3.10) implies that  half the L 2 Sobolev norm of u 
is dominated by the L 2 norm of a. For information about relationships between 
Sobolev norms and L 2 norms weighted by factors of r, see Kohn [Koh]. 

2. Theorem 3.2 may perhaps hold on a general smooth, pseudoconvex domain, 
but Theorem 2.5 definitely does not. See Diederich-Forn~ess-Herbort [DFH] for an 
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example where the three invariant metrics are not comparable to each other and 

Herbort [He] for a (related) example where the Bergman kernel has log factors in 

the principal term of its asymptotic series. 

3. Our definition of simple domains is clearly artificial and what we have really 

presented is a recipe for obtaining (1.1) in the presence of good metric estimates. 
For example, the class of finite type domains in C 2 could be enlarged to finite type 

domains in C ~ whose Levi form has at most one degenerate eigenvalue. It also 

seems likely that  h-extendible domains or semi-regular domains, see [Y] and [DH], 

and finite type domains where all of the (possibly degenerate) eigenvalues are com- 
parable, see Koenig [Koe], are cases to which the recipe is applicable. 
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