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Linear resolvent growth test for similarity
of a weak contraction to a normal operator

Stanislav Kupin

Abstract. It is proved in Benamara—Nikolski [1] that if the spectrum o(7") of a contrac-
tion T with finite defects (rank(/ —T*T)=rank(I —TT*)<co) does not coincide with D, then the
contraction is similar to a normal operator if and only if

Ci(Ty=  sup |(T—X) " dist(A, o(T)) < co.
AEC\o(T)
The examples of Kupin—Treil [9] show that the result is no longer true if we replace the condition
rank(/ —-T*T)<oco by its weakened version I—T*T€G1, where &1 denotes the class of nuclear
operators.
We prove in this paper that, however, the following theorem holds.

Theorem. Let T be a contraction acting on a separable Hilbert space H, o(T)#D. If

(LRG) Ci(Ty= sup [(T—=X)"*}dist(), o(T)) < o0,
AEC\G(T)

(UTB) Co(T) = sup tr(J—b, (T)*b.(T)) < oo,
neD

where by (T)=(I~pT) YT —p), n€D, then the contraction T is similar to a normal operator.

This result answers a question put in (1] and gives a proof of a conjecture from [9].

1. Results and outline of the proof

Let T be a contraction acting on a separable Hilbert space H. Throughout the
paper we suppose that o(T)#D, even if we do not emphasize this explicitly. We say
that a contraction has the (LRG) property if

(LRG) G(T) = el | [ RA(T)] dist(, o (1)) < o0,

(LRG) stands for the linear growth of the resolvent. The results in [1] show, that the
(LRG) condition itself is not at all sufficient for similarity of a given contraction to
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a normal operator. This suggests that we should require more than just the (LRG)
condition for the operator T to get an efficient resolvent test for similarity to a
normal operator. For instance, we can consider small perturbations of a unitary
operator. To this end, it may be reasonable to look at the defect operators I—-T"T
and I-TT~.

Let us turn to the (LRG) property. First, we observe that the condition is
invariant with respect to the Mobius transformations of the unit disk D. To be
precise, let b, (T)=(I—uT) (T —u), p€D, be the Mébius transform of 7.

Lemma 1.1. Let T be a completely nonunitary contraction on a Hilbert space
H. Then
a1C1(T) < Cy(bu(T)) < ALCi(T)

for every peD. The numbers ay and Ay are absolute constants.

We prove the lemma in Subsection 3.2. The reasoning is essentially based on
the delicate “Y. Domar lemma” type result (see Subsection 3.1).

It is clear that both T and b,(T") are similar to a normal operator simultane-
ously. Hence, it seems natural to require that any addition to the (LRG) condition
participating in a similarity test should also be Mébius invariant. On the other
hand, the condition tr(I —7™7")<oo is not conformally invariant with respect to the
linear-fractional transformations of D, so we should modify it in an appropriate
way (see (UTB) below).

The assumptions of the main theorem now look quite natural.

Theorem 1.1. Let T be o contraction acting on a separable Hilbert space H,
o(TY#D. Then T is similar to o normal operator as long as

(LRG) C(T)y= i IRA(T)|| dist(A, o (1)) < o0,
(UTB) Co(T) = sup tr(I—b,(T)*b,(T)) < oo,
pncDh

We call the second condition of the theorem the (UTB) property ((UTB) stands
for uniform trace boundedness). Sometimes we write T'€(LRG) or Te(UTB) to say
that T" possesses one or the other property.

Now, we explain some ideas underlying the proof of the theorem. Due to the
canonical decomposition of a contraction on the orthogonal sum of a unitary op-
erator and a completely nonunitary contraction (see [11, Chapter 1]), it suffices to
consider the latter component. Next, given a completely nonunitary contraction
satisfying the (LRG) and the (UTB) properties, we proceed in two steps. Assume
first, that the contraction is complete, i.e. it has a complete family of eigenvectors.
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In this case the (LRG) and the (UTB) properties imply that the set o(T) is sparse
enough and a certain embedding theorem holds. By a result of [12] the embed-
ding yields the unconditional basis property of the family of eigenvectors of the
contraction. The latter is equivalent to the similarity we seek for.

Secondly, we join the “outer spectrum” to the point spectrum and we prove
absence of the “singular” spectrum. This enables one to derive the theorem for
general completely nonunitary contraction (and not only for complete ones). The
tools used at this stage of the proof are adapted from [1].

We conclude the introduction with recalling some well-known definitions and
the standard notation. Let F and E, be separable Hilbert spaces. We denote by
L(E, E,) the space of bounded linear operators mapping F into F,. We put L(F)=
L(E, E). Further, we write H>*(L(E, E,)) for the space of L(E, E,)-valued bounded
analytic functions on the unit disk D={z€C:|z|<1}. We put BH*(L(E, E,)) to
be the unit ball of the space. Similarly, we denote by L (L(FE, E.,)) the space of the
L(FE, E.)-valued bounded measurable functions on the unit circle T={z€C:|z|=1}.
As usual, we put L*(E)=L?*(T, E) to be the Hilbert space of measurable functions
f on T, taking values in E such that

1

27
1P =52 [ Il <co

and H*(FE) stands for the Hilbert space of E-valued analytic functions in D with

2w
swp o [ (e )y dé < co.
0<r<1 <7 Jo
We say that a function € H>(L(E, E,)) is inner (x-inner), if 6(t)*0(¢)=7I a.e. ou T
(8(t)0(t)* =1 a.e. on T). The function @ is said to be outer (x-outer), if 0H2(E)=
H?(E,) (the function 8(2)* is outer).
The operators Ai€L(H;) and AyeL(H;) are called similar if there exists a
boundedly invertible operator W € L{Hz, H;) such that As=W~14;W.

2. Preliminaries

The material presented in this section is of common knowledge and is cited
here only for the reader’s convenience.

2.1. Some facts on the Sz.-Nagy—Foiag model

A wide panorama of the subject we discuss in this subsection can be found in
the monographs [11], [10].
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We introduce some notation to define the function model. Let us fix a function
fe BH™(L(E,E,)). We put A(t):(I—ﬁ(t)*G(t))l/z€L°°(L(E)), 0<A()<I ae.
on T.

Further, we consider the so-called model space

_[HAE) 0] o
(2.1) Ko= [W] O [A] H*(F).
We denote by Fy the orthogonal projection onto Ky,
H?(E,)
Py: [ALQ(E)] ——-)Kg,

and by My the operator acting on the space Ky by means of the formula
Mox = Pyzzx, x€ K.

The operator is a contraction, ||Mp]|<1, and it is called the model operator.

Now we recall some facts about contractions acting on a separable Hilbert
space H. As was already mentioned, any contraction T can be represented in the
form T=U®Ty, where U is a unitary operator and Tj is a completely nonunitary
contraction, i.e. none of the restrictions of the latter to its reducing subspaces is
unitary.

The defect operators and defect subspaces of a contraction 1" are defined by

Dr=(I-T*T)?>.H—H, 9©r=DrH,
Dpe =(I-TT*)Y%.H—H, ©p.=Dy-H.
We define an operator-valued function 67(\) by the formula
Or(\) = =T4+ADp-(I-XT*) "' Drlo,

for AeD, and it is called the characteristic function of T. It can be shown that
0r€ BH*™(®7,®7+) and that O is pure, that is the only subspace FEC®r where
fr(t)|g is a unitary constant a.e. on T, is E={0}.

The following theorem links the two series of definitions given above.

Theorem 2.1. ([11], Chapter 6, the model theorem)

(i) Any completely nonunitary contraction T' defined on a Hilbert space H is
unitarily equivalent to Ty, , where O € BH™ (D1, Dr+) is the characteristic function
of the contraction.

(ii) Let 6 be a pure contractive function from H°(L(E, E.)). Then the con-
traction My is completely nonunitary and its characteristic function coincides with
the initial function 6.
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We say that two functions 0; e H®(L(E}, Eq.)) and ,€ H*(L(E», Es..)), En,
Fr., B2 and E,, being Hilbert spaces, coincide, if there exist unitary operators
U:FE,—FE5 and U,: B, — FE», such that 6,=U,0,U*.

Given a Mobius transformation b,(A)=(A—p)/(1—aA), A, n€D, of the unit
disk D, consider the operator b, (T")=(I —iT)~!(T'—p). The functions 6 (ry(bu(A))
and 87(X) coincide in the sense of the above definition (see [11, Section 6.1]):

(2.2) Ui, (1) (bu(A))U™ =07(}),

where AeD. The following two-sided inequality [11, Section 6.4] relates the resol-
vent Ry (T)=(T—A)"" and the inverse of 87()),

(2.3) A=ADIRADI < 62N~ H < 1+2(1 = ADIRA(T)]|

for all AeD\o(T).
As follows from [6] and [11, Chapter 9], a contraction T', o(T")CT, is similar
to a unitary operator if and only if

c

(2.4) IRA(D) < =]

for all Ae C\T. Equivalently, ||0r(A)7}||<C<oo, AeD.

2.2. Angles between invariant subspaces and Bezout equations

In this subsection we mainly follow [1, Section 1.6]. Information on regular
factorizations can be found in [11].

It is well known that every invariant subspace L of the model operator My
(MpLCL) defines a certain regular factorization #=0260; [11, Chapter 7]. The
converse is also true, i.e. every regular factorization of the characteristic function
81 =0501 of a contraction T makes it possible to construct a T-invariant subspace
Lo, 6, We refer to {11, Chapter 7] for the definition of regular factorizations, as
well as for their basic properties. In particular, it is shown there that factorizations
0=00;, where 85 is inner or ¢, is x-inner, are regular.

Let L and I/ be two invariant subspaces of a completely nonunitary contraction
T defined on a Hilbert space H and let 8=6050; and 6=6,6; be the corresponding
regular factorizations. Assume that L+L’ is dense in H. We are interested in
conditions for the angle between these subspaces to be positive (or, in other words,
when LNL'={0} and the sum L+ L’ is closed). This means that

"o [CY8]
cos(L, L") = ?gg T <1
l'er
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This is equivalent to saying that the skew projection Pr.: L4+L'— L defined by
the relation P(I+1")=l, le L, I'€ L', is bounded.

It is proved in [14] that L+ L’ is a direct decomposition of H if and only if the
Bezout equation

(2.5) T3 (A8 (A)+T1 (N0 (\) =1

is solvable with I'y € H*(L(F, E)), I'€e H*(L(F',E)) and AeD, F and F’ being
some intermediate Hilbert spaces, and an additional equation of the same type is
solvable in certain L™ spaces as well. It is known (see references in [14]) that
if the space E is of finite dimension, the sole equation (2.5) is sufficient to have
H=L+1IL'. There are some other special cases, where the solvability of the equation
(2.5) implies the conclusion. The following theorem, for instance, is a corollary of
the general considerations from [1].

Theorem 2.2. ([1], Section 1.6) Let L and L' be invariant subspaces, defined
by regqular factorizations 0=60201 and 6=0,0/, and let the sum L+L’ be dense in H.
The sum L+L' is a direct sum (and hence H=L+L') whenever 8] is a *-inner
function.

We will need to apply the theorem to a quite particular situation. Namely, we
put the first factorization to be the canonical factorization of 6, 6=0,,0,.:, and we
put the second factorization to be the x-canonical one, §=0,ut«fin+. This means
that the function 8, (fin+) is inner (x-inner), and the function foys (Fout«) is outer
(x-outer), respectively. Note that these factorizations always exist {11, Chapter 5]
and are regular. We denote the corresponding invariant subspaces by Loy and
Liy ., respectively. Theorem 2.2 shows that the sum Ly + Lins is direct whenever
equation (2.5) is solvable.

2.3. Sparse and Carleson subsets in the unit disk D

Detailed information about these subjects can be found in [10], 4] and [§].

Let us set o(\, p)=|b,(N)], A\, peD, and, further, Bs(p)={AeD:|b,(\)|<d},
0<d<1, peD. The disk Bs(u) is called a pseudo-hyperbolic neighborhood of the
point o with radius 6. We say that the set a={\;}72, is sparse, if there exists a
number 4 >0 such that

(2.6) Bs(A1)NBs(Az) =0,
where A1, A\2€0 and A1 #A2. The set o is called Carleson if

inf I [bu(N)= 60 >0.
A€o\{u}
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There is another characterization of Carleson sets, and it is sometimes more conve-
nient than the original one.

Theorem 2.3. ([10], Chapter 6, the embedding theorem) Let oCD. The
following assertions are equivalent:

(i} o is o Carleson set;

(ii) o is sparse and

sup > (1—[b,(W)]?) < oc.

HeD A€o

We say that a set ¢ is N-Carleson (N-sparse) if it is a union of N Carleson
sets (IV sparse sequences).
The following lemma is proved in [1] under somewhat weaker assumptions.

Lemma 2.1. ({1], Section 1.4) Let ¢ be an N-Carleson set. Then there exists
a number e>0 such that

[(1-6)§, )N #0

for all €T and §€(0,1]. Here Q.={zeD:dist(z,0)>e(1—|2|)}. In an equivalent
way, for any E€'T there always exists a sequence {z,}22 1 C[0,&) such that |z,|—1
and

(2.7) dist(z,,0) > e(1—|z,]).

Here and below, dist{z,o)=inf e, |z2—A|.

2.4. Some properties of the trace class operators

A good reference on the subject of this subsection is [5].

We start with standard definitions. Let H be a Hilbert space and &, denote
the ideal of compact operators. The Schatten—von Neumann ideals &,, 0<p<oo,
are defined in the usual way,

G, = {AEGOO :Zsk(A)p<oo},
k=1

sk(A)=X(A*A)V/2, where A\, (A) are the eigenvalues of the operator A and s;(A)
is called the k-th singular number of A.

Let AcSq and {ex}i2; be an arbitrary orthonormal basis of H. It is known
that the sum tr A=>"7" , (Aey, ex) converges and does not depend on the choice of
the orthonormal basis.
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It is clear that if A=A*>0 and A&y, then

trA:Z)\j(A):Zsj(A)

This relation implies that tr PAP<tr A for any orthogonal projection P and any
operator A with the properties stated above. In particular, if k=rank P <oo, then

k
(2.8) tr A>tr PAP Z (PAP) >k min, A H{PAP).

The determinant of the operator I—A, A€&y, can be defined as det(I—A)=
[Toe(1=Ax(A)). We conclude the subsection with the following criterion.

Theorem 2.4. ([5], Chapter 5) Let T be a complete nonunitary conlraction
on a Hilbert space H, [-T*T €&, and o(T)#D. If the system of the root subspaces
of T is complete in H, then

(2.9) detT*T= [ IAP
A€o, (T)

where the product is computed counting the Riesz multiplicities of the eigenvalues
Aeop(T).

3. Proof of Theorem 1.1 for complete contractions
3.1. Lemma on subharmonic functions

In what follows, we rely on a very delicate result on majorization of subhar-
monic functions. Apparently, the first result of this type was obtained in [2]. We
cite here its refinement proved in [7].

Lemma 3.1. ([7], Section 23) Let o be a closed set of the disk D and let u be
a subharmonic function on C\o satisfying the inequality

1 1
u()\)gmax{d o) Im |)\|l}

Ao
<0
w) < dist(\, o)

for all |)\|2%, AeC\o, and where Ay=44T.

Then
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3.2. (LRG) property is invariant with respect to Mébius transformations

Let T be a complete completely nonunitary contraction on a Hilbert space H.
We assume that o(T)#D and, by virtue of the model theorem, we may suppose
that the contraction 7' coincides with a model operator M defined by a certain
function #€ BH*(L(E}}, E being a Hilbert space.

The purpose of the subsection is to prove Lemma 1.1. The main idea of the
proof is to express the (LRG) property in terms of the characteristic function. It is
convenient to put

(3.1) Ca(T)= sup [[6(X) | inf [b,(A)]-

AED\c Hea
We note that C1(T)>1 and C3(T)>1 (see the (LRG) property for the definition
of C1(T)). The first inequality follows from the fact that {|Rx(T)| dist(A,0)>1,
A€C\o, and the proof of the second one is presented in Subsection 3.3. The proof
of Lemma 1.1 is based on the mutual estimates between these constants.

Lemma 3.2. Let T be a completely nonunitary contraction on a Hilbert space
H and 0 be its characteristic function. Then there exist two absolute constants as
and Ao such that

Proof. The proof is essentially based on inequality (2.3). We proceed with the
left part of inequality (3.2). We have

100N~ | < 142C1(T) sup |1>\J)\I] < 1426, (1) sup I|1)\ /:\Il
(1+2(11(T))/s}£ 7 1 e

because |b,(A)|<1, AeD. The bound, together with C,(T") >1, implies

C3(T)= sup [|9(N)~ inf |b.(N)] <3CU(T),
AeD\o Heo

and we can take az=73.
We continue with the right part of inequality (3.2). The reasoning is more
complicated; it uses the nontrivial Lemma 3.1. We have for [A[<1,
H9(/\) N G(T) g 1 4G(T)

3.3) |[ERA(D)]| £ su <4C3(T) su = )
(33) IERA(T)II < Y —1_1)\| MGE A—p| = 3( )ué,’ [A—p| dist(A, o)
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since 1—|A|>1.
Let |A|>2 now. We consider the cases { A\:2 <|A|<1} and {X:[A|>1} separately.
We get for 1 <|A\[|<1,

10N~ [1=pAl
[RA(T)] < T <C3(T) ilég T \DA—pl

Using the obvious inequalities |1—gA|<1—|A2+|Al[A—p|<2(1—|A))+]A—p|, we
continue

2 1 1 !
(34)  CGa(T) izﬁm* T } <26(1) ma"{ dist(r, @) 1A }

The computation for |A|>1 is much more simple

1 1 1
(3.5) ||RA(T)”§W_‘1SMX{W’ IM——l}

Summing up (3.5), (3.4) and the inequality C5(7)>1, we obtain

[RA(T) < 2C3(T) max{ dist(l)\, o)’ ll—ll/\|| }

for all |A|>2, AeC\o. Since the norm ||RA(T)| is a subharmonic function of A,

Lemma 3.1 yields

240C(T)
(36) NGt

for all AeC\o and where Ag=447. It gives us the conclusion of the lemma with
A;=894. [

Proof of Lemma 1.1. By virtue of relation (2.2) we have

15,7y (B, (A) I = 110(X)

for all AéeD\o and, consequently,

C3(bu(T)) = Su{) ||9(;1(T)(blt()‘))” cienafu b (bu(N))]

€D\oy,

= sup [0z ()| inf [be(N)|=Cs(T),
XED\o (eo

where o,=b,(c) stands for the spectrum of b,(T"). The calculation shows that
the constant C3(T') is invariant with respect to Mobius transformations, and the
conclusion of the lemma easily follows from the two-sided estimate (3.2). [
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3.3. Some more notation and corollaries of the model theorem

Let T be a complete completely nonunitary contraction on a Hilbert space H.
We denote by oy, its point spectrum o, (T). We assume that o(T)#D, I-T*TeS,
and the eigenvalues A€o, of the operator are algebraically simple, Ker(7'—XI)=
Ker(T'—AI)*>. We put X to be the family of the eigenspaces {X)}re,,, where
Xx=Ker(T'—AT), of the operator. Note that the completeness of the contraction
means, under these restrictions, that

H=\/ X,

A€oy

where \/ stands for the closed linear span.

For an arbitrary subset w of o, we define a subspace X, and an operator T,
by the formulas

Xo=\ X and T,=Tlx,.
A€w

The just defined operator is a contraction, and ¢,(T,)=w.  We put, for brevity,
bu(w)=wy. The equality 0,(b,(T))=0,, is just a consequence of the spectral map-
ping theorem [3]. Similarly, we have b,(7,)=0,(T), , and thus op(b,(1,))=w,.
We mention also that ’

(3.7) RA(T,) = RA(T)|x,,

and this fact will be often used in the sequel.

Suppose now that T'=M; for some §c BH®(L(E)). The kernel spaces X, =
Ker(Mj;—AI), A€oy, have the form X\=¢\E\CH?*(E), where Ey=Ker8(\)*#
{0}, EACE, and ) (2)=(1—|A|?)Y/2/(1—\z) is the reproducing kernel of the Hardy
space H2. The left factor in the corresponding regular factorization =056 has
the form 05 (2)=bx(z)Pg, +(I—Pg,), Pg, being the orthogonal projection from E
to E,. In particular, we have

1
[bA(2)]

for any A€o, and z€D. Hence, C3(T)>1 (see (3.1) for the definition of the con-
stant).

We set X{=Ker(b,(T') =), A€oy, and X, ={X\}rco,,. The above men-
tioned description of X, and relation (2.2) yield, for instance, that ding‘H(/\):
dim X, )\EO'p.

We conclude this subsection with a lemma from [1].

=[0x(=) "M < [19(=)7"|
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Lemma 3.3. ([1], Section 1.3) Let T' be a contraction with the (LRG) property
and X be its family of eigenspaces. Then

(i) every A€oy, is algebraically simple;

(i) the system X is uniformly minimal.

3.4. Local properties of the spectrum of a contraction T € (LRG)N(UTB)

We need the following Mébius invariant constant

(3.8) Co(T) = sup tr(I—b,(T)" b, (T)).
peD
Further, given a number § >0 and a point p€D, we set 0, s =0, Bs(1t). For brevity,
we put w=0, s, Tw:TO,WS and KXow=Xo, 5
It turns out that the contractions T'€ (LRG)N(UTB) have sufficiently sparse
spectra (even if one counts the Riesz multiplicities of the eigenvalues).

Lemma 3.4. Let T be a complete completely nonunitary contraction on a
Hilbert space H and 0<é<1. If Te(LRG)N(UTB), then
(3.9) dim X, <Co(T), 1 Eop;

2 1
a 3 —F a1 SC T7
%" 3/3 B3C1(T) } 2(7)

for every €D, where B=2A1/a1, and a1 and Ay are the absolute constants from
Lemma 1.1.

2
(3.10) min{g dim X,

Proof. Let p€oy,. Due to a remark from Subsection 3.3, we have dim X}* (0=
dimKer b, (T)=dim X,. It follows from relation (2.8) that

Co(T) > (1—|[b,u(T(,p)]l) dim X, = dim X,

and relation (3.9) is proved.

To prove (3.10), consider the operator b,(1.,). It is convenient to put X, ,=
View XK. We see that op,(b, (o)) =wu=bu(0u,5)=0puNBs(0) C{z:|2| <5}, by defi-
nition.

We are going to estimate the norm of the operator b,(7,,) with the help of the
Riesz-Dunford calculus. To this end, we surround every point Acw, by a circle
w={z€C:|z—A|=¢}, 0<e <4, with ¢ small enough. Then we set 'V:U/\ew v and
apply the calculus formula to estimate the norm of the operator b,(T.,). We get

Y
< M up o] sup | B 0, (T
T zey  z€y

I < 557 [ RtbuT)) a2
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Now, we use relation (3.7) and the equality dist(z,w,)=¢,
(3.11) 1, (To) | < 26€1 (b, (1)), < BIC: (T) o,

where the sign # means the cardinality of a set. To get the last inequality we apply
Lemma 1.1, and the absolute constant B equals 24, /a;.

We pick an arbitrary invariant subspace X CX,, ,, of the contraction b,(7,).
We set T'x =b,(T.)|x, ox=0(Tx) and k=dim X, 0<k<dim X, . It is evident
that

ITx || < BOC1(T)#ox.
Then, applying inequality (2.8), we get
Co(T) > (1| Tx [}k = (1= (BSC(T) #tox ) )k > (1—(BSC1 (T)k)* )k =: f(K),

since #ox <k, and this is true for all 0<k<dim X, ,,, k€N.

It is easy to see that the maximum value of the function f(k), k>0, equals
Jmax=2/3v3 B6C,(T) and it is attained at the point kmale/\/g BS8CL(T).

We keep in mind two possibilities, dim X, , <knjax or dim X, , >kyay. If the
first case occurs, we put k=dim X, .,, and, consequently,

Cao(T) > (1—(BOCy(T) dim X, ,)%) dim X, o, > 2 dim X, .

Further, we see that f([kmax])>f(kmax)—1 by the Lagrange formula and the in-
equality f'(k)<1; the square brackets [ -] stand for the entire part of a number. So,
we get in the second case

2 1
CQ(T)ZIgle%%(f(k)Z ﬁm—L

which completes the proof. [

Corollary 3.1. The inequality
(3.12) dim X, ; < 3C5(T)
holds true whenever

(3.13) <2 !

<338 BG(T) G+ 1)

Proof. Indeed, inequality (3.13) means that 2/3v/3 B3C(T)—1>Co(T), and,
by virtue of (3.10) we get

. [2 . 2 1 2 .
= - =_ < .
mln{3 dim X, ,, 3v3 BoC,(T) 1} 3 dim X, ; <C2(T). O

It is convenient to put

(3.14) N(T) = [3Co(T)+1].
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Corollary 3.2. We have

(3.15) #(opNBs(p)) =#0u,s <N(T)

for every peD and d from (3.13).

This corollary means that the point spectrum o,(T') of a contraction T'e
(LRG)N(UTB) is a union of at most N(T’) sparse sequences (see (2.6)).

Remark 3.1. Note that the proof of (3.9) uses the (UTB) property only.

It is worth mentioning that in order to prove estimate (3.10), we were forced
to drop some subspaces from the family of subspaces X,. This is a manifestation
of the so-called “round-off-error” phenomenon, pointed out in [13, Lemma 12.2].

For the next lemma, we need some more notation. Let T be as in Lemma 3.4.
We fix g9=00(6)=8/4(N(T)+1) and surround every point A€o, by a disk By, (}),
here § and N(T') are values from (3.13) and (3.14). Then we consider an open set
G=U, e, Beo(A) and denote by {G}52; a collection of its connected components.
Further, we set 0,=0,NG, and 0" =0,\op,.

The following lemma states that the subsets just defined satisfy, modulo Mobius
transformations, the conditions of Lemma 3.6.

Lemma 3.5. ([10], [14]) The following relations hold true

(3.16) #on <N(T);
(3.17) diam,y, G, <3
(3.18) o(an,a™) > 200 > 0.

The expression diamy, stands for the pseudo-hyperbolic diameter of a set.

Proof. Observe that (3.17) follows immediately from the definition of the sets
G, and relation (3.16).

We start with the proof of (3.16). Suppose that (3.16) is false, and hence
that it is possible to find a set o, such that #0, >N (T)+1. We renumber the
set {)\k}glﬂ—HCan in such a way that By, (Ax)N B (Ar+1)7#0. Since |be, (¢3)|<
|b¢, (C2)|+1be, (¢3)] for arbitrary points (i, (2 and (3 in D, we have |by, (A\x+1)| <200,
and [by, (Ax)] <2kpg, 1<E<N(T)+1. Consequently, we get #Bs(A)Nap,>N(T)+
1, which contradicts (3.15). Therefore, (3.16) is proved.

The proof of (3.18) is also simple. We suppose that ¢(c,,,0")<2py. This yields
that there exist points A€o, and p€o™ such that g(A, 1) <2pp and hence, by the
construction of Gy, the point p has to lie in o,. The contradiction completes the
proof. O
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3.5. Local properties of the resolvent of a contraction T¢(LRG)N(UTB)

Here we obtain some additional information on the behavior of the norm
[|RA(T)|| for a contraction possessing the properties (LRG) and (UTB). The tech-
nique we use here is similar to that from [10, Section 9.5]. In fact, it relies on the
subharmonicity of the function [[Rx(T)|| only.

Firstly, we prove the following “spreading of estimates” lemma for subharmonic
functions of a very special type.

Lemma 3.6. Let oc=01Uoz be disjoint subsets of the unit disk D. Let u and
u1 be subharmonic functions defined on C\o and C\oy, respectively. Assume that

(3.19) ur(A) <u(A) < ﬁ;j; dist(og,01) =6 >0,
for all \e C\o. Then
18c3 1
3.20 N = _
(3:20) uh = § dist(A, 01)

for all AeC\oy.
Proof. Let |A|>2. As 0;CD, we have |A|—1<dist(A, T)<dist(\, o;)<|A\[+1,
j=1, 2. So, we get

C3 C3 3cs
A) < < <
u) = dist(A, o) = |A|—1 ~ dist(\, o1)

for all |A|>2 since (|A]+1)/(JA|—1)<3 for these A.

Now, let [A|<2. Let G={A€D2:dist(}, o2) <dist(}, 01)}, where Dy={X:[A|<
2}. Evidently, G is an open set containing o2. We consider the cases A€D>\G and
AEG separately.

Let AeD>\G. We have, by definition of G, dist(},02)>1/3dist(A,01), and,
consequently,

dist(A, o) = min{dist(\, o3), dist(\, 1)} >1/3dist(\, o1).

This implies

3C3
N —
wA) < dist(A, o1)

for all AeD2\G.
Let now A€dG. Tt follows that dist(\, o;)<3dist(}, o), and we have

0 <dist{oo, 01) <dist(A, g9)+dist(A, 1) <6 dist(A, o).
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Hence 6
w() <u(h) < 52

for all A€dG, and the maximum principle provides

1803 1
< -2 -
A R S e

for all A€G. The proof is finished. O

We note that, due to Corollary 3.1, we may assume that ¢ is as small as we
want, 5<%, for example. Now, we use Lemmas 3.5 and 3.6 to prove the following
fact.

Lemma 3.7. Let T be a contraction possessing the (UTB) and the (LRG)
properties. Then

Cq
3.21 N < —
(321) IR GUTo I < Gt
for all A€ C\o}; and for alln and u€D such that o, Gn)<gg. Here cq is a constant
that depends only on 8, C1(T"), and N(T).

Proof. Since 0, CG,, C Bs(u), we can easily see that diam,, o, <diampy G, <4.
Further, we obtain from (3.16)—(3.18) that

Onpu=0u(04) CGpy, G, =bu(Gr),
(3.22) G CBs(0)={z:]2| <4},
(323) Q(O-n,p,aa-z) 2@0

Since ¢5|A—p|<|ba(p)|<ce|A—p|, whenever A, p€ By 2(0), relation (3.23) im-
plies that dist(oy,u,0])>c700. Moreover, the functions u(A)=[Rx(b.(T))| and
u1 (A)=[|Rx(b,(Ton))|| are defined on C\oyp,, and C\o}y, respectively, and, obviously,
BB (Ton N <||RA(bu(T))]|. Condition (3.19) is true since the (LRG) property is
invariant with respect to Mobius transformations (see Lemma 1.1). The application
of Lemma 3.6 leads to the claimed result. [

3.6. Global properties of the spectrum of a contraction with (LRG) and
(UTB)

We start this subsection with a lemma characterizing the “individual” proper-
ties of a complete contraction T.
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Lemma 3.8. Let T be a complete nonunitary contraction, o(T)#D and X =
{Xa}reo, be the system of its eigenspaces. If

I-T"TeGy;
T € (LRG);
(3.24) there exists a number 0 <6 < 3 such that Bs(0)No, =0,
then we have
(3.25) > (1= |A?) dim X < () tr(I-T*T),
Aoy

where cg(8)=C1(T)?/5%log(1/6—1).

Proof. Condition (3.24) yields that the operator T is invertible, and, by The-
orem 2.4,

det T*T'= ] IA®.
A€oy

We denote by §; the eigenvalues of the operator T*T, so the eigenvalues of the
operator I—T™T are equal to o;=1—-0;, 0<e;,3;<1. We rewrite the previous
relation as

log =log =——

1
H)\Go'p l)‘|2 H ﬁj
We estimate the left-hand side of the equality from below
dlog(1/6—1) 9
log = 1og<1+(——1)>_——ﬂ (1-IA2),
IR w e

we have used here that log(l—!—a:)zélog(1/5—1)x/(1—5) whenever 1<2<1/4. Sim-
ilarly, we have for the other side of the equality

1-5;
lo — +1> —
Z g(( > z]: B;
We observe that, if )\—0, the condition (LRG) means that
_ G (1)
Tl < 2
I7=li= dist(0,0)’
or, which is the same, inf; |A\;|*<C;(T")?inf; |3;|. Taking into account (3.24), we
obtain |3;|*>6%/C1(T)?. Hence,
1- ﬂ ) Cu(T)? .
Z J da-8)< o (I ~T"T),
J

and the proof is completed. |

log

The results of Subsection 3.5 allow us to remove the supplementary restric-
tion (3.24).
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Lemma 3.9. Let T be a completely nonunitary contraction and T€(LRG)N
(UTB). Then

(3.26) > A-AP)<eo

ACopu

for all ueD, where cg depends on &, C1(T'), Co(T), and N(T') only.

Proof. Take peD. At first, we suppose that 0,,,NBy,(0)=0. We may apply
Lemma 3.8, which gives us immediately

> (A=IAP) < eseo) tr(I =, (1) bu(T)) < es(00)Ca(T).

A€Opu

Now, assume that w;=0,,MNB,,(0)7#0. We observe that there exists some oy,
such that wy Copg 4, and, in particular, we have #w; <N(T'). We apply Lemma 3.7
to the contraction by, (Teno),

Cq

| BA (b (Tomo )| < dist(h, o)

for all A€ C\oy;°.

Further, we note that o(b,(T5n0))NB,, (0)=0. Hence, by Lemma 3.8

Y (1=IAP) < esloo) tr(L =bu(Tomo) b(Tomo))

AGUZO

< es(o) tr(1—bu(T)"bu(T)) < cs(00)Ca(T)-

This gives us

Z (1= |A?) < es(00)Ca(T)+N(T),

AETpy
and the lemma is proved. [

Corollary 3.3. If T is a contraction from Lemma 3.9, then o,(T) is N(T')-
Carleson.

Proof. We have, by Lemma 3.9,

> A=l (W)P) <o

ACoy

for every p€D. Now the statement follows from the embedding theorem, Theo-
rem 2.3, and Corollary 3.2. O
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3.7. Basis properties of the family of eigenspaces

We introduce some notation to formulate a theorem. Let {6,,}52; be a family of
L(E)-valued two-sided inner functions, F be a Hilbert space. We consider subspaces
Ky, (see (2.1)) and we define L(E)-valued inner functions 6 and 8™ via the model
spaces

Ky= {7 Ky, and Kg=\/ Kg,.
n=1 k#n

The spaces Ky, and Kgn are invariant with respect to the model operator M}, and,
as was mentioned in Subsection 2.2, they define regular factorizations 6:6n9~",
0=0"6,, of the function 6.

The following theorem states that the property of being an unconditional basis
is equivalent to the uniform minimality and two embedding theorems.

Theorem 3.1. ([12]) Let {6,}52, be a family of L(E)-valued two-sided inner
functions, and dim Ky, <M for some M>0.

The family is a Riesz basis in its linear span if and only if it is uniformly
minimal and the two following embedding theorems hold true

(3.27) i(1—||9n(/\)*e||2)§0<oo;
n=1
(3.28) > (1= [l6a(N)el?) < C < o0,

Il
-

for every e€ E, {le||=1, and every AeD.

We put our situation in the frame of the theorem by setting

Ky= \/ X

Aoy
and X ={X\}xes,. The regular factorizations of 6
0=0,6* and 0=0"6,
for A€o, are defined by the corresponding invariant subspaces

Ko,=X» and Kp= \/ X,
nE€op\{A}

Proof of Theorem 1.1 for complete contractions. The family X of eigenspaces of
T is uniformly minimal by virtue of Lemma 3.3. The same lemma, implies that all the
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eigenvalues of T' are algebraically simple. The inequality dim Ky, =dim X, <N(T)
is guaranteed by (3.9). So, we should verify only embeddings (3.27) and (3.28). We
have

HOx (i) ell > det 02 (1) and 10 (1)"ell > | det O (1),

where |le]|=1, and | det 8x(1)|>[bs(p) VP, A€q,. Hence, (3.27) and (3.28) follow
from already proved relation (3.26),

D= foa()PYE) <2M(T) 3 (1~ loa(w)) <2NM(@) S (1-]A]) 2N (T)es.

A€oy, A€oy A€oppu

Theorem 1.1 for complete contractions is proved. O

4. Proof of Theorem 1.1 for general contractions

The main lines of the reasoning of this section follow [1].

4.1. Some inequalities for trace-class operators

The first important step is separating the point spectrum of a contraction
from the unitary one. We obtain some infinite dimensional counterparts of the
inequalities

|det A1 < ||A7Y " and  [|A”] < || A" det A7

valid in finite dimensional spaces (A4 is an n xn matrix here).

Lemma 4.1. Let 0 be an operator on a separable Hilbert space E, ||0]|<1, and
let I—0*6 be a trace-class operator. Then

1 1
4. eg1-1) < .
(4.1) 10" < 3 rvg FETE
1
4 — < ~1)12 —0 0.
) etz = PO " (1 -070))

Proof. The assumptions of the lemma imply that the operator 6*¢ admits a
spectral decomposition of the form

oo
0" 0x = Z pr(, ex)er,
k=1
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where {e}22, is an orthonormal system, and {u}52 ; is the sequence of eigenvalues
of 0*0, 0< u <1. Inequality (4.1) is almost obvious

1 1 1
< %) P R
infr>q el ~ Ty lwe]  det6+6

The proof of (4.2) is also relatively simple

1 1 - 1
log —— <log == log[ 14+ — —1
et 070 = ST, in 2 g( (Iukl )>

k=1

Ie=)~Hl <

o

< (1) = e LA =10 =00,
k=1

[l ) = infez ] &

Taking into account the inequality [|(8*0) 1| <0 1%, we get the lemma. O

4.2. The (LRG) and (UTB) properties yield the triviality of the unitary
spectrum of a contraction

Let T be a completely nonunitary contraction (we do not require its com-
pleteness now), possessing the (LRG) and the (UTB) properties. We denote by
@ its characteristic function. Further, we define its regular factorization 6=6056,
(see Subsection 2.2) and the corresponding invariant subspace L, by the relation
L=V Ao, Xx. We put 71=T|;,. Evidently, T} is a complete contraction.

Lemma 4.2. Let T be a completely nonunitary contraction. If T€(LRG)N
(UTB), then T3 €(LRG)N(UTB).
Proof. Tt is clear that

Co(T1) = sup tr(I —b,(T1)*bu(Th)) < sup tr(I—b,(T)*b,(T)) =Co(T),
peD neD

and Ty €{(UTB).
It remains to get the second property. Note that o,(T))=0,. We consider two
cases, [\ <% and |A|>3. If [\]<2, we get immediately

IR\ I < ity 2.
where A€ C\oy,. If |A| >3, we obtain
IEA S IO (T mae{ st b GO
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by virtue of Lemma 3.1, and so C1(77)<AqC1(T"). The proof is finished. O

Hence, the results of Section 3 can be applied to the operator 71, and op(7T1)
is (T )-Carleson (see Corollary 3.3).

The following lemma. characterizes the (UTB) property in terms of the charac-
teristic function of a contraction.

Lemma 4.3. Let T be a completely nonunitary contraction satisfying (UTB).
Then

tr(T—0(2)*0(1)) = (T —b,,(1)"b,(T)) < Ca(T).
Proof. Recall that (see (2.2))

U*aeba (T) (ba (M))U; = aT (N)

for aeD. Here Uyy: Dy, (1) = Dr and Uy: Dy, (1) — Dy are some unitary mappings.
This implies the equality

I=0r ()" 07 (1) = Ua(I = 0b, (1) (ba (1)) Op, () (ba (1) DU -
We take a=y and, since 67(0)=—T|p,., it gives us
T—67(1)* 07 () = U (I—b,(T) " b, (T) U7
‘We conclude the computation with
1(1=0()*B(1)) = tr Un(T b, (T) b (T))Uf. = tr(I by, (T) b(T)) < Co(T).

The proof is finished. O

Lemma 4.4. Let T be a completely nonunitary contraction, 6(\) be its char-
acteristic function, and T€(LRG)N(UTB). Then

(i) the function det contains no singular inner factor in its canonical factor-
ization;

(ii) the outer part of the function 6(\) is boundedly invertible:

(4.3) sup [[fous(\) Y| £ C < 0.
AeD
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Proof. By virtue of Lemmas 4.1 and 4.3,

(4.4) <exp([|l0(A)7H|* tr(I-0(1)*6(N))) < exp(C2(T)[I6(X) 7 1%).

1
[ det 8(N))?
To get (i) we just repeat a part of the reasoning from [1, Theorem 1.5.2]. Indeed, if
det 6(\) contains a nontrivial singular factor, we have

. —1 __
lim [ det 0(r) 1| = +o0,

where £€T. The relation (4.4) gives us lim, ;g [|0(r€)~![|=+00. Inequality (2.3)
implies that lim,_,;_o(1—7)||Rre(T)||=+0c0. Lemma 2.1 provides us with a se-
quence {2, }32 1, zn=ry&, rn—1, such that dist(z,,0p)>e(1—|2,|). We conclude
that

lim (R, (1) dist(z, ) = +oo,

which contradicts the (LRG) property.

We pass to a sketch of the proof of (4.3) now. It is not difficult to see that
SUPxep [|fout(A) 71| <oo if and only if the function det fou4()) is boundedly invert-
ible. This fact follows from the relations

1l (Boue (8 Bous (£)) ™ = 1(0() "0()) "l
a.e. on T and
Tdet o = exp(|05 112 tr(T =07 Bous)) < exp(||054 || tr(I—6%6))

< exp([105u 1 tr(I =, (T) "bu(T))) < exp(Ca(T) |5 1)

because 8%,0out >80 by the definition of an outer function [11, Chapter 5], and,
consequently, tr(f —67% 0o ) >t (1 —6*6).

To get the desirable conclusion for the outer part of §(\), we apply arguments
similar to those used while considering the inner part of the function, see [1, Theo-
rem 1.5.2] for the details.

The proof is finished. O

4.3. Separating the spectra and completing the proof of Theorem 1.1

We write down the canonical and *-canonical factorizations of the characteristic
function @ of the contraction 1T". The factorizations are regular, and we consider the
corresponding invariant subspaces L= Ly and L' =L,,.. It is obvious that the sum
L+ L is dense in H=Kj, and Theorem 2.2 states that the sum is direct if and only
if the corresponding Bezout equation is solvable.

The following lemma yields the solvability of the equation.
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Lemma 4.5. Let 61,0, € H*(L(E)) be analytic functions possessing the scalar
muliiples w1 and wi, respectively. Let, further, |wy(2)|+|wi(2)|>e, zeéD. Then
there exist functions 'y, Ty € H¥(L(E)) that solve the Bezout equation (2.5).

Proof. The definition of a scalar multiple implies that there exist operator-
valued functions 4, € H*(L(E)) with the properties

9191 = 9191 Zwll and Q’lei = 9’19/1 :wil,

and wy,w] €H>®. Since |w1(2)|+|w](2)|>¢, z€D, we find y; and 4] in H* solving
the scalar Bezout equation v wi+yjw]j=1. We note that the functions I'1 =y}
and T, =v{ <Y} satisfy the equations

161 4T10] = Q101 +719210] = (nw +yw)I =1,

and the proof is finished. [

Remark 4.1. We have 61 =0,,; and #, =8,,.. Lemma 4.4 states that, under the
assumptions mentioned there, |det fout(A)|>e>0, so the lemma is valid, and the
conclusion of Theorem 2.2 follows.

Proof of Theorem 1.1. Lemma 4.4 affirms that 671 € H(L(E)) and det 0,1 €
H>, Lemma 4.5 and the remark after it imply that the sum H=L+L’ is direct.
The first part of Lemma 4.4 gives that det 0y, is a Blaschke product and, hence,
Tin«=T1 is a complete contraction (see Lemma 4.2). Since T € (LRG)N(UTB), it
is similar to a normal operator by the particular case of Theorem 1.1, proved in
Section 3. The similarity of the operator T, to a unitary operator follows at
once from relation (2.4). To complete the proof, we use the positivity of the angle
between Lin,. and Loys.

The proof is finished. O
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