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Application of the fundamental 
principle to complex Cauchy problem 

St6phane Rigat 

A b s t r a c t .  In this paper we give an explicit formula for the solution of the non-homogeneous 
complex Cauchy problem with Cauchy data given on a bounded smooth strictly convex domain 
in a non-characteristic hyperplane. These formulas are obtained using the explicit version of the 
fundamental principle given in terms of residue currents; moreover, we characterize the domain 
of definition of the solution and we generalize these techniques to the non-homogeneous Goursut 
problem. 

1. I n t r o d u c t i o n  

Throughout this paper, we consider the following problem called the com- 
plex Cauchy problem. Let n > 2  and ~ t c C  n be a bounded smooth strictly convex 
domain. Let gEO(~)  be a holomorphic function in a neighbourhood of ~. Let 
PEC[Zl ,  ..., zn] be a polynomial of degree m of the form P---~l~l<m a~'z'~ with the 
usual notation. We want to find a unique f E O ( ~ )  such that  

/ P ~ z  f =  

f(O, z') ---= h0 (z'), 

Om-l f in z~ 1. [z~ O - ' ~ I u ,  }~-IO-n--l~, J 

in Ft, 

for all z'Ew=f~n{zECn:zl=O}. 
The first restriction we will make is assuming that  the complex hyperplane 

{zEC n :zi =0} is non-characteristic for the operator P(O/Oz), i.e. Pro(l, O, ..., 0)~0 
with Pm=y~l~,l=m a,~z'L In this case, by Cauchy-Kowalewsky's theorem, the com- 
plex Canchy problem has a unique solution f .  
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If we consider the real Cauchy problem (i.e. the same problem where 12cR n, 
geC~176 and where z E C  n and O/Oz are replaced by t E R  n and iO/Ot), John [14] 
has proved that,  in order to get the same conclusion, we have to assume moreover 
that  the polynomial P is hyperbolic, that  is, if P(tl,t~)=O with t~ER n- l ,  then 
tl c R .  In this case, Herglotz, Petrowsky and Gs have given an explicit integral 
expression of the solution f .  See [11] and [14]. 

For the complex Cauchy problem, the first explicit solution was given by Fan- 
tappi~ [10]. As a result of the development of symbolic calculus in Italy during the 
40s, Fantappi~ obtained some formal formulas, but there was no study of the domain 
of definition of the solution f .  For example, the formula obtained by Fantappi~ for 
P homogeneous and n=3 to the complex Cauchy problem is 

~--: 1 /C /C ~01 P k ( 4 2 ' 4 3 ' Z )  d41 d43d42 ' 
f(z) = (2~ri) 2 P(1, -4 , /42 ,  (41 - 1)/43) 42~33 k : 0  2 3 

where t~k(42,43, Z) :Jk~k  with J being the operator of integration along the real 
line with direction coefficients (42, r passing through z between zl =0 and z, and 
~m =g and 

D hCl2-Pa3._rn+k_ct2_~3 ~ k = O, ..., m -  1, 
Cpk : hk + ~ as ~2 ~3 Oz~ Oz3 

o~EN 3 

and where C2 and C3 are curves around the origin such that  lak is regular inside 
these, and l / P ( 1 , - ( 1 / 4 2 ,  (41-1)/43) is regular outside. These formulas have been 
generalized by Leray in [18] and by Henkin in [12]. 

Other formulas are obtained in Sternin-Shatalov's book [27] in a more general 
case (since the Cauchy data (hi) are not necessarily given on a piece of hyperplane, 
but can be given on a hypersurface X, possibly with some characteristic points, 
that  is some xEX where Pm(Oh/Ox)=O and where h is a holomorphic function in a 
neighbourhood U of x such that  XMU=UMh-I(O), with Oh/Ox#O). For example, 
the Cauchy problem 

( P ( - - ~ x ) f  =g o n e ,  

f - : 0 ( m o d m )  o n X M ~ ,  

has a solution if 12 is (P, X)-convex (see [27], p. 371, Definition 5.5 and p. 379, 
Theorem 5.13) and the solution f is given by 

(~T()n_l f ~n--l~. (p(y- x ), p) f (y) dy Aw (p), 
f ( x ) = -  Jhl(x) P0 
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A 

where w is the Leray form w(p)=y'~_l(-1)J-lpjdplA...AdpjA...Adpn, G is the 
function G(po, p)=(2~ri) -2 fe(p) e~p~ dA/H()~p) and where C(p) is a contour which 
surrounds all singularities of the integrand and where the class hi(x) is defined 
in [27], pp. 372-378. 

In this paper, we use the explicit formulation of the fundamental principle 
given in [7] and [25] to obtain the solution of the holomorphic Cauchy problem. 
The first approach is, like in [25], to give an explicit representation formula of the 
solutions f of the equation P(O/cOz)f=g in fL This will be done in Theorem 3.4. 
Setting ~o(z)---sup~ca Re(~, z), we regularize ~o in ~b such that  20r  maps C n 
into ~. Denoting by [l /P] the principal value current, we obtain the representation 
formula 

f ( z ) =  [ 1 ] ( ( Or162176162162176162 ~(~) �9 g 2-~ ~ ]  

1 . 
0r \ 0r (2~ri)'~(n-1)!] ' 

where p(~, z) is the Oka-Hefer differential form defined in Section 2. If we now 
deform the function r so that  20r  maps P-1(0)  into 3, one can hope to obtain 
the explicit formula of the Cauehy problem. 

The second approach consists in reducing the first problem (using Duhamel's 
principle and the principle of superposition) to the problem 

p 0 
inO 

f ( o ,  z') = O, z' �9 w, 

O ~ - z f  
v J (0  z I~ Oz~_ 2~ , j=O, z'ew, 
Om-lf 
O~?_----~(O,z'l=h(z'), z' ew. 

By the fundamental principle given in [7], one can write f in the form 

f ( z ) =  [ p - -~]  - (e(r dr A (I)(r 

where ~=(ffl ,r  and (I) is an ( n - l , n - 1 ) - f o r m  in if' and so 

Olf,,, ,, ~ 1 
ff~-Zll tu, z ) = [ p---~] "(e(r d,1A(I)(,')) 

{ 0 ,  s i f l < m - 1 ,  
= 2~ri , , 

Pro(l: O,, :.., 0) .,_le(r162 i f / = m - l ,  
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where Pro(l,  0, ..., 0 )#0 ;  and so, the choice 

~(~') = P~( l, O, "." , O)h ( 2 - ~  ) e-(r162176162 (200~(~') )n-1 (2~ri)n(n_ 1), 

gives the solution. 
These two approaches combined together give us the solution of the complex 

Cauchy problem. Moreover, the solution we obtain is defined in the domain of 
convergence of the integrals we obtain, and this domain coincides with the domains 
given by Kiselman and Schiltz in [15] and [26]. We prove, in fact, that  f is defined 
in the domain ~----f~n~, where ~ is the set of z in C n such that  every complex 

characteristic hyperplane passing through z meets w. 
The main interesting fact in this approach is that  an immediate generalization 

gives us, in a totally similar way, the solution of the holomorphic Goursat problem 
with data  on a complex vector subspace of bigger complex codimension satisfying 
a condition of non-characteristicity analogous to those introduced in the case of 
the complex Canchy problem, and the results obtained in this case are new. In 
particular, if P: O~--+C N is a complete intersection polynomial mapping, we say 
that  a complex subspace H of codimension N is non-characteristic for the differential 
operator P(O/Oz) if and only if we can write H=HIA...AHN, where each Hj is a 
complex hyperplane non-characteristic for the differential operator Pj(O/Oz). In 
particular, we will see that  the Goursat problem 

where gl , - . . ,  gN are holomorphic functions in a neighbourhood of ~, and where f is 
given on w=~nH, where H is a non-characteristic subspace of codimension N, has 
got a solution f .  Moreover, we prove that  this solution is defined on 12N~, where 
is the set of z in O n such that  every complex characteristic subspace of codimension 
N passing through z meets w. 

Applying these results to the case of the global complex Goursat problem with 
right-hand sides of exponential type, we obtain, in a different way, the results ob- 
tained by Ebenfelt and Shapiro in [8] with simplified representation formula. 

Acknowledgements. I wish to thank B. Coupet and G. Henkin for helpful advice 
and constant support. 
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2. P r e l i m i n a r i e s  

Let nEN*.  If zEC n, we set z=(z l ,  ...,Zn). If n>2 ,  we set z=(zl,z~), where 
z'=(z2, ..., z,~) EC "-1.  If (z, ( ) E C n  •  n, we let 

(Z,() ::- ~-~ Zj~j : (ZI,~I)-~(Z',~') and Izl2 := (z ,~)  = lzxl2 +lz ' l  2. 
j = l  

t .  and Ill=ll+...+ln. We set also, for z E C  n and a multi-index lEN  n, zt=z~ ~ ... z n 
--l ~ l l  r Ixl t 

If n_>2, we set l=(ll,l '),  where l '=(12,...,ln)EN n-l ,  and thus z =~1 tz ) and 

Ill=Z0+lrl. 
Let P be a polynomial over C n of degree m and of the form 

(2.1) 
m 

P(z)-- E E Z lbk(z') �9 
ICN '~ k=O 
Ill<m 

We denote by P(D), where D=O/Oz=(O/OZl,..., O/Ozn), the holomorphic dif- 
ferential operator obtained from P by replacing all the terms of the form z z by the 
operators Ot=oltl/Ozt=OItl/Oz~l ... Oz t". We denote by Pm the principal part of P, 

that  is Pm(z)=~lll=m azz z. 
A complex (real) hyperplane H of (3 n is characteristic for the operator P(D) 

if and only if we can write H = { z E C n :  ((, z) =p} ( H = { z C C  n :Re ((, z) =p}), where 
Pro(()=0 (cf. [26]). 

We have the following lemma (cf. [9]). 

L e m m a  2.1. Let n E N ,  n>2 .  If  the complex hyperplane {zECn:Zl=0} is 
non-characteristic for the operator P(D), then there exist positive constants A, B 
such that 

]P(r ==~ I(II_<A+BI('I ,  ~ E C  n. 

Proof. If the complex hyperplane { Z E C ~ n : Z l  = 0 }  is non-characteristic for the 
differential operator P(D), then a(m,o ..... 0)=Pro(i,0, . . . , 0 )#0  and we have 

m - 1  

/1=0 I I ' l~rn-- l l  

Lemma 2.1 is now a consequence of the following classical lemma applied to the 
polynomial Q ( z l ) = P ( z l , z ' ) - a ,  where ]aI<l .  [] 
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L e m m a  2.2.  I f  Q(zl)=Z~n+ ~-~=l akz'~ -k, then Q(zl)=0 implies 

1zl]<2 max lak] 1/k. 
k=l,...,va 

Proof. If Q(z l )=0  for a Zl~0 then --l=~-~k~__l ak/z k, and so 

Iz11>2 max lakl 1/k 
k~l,...,m 

implies l_<Ek_l  lakl/Izllk<Ek~ 1/2k<1, which is a contradiction. [] 

To the polynomial P, one can associate a family of Hefer-Oka-Weil polynomials 
satisfying the identities 

n 

P ( z ) - P ( r  = E p k ( ~ ,  z)(zk--~k), ~, Z �9 C n. 
k=l 

One can take, for example, 

Pl(~, z) = P ( ~ ) - P ( z l '  ~'), ..., Pn(~, z) = P(Zl,.. . ,  zn-1, ~n)-P(z)  
~1 - -  Z l  ~ n  - -  Z n  

n Z We introduce the polynomial differential form p(~, z):=~-~k= 1Pk(~, )d~k. In pax- 
ticulax, p(r D)f(w) denotes the form obtained from p(~, z) by considering its coef- 
ficients as polynomials in z and replacing z I by OItlf(w)/Oz l for all w E C  n. 

We define the residue currents as in I7] and [24]. Let X be a smooth function 
such that  X(x)=0, ifx<_o, and X(x)=l ,  ifx>_c2, where 0<Cl <c2<1.  The currents 
R=[1/P] and OR=O[1/P] are the weak limits 

lim X~(~) c~X~(() ~ - ~ 0 ~  resp. lim 
,-~o P(r 

where X~(r162 By [24], we know that  these residue currents may act 
on differential forms defined on the projective space pn .  We use the following 
proposition which is a direct consequence of Theorem 1 in [1]. 

P r o p o s i t i o n  2.3. Let f be a holomorphic function in C n. Suppose that there 
exist smooth functions Qk: C n x C n--+ C n, k = 1,..., p, and a function G on C p which 
is holomorphic in a neighbourhood of the image of C n x C n by the mapping ( z - r  Q) 
defined by 

(~,z)' )((z-r162 
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and satisfying G(O)= 1. 

We set, for (~EN p and z fixed in C n, DaG to be the functions obtained by com- 
posing ( z - r  with derivatives of G. We also let (Oq)~:=(Oql)~A...A(OqP)a~, 

where q~(r z):=E~ Q~(r ~) dCj. 
Suppose, moreover, that the form 

D O l G  _ 

f(r ~ ~-., (0q) 
I~l=n 

is integrable over C n. Then the following representation formula holds, 

1 _~.wG (vSq)~. 
f(z)- (2.i)~ s  1(r 

}~l=n 

3. The  fundamen ta l  principle 

Let ~t be a strictly smooth convex domain in C n defined by 

n:= {zeCn :o(z)< l}, 

where ~ is a convex function, smooth except possibly at the origin and such that, 
for every zEC ~ and every A_>0, we have Q(Az)=AO(z). In particular, 0E~. We 
define the support function ~ of Ft by 

~(r := sup Re (z, r 
zEft 

As proved by Berndtsson in [4], we have the following proposition. 

Propos i t ion  3.1. The open domain ~* = { ~ E C n :~( ~) < 1 } is a smooth strictly 
convex domain in C ~, ~ is smooth on Cn\{0}, and 20~/0r 0~*--+0~ is a diffeo- 
morphism with inverse 20p/Oz: O~-~O~t*. 

In addition, we have the following proposition (cf. [25], Lemma 1). 

Propos i t ion  3.2. There exists a smooth convex function r on C a such that 
r  ~ on Cn\12 *, and such that 20r162  is a diffeomorphism on gt*\{O} into ~t\{O}. 
Moreover, 20r162 20r162 and 20r162 

We simply write 20r162 for 20r162162 and wk(r for (2ri)- '~(200r162 
We have the following proposition. 
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P r o p o s i t i o n  3.3. If 12 is a domain in C n satisfying the above conditions, 

and 

R e ( ( ,  z -2~--~)<Re(( ,z ) -~p(O+r  z) 

_< ( 0 ( z ) -  1 ) ~ ( O + C  <_e(o(z)-l)l(l+C, 

 (O+C 

where e is such that the ball of center 0 and radius ~ is included in 12. We then 
show that 

1 
(27d)n /C.\{o} f (2 ~ ) e(r176176 (2~O~(() )n n! -- f (z) .  

and f cO(~) then we have the representation formula 

(3.1) f(z)= /c  f(2~)e(('z-2~162176162 zEfl. 

Proof. For this, we do like in [4], [5] and [7]. We first show that 

0~) e((,z_2Or n 

_ 1 s f(2O  e(CZ_2o /oo(20o (o)" 
(2ri)  n -\{0} \ Oil  n! 

For this, we remark that 

f 2 e(r176162176 (_2 r i )  n f(~)e (~'~-~) (dffAdw)n 
n r n !  

where Ar215162 is a subvariety of C 2n and the 
form d(Ad~=~-]~j~=l d~jAd~j; and so, one has just  to verify that 

f i  (d 'Adw)n L (d 'Adw)n f(w)eK'Z-~) n[ - f(w)e(r n! 

Since the form f(~)e(r162 is closed on U •  n, where U is an open 
domain on which the function w~+f(~) is defined, one has just  to verify that  the 
form satisfies some integrability conditions. This is just a direct consequence of the 
identity (cf. [25]) 

l e ( r 1 6 2 1 6 2  I = e 
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For this, we do as in [7]: we write c n \ { 0 } = 0 1 ~  * • (0, +co)  and put (=2sO0(w)/Ow, 
so ~o(~)=s and w=2Oqa(r We have (200qo)n=(-1)nns n-1 dsA2OQA(2OOQ) ~-1 
and so 

1 f (  2 f ( 2 ~ ) e  (r176176162 
(27ri) n -\{0} n! 

f(o sn-lds 
_ 1 f(w)e~(2oQ/o~,~_~o ~ 

(-27ri) '~ ,+r162 ( n - l ) !  

1 fa f(w)Op(w)A(OOO)n-1 
- (2~)" ~ (OelOw, w-z)" =f(z) ,  

- -  A 2 0 p ( w ) A  (200Q) n - 1  

by the Cauchy-Fantappib-Leray formula. [] 

Using this proposition, we obtain the following theorem. 

T h e o r e m  3.4. If  12 is a domain in C n satisfying the above conditions, then 
for every gEO(~) ,  there exists f E O ( ~ )  such that 

(3.2) P ( D ) f = g  one2 

and the following representation formula holds for every zEl2: 

(3.3) 

( o (  0r (r162162 f(z) = R. \~ \2 0r ] e n(;))  

/ . _{_8r (r 20r162 - 

In fact, the first term is a solution of (3.2), and the operator T: fcO(fl)~-~T(f) 
defined by the second term is a projection operator onto the space of solutions of the 
homogeneous equation 

P ( D ) I  = 0  onlY. 

Proof. Let us first remark that (3.2) has a solution f C O ( ~ ) ,  by Martineau's 
theorem (cf. [13]), and this solution satisfies (3.1). Let zEf~ and let a > 0  be 
such that  zE(1-c~)fL Applying Proposition 2.3 to the holomorphic function ~-+ 
e (r with p=2, G()q,)~2)=e;~(l+A2), Ql(a,~)=2(1-a)Or and Q2(a,~)= 
x~(a)(pl (a, r ... , pn(a, ~) ) / P(a), and letting ~-->0 yields 

(3.4) 
e(r z) = p(  ~)n.(e{~,z)+(2(1-~)or /or162 (1 - a ) n  wn (a) ) 

+3R. (p(r r (~'z)+ o(1- ~)~162176162 (1 -a)n-%n--1 (O)). 
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Note that this is possible because of the convergence factor e (~'~-2(:-~)~162176 By 
substituting (3.4) into (3.1) and reversing the order of integration and current ac- 
tion, we get 

f(z) = R(a) .  ( g  (2(1-c~)~--r a )e(a'z-2(1-a)Or 

+OR(a). (p(a, D) f (2( e-~) ~ a ) e(a'z- 2(1-~)~162 (1-~)n-l wn- l (a) ) 

which follows from the identity 

Q(D)f(z)- (2ri)~ ~ Q(()f 2 e(r162162 zE~. 

If we let c~-+0, we obtain the theorem. [] 

C o r o l l a r y  3.5. If gEExp(C n) is a holomorphic function on C n of exponential 
type (i.e. there exists some constants A,B>O such that, for all zEC n, we have 
]g(z)i< Ae Bk~l then there exists f E E x p ( C  n) such that 

P(D)f =g one  n 

and the following representation formula holds for every zECn: 

1 R.(g(~)e(r n) 
I ( z ) -  (2.i)~ \ n. 

§ (p(r (OOM')~ ) 
( ") ( n - l ) !  ." 

Proof. There exists a solution f E E x p ( C  n) of P(D)f=g, see [21]. We follow 
the preceding proof line by line, but we replace r by 1 2 ~l(I and ( 1 - a ) r  by 
l 2 :1ol-[] 

4. The homogeneous Cauchy problem 

Let now n E N ,  n>2 ,  and let w be a domain in C n-1 satisfying the above 
conditions. We write as before 

/ ) (20r162162 0r "0@(r 0r162 and w~(r = 
2 ~ = 2  b - ~ ' " "  oCn (2~i)~k! ' 
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where r is the function associated with co, i.e. r is the regularization of ~o(~')= 

supz,e~ Re (r z'} defined in Proposit ion 3.2. 

Let P be a polynomial of the form (2.1), and let h0, ..., h m - 1 E O ( ~ ) ;  this means 
tha t  h0, ..., hm-1 are holomorphic functions defined in an open neighbourhood of 

in C n -  1. We want to find a holomorphic function f defined on an open domain 
C C '~ containing w and such that  

p 0 
0 o o  

f(O, z') = ho(z'), z' G w, 
(4.1) 

Om-:I  
= hm_l (z ' ) ,  z'e . 

Definition 4.1. Let w be a bounded smooth strictly convex domain in C n-1. 
We define ~ to be the set of z E C ,~ such that  every real characteristic hyperplane 
passing through z meets w. 

We now obtain the main theorem of the paper. 

T h e o r e m  4.2. Let n and w satisfy the above conditions. Let P: C n - + C  be 
a polynomial of degree m such that the complex hyperplane {zEen:z:=O} is non- 
characteristic for P(D). Let ho, h l , . . . ,h ,~- i  eO(&). Then there exists fEO(~)  
satisfying the holomorphic Cauchy problem (4.1). Moreover, for every zErO, we 
have the representation formula 

m - - 1  

(4.2) I(z)=OR.(Y'. , ) 
\k=0 \ 0( ] 

Z rn--1 k where P1(r :)=Y~k=0 pi,k(r 

Proof. Let us consider the function f defined by (4.2). We will show first that ,  
for Zl close to 0, this formula makes sense. To do this, it is sufficient to prove that  
the form defined in the brackets makes sense as a form defined on p n  for zl close 
to 0. Let us fix z ~ in w. The support  of the residue current vhR is included in P -  1 (0). 
So, by Lemma 2.1, we see tha t  (4.2) holds if we replace the form in the brackets by 
the same form multiplied by the smooth function 0(r  I ~ - A - B [ r  where 

X ( x ) = l ,  if x _ < - l ,  and X(x)=O, if x_>0. An elementary est imate as above gives us 

z -z-~-~} ~ 4o ( z ' ) - l ) l ( ' ]+C,  
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and so 
10(~)e(~l,~l>+<r I < O(~)eA'lr162 c. 

For IZll sufficiently small, we obtain, with a, r 

J0(~)e(r162162162 I < 0(~)e -~lr _< e-Nr 

and since the different canonical coordinate systems on pn are connected by rational 
transformations, the formula (4.2) makes sense for z'Cw and zl sufficiently small. 

Consider the function 

fk(z) =OR. (pl,k.(,)hk (2~-~c )e(r162 d~l) 

which is, of course, an evident solution of P(O/Oz)f=O on ~. We shall prove that 

Ofk(O,z,)={ 0, if lCk ,  
Oz[ hk(z'), if l---- k. 

Without loss of generality, we may assume that we have bm(z')= 1 and deg bj(z')< 
m j - l -k  b I m--j, so that we have pl,k(~)=~j=k+l ~1 ~(~ ). We now use the following 

lemma. 

L e m m a  4.3. Under the above conditions, if ~b(~') is an (n- l ,n-1)- form 
depending on ~t and rapidly decreasing on C n-l, then 

j c~- i  

Pro@ We have 

[ 1 ] / c  "vSX~(')Ad~IA(I)(~-') ~ .(r de, ^~(r = lira 

o _ ,  fc r176176162162 d;' 
By Stokes' theorem, we have 

/ c  '~cg(1X~('l' " )A d "  lira f ,~d,1 _ {  0, i f / < m - 1 ,  
P(ff) =R-~JICxI_-RP-(-~I-~-~' ) 27ri, i f /=m- -1 .  [] 
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And so, by this lemma, if l<k, we obtain 

' Ofk(O'z')=OR'oz~ Pl,k(r162 ~tk ~-~7} n - l , ~ J  ~ ] 

If l=k, we obtain 

Ofk(O'Zt)c~z~ ( ( C~' ) -- ( " ) A d ' l )  :0R-pl ,k( f f ) f f lkhk  2~0~-7r e(r162162 

= 2ri fc'~-' h, (20r162162 

If m>l>k then 

m k j--l--kTl p l--k-1 ~ p l ( k ,  ~) = ~ ffl bj(ff ) = ffl P(~)-~--~_, fflt-k-l+JbJ(ff')" 
j=k+l  j=0 

k l--k--l+j t~ The degree of the polynomial ~-~j=o Q bj (ff j in ~1 is less than l -  1 < m -  2 and 
since the current 0R  x P(ff) is the current 0, we obtain 

Ofk r Z'~ 
Oz~ " , = 0 .  

We show now that (4.2) makes sense if zE3.  Observe first that,  if a real hyperplane 
H intersects the domain w, then every real hyperplane H '  sufficiently close to H 
meets the domain w. We fix z in 3; then there exists aE(0,  1) such that z/(1-a)E 
3. If a real hyperplane {a:Re(~,a-z)=O} intersects the domain w in a point 
a(r then the real hyperplane {a:Re (~,a-z/(1-a))=O} meets the domain w in 
a(f)/(1-a), and so the real hyperplane {a:Re (~, a - z ) = 0 }  intersects the domain 
( 1 - a ) w .  In particular, for every ~ e C  n, Pm(~)=0 implies that {a:Re ((, a - z ) = 0 }  
meets ( 1 - a ) w .  We remark now that there exists a positive constant A such that 

A 
P(<)=O ~ r <-Ir 

and by the property 

IP(z)l _< 1 ~ d(z, P,~,I(0)) is bounded 

(cf. [2], [15], [19]), there exists a positive constant B such that 

P(~)=O ~ d ,P~I(o) _<1(:11/------ 
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This shows that  there exists a constant C such that  for every ~EP-I (0 ) ,  I~'I_>C 
implies that  the real hyperplane {a:Re (r a - z ) = 0 }  meets the domain (1-�89 
In particular, if ~EP- I (0 )  with [~[_>C, and if we take a point 

a'(~') E {a:  Re ((, a--z)  = 0}C1(1- �89 

then we obtain 

IO(r162176 I : I0(r162162176176162 I 

O(~)e -a~(r ~_ e-Zl<l+E, 

with ~>0,  and thus the expression (4.2) makes sense for zE~,  which proves the 
theorem. [] 

Remark 4.4. Kiselman has proved in [15] that,  if f is a solution of P(O/Oz)f=O 
in an open set UcC n, then f has a holomorphic extension in F(U), which is the 
set of z E C  n for which every complex characteristic hyperplane passing through z 
meets U. In particular, due to the Cauchy-Kowalewsky theorem, there exists a 
small neighbourhood U of ~ on which the solution f of the homogeneous Cauchy 
problem (4.1) is defined. Hence, if F(w) is the set of z E C  n for which every charac- 
teristic complex hyperplane passing through z meets w, then clearly F(w)C~. 

We will prove that,  in fact, the preceding inclusion is an equality. For this, 
suppose the contrary: there exists thus a zC~ and a complex characteristic hyper- 
plane H~'r which does not intersect o~ with Pm(~)=O. Due to 
the homogeneity of Pm and the fact that  zE~,  we know that,  for every a E C ,  the 
real hyperplane H ~ r  (~r z-a)=O} intersects w. But H~'r162 ir 
Moreover, (H~)~,r162 '*-1 and (H~)Z"r162 n-1 are real orthogonal 
hyperplanes in C '~-1, so (H~)Z'r162162162 n-'. If this com- 
plex hyperplane does not intersect w in C n - l ,  then by the convexity of w and the 
Hahn-Banach theorem, there exists a real hyperplane H~ in C n-1 which contains 
(H~) z'r and which does not intersect w in C n - l ,  and moreover, there exists a E C  
such that  H~ = (H~) z,~r which is a contradiction. 

Remark 4.5. By a different argument, Schiltz has proved in [26] that,  if a real 
characteristic hyperplane H is tangent to Ow in C n - l ,  then it separates C n into 
two half-spaces, of which one, H+, contains w and that  ~ is the intersection of all 
these half-spaces. One can verify that  this definition coincides with our definition: 
for this, if ~ is the set described by Schiltz, and if z ~  ~, then there exists a 
real characteristic hyperplane H in C n, tangent to 0~  such that  z E C n \ H + .  In 
particular, the real characteristic hyperplane passing through z and parallel to H 
does not intersect fl, which implies that  z~c~. In an analogous way, if z r  then 



Application of the fundamental principle to complex Cauchy problem 369 

there exists a real characteristic hyperplane containing z which does not intersect w. 
We know (cf. [26]) that  there exists two real characteristic hyperplanes parallel to 
H and tangent to Ow in C'~-1; one of these hyperplalleS, H ' ,  does separate w 
and H N C  n-1 in C n-1 so HcC'~\H+, which implies that  zCH+- And so, Schiltz 
characterization coincides with our characterization. 

Example 4.6. Let us consider the following Cauchy problem. If w is a smooth 
strictly convex domain in C then the solution f of the holomorphic Canchy problem 

Of O f _ o  ' 
OZl Oz2 
f(O, z2)=h(z2), z2eoJ, 

is defined on ~={zEC2:zl +z2Ew} and is given by f(z)=h(zl +z2). 

Proof. Of course, we have P(~) =r - ( 2 .  In addition, the definition of c~ in this 
case is immediate and we obtain 

2~ri h 2 e (r162 (2v50r162 

= h(Zl +z2) ,  

since 1/(2~ri)O[1/(il-r is the current of integration over (1=(2.  [] 

Example 4.7. Let us consider the following Cauchy problem: If w is a smooth 
strictly convex domain in C then the solution f of the holomorphic Cauchy problem 

cgf Of 
OZ 1 OZ 2 f(z) =0, 
f (0 ,  Z2) = h(z2), z2 e w, 

is defined on ~={zeC2:zl+z2ew} and is given by f(z)=h(zl+z2)e ~. 

Proof. Of course, we have P(()=(1-(2-1. In addition, the definition of ~ in 
this case is immediate and we obtain 

f (z) -- (21i)~ o5[(1_~2_ 1 -] . (h (2 ~2 ( ~2)) e(r176162176162 (200r ~2) ) A d~l ) 

1/o ,) = 2~ri h 2 (2 e(r162176162176162162 

= e ~lh(zl+z2), 

since (1/2~i)v5[1/( (1-(2-1)]A (d(1-d(2)  is the current of integration over the com- 
plex line (1 =(2 + 1. [] 
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5. The non-homogeneous  Cauchy problem 

We now consider the following situation. Let f~ be a bounded smooth strictly 
convex domain in C ~. Let P be a polynomial over C ~ of degree m such that  the 
complex hyperplane {zEC ~ :zl =0} is non-characteristic for the operator P(D).  Let 
gEO(~)  and let h0, ..., hm-1EO(~)  where w=f~n{zEC n :Z 1 --~0}. We want to solve 
the holomorphic non-homogeneous Cauchy problem 

(5.1) f(O,z')  = h0(z'), z' ew,  

l'n--1 ~ (O,z ' )=hm-l (z ' ) ,  z' ew.  

The idea we use for solving this problem is to apply Theorem 4.1 combined with 
the Duhamel's principle (cf. [14]). 

P r o p o s i t i o n  5.1. Let f be a solution of the holomorphic Cauchy problem (5.1) 
with ho, ..., hm-1 =0. Then we can write 

~0 zl f ( z )  = F(zo, Zl - zo ,  z') dzo, 

where F(z0, Zl, z ~) is, for each Zo, a solution of P(D)F=O with initial data 

OkF , ~ O, if k <_ m - 2 ,  
Pro(I,0,.. .  

'O) ozk ) =  <[ g(zo, z'), i f k = - m - 1 .  

Proof. Let f be defined as before. If k > 1 then 

ok f k-1 ok F fzl  OkF. 
(Z)= (Zl,O,z')+]o (zo, z,-zo,z')dzo 

j-=O 0~1 

so that  

and 

0k f ( 0  
Ozk~ ,Z ' )=0 ,  k = 0 , . . . , m - 1 ,  

Ore-iF 
P ( D ) f ( z )  = Pro(l, 0, ..., 0) 0z--~-:- Y (zl, 0, z') = g(z). [] 

A direct application of this proposition gives us the following theorem. 
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T h e o r e m  5.2. Let f be a solution of the holomorphic Cauchy problem (5.1). 
Then f is defined on ~-f~N~, and we have the representation formula, for every 
ZC~, 

f ( z) = OR. (~ ( Zl , ~l , 2 ~ ) e(~X'zl)+(("z'-2~162 /~ wln_ l ( ~l) A d~l ) 

+0R" (k~=0 ,m-lpl  k(ff)hk ( 0 i f ' )  20r  eK~'za)+(r176162162 d~l) 

with 

g(z1,~1,2~l) =foZlff(zo,2~l)e-('l'Z~ �9 

Remark 5.3. A simpler approach to this problem is the following. We know 
that the function f0 defined by 

fo(z) = R" ( g ( 2 ~  )e(~'z-2~162176 

is a particular solution of the equation P(D)fo=g. It remains to write f= fo+f '  
with f '  being the solution of the Cauchy problem 

with 

0 

f ' (o ,  z') = h'o(Z'), 

o m -  l f f  
OZT_ 1 (0, Z I) = htm_l(Z"),  

in fl, 

h}(z') = h A z ' ) -  (0, z'). 

Remark 5.4. In the case when f t = C  n and the functions g, h0, ..., hm-1 are 
holomorphic of exponential type, we can see that the solution f of the holomorphic 
Cauchy problem (5.1) is defined on C n and of exponential type. For this, it is 
sufficient, by Duhamel's principle, to prove that the solution of a homogeneous 
Cauchy problem with data of exponential type is also of exponential type. Let us 
consider zECn; there exists R>0 such that, if Bn-1 is the unit ball in C n-l ,  then 
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zERBn_I. One has to estimate the solution f with the help of formula (4.2); we 
obtain, by Lemma 2.1, 

q ( ~')l e(c'z)-Rlr If(z)l _< ~ Aktzl ~'~ sup ICl~Hk R ~  
k = l  ]r I_<A-t-B]r 

where Ak, ak and ~k are positive constants independent of z and where Hk are 
holomorphic functions of exponential type such that  ]Hk(z')] <_Bke ckl~'l for all z 'E 

C ~-1, where Bk and Ck are positive constants. And so 

q 

If(z)l _< ~ aklz l '~Bke  c~R sup Ir Ir162 
k = l  Ir [_<A+BIr 

If I(~ll<A+Bl(Jl, we obtain the existence of ~ > 0  depending only on A and B, 
such that  ~1r162162 . And so, if we take R=2lzl/'7, we deduce that  (4.2) has a 
meaning, and 

q 

If(z)l _< ~ Ak[zl'~ Bke 2Ckl~l/'~ sup x~ke -I~1~/'~ 
k : l  x E R +  

q 

f 
\8 

: E A lzl k~-] 
k = l  

which implies that  f E E x p ( C n ) .  And so, we can write 

f(z) =/c,, f(w)e(~'~-~')w"(w)' 

where wn(w)=(27ri)-'~(OOlw[2)'Vn!. By inverting w and ~,  we obtain 

f(z) = Jc[', f(w)e(W'z-~)wn(w); (5.2) 

and so 

(5.3) 

P( O ) f(z) =g(z) = /r P(w)f(~)e(~'z-~)wn(w) = /c, g(~)e("'z-~)wn(w)" 

But, we have the following division formula 

[1  ] .(e(r162 e<~'z)=P(w) ~(r 
(5.4) +O[p~r .(,(r ,,,)^~<"~'+"~~162 ), 



Application of the fundamental principle to complex Cauchy problem 373 

where r Cn__~ Cn, ~ 0 ( ~ ) : = E ~ = I  r (r d~k and 0k(r (2ni)-n(Ok~~162 and 

where r is chosen so that  (5.4) is well defined and such that  the image of P - l ( 0 )  
by r is included in the hyperplane {zEC'~:zl=O}. 

Let X be as in the preceding section and let XI(~):=x(IP(r 
By Lemma 2.1, one can take 

r 1 6 2  : =  . . . ,  

And so, by inserting (5.4) into (5.2), by exchanging residue currents and integration, 
and by using (5.3), we have 

[11 f(z)= ~ .(g(~~162176162 ) 

1 , k~__-__i 

In particular, for g=O, we obtain an answer to a question of Passare [23], who has 
proved this formula in the particular case 

P(z) = (zl-L1 (z')) m' ... (Z l -Lk (z ' ) )  mk, 

where each Lj is linear, and who has conjectured that  this formula is true for every 
polynomial containing a z ~  with ~CC* and m---degP. 

6. The Goursat problem 

In this section, we generalize the preceding results to the case of systems. Let 
P: Cn--~ C N be a complete intersection polynomial mapping (that is d i m c P - 1  (0)__ 
n-N) ,  hence in particular N<n. 

Definition 6.1. We say that  a complex plane of complex codimension N is non- 
characteristic for the differential operator P(D) if we cannot write H=H1N...NHN, 
where each Hj  is a complex characteristic hyperplane for the differential opera- 
tor Pj(D). In other terms, we say that  a complex plane H of complex codimension N 
is characteristic for the differential operator P(D) if we can write H--Hln...NHN, 
where each Hj  is a complex characteristic hyperplane for the differential opera- 
tor Pj(D). If now H is a real plane of real codimension N,  we say that  H is 
characteristic if we can write H=HIN...NHN, where each Hj  is a real characteris- 
tic hyperplane for the differential operator Pj(D). 
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If each Pj is a polynomial on C n of degree m s, we first want to solve the 
homogeneous Goursat problem, that  is to find a holomorphic function f such that  

(6.1) 

and such that  

0 

(6.1') 
o~l+...+JN f 
Oz{ 1 . . .Oz~ (0, . . . ,0,z(N)) :h(~l  ..... ~) (z(N)) ,  z (~) c ~ ,  

where, for every kE {1, ..., N}, we have O<jk <mk--1 ,  and where the h(j, ..... iN) are 
holomorphic functions in a neighbourhood of ~ which is a smooth strictly convex 
domain in C ~ - ~ ,  with the notation C, ngz=(zl,  ..., zN, z(N)), where z(N)EC ''-N, 
and where the complex plane {zECn:z l  . . . . .  zN=O} is non-characteristic for the 
differential operator; moreover, we will suppose that,  for every kE{1,. . .  ,N} ,  the 
complex hyperplane is non-characteristic for the differential operator Pro(D). 

We associate with P,  as in [7] and [25], a Weil-Oka-Hefer matrix (P(j,k)) con- 
sisting of polynomials P(j,k) (~, Z) which satisfy 

n 

Pj(z)-Pj(~) =~-'~p(j,k)(~,z)(zk--~k), j =  1,...,N. 
k : l  

More precisely, we choose them such that  we have 

P(1 ,1 ) (~ ,Z)  - -  
P I ( r  

(~1 - - Z l  

P(k,k)(~,Z)---- 
Pk(r  (~1, ..., ; k - l ,  z~, r 

~k -- Zk 

PN(~) - -PN(~I ,  ... , ~ N - I , Z N )  
p(~v,N) ( C  z )  = ~N - z~r 

mk--1 We write P(k,k)(~, Z)=~-]~j=0 P(k,kj)~" We denote by r the function associated 

with w, depending only on ~ (N)Ecn -N .  We next introduce some more notation. 
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If I c N n ,  we denote by II[ the cardinality of I and let # ( I ) = ( - 1 )  ma~(~ If 
I c N n  and J c N ~ ,  then PI,J will denote the form defined by 

q r 

P, , j (~ ,z ) := A g ' k ( ~ ' z ) x H  Pj,(z), 
k = l  1----1 

where I={ i l ,  ..., iq} and J = { j l ,  ... , jr}, and il <...<iq. 
Let X be a smooth function such that X(X)=0, if x<_cl, and X(x)=l,  if x>_cu, 

where 0 < cl < c2 < 1. The C 0, q)-eurrent 

0 1 - 1  - 1 
,,-- 1 L i l J  L iqJ 

where 

I U J = N N ,  IMJ=O, I :={ i l , . . . , iq} ,  J :={ j ] , . . . , jN -q} ,  i l< . . .< iq ,  

is by definition the weak limit 

0x~l (r ~x~.(r x~, (r x;N_.(r 
~i~ ~ A . . . A  ~ PjI(~)"'" PjN-,(~)'  

where X;(~):=x(IPj (()[/~j (6)) and where the ~j are strictly positive functions such 
that Ej(~) 

l im%(~)=0  and lira ------ =0,  q E N ,  
~ 0  ~ 0  ~+1(~) 

(cf. [24]). These limits depend on the choice of X and e, except for the current RN.. 
If we want to obtain more canonical residue currents, we have to suppose, moreover, 
that, for every I C N N ,  the polynomial mapping PI=(Pi , ,  ... ,Pi~) is a complete 
intersection. 

We generalize Theorem 4.1 in such a way. 

T h e o r e m  6.2. Let us consider ~, which is the set of zE C  n such that every 
subspace of real codimension N,  characteristic for the differential operator P(D),  
passing through z meets the domain ~o. Then, under the above conditions, there 
exists a solution f E O ( ~ )  of (6.1) and (6.1'). Moreover, we have the following 
representation formula, for every zE~), 

- 1 - 1 

f ( z ) = O  A...AO " .-. ~ P(X,I,kO(r162 
kN=O 

~k~ ...... " , \  Or , ]e  j 

A (2~r A d~NA...A dr 
(2~i ) - (n-N)!  
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Proof. The proof is similar to the proof of Theorem 4.1. [] 

If we now want to solve the non-homogeneous Goursat problem, we need an 
explicit version of the fundamental principle, which is a direct generalization of 
Theorem 3.4, analogous to the main theorem of [25]. We have the following theorem�9 

Theorem 6.3. Let P: (3n--~C N be a complete intersection polynomial map- 
ping. Let us consider gl .... ,gN, holomorphic functions in a neighbourhood of 
such that 

Pj (D)gk = P~ (D)gj. 

Then there exists a holomorphic function f in a neighbourhood of ~ that is a solu- 
tion of the system of differential equations 

Pj (D)=gj ,  j =  I , . . . ,N .  

Moreover, we can write 

f (z)  = SI(gl)(Z)T. . .TSN(gN)(z)+T(f)(z) ,  z � 9  

where 

1 

I~IcN.. 
"(PI'N~\I\{1}("D)gl(2~) e(''z-20r )' 

1 
S2(g2)(z) = (2~i)n Z g ( I l n ,  1EI 

2~IcNn 

" (P I 'N" \ I \ {2 } (~ 'D)g2 (2~ )  e(~'z-2or (2OOr ) '  

1 y ~  I~(I)RI Sm-l(gm-1)(z)-- . . . . .  

m--l~ICin 
(Pl,N.\l\{m-i}(~,D)gm -1 (2~)e (('z-20r (2~Or 

, ,  ( n - I / I ) !  ' 
1 

Sm(gm)(z) - (2~i)~ #(N~-I)RN~_I 

�9 (PN~-I,O (~, D)gm \(2 0-~]0r ~ e(i,z_2or162 ) (2v50r ~-m+'(n_m+ 1)! ) '  
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1 
T(f)(z)-  (27ri)d#(Nm)RNm 

"(PN~'O(r e(r176176162 (2OOr )" 

Proof. The proof is analogous to the proof of Theorem 3.4. If the solution f 
exists, then it satisfies (3.1). We also apply Proposition 2.3 to the holomorphic 
function r (r with p=N+ 1 and the weights 

Q1 (a, r Or = 2 (1 -a ) -~a ,  

Q2(o., r = x~ (r (p(1,1) (a, r .... ,PO,n)(a, r 
PI (o') 

QN+I(a ' r = X%(r  r ... ,P(N,n)(a, r 
PN(a) 

After this we follow the proof of Theorem 3.4 line by line. 
And so, we have just to prove that  the solution f exists. For simplicity, we 

assume that  N = 2  (the proof is similar for larger N). Let gl and g2 be holomorphic 
functions in a neighbourhood of ~, such that  P1 (O/Oz)g2 =P2(O/Oz)gl. We define 

F(Z) ----- S 1 (gl)(Z) "4-32 (g2) (Z) 

1 1 0 

o 2 o r  "-1 

F is then holomorphic in ~ and 

+ 1 0 1 o 
\-0r (2~ri)n(n-1)! ] " 
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We use the identity O[1/PI(~)]PI(~)=O to obtain 

0 

-I-~[P~](P2("~~) gl(20~3~e{''z-2or (27i'i)n (n-  1) ' ) ( 2 0 0 r  1 

In a similar way,/92 (O/Oz)F(z) =g2 (z), using the identities P2 (O/Oz)gl = P1 (O/Oz)g2 
in (6.2). [] 

Now, to solve the non-homogeneous Goursat problem, one can do as in Re- 
mark 5.3. 

Remark 6.4. In fact, the Goursat problem has a unique solution f by Cauchy- 
Kowalewsky-Lednev's theorem (cf. [16], [17]). Using this result, if the functions 
gj and hg are in Exp(C n) and Exp(Cn-N),  respectively, then, in RB,~NRBn_N, 
we obtain the solution f of the holomorphic non-homogeneous Goursat problem. 
Estimations like those in Remark 5.4 give us that  fEExp(C~) .  We can also derive 
an analogous formula for f ,  by taking 

r  ( ( )  = (x l  ... ,  x N  (C)r 

so that  r maps P - l (0 )  into C n-N. 
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