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Application of the fundamental
principle to complex Cauchy problem

Stéphane Rigat

Abstract. In this paper we give an explicit formula for the solution of the non-homogeneous
complex Cauchy problem with Cauchy data given on a bounded smooth strictly convex domain
in a non-characteristic hyperplane. These formulas are obtained using the explicit version of the
fundamental principle given in terms of residue currents; moreover, we characterize the domain
of definition of the solution and we generalize these techniques to the non-homogeneous Goursat
problem.

1. Introduction

Throughout this paper, we consider the following problem called the com-
plex Cauchy problem. Let n>2 and QCC™ be a bounded smooth strictly convex
domain. Let geO(f)) be a holomorphic function in a neighbourhood of Q. Let
P€C]z, ..., 2,] be a polynomial of degree m of the form P=3",, ., 622* with the
usual notation. We want to find a unique f€O(R) such that

rP((,%)f=g in €,

£(0,2") =ho(2'),

.am—lf
L ot

(0,2")y=hp-1(Z")

for all 2’ ew=0N{z€C™:z,=0}.

The first restriction we will make is assuming that the complex hyperplane
{2€C":2; =0} is non-characteristic for the operator P(8/8z), i.e. Pn(1,0,...,0)#0
with Pm=21a|=m a,z%. In this case, by Cauchy-Kowalewsky’s theorem, the com-
plex Cauchy problem has a unique solution f.
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If we consider the real Cauchy problem (i.e. the same problem where QCR”,
g€C°°(Q) and where 2 C™ and 8/8z are replaced by teR™ and i§/8t), John [14]
has proved that, in order to get the same conclusion, we have to assume moreover
that the polynomial P is hyperbolic, that is, if P(t;,t')=0 with ¢’ €R™"!, then
t; €R. In this case, Herglotz, Petrowsky and Garding have given an explicit integral
expression of the solution f. See [11] and [14].

For the complex Cauchy problem, the first explicit solution was given by Fan-
tappié [10]. As a result of the development of symbolic calculus in Italy during the
40s, Fantappi¢ obtained some formal formulas, but there was no study of the domain
of definition of the solution f. For example, the formula obtained by Fantappie for
P homogeneous and n=3 to the complex Cauchy problem is

_ — 1 ! Pr(2, (3, 2) d¢ d
&= Gaip /c /c/ PG (G- 1)) Gaa 22 %

where 7x((2,(3,2)=J%p; with J being the operator of integration along the real
line with direction coefficients ({2, (3) passing through z between z; =0 and 2, and
$m=g and

O
gortas hm+k—02—ﬂ3
02529253 ’

Pr =hig+ Z Qo
aeN3

k=0,...,m—1,

and where C3 and C; are curves around the origin such that px is regular inside
these, and 1/P(1, —(1/¢2, (€1 —1)/¢3) is regular outside. These formulas have been
generalized by Leray in [18] and by Henkin in [12].

Other formulas are obtained in Sternin-Shatalov’s book [27] in a more general
case (since the Cauchy data (h;) are not necessarily given on a piece of hyperplane,
but can be given on a hypersurface X, possibly with some characteristic points,
that is some z€ X where P,,,(0h/8x)=0 and where h is a holomorphic function in a
neighbourhood U of z such that X NU=UnNh"1(0), with dh/8z+#0). For example,

the Cauchy problem 5
Pl—-——|)f= Q
( Bx)f g onf,

f=0 (mod m) on XNQ,

has a solution if Q is (P, X)-convex (see [27], p. 371, Definition 5.5 and p. 379,
Theorem 5.13) and the solution f is given by

: -1 n—1~v
10= (5] | G - p i) dynete)
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where w is the Leray form w(p)=3"7_,(-1)"'p; dpl/\.../\az\)j/\.../\dpn, G is the
function G(po,p)=(2mi)~2 [, €**° dA/H(Ap) and where C(p) is a contour which
surrounds all singularities of the integrand and where the class hy(z) is defined
in [27], pp. 372-378.

In this paper, we use the explicit formulation of the fundamental principle
given in [7] and {25] to obtain the solution of the holomorphic Cauchy problem.
The first approach is, like in [25], to give an explicit representation formula of the
solutions f of the equation P(9/0z)f=g in Q. This will be done in Theorem 3.4.
Setting ¢(z)=sup.cq Re((, 2), we regularize ¢ in 9 such that 28v/8( maps C™
into . Denoting by [1/ P] the principal value current, we obtain the representation
formula

-

0]y (o6 )7 (256 )0 oy )

where p((, z) is the Oka—Hefer differential form defined in Section 2. If we now
deform the function 4 so that 204 /98¢ maps P~1(0) into &, one can hope to obtain
the explicit formula of the Cauchy problem.

The second approach consists in reducing the first problem (using Duhamel’s
principle and the principle of superposition) to the problem

( P(%)f=0 in Q,
F(0,2"y=0, Z €w,
S
n—2
Z _f(O 2')=0, 7 €w,
2
m— 1
gm—_{(ﬂ, ) =h(7"), 7 €w.
\ 027

By the fundamental principle given in [7], one can write f in the form

f(2)= a[ - )} (€97 de AB(C),

where (=(({1,¢’) and ® is an (n—1,n—1)-form in ¢’ and so
al ’ ’
52 0.2) =8| s | (et s ne(c)

ifl<m-—1,

{0,

== 27r'L vt

__m €NP(¢), ifl=m—1
Pm(l,o,...,O)/Cn_le (€), ifl=m-1,
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where P,,(1,0,...,0)#0; and so, the choice

n_ O\ (¢ 20ws0¢y (200%(C))" !
@(g)_Pm(l,o,...,o)h(2a—C,)e ¢'209/5¢ @)

gives the solution.

These two approaches combined together give us the solution of the complex
Cauchy problem. Moreover, the solution we obtain is defined in the domain of
convergence of the integrals we obtain, and this domain coincides with the domains
given by Kiselman and Schiltz in [15] and [26]. We prove, in fact, that f is defined
in the domain Q=0QN®, where & is the set of z in C® such that every complex
characteristic hyperplane passing through z meets w.

The main interesting fact in this approach is that an immediate generalization
gives us, in a totally similar way, the solution of the holomorphic Goursat problem
with data on a complex vector subspace of bigger complex codimension satisfying
a condition of non-characteristicity analogous to those introduced in the case of
the complex Cauchy problem, and the results obtained in this case are new. In
particular, if P:C*—CV¥ is a complete intersection polynomial mapping, we say
that a complex subspace H of codimension N is non-characteristic for the differential
operator P(8/0z) if and only if we can write H=H,N...NHy, where each H; is a
complex hyperplane non-characteristic for the differential operator P;(9/0z). In
particular, we will see that the Goursat problem

P(5) =0,

}N (5:)1@=onta),

where g1, ..., gy are holomorphic functions in a neighbourhood of Q, and where f is
given on w=0NH, where H is a non-characteristic subspace of codimension N, has
got a solution f. Moreover, we prove that this solution is defined on QN&, where W
is the set of z in C™ such that every complex characteristic subspace of codimension
N passing through 2z meets w.

Applying these results to the case of the global complex Goursat problem with
right-hand sides of exponential type, we obtain, in a different way, the results ob-
tained by Ebenfelt and Shapiro in [8] with simplified representation formula.

Acknowledgements. I wish to thank B. Coupet and G. Henkin for helpful advice
and constant support.
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2. Preliminaries

Let neN*. If 2eC", we set z=(21,...,2,). If n>2, we set z2=(2y, 2"), where
Z'=(2z2,...,2,)€C™ L. If (2,{)€C* x C™, we let

z<>—ZchJ (21,01)+(2,¢') and  |2*:=(z,2) =1 +|2'].

We set also, for z6C" and a multi-index leN™, z'=2% ..z} and |l|=1+.. +l
If n>2, we set {=(l,!'), where I'=(l,...,l,)€N""!, and thus z’—zl‘(z’) and
lH=lo+1V'|-

Let P be a polynomial over C* of degree m and of the form

(2.1) P)= ) az —Zz{‘bk(z

IeEN™
II<m

We denote by P(D), where D=03/82=(0/0z1,...,0/02y,), the holomorphic dif-
ferential operator obtained from P by replacing all the terms of the form 2! by the
operators 8'=0l! /02t =0 /32! ... 2}, We denote by P, the principal part of P,
that is P (2)=3C ) m @12

A complex (real) hyperplane H of C" is characteristic for the operator P(D)
if and only if we can write H={2€C":((, 2) =p} (H={2€C"™:Re ((, z)=p}), where
P (¢)=0 (cf. [26]).

We have the following lemma (cf. [9]).

Lemma 2.1. Let neN, n>2. If the complex hyperplane {z€C":2,=0} is
non-characteristic for the operator P(D), then there ezist positive constants A, B
such that

[P()|<1 = |¢1|<A+B|{'], (eC™

Proof. If the complex hyperplane {2€C™:2,=0} is non-characteristic for the
differential operator P(D), then a(,, 0, 0)=Pm(1,0,...,0)#0 and we have

P(z)=P,(1,0,...,0)z +Z Z a2 (2)
11—0|l’|<m [5)

Lemma 2.1 is now a consequence of the following classical lemma applied to the
polynomial Q(z1)=P(z1,2')—a, where |a|<1. O
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Lemma 2.2. If Q(z1)=2]"+3 p., ax2]" %, then Q(21)=0 implies

|21 <2 max |az|'/*.
k=1,....m

Proof. If Q(2,)=0 for a z; 70 then —1=) 1, ax/z¥, and so

|z1]>2 max |ax|'/*
k=1,...,m

implies 1<) "1, |ax|/|21|¥ <X pe; 1/2¥ <1, which is a contradiction. O

To the polynomial P, one can associate a family of Hefer-Oka—Weil polynomials
satisfying the identities

P(2)-P(¢) =Z 2)(z—Ck), ¢,2€C™

Omne can take, for example,

P(¢)—P(21,¢")
A

P(Zly vy Zn—1, Cn)—P(Z)
Cn_zn .

We introduce the polynomial differential form p(¢,z): = p_; Px(¢, 2) d{x. In par-
ticular, p(¢, D) f(w) denotes the form obtained from p((, z) by considering its coef-
ficients as polynomials in z and replacing z* by 8! f(w)/92 for all weC™.

We define the residue currents as in [7] and [24]. Let x be a smooth function
such that x(z)=0, if z<¢;, and x(x)=1, if z>c;, where 0<c; <c2<1. The currents
R=[1/P) and dR=38[1/P] are the weak limits

D1 ((a ) pn(Ca Z) =

i Xe(©)
e=0 P(¢)

resp. lim 52~ Ox(¢)
e—0 P(C)

where x-(Q)=x(1P(¢)|/e). By [24], we know that these residue currents may act
on differential forms defined on the projective space P". We use the following
proposition which is a direct consequence of Theorem 1 in [1].

Proposition 2.3. Let f be a holomorphic function in C™. Suppose that there
exist smooth functions Q*: C* xC*—=C", k=1, ...,p, and a function G on CP? which
is holomorphic in a neighbourhood of the image of C™ x C™ by the mapping (2—(, Q)
defined by

(Ca Z) — ((Z—C, QI(C) Z)), sy (Z_C, QP(Cv Z)))
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and satisfying G(0)=1.

We set, for «€INP and z fized in C™, D*G to be the functions obtained by com-
posing (z—(, Q) with derivatives of G. We also let (0g)*:=(8g")** A...A(OgP)>>,
where ¢*(¢, 2):=3; Q¥(¢, 2) d¢;.

Suppose, moreover, that the form

10 Y ZE g

al

lee}=n
1s integrable over C™. Then the following representation formula holds,

1 DG, ..
1) = Gy 10 X 00

lal=n

3. The fundamental principle

Let €2 be a strictly smooth convex domain in C™ defined by
Q:={zeC":p(z) <1},

where g is a convex function, smooth except possibly at the origin and such that,
for every z€C™ and every A>0, we have g(Az)=MAg(z). In particular, 0€Q. We
define the support function ¢ of Q by

¢(¢):=supRe(z, ().
z€eQ}

As proved by Berndtsson in [4], we have the following proposition.

Proposition 3.1. The open domain Q*={(€C":p(()<1} is a smooth strictly
convexr domain in C™, ¢ is smooth on C"\{0}, and 20 /9¢: OY* — 0N is a diffeo-
morphism with inverse 20p/0z: 00— 90*.

In addition, we have the following proposition (cf. [25], Lemma 1).

Proposition 3.2. There exists a smooth convez function b on C" such that
Y=¢ on C"\Q*, and such that 20 /5( is a diffeomorphism on Q*\{(l} into Q\{0}.
Moreover, 20¢(0)/0¢=0, 20¢(C™\Q*)/0¢ =00 and 20¢(C")/¢=12.

We simply write 28v/9¢ for 20v%(¢)/0¢ and wi(€) for (2mi)~™(200¢(¢))* /k!.
We have the following proposition.
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Proposition 3.3. If Q is a domain in C" satisfying the above conditions,
and f€O() then we have the representation formula

(3.1) )= | nf(2%)e(<"'23"’/30wn(€), =

Proof. For this, we do like in [4], [5] and [7]. We first show that

/ " f<23_’é)e<c,z—2a¢/ac>wn(<)

_ 1 %) (¢,2—200/8C) (25590(())"-
(2ma)™ /Cn\{O}f(zaC ¢ n!

For this, we remark that

a_w (C,2—28%/8¢) _ 1 _\ (¢ D) (d¢Adw)™
/n f<2 BC)e ¢ Dwn ()= C2mim /Aw f(w)e —

where Ay={(¢,w)e(C"\{0})xC™:@=20%/d(} is a subvariety of C*" and the
form d¢ /\dE:E;;l d¢;j \d@;; and so, one has just to verify that

ey (dCAdD)™ NN
N f(@)els e _/M f(w)el iy

Since the form f(@)e{$*~® (d{ Ad®)"™/n! is closed on U x C™, where U is an open
domain on which the function wr f(w) is defined, one has just to verify that the
form satisfies some integrability conditions. This is just a direct consequence of the
identity (cf. [25])

|64, =209/90) | — gRe (¢,2~204/2)

and

Re<<’ "‘“2{;—@ <Re (€, 2)=$(C)+¥(0) < o(2) R’ifé) 2)

< (o(2)—1)p(¢)+C <e(e(2) - 1)[¢|+C,

-9(¢)+C

where ¢ is such that the ball of center 0 and radius £ is included in Q. We then
show that

1 AP\ (¢.-20070¢) (2000(Q))"
(2mi)™ /C"\{O} f(2 ¢ )6 ’ n! f(2).
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For this, we do as in [7]: we write C™\ {0}=8Q" x (0, +00) and put (=2s0¢(w)/0w,
50 (¢)=s and w=28¢(()/d¢. We have (200p)™=(~1)"ns""1 dsA20pA (2080)™*
and so

: f(2 a‘p>e<< =—20p/0¢) (2000(Q))"
cm\{0}

@) aC !
_ 1 s w,z—w s" d /) n—-1
=BT g Gy 2002500
1 f(w)do(w) A (8Dg)™ "

T Joa (eldww—2) T
by the Cauchy-Fantappie-Leray formula. O

Using this proposition, we obtain the following theorem.

Theorem 3.4. If Q) is a domain in C" satisfying the above conditions, then
for every geO(QY), there exists feO() such that

(3.2) P(D)f=g9g onQ

and the following representation formula holds for every z€Q:

)= R (5258 )eler2291%00,0))

43 +8R- (p(c,D)f( )e«z o ‘(Q)'

In fact, the first term is a solution of (3.2), and the operator T: f€O(Q)—T(f)
defined by the second term is a projection operator onto the space of solutions of the
homogeneous equation

P(D)f=0 on Q.

Proof. Let us first remark that (3.2) has a solution f€O(2), by Martineau’s
theorem (cf. [13]), and this solution satisfies (3.1). Let z€{ and let a>0 be
such that z€(1—a)€. Applying Proposition 2.3 to the holomorphic function {+—
el$?), with p=2, G(A1, A2)=e (1+A2), QY(0,¢)=2(1—a)dy/do and Q*(0,()=
Xe(0)(P1(0,C), ... ,Pn(0,())/P(0), and letting e —0 yields

£6%) = P(Q)R- (el +2(-@)29/90.¢~0) (1 _ )", (o))

3.4 ~
( ) +aR‘(p(0_’ C)/\e(a,z)+<2(1—a)a1/1/aa',c—0’)(1_a)ﬂ—lwn_l(a))'
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Note that this is possible because of the convergence factor eloz—2(1-)0¢/80) By

substituting (3.4) into (3.1) and reversing the order of integration and current ac-
tion, we get

f(2)=R(o)- (g (2(1 —a) g—:ﬁ) el9:2—2(1-a)dy/d0) (1 —a)"wn(a))
+0R(0)- (p(a, DYyf (2(1 —a) Z—ZJ) el?z—2(1-2)3%/80) (1 _ o)1y, (o))

which follows from the identity

QD))= s [ @O1 (258 el 9/20un(0), zeq

If we let «—0, we obtain the theorem. [

Corollary 3.5. If geExp(C™) is a holomorphic function on C™ of exponential
type (i.e. there exists some constants A, B>0 such that, for all 2€C", we have
|g(2)| < AeBl#1} then there exists f €Exp(C™) such that

P(D)f=g onC"

and the following representation formula holds for every ze C™:

(A 2\n
f(z) = e R (g@e«,z-q @apy )

(2mi)™
1 5 M (G2 (53|C|2)"'1)
1 5p €,z—¢ POICI")" "\
+ g R (w6, D) (O 0 CREEL
Proof. There exists a solution f€Exp(C") of P(D)f=g, see [21]. We follow
the preceding proof line by line, but we replace ¥(¢) by 3|¢|* and (1—a)¥ (o) by
1,(2
EIUI .

4. The homogeneous Cauchy problem

Let now neN, n>2, and let w be a domain in C"! satisfying the above
conditions. We write as before

0y _,(0¥() () oy _ (200 8cp(())
26—(’_2( 3G e, ) and wi(¢')= @k
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where 1) is the function associated with w, i.e. % is the regularization of ¢((')=
sup,¢,, Re(¢’, 2’) defined in Proposition 3.2.

Let P be a polynomial of the form (2.1), and let hy, ... , Am—1 €O(@); this means
that hy,...,Am_1 are holomorphic functions defined in an open neighbourhood of
@ in C"~!. We want to find a holomorphic function f defined on an open domain
wCC" containing w and such that

( P(%)f(z)=0 on &,
f(0,2") =ho(2"), Z ew,

(4.1) :
am“lf(o’ Z’) — hm—l(z,)a 2 cw.

S P

Definition 4.1. Let w be a bounded smooth strictly convex domain in C™~1.
We define w to be the set of z&€C™ such that every real characteristic hyperplane
passing through 2 meets w.

We now obtain the main theorem of the paper.

Theorem 4.2. Let n and w satisfy the above conditions. Let P:C"—C be
a polynomial of degree m such that the complex hyperplane {z€C™:2z;=0} is non-
characteristic for P(D). Let ho,hy,...,hm_1€O(@). Then there erists f€O(W)
satisfying the holomorphic Cauchy problem (4.1). Moreover, for every zeﬁ, we
have the representation formula

m—1
(42) 1) =0R (3 ey (255 )00 s ).
k=0

where p1(C, 21)=Y py P1k(¢)2E.

Proof. Let us consider the function f defined by (4.2). We will show first that,
for z; close to 0, this formula makes sense. To do this, it is sufficient to prove that
the form defined in the brackets makes sense as a form defined on P™ for 2; close
to 0. Let us fix 2’ in w. The support of the residue current R is included in P~1(0).
So, by Lemma 2.1, we see that (4.2) holds if we replace the form in the brackets by
the same form multiplied by the smooth function 8(¢)=x(|¢1|>—A— B|¢’[?), where
x(z)=1, if £<~1, and x(x)=0, if z>0. An elementary estimate as above gives us

Y

Re<<', z'—2a—¢> <e(e() D¢+,
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and so
lo(()e(CI,Zl)+(c’,z'_2a¢/ac’)! < H(C)eA'K'”zl|+(9(Z')"1)€|C'|+C.

For |z | sufficiently small, we obtain, with a, 3>0

lo(C)e((hzl)+(C,,21—231/)/6C'), S 6(()6_.&](']_’_0 S e"ﬂl(l"'ci

and since the different canonical coordinate systems on P™ are connected by rational
transformations, the formula (4.2) makes sense for 2’ €w and z; sufficiently small.
Consider the function

fx(2)=0R- <p1,k(4)hk (2%)e<<1,z1>+<<',z'—2a¢/ac’>w;)1 €A dCI)

which is, of course, an evident solution of P(8/0z)f=0 on w. We shall prove that

2 0, if [ #k,
“]‘25(0, )= { : ?
025 he(2'), ifl=k.

Without loss of generality, we may assume that we have b,,(z')=1 and degb;(2") <
m—j, so that we have 101,,;(():2:;.":,:+1 ¢I77*b;(¢’). We now use the following
lemma.

Lemma 4.3. Under the above conditions, if ®(¢’) is an (n—1,n—1)-form
depending on ¢’ and rapidly decreasing on C™}, then

0, ifl<m-1,
{P{{)] (Cld(ll\@(C N= {2,”1./(;"_1(1)((,)’ fl=m—1.

Proof. We have

o [ GBxelQn dan(c)
[P(c)] (G dne(c) ‘m/ PQ)

_% C{5C1X€(<11<’)Ad<1¢ .
=i [ [T ©:

By Stokes’ theorem, we have

R—)oo

C13(1X5(C1,C JANdG ¢td _{ 0, ifl<m-1,
/ =A% /|<1|:R P(¢1,¢) | 2mi, ifl=m—1. O
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And so, by this lemma, if <k, we obtain
a 1 !
GL20,) =R (a0) ¢ (258 )l 229100,y ( A ) =
If I=k, we obtain

af" (0 ):53. (Pl,k(()(l hk( az_p) (C’,Z'—23¢/3<I)w;_l(cl)/\ d(1)

=2mi / ) hk(2%)e(<' = =200/0C) () =ha(2).

If m>I1>k then

m k
dp(k, Q)= ) c{‘l"‘“bj(c’)=<{-’°-1P(C)—_Z G (¢

j=k+1 i=0

The degree of the polynomial Z * ¢ F 1 b(¢") in ¢ is less than {—1<m—2 and
since the current OR x P(() is the current 0, we obtain

3fk(0 " =0.

We show now that (4.2) makes sense if z€@. Observe first that, if a real hyperplane
H intersects the domain w, then every real hyperplane H’ sufficiently close to H
meets the domain w. We fix z in @; then there exists a€(0, 1) such that z/(1-a)e
w. If a real hyperplane {o:Re((,0—2)=0} intersects the domain w in a point
o(¢), then the real hyperplane {o:Re((,0—2/(1—a))=0} meets the domain w in
0(¢)/(1—a), and so the real hyperplane {o:Re(¢,0—2)=0} intersects the domain
(1—a)w. In particular, for every (€ C™, P,,(¢)=0 implies that {o:Re (¢,0—2)=0}
meets (1—o)w. We remark now that there exists a positive constant A such that

o0 = ()

and by the property
|P(2)]<1 = d(z,P,,*(0)) is bounded
(cf. [2}, [15], [19]), there exists a positive constant B such that

PO=0 = d(g.r0) < g
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This shows that there exists a constant C such that for every (€ P~1(0), [([>C
implies that the real hyperplane {o:Re (¢, —z)=0} meets the domain (1-1o)w.
In particular, if (€ P~1(0) with |¢|>C, and if we take a point

d'(¢)€{o:Re{(,0—2) =0}N(1—3a)w,

then we obtain
10(¢)elSr) (2" =289/0¢") | = |g(¢)eld o () —209/8C"))

< g(oe—atp(C')/%D < e—ﬂl<l+E,

with 3>0, and thus the expression (4.2) makes sense for z€w, which proves the
theorem. [

Remark 4.4. Kiselman has proved in [15] that, if f is a solution of P(3/0z) f=0
in an open set UCC", then f has a holomorphic extension in ['(U), which is the
set of z€C™ for which every complex characteristic hyperplane passing through z
meets U. In particular, due to the Cauchy—Kowalewsky theorem, there exists a
small neighbourhood U of w on which the solution f of the homogeneous Cauchy
problem (4.1) is defined. Hence, if I'(w) is the set of 2€C™ for which every charac-
teristic complex hyperplane passing through z meets w, then clearly I'(w)Cw.

We will prove that, in fact, the preceding inclusion is an equality. For this,
suppose the contrary: there exists thus a z€& and a complex characteristic hyper-
plane Hécz{cr:((,z—o)=0} which does not intersect w with P,,(¢)=0. Due to
the homogeneity of P,, and the fact that z€w, we know that, for every a€C, the
real hyperplane HZ*¢={o:Re (a(, z—0)=0} intersects w. But Hg®=HZ NHE®.
Moreover, (Hg)*$=HENC™"! and (HR)**=HL"*NC"! are real orthogonal
hyperplanes in C*~1, so (Hp)*$N(HR)*>* =(Hg)*$=HZ°NC" . If this com-
plex hyperplane does not intersect w in C®~!, then by the convexity of w and the
Hahn-Banach theorem, there exists a real hyperplane H}, in C"~! which contains
(Hg)* and which does not intersect w in C™~!, and moreover, there exists a€C
such that Hj=(Hg)>*¢, which is a contradiction.

Remark 4.5. By a different argument, Schiltz has proved in [26] that, if a real
characteristic hyperplane H is tangent to dw in C*~), then it separates C™ into
two half-spaces, of which one, H,, contains w and that @ is the intersection of all
these half-spaces. One can verify that this definition coincides with our definition:
for this, if @* is the set described by Schiltz, and if 2¢@*, then there exists a
real characteristic hyperplane H in C", tangent to dQ such that ze C*\H,. In
particular, the real characteristic hyperplane passing through z and parallel to H
does not intersect {2, which implies that z¢&. In an analogous way, if z¢w, then
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there exists a real characteristic hyperplane containing z which does not intersect w.
We know (cf. [26]) that there exists two real characteristic hyperplanes parallel to
H and tangent to dw in C"~!; one of these hyperplanes, H’, does separate w
and HNC™! in C*~! so HCC™\ H’,, which implies that z¢ H,. And so, Schiltz
characterization coincides with our characterization.

Ezample 4.6. Let us consider the following Cauchy problem. If w is a smooth
strictly convex domain in C then the solution f of the holomorphic Cauchy problem

of _of _,
{ 821 0z
f(0,20) =h(z3), 2z €w,

is defined on W={2€C?:2; +2;€w} and is given by f(z)=h(z1+22).

Proof. Of course, we have P({)=(; ~(s. In addition, the definition of & in this
case is immediate and we obtain

I 5 1 oY ) —28y/8 3
2)= ——08|——|. [ {222 elln2)+(¢2. 22 ¥ /8C2) 200y C2))/\ dé;
16= et e] (r(2e (2000
1 oy (Cor22) H(Car22—20%/862) (05
= — —_— 2,2 22 a
= / h(2 e (gz))e (200%(G2)

= h(z1 +22),

since 1/(2m4)d(1/(¢1~(2)]A(d¢1 —d(z) is the current of integration over ¢, =Cs. [

Ezample 4.7. Let us consider the following Cauchy problem: If w is a smooth
strictly eonvex domain in C then the solution f of the holomorphic Cauchy problem

of of _
{ 52—1—6—z2—f(3)—0»

J(0, 22) = h(z2), 22 €w,
is defined on W={z€C?:2;+2z;€w} and is given by f(z)=h(z1+22)e*.

Proof. Of course, we have P({)=(; —(>—1. In addition, the definition of @ in
this case is immediate and we obtain

f(z)= (2;)2 o [Cl — 1 ] . (h (2‘9_'/’ ((2)) {61:21)+(C2,22=20%/8C2) (254 ((5) ) A dC1)

G2—1 ¢z
~5m / h 26—’”(42))e““"“’*“2”"2""”"’"’(2éa¢(<2>)
27 C 8(2
=e" h(z1+23),

since (1/2mi)8[1/(¢1—~{a —1)]A(d¢, —dC,) is the current of integration over the com-
plex line (;=C(+1. O
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5. The non-homogeneous Cauchy problem

We now consider the following situation. Let §2 be a bounded smooth strictly
convex domain in C™. Let P be a polynomial over C™ of degree m such that the
complex hyperplane {z€C™:z, =0} is non-characteristic for the operator P(D). Let
g€0O(Q) and let ho, ..., hp_1 €O(@) where w=QN{z€C™:2;=0}. We want to solve
the holomorphic non-homogeneous Cauchy problem

(5 )1@=g6.  zeo,
4 10, #) =ho(2), ew,

(5.1) :

am lf

PR —7(0,2)=hn_1(2), Z€w.
\

The idea we use for solving this problem is to apply Theorem 4.1 combined with
the Duhamel’s principle (cf. [14]).

Proposition 5.1. Let f be a solution of the holomorphic Cauchy problem (5.1)
with ho, ..., hy—1=0. Then we can write

f(2)= /0 " F(zo,21-20,2') dzo,
where F(2g,21,2') is, for each z, a solution of P(D)F=0 with initial data
Pm(1,0,...,O)g(zo,o,z’h{ 3’(20’2,)’ Z:i:j
Proof. Let f be defined as before. If k>1 then
k

o s gFF
f( ) Z—'—(Zho Z A a—z{c(z()’zl—ZOVZI)dzo

so that .
o
-—(0,2')=0, k=0,...,m~—1,

and
Vo ikt ,
P(D)f(2) = P,(1,0,..., 0)732—"“_1(21’0’ 2Y=¢(z). O
1

A direct application of this proposition gives us the following theorem.
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Theorem 5.2. Let f be a solution of the holomorphic Cauchy problem (5.1).
Then f 1s defined on Q=QNw, and we have the representation formula, for every
z€9,

f(Z 25 ( (Zl,cl,2__)e((lle)+(clvzl—2a¢/ac )w ((’)/\ dcl)

(Z ” k(C)hk< a"c/))e(C1,n)+(C'YZ'—23¢/8( )w (A dCl)

k=l

Ozp = O\ i1z
9(21,C1, 3(’):/0 g<z0,25?)e {1, )dzo.

Remark 5.3. A simpler approach to this problem is the following. We know
that the function fy defined by

fo(z)=R- (g (2(69_?) e(c,z—2a¢/3C)wn(C))

is a particular solution of the equation P(D)fo=g. It remains to write f=fo+f'
with f’ being the solution of the Cauchy problem

( P(%)f’:o in Q,

< f1(0,2") = ho(2"),

with

.am—l f/

{ W(O,Z')=h:n—1(zl),
with
1yl / anO
hi(2') =hi(z")—— o7 (0,2").

Remark 5.4. In the case when 2=C" and the functions g, hq,..., "1 are
holomorphic of exponential type, we can see that the solution f of the holomorphic
Cauchy problem (5.1) is defined on C™ and of exponential type. For this, it is
sufficient, by Duhamel’s principle, to prove that the solution of a homogeneous
Cauchy problem with data of exponential type is also of exponential type. Let us
consider z€ C"; there exists R>0 such that, if B,,; is the unit ball in C*~1, then
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2€RB,_1. One has to estimate the solution f with the help of formula (4.2); we
obtain, by Lemma 2.1,

|< |)|e<c,z> RICI,

where Ag, oy and By are positive constants independent of z and where Hj are
holomorphic functions of exponential type such that |H(2')| < BeCxl#l for all 2'¢
C™~!, where B;, and C} are positive constants. And so

q
F@I<S Addz™  sup |<|"ka(
k=1

G 1<A+BIC)

q
f(2)| < ZAklzlakBkeCkR sup  [¢|PreléllzI—RICT
k=1 [¢11<A+BI¢’|

If {¢1|<A+BJ{’|, we obtain the existence of y>0 depending only on A and B,
such that v|¢|<|¢'|<|¢|- And so, if we take R=2|z|/, we deduce that (4.2) has a
meaning, and

|f(z)|<2Ak|zl°‘*Bke20*'zV* sup zfke™l#I2/
k—1 zeR+

q k
:Z AklzlakBke2Ck|Z|/’Y (’[Tkr) e_ﬁk,
z
k=1

which implies that feExp(C™). And so, we can write
1) = [ fw)e ™ (w)
where w,, (w)=(27i)~™(08|w|?)" /n!. By inverting w and @, we obtain

(52 1) = [ @t w);

and so
(5.3)

P ) 1) =s)= [ P@i@eDun(u)= [ g@letsDun(w)

But, we have the following division formula

el = P(w) (6= ()
(5.4) [P(C)]

(¢ 2)+(@°(C),w—¢)
I:P(C):l (P(C, ) € 0n—1(<)),
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where ¢0: C"—»C™, ¥O(():=3"7_, ¥2(¢) déx and 0x(¢):=(2mi)~™(0¥°(¢))*/k!, and
where ¢° is chosen so that (5.4) is well defined and such that the image of P~1(0)
by ¢? is included in the hyperplane {z€C":2;=0}.

Let x be as in the preceding section and let x;(¢):=x(|P({)}]).

By Lemma 2.1, one can take

P2(¢) = 0 (¢)C1, G2y e 5 G-

And so, by inserting (5.4) into (5.2), by exchanging residue currents and integration,
and by using (5.3), we have

1

[W] (90D, (0))

2515 (?«1 PROB(O) D0, 1(0)).
=0

f(2)

In particular, for g=0, we obtain an answer to a question of Passare [23], who has
proved this formula in the particular case

P(2)=(21—L1(Z'))™ ... (21— Li (2"))™,

where each L; is linear, and who has conjectured that this formula is true for every
polynomial containing a2 with a€C* and m=deg P.

6. The Goursat problem

In this section, we generalize the preceding results to the case of systems. Let
P:C"—CV be a complete intersection polynomial mapping (that is dimcP~*(0)=
n—N), hence in particular N <n.

Definition 6.1. We say that a complex plane of complex codimension N is non-
characteristic for the differential operator P(D) if we cannot write H=HN...NHy,
where each H; is a complex characteristic hyperplane for the differential opera-
tor P;j(D). In other terms, we say that a complex plane H of complex codimension N
is characteristic for the differential operator P(D) if we can write H=H;N...NHy,
where each H; is a complex characteristic hyperplane for the differential opera-
tor P;(D). If now H is a real plane of real codimension N, we say that H is
characteristic if we can write H=H;N...NHy, where each H; is a real characteris-
tic hyperplane for the differential operator P;(D).
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If each P; is a polynomial on C™ of degree m;, we first want to solve the
homogeneous Goursat problem, that is to find a holomorphic function f such that

P, (g;)f(z) —o,

(6.1) :
PN(%)f(z)=o

and such that

6jl+"'+j"’f

6-1’ I
(6.1) 0z]' ... 0z}

(0,,0,2M) =hgjy, sy (@), 2N ew,

where, for every ke{1,..., N}, we have 0<j, <m;—1, and where the h;, . ;) are
holomorphic functions in a neighbourhood of & which is a smooth strictly convex
domain in C* V| with the notation C*>z=(zy, ..., zn, 2(¥)), where 2(MeC"~,
and where the complex plane {z€C™:z;=...=2z5=0} is non-characteristic for the
differential operator; moreover, we will suppose that, for every k€{1,..., N}, the
complex hyperplane is non-characteristic for the differential operator Pr(D).

We associate with P, as in [7] and [25], a Weil-Oka-Hefer matrix (p(; x)) con-
sisting of polynomials p(; (¢, z) which satisfy

P;(z)—PF;(¢) =ZP(j,k)(C, 2)(ze—Ck)s F=1,..,N.

k=1
More precisely, we choose them such that we have

(C)-Pl(zl,C'),

P
pay (G 2) == ez

Pe(¢) = PilCay -or s Co—10 25, C))
Ck— 2k ’

Pik,ky (€, 2) =

_ Pn(Q—Pn(§r o5 GN-1,2N)

v, (6, 2) Cn—2n

We write pe,x (¢, Z)=Z;-n=k0_l p(k’k,j)zi. We denote by 1 the function associated
with w, depending only on (M) eC" V. We next introduce some more notation.
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If ICN,,, we denote by [I[ the cardinality of I and let p(I)=(—1)m2x©@.-1)_ if
ICN,, and JCN,, then P; ; will denote the form defined by

q r
Pf,J(Cv z):= /\ g,;k(C,Z)XHPj‘(Z),
k=1 =1
where I={iy,...,%5} and J={j1, ..., jr }, and i; <...<iq.

Let x be a smooth function such that x(z)=0, if z<¢;, and x(z)=1, if x>c¢s,
where 0<¢; <cp<1. The (0, g)-current

-] )

IUJ=Ny, InJ=0, I:={i,..,ighy Ji={j1,rjN-g}r i1 <w<ig,

where

is by definition the weak limit

x5, (€) (x5 Xu,(©)
1 1 q 1 q
30 P, Q) " P©) PrQ) T P, Q)
where e (€):=x(1P;(¢)|/€j(e)) and where the ¢; are strictly positive functions such

that
lim e(¢) =0 and lim £5(€)
e—0 e—0 ¢ _H(e)

=0, geN,

(cf. [24]). These limits depend on the choice of x and €, except for the current Rn,,.
If we want to obtain more canonical residue currents, we have to suppose, moreover,
that, for every ICNy, the polynomial mapping P;=(F;,,..., P;,) is a complete
intersection.

We generalize Theorem 4.1 in such a way.

Theorem 6.2. Let us consider &, which is the set of z€C™ such that every
subspace of real codimension N, characteristic for the differential operator P(D),
passing through z meets the domain w. Then, under the above conditions, there
erists a solution feO(@) of (6.1) and (6.1'). Moreover, we have the following
representation formula, for every z€w,

10=0] )" g (mil B S TR0

kn=0

(N) 2(NY _ (N)
Xh(kh'.‘k”)( 5t (C(N))) (Cruz) b (O, 2n)HC —~209/8¢ >>

A (20¢m Bem (¢ V)N
(2mi)»(n—N)!

AdCN A Ad(.
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Proof. The proof is similar to the proof of Theorem 4.1. [

If we now want to solve the non-homogeneous Goursat problem, we need an
explicit version of the fundamental principle, which is a direct generalization of
Theorem 3.4, analogous to the main theorem of [25]. We have the following theorem.

Theorem 6.3. Let P:C"—CN be a complete intersection polynomial map-
ping. Let us consider g, ...,gn, holomorphic functions in a neighbourhood of 2
such that

P;(D)gk = Pi(D)g;

Then there ezists a holomorphic function f in a neighbourhood of  that is a solu-
tion of the system of differential equations

Pj(D)=gj, ]=1,,N
Moreover, we can write

f(2)=81(g1)(2) +...+ Sn{gn)(2)+T(f)(2), =z€Q,

where

S @)=z 3. (DR

(2mi)» 1§ TN,
NAY (200y)" 111
.(PI,N"\I\{I}((,D)gl( 6()6« 26¢/3C)Wl)_—),
1
$2(0)(2) = 2, WD
2¢ICN,,
LY o (288y)»—11!
'(PI,Nn\I\{2}(Ca D)gz( 6()6« 28¢/80) (- )
1
Sm_l(gm—l)(z):(_%—’i); > uDA
migTON,
O\ (. (280y)"- 1l
'(PI,Nn\I\{m—l}(C’D)gm—l (23_C) (e 2a¢/8<)__.—_(n Tl ),

Sm(gm)(2) = @ ),,u(Nm 1)BN,._,

) 2001p)n—m+!
'(PNm—h@(CvD)gm( atéj) (Gz= 23#’/8()(_(11—"/21W),
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T(f)(z) = ﬁu(Nm)RN

(PNm,m(c, D)f( a‘é’)ac 2= 20%/3¢) (2_3@/’)_"'1).

(n—m)!

Proof. The proof is analogous to the proof of Theorem 3.4. If the solution f
exists, then it satisfies (3.1). We also apply Proposition 2.3 to the holomorphic
function ¢+ e!$?) with p=N+1 and the weights

Ql(aa C) :2(1_(1)%15,

Xf(()(l’(l,l)(‘fa ¢ ,p(l,n)(U, <))
Pl(O') ’

Q*(0,¢) =

N+1 _X‘}:V(C)(P(N,l)(U,C),~-~,p(N,n)(U,C))
Q + (0) C)‘ PN(G’) .

After this we follow the proof of Theorem 3.4 line by line.

And so, we have just to prove that the solution f exists. For simplicity, we
assume that N=2 (the proof is similar for larger N). Let g, and g» be holomorphic
functions in a neighbourhood of Q, such that P;(0/0z)g2=P»(8/8z)g:. We define

F(2) = 81(g1)(2)+S2(g2)(2)

62 =[] [ (@) (5 ) o)
[l e (=6 52 ) (5 ) et y)
()l (6 3)m ()= iy )
F is then holomorphic in € and
(2ol on ) (e~ e
+ {Elfc-)} 8 [73;1(5} (Pl (C)p2 (g, a%) o ( 2(;92&) S(Crm—200/50) (—z(%g%ﬁ)

ril?lata] (reom (32 () aotacen)
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We use the identity 8[1/P;(¢)]P1(¢)=0 to obtain

i) o ) () )

=g1(2).

In a similar way, P»(8/8z)F(z)=gz(z), using the identities P,(8/0z)g:=P1(3/0z)g2
in (6.2). O

Now, to solve the non-homogeneous Goursat problem, one can do as in Re-
mark 5.3.

Remark 6.4. In fact, the Goursat problem has a unique solution f by Cauchy-
Kowalewsky-Lednev’s theorem (cf. [16], [17]). Using this result, if the functions
g; and h; are in Exp(C™) and Exp(C"~%), respectively, then, in RB.NRB,_n,
we obtain the solution f of the holomorphic non-homogeneous Goursat problem.
Estimations like those in Remark 5.4 give us that f€Exp(C™). We can also derive
an analogous formula for f, by taking

1/)0(() = (Xl (C)Elv ey XN(()EN) C_(N))i

so that 1° maps P~1(0) into C*~V.
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