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Ergodic properties of fibered rational maps

Mattias Jonsson(!)

Abstract. We study the ergodic properties of fibered rational maps of the Riemann sphere.
In particular we compute the topological entropy of such mappings and construct a measure of
maximal relative entropy. The measure is shown to be the unique one with this property. We
apply the results to selfmaps of ruled surfaces and to certain holomorphic mappings of the complex
projective plane P2,

0. Introduction

Let X be a compact metric space, let g: X5 be a continuous mapping, and
let C denote the Riemann sphere. A rational map of degree d fibered over g is a
continuous mapping f: X x CO of the form

f(z,2) =(g(z), Qz(2)),

where @ is a rational function of degree d, depending continuously on z€ X. In
this paper we will investigate the ergodic properties of fibered rational maps. For
background on ergodic theory see e.g. [W].

In the special case when X is a point we recover the class of (non-fibered)
rational maps of C. The study of the ergodic properties of the latter mappings
was initiated by Brolin [Br] (in the case of polynomials), and further developed by
Lyubich, Freire, Lopez and Maiié. In particular they proved the following result.

Theorem A. ([L], [FLM], [M]) Let f: CO be a rational map of degree d>2.
Then the following holds:

(i) the topological entropy of f satisfies h(f)=logd;

(ii) f has a unique measure p of mazimal entropy;

(iii) p s mizing for f;

(iv) the support of u is exactly the Julia set of f.

(!) Supported by the Swedish Foundation for International Cooperation in Research and
Higher Education (STINT).
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In this paper we generalize Theorem A to the fibered setting (cf. Theorems 3.1,
4.2, 5.2 and 6.1). Let 7: X xC— X be the natural projection.

Theorem B. Let f: X xCO be a rational map of degree d>2, fibered over
g: XO. Then the following holds:

(i) h(f)=h(g)+logd;

(i) if v is an invariant probability measure for f, then the metric entropies of
[ and g are related by h,(f)<hn,.(g)+logd;

(iii) given an invariant probability measure y' for g, there erists an invariant
probability measure p for f such that m,p=p' and h,(f)=h, (g9)+logd; if b, (g)<
0o, then p is unique with these properties;

(iv) the measure u characterized in (iii) is ergodic (mizing) for f if i’ is ergodic
(mizing) for g;

(v) ifz€X and p, is the conditional measure of u on {z} x C, then the support
of piz is ezactly the Julia set for the restriction of {f™} to {z}xC.

In fact, we prove Theorem B in a more general setting. Namely, we replace
the trivial C-bundle m: X x C— X by a C-bundle m:Y - X. Roughly speaking, this
means that Y is a compact metric space, that 7 is a continuous surjection, and that
the fibers Y, :=n~!(z) are Riemann spheres which are fairly nicely packed together.
A rational map fibered over g: X O is then a continuous mapping f: Y O such that
m semiconjugates f to g, and such that the induced mappings Yz —Y(,) between
fibers are rational. See Section 1 for precise definitions.

The proof of Theorem B mainly follows Lyubich’s proof of Theorem A. How-
ever, we use pluripotential theory to construct the measure of maximal entropy,
as introduced by Hubbard and Papadopol [HP] and by Fornzss and Sibony [FS4].
Also, the proof of the uniqueness part in (iii) is substantially harder than in the
non-fibered case. A different proof of the existence and uniqueness of the measure
of maximal entropy has been given, independently, by Sumi [Su] for skew products
generated by rational semigroups. '

One motivation for studying fibered rational maps is that they can be used
to understand the dynamics of certain holomorphic mappings in two complex di-
mensions. The first situation that we address is when Y is a ruled surface, i.e. a
smooth projective variety with the structure of a P'-bundle m:Y — X over a com-
pact Riemann surface X. By a result of Dabija [D], selfmaps of ruled surfaces can
be viewed as fibered rational maps. Our techniques will therefore allow us to prove
the following result (see Theorem 7.3).

Theorem C. LetY be a ruled surface over a Riemann surface X, and let f
be a holomorphic mapping of Y that fibers over a holomorphic map g: X ©. Assume
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that the topological degrees &5, 84 of f and g satisfy 1<8,<d5. Then h(f)=logdy,
and f has a unique measure of maximal entropy.

For holomorphic mappings of complex projective space P*, k>2, Fornzess and
Sibony proved that there exists a natural measure of maximal entropy. The ques-
tion of uniqueness is open in general, but we will prove the following result (see
Theorem 7.4).

Theorem D. Let f be a holomorphic selfmap of P? of degree d>2 that pre-
serves the family of lines passing through a given point O in P2. Then f has a
unique measure of maximal entropy.

The last theorem applies in particular to polynomial skew products on C2.
These are mappings of the form f(z,w)=(p(z), ¢(z,w)), where p and g are polyno-
mials of degree d>2, and ¢ has nonzero w%-term. Polynomial skew products on C?
were previously studied by Heinemann [H1], [H2], [H3], by the author [J], and by
Sester [S1], [S2] (in a slightly different situation).

Fibered rational maps can be viewed as non-autonomous (or random) dynami-
cal systems on C. Indeed, if f: X x C 0 is a fibered rational map, then the restriction
of f* to {z}x C defines a non-autonomous system on 6, where the time n-map is
given by

z— Qg"‘l(z) °"'°Qg(:t) °Q:t(z)'

Conversely, let (Qi),>o be an equicontinuous sequence of rational maps of C of
degree d>2 and let X be a compact subset of the space of rational maps of C of
degree d such that Q,EX for all i. Let X=XN and define g: X — X by the shift
9((R:))=(Ri+1). Then the map f: X x CO defined by f((R:),2)=((Ri+1), Ro(2))
is a fibered rational map over g, and the restriction of f to {(Q;)}xC can be iden-
tified with the sequence (Q;). For more on random and non-autonomous dynarmical
systems see e.g. (K|, [KS| and [Bo]. The papers [FS1] and [FW] are concerned with
random iterations on C and P2, respectively.

Some of the results in this paper generalize to the setting of fibered holomorphic
mappings of P¥, k>1, that is, replacing C~P' by P*. We will not, however,
pursue this generalization here. At any rate, the proof of the uniqueness result
in Theorem B(iii) does not generalize. Indeed, as mentioned above it is an open
problem whether uniqueness holds even in the non-fibered case for k>2.

The organization of this paper is as follows. The definition of C-bundles and
fibered rational maps are given in the first section. In Section 2 we show how to
define natural measures u, on the fibers Y,=="?(z), using pluripotential theory.
The support of u, is equal to the Julia set for the restriction of {f"} to Y;. In
the case when the base space X is a single point we recover the unique measure of
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maximal entropy in Theorem A. We compute topological entropy of fibered rational
maps in Section 3. Given an invariant measure u' for g: X (O we can construct a
measure u on Y having u, as conditional measures on the fibers Y; and such that
mpb=p'. The properties of u are studied in Sections 4-6, where we show that u
is ergodic (mixing) if 4’ is. Further, g is the unique measure of maximal entropy
among the invariant measures v for f such that w,v=y'. Finally, in Section 7
we apply the previous results to selfmaps of ruled surfaces and prove Theorems C
and D.

1. Fibered rational maps

The phase space for the dynamical systems in this paper will be a space Y,
fibered over another space X with Riemann spheres as fibers. The dynamical sys-
tems themselves will be continuous selfmaps of Y mapping fibers to fibers as rational
mappings. The purpose of this section is to define all of this in a precise way.

Throughout the paper, C will denote the Riemann sphere, equipped with the
spherical metric. The metric is normalized so that the diameter of C is one.

Definition 1.1. Let X be a compact metric space, and let m:Y =X be a C-
bundle. This means that Y,:=n"!(z) is homeomorphic to a sphere for every z,
and that Y, comes with a complex structure and a smooth (1,1)-form w;>0 in-
ducing the metric on Y,. We also assume that X can be covered by open sets
{U;} for which there exists a homeomorphism ®;: U; x C—n—1(U;) and such that
<I>j'lo<I>.i: (UinU;) x CO maps {z}x C as a Mébius transformation onto itself for all
zelU;NnU. -

Remark 1.2. The definition implies that given £o€ X we may find a continuous
family i,: 6—>Yz of conformal mappings for = close to zg. Such a family i, will
be called a local parameterization. The local parameterizations are not uniquely
defined, but by compactness of X we may assume that there exists a compact subset
My of the set of Mébius transformations of C such (Y le Mg for any two local
parameterizations ¢, and j,. As we will see, the choice of local parameterization
will not be important for most of what follows. If i, is a local parameterization,
then the pullback iiw, is a positive smooth form on 6, depending continuously
on z.

Ezample 1.3. Let Y =X xC and let 7 be the projection on the first coordinate.

Ezxample 1.4. Let Y be a ruled surface over a Riemann surface X. This means
that Y is a smooth projective variety of complex dimension 2, which is also a
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holomorphic P!-bundle over X. Every Y, has then a unique conformal structure
and a positive form w;=w|y,, where w is the Kahler form on Y.

The following result will be needed in Section 4. It says that continuous func-
tions on C-bundles can be approximated by functions which are smooth on the
fibers. The proof, using a partition of unity on X, is left to the reader.

Lemma 1.5. Let Y be a C-bundle over X and let p€CY(Y). Then, given
€>0 there exists C>0 and $eC(Y) such that ||p—yll <&, Pz:=@|y, €C*(Yz)
and (| Gslloz(y,) <C for zeX.

We next define fibered rational maps.

Definition 1.6. Let Y be a C-bundle over X and let g: X O be continuous. We
say that a continuous mapping f:Y O is a rational map of degree d, fibered over g
if it has the following properties:

(i) 7 semiconjugates f to g, i.e. gowr=mo f, in other words, f maps the fiber Y,
into the the fiber Yy, for z€ X;

(ii) the restriction fly,:Y;—Yy(,) is a rational map of degree d.

Condition (ii) can also be phrased as follows: for any local parameterizations i,
at z and ig(;) at g(x), the composition ig_(;) o foi, is a rational map of C of degree d.

If f:Y © is a rational map, fibered over g: X, and z€ X, y€Y, n>0, then we
will write z,, for g"(z) and y, for f™(y). We will denote the restriction of f to Y;
by fy. Similarly, f is the restriction of f™ to Y;.

Ezample 1.7. Let Y=X xC asin Example 1.3. A rational map f: Y O of degree
d, fibered over g: X O is then of the form

f(z,2) = (9(x), Qz(2)),

where @, is a rational function of degree d, depending continuously on z. A special
case is when the mappings Q. are polynomial mappings of C. Such mappings have
been studied by Sester [S1], [S2]; see also [H2] and [J].

Ezample 1.8. Let Y be a ruled surface over X as in Example 1.4. It is a result
of Dabija [D] that (almost) every holomorphic selfmap of Y is a rational map fibered
over a holomorphic map g: X . See Proposition 7.1 for more details.

2. Invariant measures and Julia sets on fibers

In this section we construct probability measures on the fibers of a fibered
rational map. The support of these measures serve as Julia sets for the restriction
of the dynamics to the fibers.
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Let f:Y O be a rational map of degree d>2, fibered over g: X©. The form w,
on Y, induces a measure, also called w, on Y, or even on Y. As measures on Y we
have that z+—>w, is weakly continuous.

If x is a continuous function on Y,, then we define the continuous function
(f2)«x on Yz, by

(2= Y x(w),
f2(w)=z2
where the preimages w of z are counted with multiplicity. We define pullbacks of
measures by duality, i.e. {(f2)*v,x)=(, (f2).Xx). Now define probability measures
o n ON Y; by

1 *
Hzn = d_"(f:) Wz,

Theorem 2.1. The measures p,n, converge weakly to a probability measure
ty on Yy, Further:

(i) px puts no mass on polar subsets of Yy;

(1) (fo)sbtz=tz, and (fz)*pz,=d"pz;

(i) z—>p, 18 continuous in the weak topology of measures on Y.

We will prove Theorem 2.1 by finding potentials for the measures i, and prov-
ing convergence results for these potentials. This method was first used by Hubbard
and Papadopol [HP] and further developed by Fornzss and Sibony (see [FS3]). The
main idea is to lift f,:Y;—Yz, to a selfmap of C?; the fact that there is, in general,
no canonical way of doing this makes the proof below slightly technical.

Proof. Throughout the proof, C >0 will denote constants not depending on ,
n, or any choice of local parameterization. Let C2=C?2\{0} and let n": C2—C=~P!
be the natural projection. Any Borel probability measure v on C can be identified
with a plurisubharmonic function G, on C? such that G, (z, w)<log|(z, w)|+O(1),
as |(z,w)|—>o0, and G, (Az, \w)=G,(z, w)+log|A| for A€ C*. The function G, is
unique up to an additive constant and the correspondence is given by v=dd°(G, ~s),
where s is any local section of n’ and d°=(v/—1/2m)(0—8).

In our setting, given a local parameterization i,: a—)YI there exists a smooth
potential G o for w, in the sense that w,=dd(G,gos°i;'). By the smoothness of
w; we may assume that

(2.1) log |(z,w)| < Gz 0(2, w) <log|(z,w)|+C for (z,w) € C2.
Thus, if G0 and éz,o are two different potentials, then we may assume that

(2.2) 1Ge.0(z,w) =Gy o(z,w)| < C.
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Given a local parameterization at x we may assume that z—G, o is uniformly
continuous.

Given z€ X we will lift f,:Y;—Y,, to selfmaps of C and C2. Let i, and iy,
be local parameterizations near x and z;, Define Q,: CO to be a rational map and
R;:C20 to be a homogeneous polynomial map, both of degree d, such that

sup{|Rz(z,w)|:|(z,w)|=1}=1
and such that the diagram

t
m

c2-"»C s v,

(2.3) le lQ, lf,

cz ", C -1,
commutes. Given the local parameterizations 7, and i,, these properties determine
Q: uniquely, and R; uniquely up to multiplication by a complex number of unit
modulus. Further, if we change i,, and R, is the resulting map of C?, then we have

(24) C_C_<_ |Rz(zaw)| < C.
|Rz (2, w)|

Now consider an orbit (z;);>0 in X, select parameterizations at each point
z;, and let R, be the corresponding homogeneous selfmaps of C2. Let R? be the
composition R;, ,o...oR,. Then R? is a homogeneous polynomial mapping of C?
of degree d*. Notice that R” is determined, up to multiplication by a complex
number of unit modulus, by the local parameterizations at z and z,. Given these
choices we have that z— R? is continuous. If we change i, , then, corresponding
to (2.4) we have

—o . |R2(z,w)|
(2.5) e Cgmge?

Define the plurisubharmonic function G, on C? by

1
Gz,n = EGImOORZ'

Then G, , is uniquely defined, given the local parameterizations at zo and z,.
Further, =G, ;, is uniformly continuous near zo. From (2.1), (2.2) and (2.5) it

follows that if we change the local parameterizations at ,, and G, ,, is the modified
Gz n, then
C

(26) IGz,n_éz,nl S d_"
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Lemma 2.2. Given z€X and a local parameterization at x, the functions Gz
converge uniformly on compact subsets of C2 to a plurisubharmonic function G,
as n—oo. This function does not depend on the choice of local parameterizations
at x; for j>1, and it satisfies G.(z,w)<log|(z,w)|+0(1), as |(z,w)|—>00, and
Gz(Az, \w)=Gy(2z,w)+log |A| for A€C*. Further, we have:

(i) Gz is uniformly continuous on CZ;

(ii) Gy, oR;=d-Gy, given i, and iy, ;

(iii) z—Gy is uniformly continuous.

Proof. The fact that the choice of local parameterizations at z;, j>1, is irrele-

vant follows from (2.6). Let us therefore fix local parameterizations at these points.
Notice that

e Cl(z, w)|* < | R, (2, w)| < |(z, )|
for j>0 and (z,w)€C?. This implies that
e C|R(z,w)|* < |RE¥ (2, w)| < |RZ (2, w)|%,

so, using (2.1),

C
|Ga:,n+1 _G:t,nl S

d_nv
which shows that G,:=lim, o, Gz n exists and that
C
(2'7) |Gz,n“Gz| S E"—

That G, is continuous and plurisubharmonic, that G, (Az, \w)=Gz(z, w)+log |A|
and that G.(z,w)<|(z,w)]+O(1) all follow from the corresponding properties of
G, n and from (2.7).

We see from the definition of G, ,, that Gy, noRy=d -Gz n41. This and (2.7)
imply (ii). Finally (iii) follows from the estimate (2.7) and the fact that z+>G; n is
continuous for every n. O

We now continue the proof of Theorem 2.1. First we note that G, is a
potential for p, n in the sense that py n=dd*(Gz nosciy 1) for a local section s of 7’
Indeed, for any local section ¢ of ©’ we have that the function d~"G, gotoi o f2
is a potential for y, . Further, toi;‘nlo f2 differs from R} osoiy ! by a holomorphic
factor ¢#0. Thus

dd®(d "Gy 0oR™os0i; ') = dd*(d~" log |¢|)+dd°(d "Gy, ootoiy o f7) =0+ iz n.

Since G ,, — G, uniformly on compact subsets of C2, as n— oo, it follows that pz n
converges weakly to a probability measure p; on Y,. Here py=dd*(Gzos0i; ") for a
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local section s of #’. The properties (i)-(iii) of u, now follow from the corresponding
properties of G,. [

We next show that the support of the measure pu, can be interpreted as the
Julia set of f in Y. More precisely, fix € X and consider the family {f7}n>¢ of
rational maps on Y,. We define F, the Fatou set of f in Yz, to be the set where
this family is normal. Equivalently, z€ F, if and only if the family Q;:i;“lo floiy
of rational maps on C is normal near i, 1(2); this does not depend on the choices
local parameterizations at £ and x,. Still equivalently, F, is the open subset of
Y, where the family {f”} of mappings from Y, into Y is locally equicontinuous.
Clearly F; is an open subset of Y. Its complement J,:=Y_\F is called the Julia
set of f inY,.

Proposition 2.3. The support of u, is equal to J; for every z€X.

Proof. Again we let C>0 denote a constant not depending on z, n, or any
choice of local parameterization. We will follow the proof of Theorem 6.4 in [FS3].
Fix z€X and local parameterizations i, at z and i,, at z, for n>1. Define
Qr=Qz,_,°...oQz and RZ=R, _ o..oR, using (2.3). Let us first show that the
support of y, is contained in J,. Suppose that U €i;(F,) and let Q’ be a subse-
quence converging uniformly to 2 meromorphic function on U. After shrinking U, if
necessary, we may assume without loss of generality that Qz’ (U)C {[z:w]:|z|<|w|}
for all j. Then R’ (z,w)=p;(z,w)(4;(2,w),1), where g; and A; are holomorphic
on (n’)~}(U) and ¢;#0, |A;|<1. Thus

1 ) 1 1
E log | Ry (2, w)| = s log |0;(z, w)|+E log |(4; (2, w),1)|.

Here the left-hand side converges uniformly to G, by Lemma 2.2, (2.1) and (2.2).
Further, the first term in the right-hand side is pluriharmonic, and the last term con-
verges uniformly to 0. Thus G, is pluriharmonic on (7')"Y(U), so i (U)Nsupp pz=
0. It follows that supp pz CJ,.

For the converse, suppose that u, vanishes on an open set iz(U) so that G,
is pluriharmonic on (n’)~'(U). By shrinking U we may assume that there exists a
holomorphic function A0 on (7’)~!}(U) such that G.=log |h|. But then it follows
from (2.7) and (2.1) that

o

| og Rz - tog v <

on (7')~!(U). Thus
-c

Rg‘
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on (7')~Y(U), which implies that R?/h?®" is normal on (n’)~!(U). Since 7’ semi-
conjugates R?/h?" to Q2, it follows that {Q"} is normal on U. O

The following proposition sums up some of the properties of the Julia sets J,.
They follow from the corresponding properties of p,.

Proposition 2.4. Let f:Y O be a rational map of degree d>2 fibered over
9: XO. Then the Julia set J, of f in Y, has the following properties:

(i) Jy is compact, nonempty and has no isolated points for € X;

(il) fedo=Jz, and f71J, =J; for z€X;

(iii) the assignment x+— J, is lower semicontinuous in the Hausdorff metric on
compact subsets of Y.

Proof. (i) This follows because i, is a probability measure and p; has contin-
uous local potentials, given by G, osoiz!, where s is a local section of n':C2—C.

(ii) This follows from (fy).pr=ps, and f}p;, =d-p,.

(iii) This is a consequence of the continuity of z—p,. O

Remark 2.5. The assignment x+sJ, is not continuous, in general. See e.g. [J]
for examples. This is analogous to the fact that the Julia set of a rational function
depending on a parameter generally does not vary continuously with the parameter.

The measure u, was defined by pulling back the measure w,, on Y, by fZ,
normalizing, and letting n—o0c. One may ask what happens if we pull back other
measures. The following result asserts that for most points w€Y;,,, the preimages
of w under f? are distributed like p,. The proof is almost identical to the proof of
Lemma 8.3 in [FS3]; the changes needed are left to the industrious reader. We will
use Proposition 2.6 in Section 4.

Proposition 2.6. There exists a constant C>0 such that if t€X and ¢ is a
continuous function on Yy such that p.:=y|y, €C*(Y,), then

Clezlcv,)

e {0 € Yoo U0 ()| >} < 52

for t>0 and n>1.

3. Topological entropy

In the next four sections we will study the ergodic properties of fibered rational
maps. For background on ergodic theory see [W]. First we will consider topological
entropy. The exposition follows Lyubich [L].
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We recall the definition of topological entropy due to Bowen [Bo]. Let (Y,d)
be a compact metric space and f:Y () a continuous mapping. A set ZCY is (n,d)-
separated if for every two distinct points z,weZ there exists ¢ such that 0<i<n
and d(f'z, fiw)>4. A (1,68)-separated set will also be called a §-net (this notion
does not require a map f). A set FCY (n,d)-spans another set ZCY if for every
2€Z there exists we F such that d(f*z, fiw)<é for 0<i<n.

For a compact set ZCY let r,(4,Z) be the smallest cardinality of any set
F which (n,d)-spans Z, and let s,(8,Z) be the largest cardinality of any (n,d)-
separated subset of Z. It is then easy to see that

"'n((sv Z) < Sn(d’ Z) S"‘n(%‘s, Z) < 0.

Also, m,(d, Z) and s,(6, Z) are decreasing in §. Thus it makes sense to define
h(f,Z)=lim li 11 (8, Z) = lim limsu llos(JZ)
»2) = lim lim sup —log (3, )_513(’) imsup - log sn(d, Z).

The number h(f, Z) is called the topological entropy of f on Z. If we want to
emphasize the dependence on f, then we will write e.g. s,(d, Z; f). On the other
hand, if Z=Y, then we will suppress Y and write s,(d; f) and h(f).

The following theorem is the main result in this section.

Theorem 3.1. If f:Y O is a rational map of degree d, fibered over g: X O,
then the following holds:

(i) h(f,Yz)=logd for every z€ X;

(ii) h(f)=h(g)+logd.

Note that if X is a single point, then we recover the result by Gromov [G] and
Lyubich [L] that the topological entropy of a rational map of C of degree d is log d.
Theorem 3.1 follows from the following two results.

Lemma 3.2. If f:Y O is a rational map of degree d, fibered over g: X O, then
for every a€(0,1) there exists §o=0J0p(a) >0 with the property that for 6<éy, n>1
and x€X there erists an (n,d)-separating set in Y, with at least d®" elements.

Lemma 3.3. If f:Y O is a rational map of degree d, fibered over g: X O, then
for every §>0 there exists a constant C{8)>0 with the property that for every z€X
and every n>1 there erists an (n,8)-spanning set in Y, with at most C(§)n°d™
elements.

We postpone the proofs of the above lemmas for a moment, and show how they
imply Theorem 3.1.
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Proof of Theorem 3.1. (i) Fix z€X. From Lemma 3.2 it follows that

lim lim sup log 8,(6,Y;) > alogd

890 nooo

for every a<1, so h(f,Y;)>logd. On the other hand, Lemma 3.3 implies that

%m}) lim sup — log ra(8,Y2) < llm hm sup log C(8)nSd"™ =log d.
-V noco
Thus h(f,Y;)<logd, so h(f,Y;)=logd.

(ii) By a result of Bowen [Bo, Theorem 17} we have

h(f) < h(g)+sup h(f,Y:),
z€X

so by (i) we get h(f)<h(g)+logd. On the other hand, fix a€(0,1), §<8p, with
do from Lemma 3.2, and n>1. Find 6’>0 such that dy(Yz,Y;)>d whenever
dx(z,z')>6". Let ECX be a maximal (n, ’)-separating set with respect to g and,
for z€E, let F; be a maximal (n, §)-separating subset of Y, with respect to f. By
Lemma 3.2, F; has at least d®™ elements for every z€E. Let F=|J .z Fr- Then
F is (n, §)-separating for f so

$n{8; f) 2 |F| > 5,(8"; g)d™".

It follows easily from this that h(f)>h(g)+logd. Thus h(f)=h(g)+logd and we
are done. [

We now give the proofs of Lemmas 3.2 and 3.3. The proof of Lemma 3.2 is an
adaptation of an elegant argument by Misiurewicz and Przytycki [MP].

Proof of Lemma 3.2. Let L=max(2,supgcx |Df:|) and let e=L~*/(1=a) Fix
z€X and write V;=Y;,, fi=fs, and fF=fk"* for 0<i<k.

Define B;:={2€Y;:|Df;(z)|>€c}. Then B; is compact and since the second
derivative of f; is uniformly bounded, there exists dy>0, not depending on z or i,
such that f; is univalent on every disk of radius Jo centered at points in B;. This
implies that if 21, 20€ B; and d(z1, 22) <do, then f;(21)# fi(22) unless z; #22.

Fix n>1, §<dp and let

A={z€Yy: |{i:0<i<n, fi(z)€Bi}|<an}.
Then Y, \ f3*(A) has positive Lebesgue measure. Indeed, if 2€ A, then

IDf3 ()| < Lome—om =1.
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Thus we may find a point z€Y, which is not in f}}(A) and is also not a critical value
of f&'. We will define our (n, §)-separating set as a suitable subset of (f3*)~1(2).
First, if weY;; and w is not a critical value of f;, then define R;(w)CY;
as follows: if f;'(w)CB;, then R;(w)=f'(w); otherwise R;(w) is any point in
fi H(w) \Bi.
Now define the sets S;CY;, 0<i<n inductively by

Sp={z}, Si= U R;(w) for 0<i<n.

weESit1

It is easy to check, inductively, that S; is (n—1,d)-separated. In particular Sy is
(n, 0)-separated.

We claim that Sp has at least d*® elements. To see this, let m=[an]+1 and
consider the set T' of pairs (w,3) such that 0<i<n, weS; and f/**(w)€S;,; for
exactly m numbers j, 0<j<n—i. A combinatorial argument shows that T has
exactly d™ elements. But there are at least as many points in Sy as there are
elements in T'. Thus |So|>d™>d*".

Hence we have found an (n,d)-separating subset Sy of Y, with at least d*”
elements. This completes the proof. O

Finally we turn to the proof of Lemma 3.3. In the case when X is a single
point, the result is due to Lyubich [L]. The proof below is very similar to Lyubich’s.

We will make use of two results which have nothing to do with dynamics.
They are consequences of the Koebe distortion theorem and the geometry of 6,
respectively. The first result is the following

Lemma 3.4. (Proposition 8 in [L]) Given 0<n<3 and §>0 there ezists =
#(n,06)€(0, 1) with the property that if

h: B(u, o) ———)6, 0<po<l1,
15 a univalent meromorphic function which avoids some n-net on 6, then

hB(u, »p) C B(hu, ).

Proof of Lemma 3.3. Now fix €(0,3) and §>0 and find »x=x(n,8)€(0,1)
as in Lemma 3.4. Fix x€ X, keeping in mind that all the estimates below will be
uniform in z. For 0<k<i, write Y;=Yy,, fi=f,, and fi=fi"*. Let Z] be a finite 7-
net in Y; containing all the critical points of f;. We assume that mo:=sup; |Z/|<oo.

For i>0 let Z; be the subset of Y; defined by
Z;= U fe(Zy)-

0<k<i
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Then |Z;| < (i+1)myg for all i. Notice that if weY;\ Z; and 0<k<i, then all branches
of (fi)~! are single-valued near w and do not take any value in Zj.

Fixn>1and let e=4/2L", where L=sup; , |Dfi(z)|- We now invoke the second
result referred to above. Namely, by a geometrical argument [{L, Proposition 7],
there exist finite subsets A; CY;\Z; for 0<i<n such that

(i) |4 <C(8)n2(log(/e)+C(8)) <C@E)n%;

(ii) for every z€Y; with d(z, Z;)>¢ there exists u€ A; such that d(u, ) <e(u),
where o(u)=min(xd(u, Z;), 18);

(ili) A; contains no critical values of fi for 0<k<i, further, if Q; is a given
open dense subset of Y;, then 4;NQ;=0.

Let B;=(f%)"!(A;). Then B;CY, and |B;|=d*|A;|. Fix z€Y, and consider the
orbit (2;)o<i<n of length n, where z;= fi2. We consider three cases.

The first case is when there exists m, 0<m<mn, such that d(z;, Z;)>¢ for 0<i<
m but d(zm+1, Zm+1)<e. Then pick a point u€ A,, such that d(zm,u)<e(u) and
a point weZ,,, such that d(zm,41,w)<e. Since p(u)<sxd(u, Zn), all branches of
(f/*)~! are single-valued on the disk B(u,g(u)/s) for 0<i<m. Let g; m» be the
branch mapping z, to 2; and let v=gg »,(u)€ Byx. The map g; » avoids the n-net
Z}, so we may apply Lemma 3.4 to g; ,, and conclude that

(3.1) d(zi, fiv) = d(gi,m(2m), gim(uw)) < 36 for 0<i<m.
Moreover, since g(u)<%6 we have

(3.2) d(zm, f70) = d(zm, u) < 36.

On the other hand, by the choice of £ and L we have

(3.3) d(zi, frw) S L™ le< 1§ form<i<n

The second case is when d(z;, Z;)>¢ for 0<i<n (m=n). Then there exists a
point v€ B,, such that
d(z, fiv) <31 for 0<i<n.

The third case is when d(z, Zp)<e (m=—1). Then there exists w€ Z; such that
d(zi, fiw)< 16 for0<i<n.

For each triple (m,v,w) with —1<m<n, v€B,, and wEZy, pick a point
z(m,v,w) such that (3.1)-(3.3) hold, if such a point exists. Let F; be the set of
all the chosen points z(m, v, w). It then follows that F; (n,d)-spans Y;. Now there
are at most n+1 choices for m, d*C(§)n3 choices for v and (n+1)|Z’|<Cn choices
for w. Thus F, has at most C(6)n°d" elements. This completes the proof. [
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4. Mixing properties of u

Let f:Y O be a rational map of degree d>2, fibered over g: X . In Section 2
we constructed measures u, on the fibers Y, with certain invariance properties.

Given a probability measure y' for g we can define a probability measure u on Y
by

(4.1) {1, ) :=/x(/y,‘p“’) ' (z)

for continuous functions ¢ on Y. Thus 7.u=p’ and the conditional measures of u
on the fibers Y, are given by u.. Conversely, these two properties define p uniquely.

In the following three sections we will study the dynamical properties of p.
Here we investigate when u is ergodic or mixing. We start by the following simple
result.

Proposition 4.1. If i is invariant for g, then p is invariant for f.

Proof. We have

Futtr0) = (1 9o f) = /X (o 0o fu) (&) = /X (b 0) 1 (@) = {1 ).

The third equality follows from (f;).pz=p,, and the fourth equality from the
invariance of y/. 0O

We now turn to the ergodic properties of u. In the case when X is a single point,
then Y~X and f is essentially a rational map of C. It is a result of Lyubich [L]
and of Freire, Lopez and Mafié [FLM] that the system (f, ) is exact in this case. In
particular, 4 is ergodic and (strongly) mixing for f. The following result generalizes
this to general fibered rational maps.

Theorem 4.2. Let f:Y O be a rational map of degree d>2, fibered over g: X O,
and let ' be an invariant probability measure for g. Define the invariant measure
u for f by (4.1). Then the following holds:

(i) if 1’ is ergodic, then so is p;

(ii) if ' is (strongly) mizing, then so is u.

Proof. We will prove (ii) and then indicate how to handle (i). The proof below
follows the proof of Theorem 8.2 in [FS3]. Thus suppose that y’ is mixing for g: X O.
To show that u is mixing for f, it is sufficient to show that

(4.2) (s (Yo f™)) — (1, )1, ¥), as n— o0,
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for ¢, p€CO(Y). Let ¢, be the restriction of ¢ to Y; and define $€C°(X) by
@(x)={ptz, pz). Similarly define v, and 9. In proving (4.2) we may assume that
0z €C3(Y;) for z€X, and that sup, |pz|c2(y,)<oo. Indeed, such functions are
dense in C°(Y) by Lemma 1.5. Write

(0o £) = | G ool FDV 1 @)

= [ (U2 s pa(a,or) ) @)

— [ (s an U2t ) )

= [ o@D @+ [ (e, (U025 ) 0)
(4.3) = (', G(og™))+ /X (s Yz, B) 1 (2),

where ®,:=(1/d™)(f7).«pz—@(z). The second equality is a consequence of Theo-
rem 2.1 and the last line follows from the invariance of p'. Since g’ is mixing, we
know that the first term in the right-hand side of (4.3) converges to

W, D), %) = (0} s ).

To complete the proof, we will show that the integrand in the second term in the
right-hand side of (4.3) converges to zero, as n— o0, uniformly in z. For this, fix
z€X and pick p,g>1 with p~14+¢~1=1. Write M;:=sup |¢)|, M2:=2sup |p| and
M3:=sup, |pz|c2(y,)- By Holder’s inequality we get

M, 1/p
[tz > Yo )| < Mi{piz,, |0s|P) /P = My (/ PP g, {|B2] > £} dt)
0
M, 1/p
<M, ( / CptP~2d™ "z |c2 dt) < Cpd™/?,
o

where

L/p
Cp= cl/» (pf 1) MlMép—l)/pM;/p.

The second inequality follows from Proposition 2.6. Since C, does not depend on
z, we see that the second term in (4.3) converges to zero, as n—oo. Thus

(1, (o f™)) = {1, 0) (1, ), as n— o0,



Ergodic properties of fibered rational maps 297

so 4 is mixing for f.
To prove (ii) we suppose that u’ is ergodic for g, but not necessarily mixing.
In order to show that u is ergodic for f, we have to show that

N-1

% > (oo f™) = (0} p, ),  as N =00,
0

for sufficiently regular functions ¢ and . The proof is essentially the same as the
above one; the details are left to the reader. O

5. Entropy of u

In this section we will compute the metric entropy of the measure y, defined
by (4.1). When X is a single point the computation proves thg existence of a
measure of maximal entropy for (non-fibered) rational maps of C. We start by
recalling the definition of metric entropy. For details see [W], [R] or [Y].

Let Y be a compact metric space and v a (completed) Borel probability measure
on Y. Given a measurable partition 8 (not necessarily finite or countable) of Y,
there exists a canonical system of conditional measures associated with 8. This is
a family {Vyﬁ } of probability measures on Y with the following properties:

(1) for each yeY, t/g is a probability measure on Y, supported on S(y), the
element of 8 containing y;

(2) for every measurable ECY, y»—wf(E) is measurable;

(3) for every measurable ECY, v(E)= [, vE(E)v(y).

For two measurable partitions a and 3 we define the conditional entropy of a
with respect to 5 as

H(a|B):= /Y — log ¥ (a(y)) ()

(this number may be infinite). If 3={Y} is the trivial partition, then we write
H,(a):=H,(a|B) and we have H,(a)= [, —logv(a(y)) v(y)-

If f: Y O is continuous and leaves v invariant, and if « is a measurable partition,
then we define the entropy of f with respect to « as

h,(f;a):=H, (a ’ vi:l f_ia).
Finally, the metric entropy of f is defined as

hy(f) =suphy (f; ),
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where the supremum is taken over all measurable partitions a. In fact, it is sufficient
to take the supremum over finite partitions.

The connection between topological and metric entropy is given by the varia-
tional principle, due to Goodman, Goodwyn and Dinaburg. This states that

(5.1) h(f)=81:phu(f),

where the supremum is taken over all probability measures v invariant for f. A
measure v with h,(f)=h(f) is said to be of mazimal entropy. In general, there
need not be any measure of maximal entropy, and even if there is one, it need not
be unique.

We will also need to consider relative metric entropy. Let X be a compact
metric space, v’ a Borel probability measure on X, and g: X  a continuous mapping
preserving v'. Assume that g is a factor of f, i.e. that there exists a continuous
mapping 7: Y — X semiconjugating f and g: gom=mof, and such that m,v=v". We
then define the metric entropy of f relative to g as

hy(f1g):=suph.(f|g; ),
o
where o ranges over all measurable (or finite) partitions of Y. Here

ho(flgie)i=H, (o] V| fiava (ex))

where £x is the partition of X into points. See also [B] for a slightly different
interpretation of relative entropy.

The connection between metric entropy and relative metric entropy is given by
the Abramov-Rokhlin formula [AR]

(52) hu(f):hu'(g)+hv(f|g);

see [LW, Lemma 3.1] for a proof.
Ledrappier and Walters proved the following relativized variational principle.

In fact, they considered the more general notion of topological pressure; see Theo-
rem 2.1 in [LW].

Theorem 5.1. Let g: X be a factor of the map f:Y © under the projection
m:Y—=X. Let v' be an invariant probability measure for g. Then

(53 suph(f19)= [ A(f,n @) (@),

where the supremum is taken over all invariant probability measures v for f such
that m.v=1".

Our goal in this section is to show that the measure p defined in (4.1) is maximal
for the variational principles (5.1) and (5.3).
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Theorem 5.2. Let f: Y O be a rational map of degree d>2, fibered over g: X O,
and let ¢’ be an invariant Borel probability measure for g. Define the measure y
by (4.1). Then the following holds:

(1) hu(flg)=logd;

(i) hu(f)=hw(g)+logd.

Proof. (i) Let ey be the partition of Y into points. We will compute the relative
entropy h,(flg;ey). Write

B:=\/ fiey)vrHex) = Hev)Vr ex).

=1

By the construction of u in (4.1) it follows that the conditional measures of
with respect to the partition 7~ !(ex) are given by the measures y;. On the other
hand, it follows from the equation f}u,, =d-u,, and the fact that u, has no atoms
(Theorem 2.1), that almost every element of the partition {f;!f.(2):z€Y,} of Y,
has d elements and the conditional measures of u, with respect to this partition
puts mass 1/d to each of the d points in f;!(f:(z)). Since the process of taking
conditional measures is transitive, we get that for y-almost every z€Y, the element
B(2) of the partition 3 containing z has exactly d elements, and the conditional
measure ,u? puts mass 1/d to each of these elements. We therefore have

hu(f19) 2 hu(flgiev)=Hu(ey |ﬂ)=/y —log p?({z}) u(z) =log d.

On the other hand, Theorem 5.1 implies that

hu(f | g) < /X h(f,Y) i (z) = log d,

where the last equality follows from Theorem 3.1. Thus k,(f|g)=logd.
(ii) This follows immediately from (i) and (5.2). O

Corollary 5.3. If u' is a measure of mazimal entropy for g, then u is of
mazximal entropy for f.

Proof. By Theorem 3.1 we have h(f)=h(g)+logd, so by Theorem 5.2(ii) it
follows that p is of maximal entropy if and only if k. (g)=h(g), that is, if and only
if ' is of maximal entropy for g. O
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6. Uniqueness of the measure of maximal entropy

In this section we will prove the converse to Theorem 5.2. This amounts to
saying that the measure p defined in {4.1) is the unique measure for which the
suprema in the variational principles (5.1) and (5.3) are attained. In the case when
X is a single point we recover the result by Lyubich [L] and Mafé [M] that a
rational map of C has a unique measure of maximal entropy (see Theorem A in
the introduction). The proof follows Lyubich’s, although the additional difficulties
arising in the fibered situation are substantial.

Theorem 6.1. Let f:Y O be a rational map of degree d>2, fibered over g: X O.
Let it be an invariant Borel probability measure for g. Define the measure p by (4.1).
Further, let v be another invariant Borel probability measure for f such that m,v=p’.
Then the following holds:

(i) if hu(flg)=logd, then v=p;

(i) if ho(f)=hu(f)<oo, then v=p.

Corollary 6.2. Let f:Y O and g: XO be as in Theorem 6.1. Assume that
h(g)<oo and that g has a unique measure i’ of maximal entropy. Then p, defined
by (4.1), is the unique measure of mazximal entropy for f.

Proof. 1t follows from Corollary 5.3 that p is a measure of maximal entropy
for f. Suppose v is another such measure. Write v/=m,v. By (5.2)

hur(9)+hu(f19) =ho(f) = hu(f) = by (9) +log d.

But h,:(g)<h,:(g) by assumption, and h,(f|g)<logd by Theorems 5.1 and 3.1(i).
This shows that the two inequalities above are in fact equalities. From the unique-
ness of y' it follows that v'=g’. Thus Theorem 6.1 implies that v=x. O

The rest of this section is devoted to the proof of Theorem 6.1. We need several
preliminary results, the proofs of which are, in general, deferred until the end of the
section.

Lemma 6.3. In Theorem 6.1 we have that (i) is equivalent to (ii).
Proof. This is an immediate consequence of (5.2) and Theorem 5.2. [0

The next three results have nothing to do with rational maps, and hold in
the following more general setting: f:Y () and g: X(® are continuous mappings of
compact metric spaces; m: Y — X is a continuous surjection that semiconjugates f
to g; ¢/ is a g-invariant probability measure; p and v are f-invariant probability
measures with 7, u=m,»=y', and with conditional measures p, and v, on the fibers
Y, of m.
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Lemma 6.4. Let f, g, Y, X, m, u and v be as above. Consider 1 (end hence
u') as being fized. If the inequality h,(f|g)<h,(flg) holds for all ergodic measures
v#p, then it holds for all measures v#£pu.

Lemma 6.5. Let f,g,Y, X, m and v be as above and assume that v is ergodic.
If h,(f|9)>0, then v, has no atoms for y'-a.e. .

Lemma 6.6. Let f,g,Y, X, m and v be as above and assume that v is ergodic.
Let H be a compact subset of Y with v(H)>0. Write H,:=HNY, for x€ X. Then

h,(f19) < sup h(f, Hz).
zeX

The next two results are specific to fibered rational maps. The first one, which
is simple but crucial, says that even though a (fibered) rational map has critical
points, there is an abundance of single-valued branches of inverses of high iterates.

Lemma 6.7. Let f and g be as in Theorem 6.1, and let n>1>1 and z€ X.
Suppose that U is a conformal disk in Y., which does not contain any critical value
of f.__,. Then there are at least d*(1—4d—*(d—1)) different single-valued branches

of (ff)~ onU.

Lemma 6.8 below is the main technical result needed in tl}? proof of Theo-
rem 6.1. It says, roughly speaking, that we can find a partition of C that sufficiently
distinguishes the measures p and v.

Lemma 6.8. Let f, g, ¢/, u and v be as in Theorem 6.1. Assume that v
is ergodic and that h,(f|g)>0. Then, given any sufficiently small £ >0 there erist
n>1 and a compact subset X3CX with p'(X3)>1—5¢ such that for each T€X3
there is a compact subset Ty of Y, such that the following holds:

(1) Tz is a finite union of smooth arcs in Yy, ;

(2) Tz contains all the critical values of f7;

(3) (o, +vz, ) (T2)=0;

(4) Vi:=Y, \I'z is a conformal disk in Y, ;

(5) (f2)~Y(Vy) is the union of d™ disjoint conformal disks U, ;, i=1,...,d"™ in
Yz, and f7 maps each U, ; conformally onto Vy;

(6) po(Uszi)=d™™ for alli;

(7) vg(Ugr)>4d™".

Further, U ¢ x, Uz, is relatively open in n=1(X3)CY for each i.

The proof of Theorem 6.1 also has a combinatorial part and we will need the
following estimate.
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Lemma 6.9. Given numbers d>2, ng>1, v€(0,1) and n>1, write

ng—1 n .
_ifm J i—i
A(d,ng,v,n) = d+1)™+ max d™ 3() () d—-1y7.
(d, 0,7, n) m§=o'( ) m§=n:o x| j 2d_1§m§$j ;) @=1)

Then there exists 6<d and C>0 such that if v is sufficiently close to 1, then
A(d,ng,7v,n) <CO"

for alln>1.
After all these preliminary results, we are now in position to prove Theorem 6.1.

Proof of Theorem 6.1. Assume that v#pu, and that v (and hence ) is ergodic.
We will show that h,(f|g)<logd. Assume that h,(f|g)>0; otherwise there is
nothing to prove. Choose € so small that 1—7e>+, with « from Lemma 6.9. Given
this ¢, let n, X3, U, ; and I'; be as in Lemma 6.8. Recall that h,(f"|g")=nh.,(f|9)
and h,(f"|g™)=nh,(f|g). When proving Theorem 6.1 we may, and will, therefore
assume that n=1.

Find 80>0, a compact subset X, of X3, and compact subsets V; of U, for
z€ X5 such that

(1) p'(X2)>1—-6¢;

(2) vz (Vg)>3d™1! for z€ Xo;

(3) d(Vg, 80Uz 1)>6q for z€ Xo;

(4) V:=U,ex, V= is compact.
Write Uk:Uzexz Uz i for 1<k<d.

Since y' is ergodic we may find ng>1 such that the set

n-—1
1
X1:= L= i >1-Te f >
1 {xeX ",-E=0XX2(x)—1 EOI"I’I,_’no}

has p/(X;)>1—¢. Further, since v is ergodic and v(V)>2d~! we may increase ng
so that the compact set

n—1
1
H:= {yEY:w(y) € X; and - ZXV(%‘) >2d7! for nZno}
i=0

has positive v-measure. .

Write H,:=HNY, for z€X;. Let 0 be as in Lemma 6.9 and pick 8€(0,d). We
will show that h(f, H,)<log 8 for z€ X,. By Lemma 6.6 this implies h, (f|g)<log
and therefore completes the proof.
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Thus fix z€X; with H,#0. Let s,=3 1" Xx,(z:) for m>1. Note that if
m>nyg, then s, >vym, by the construction of X;.

Fix d<dp and let n>ny. Let F, be the (n,d)-spanning subset of Y, con-
structed in Lemma 3.3. Each element of F, is uniquely determined by a triple
(m,v,w), where —1<m<n, v€B,, and W€ Zp,,,. Here Bn=(fT)"1(Am), where
A,, is a subset of Y, with at most Cm?® elements. Thus |By,|=d™|A,|<Cmd™.
Further, Z,,,,, is a subset of Y, with at most Cm elements. The triple (m,v,w)
determines z{m,v,w) in the following way:

d(fiz, fiv)<ié for0<i<m,

d{fiz, i lw)< 16 form<i<n.

Tm+1

Let Q. be the dense subset of Y, defined by
Qy ={y €Yy :yit1 ¢, whenever i >0 and z; € X3}
We may assume that B,, C§), for each m. Thus v€Q, for each triple (m, v, w).
Pick a minimal subset E, of F, which (n, §)-spans H,. Let z(m,v,w)€FE;. By

the minimality of E, there exists y€ H, such that d(f'y, f'v)<é for 0<i<m. By
the choice of §y we therefore have

flyeV = flwel,
for 0<i<m. Thus, if m>ng, then

m—1 m—1
> xw (fiv) 2 ~ Yo xv(fiy)>2d
=0

< m <
i=0

6.1) .Tlﬁ

To each ve B, we assign a sequence
a(v) = (ap(v), a1 (v), ..., am—1(v)) €{0,...,d}™,
where
0, ifxz; ¢ X2a
a,;(’U) = . .
k, ifx;€ Xz and f*veUy.

This makes sense, because vEQ,.
For 0<j<m let D,, ; be the set of sequences

(00y e yam—1) €{0, ..., d}™
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such that a;#0 for exactly j indices k, and ax =1 for at least 2m/d indices k. Then

j .
(62) D= (") 2 ()@=
i=2m/d
Note that if z(m,v,w)€E;, then a(v)€D,, s, by (6.1). Further, we claim that if
m2>nyg, then given a€D,, ;s  and u€A,, there exist exactly d™ °~ points ve By,
such that fv=u and a(v)=a. To prove this claim, recall that if i>0 and z; € X>,
then we defined above a conformal disk V,, in Yz,,, containing all the d™—¢~1
values of (f7*~*~')~!(u), but containing no critical values of f;,. If 0<i<m and
z;¢ X3, then let V,, be any conformal disk in Y;,,, having the same two prop-
erties. Any point ve(f™)~!(u) can then be written as v=ggo...ogm_1(u), where
g: is a single-valued branch of f;l defined on V,,. Now suppose a(v)=a, where
a=(0g,...,0m—1)€Dy, s . If T;€ X5, then the branch g; is uniquely determined
by the number ;. If z;# X5, then there are exactly d choices for g;. Thus there
are exactly d™~*~ points v€ B, such that fv=u and a(v)=c, which proves the
claim.
It follows that

np—1 n
|Ez| < Z dmlAm| |Zm+1|+ Z dm—smle,sml |Am| IZm+l|
m=0 m=ng
ng—1 n
< (Z am+ ) d*"—8m|Dm,3m|)0n3cn
m=0 m=no

< C’n“A(d, np, Y, n) < Ccnion < Cé",

by (6.2) and Lemma 6.9. We have constructed an (n, §)-spanning subset of H; with
at most CO™ elements. Thus hA(f, H;)<log#8, and we are done. [

In the rest of the section we give the proofs of the various results needed to prove
Theorem 6.1. We start with the general results on fibered mappings (Lemmas 6.4,
6.5 and 6.6).

Proof of Lemma 6.4. We will use the decomposition of invariant measures into
ergodic components. Let M(Y, f) be the set of f-invariant probability measures on
Y and let E(Y, f) be the subset of ergodic measures. Then M(Y, f) and E(Y, f) are
compact in the weak topology. In fact, they are metrizable. Analogously we define
M(X,g)and E(X,g). The map m,: M(Y, f)— M (X, g) induced from 7: Y — X maps
E(Y, f) into E(X,g). Given p'€ M(X, g) define a measure 7(u’')=p on Y by (4.1).
It follows from Proposition 4.1 and Theorem 4.2 that 7 maps M (X, g) to M(Y, f)
and E(X, g) to E(Y, f). Further, =, o7=id.
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The ergodic (Rokhlin) decomposition tells us that given u'€M(X,g) there
exists a unique probability measure g,» on E(X, g) such that

W=[  ooulo).
E(X,9)

The map 7 commutes with this decomposition in the sense that
p=T1y' = / 70’ o (o).
E(X.qg)

Now let v€ M (Y, f) be a measure with r.»=p' and write

(6.3) V= L(Y,f) o 0.(0),

where g, is a probability measure on E(Y, f). We have (7.).0, =0y

The existence of T above shows that w.: E(Y, f)—E(X,g) is a continuous
surjection, the fibers of which constitute a measurable partition of E(Y, f). Let
{0v,6'}orc E(X,q) be the conditional measures of g, with respect to this partition.

Thus
- / 0w (@) / 0 00 (0):
E(X,g) s {0’}

We now use the fact that the relative metric entropy h,(f|g) commutes with the
ergodic decomposition (see [LW, Lemma 3.2(iii)]),

mi19= [ o= [ @) [ holf1 e (o)

Suppose that h,(f|g)=h.(f|g9)=logd. By Theorem 3.1(i) we have h,(f}g)<logd
for all ;e M(Y, f). Thus h,(f|g)=logd for g, -a.e. ¢’ and g, ,r-a.e. o. But then
the assumptions of the lemma imply that o=70' for g,-a.e. ¢’ and g, ,-a.e. 0.

Thus
v={[ el =n
E(X,g)

which completes the proof. O

In order to prove Lemma 6.5 we use the following result. It is a relativized
version of the Shannon-McMillan-Breiman theorem. For the proof (in a slightly
different sitnation), see Theorem 4.2 in [B].
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Lemma 6.10. Let f, g, Y, X, m and v be as in Lemma 6.5. Let a be a finite
measurable partition of Y. Then

1
— - logurgy(a™(y)) = h(flg:c)
for v-almost every y. Here o™(y) denotes the element of the partition o™ contain-
ngy.

Proof of Lemma 6.5. Assume that h,(f]g)>0 and find a finite partition a such
that h,(f|g;a)>0. Let Y, be the set of y€Y such that y is an atom for v,(,. If
y€Yp and o™ (y) is the element of a™ containing y, then

1 1
0< — 108 une) (o7 () < — - log vagy) ({y}) =0, 88 n = 0.

By Lemma 6.10 and the assumption that h(f|g; a)>0 it follows that v(Yy)=0. Thus
v, has no atoms for g'-a.e. z. O

Proof of Lemma 6.6. Let a={A, ..., A;} be a finite partition of Y. Pick com-
pact subsets B; CA; and let Bo:=Y\|J;_, B;. We may choose B; close enough to
A; so that H,(a|B)<1, where 3={Bg, By, ..., Bs}. Therefore

ho(f1g;0) <hy(f|g;B)+H,(a| Bvn(ex)) < hu(f|g; 8)+1.

By Lemma 6.10 and Egorov’s theorem there exists a compact subset H' of H
with v(H’)>0 such that

~ 108 () (8°(8)) = ~hu ([ 193)

uniformly on H’'. Here 8"(y) denotes the element of 8" containing y. Write H, =
H'NY, for z€ X and fix z such that v, (H.)>0.
Pick §>0 small. For large n and ye€ H,, we have

v (8" (y)) > e v (f18:8)=8)

Let E, be a minimal (n, §)-spanning subset of H.. For each C€3" with CNH_ #0
we associate a point z(C)€ E, with B,,(z,8)NC#0, where

Bn(2,0)={weY; :d(fiw, fiz) <d for 0<i<n}.

Suppose that z(C)=2z(C") for some elements C, C’ € 8" such that CQH;#(?) and
C'NH.#0. Then there exist we CNH’, w' €C'NH, such that d(f*w, f*w’) <24 for
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0<i<n. If § is small enough, then this implies that for each ¢, fiw and f‘w’ belong
to the same element of the covering { BoUB;, ..., ByUB;} of Y. Hence, for each ¢
there exists j=j(i) such that fiw, fiw’€ BoUB;. It follows that there are at most
2" different elements C € 3™ associated with a given point in E,. Thus

0<vy(H.) < Z Ve (C) < 2"|Ey|e~ e (f19:8)=80) —grp (5 Hé)e—n(hu(flg;ﬁ)—is).
cepr
CNH_#0

This implies that

1 1 1
- logry, (6, Hg) > - log r.(8, H,) > h,(f | g; 8)—6—log 2+ log vz (Hy).

By letting n—o00 and §—0 we obtain
h(f, Hz) > h.(f | g; 8)—log2 > h,(f | g; @) —1—-log 2.
After replacing f by f™ we obtain
nh(f, Hy) > nh,(f | g; @) —1~log 2.
By dividing this inequality by n and letting n—occ we see that

h’"(f |g;a) <h(f, H.).

Since o was an arbitrary finite partition we have shown that

h.(flg)<suph(f,H.). O
zeX

We next prove Lemmas 6.7 and 6.8 that are specific to fibered rational maps.

Proof of Lemma 6.7. For 1<m<n let o, be the number of single-valued
branches of (f7*_ )~! on U. We will show by induction on m that

m—l1
(6.4) om>d™-2(d-1) ) d,

i=1

which clearly implies the assertion of the lemma when m=n.

If 1<m<l, then U contains no critical values of f* _, so opy=d™ and (6.4)
is trivial. For the inductive step, consider the o,,_; single-valued branches of
(f=! )71 defined on U. At most 2(d—1) of the images of these branches can

Tn—m+1
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contain a critical value of f,,__. If we compose the other branches with all possible
branches of f; , then we see that

m—1
Om 2 d(Om—1~2(d—1)) 2 d™-2(d-1) Y _ ',

i=1
where the last inequality foliows from (6.4) for m—1. {1

Proof of Lemma 6.8. Assume that e< 1. Pick [ so large that 4(d—1)d~'<e.

The assumptions imply that u and v are mutually singular. We may therefore
find disjoint compact sets L, and L, in Y such that L, >1—1e2 and vL, >1—j¢%.
Write L, ,=L,NY; and L, ;=L,NY; for z€ X. We may find a compact subset X7
of X with u/(X7)>1—¢ such that py(L,)>1—¢ and vz(L,)>1—¢€ for z€X7.
Pick >0 such that »<d(L, s, L, ;) for all z€ X7.

We will find a compact subset Xg of X7 with u/(Xe)>1—3e, such that the
following holds: for each z€ Xg there exists a compact subset I, of Yz, such that

(1) I’ is a finite union of smooth arcs in Yy,;

(2) T’ contains all the critical values of f.;

(3) (b, +v2,)(T3)=0;

(4) V]:=Y;\TI', is a conformal disk in Y.

Further, the arcs in I'), depend continuously on z.

To do this, first write X7=X{U...UX],, where X/ are disjoint Borel sets such
that Y is trivial over ¢*(X”), and such that the critical values of f. depend contin-
uously on x for z€ X! in the sense that there exist continuous functions s;: X' =Y
such that s;(z)€Yy,, sj, (z)#s;,(x) for j1#j2 and such that {s;(z)} is the set of
critical values of f..

Pick X!C X! compact for i=1,...,m such that } .-, p'(X{'\ X])<e. It suffices
to construct I, for z€ X] for each i individually. To simplify notation we fix ¢ and
write X' instead of X.

Fix 20€ X’ and write z0=g'(z°). Let ®:¢'(X’)xC—71(g'(X"))CY be a
trivialization of m:Y — X. Using ®, it makes sense to talk about spherical arcs in
Y, for z€g'(X’). Let {s;(z)} be the critical values of f. as above. Let I'” be a
finite union of spherical arcs in Yo of length <1, the endpoints of which contain all
the critical values of ffvo. Assume that the arcs in I'” only intersect at endpoints,
and that Y;o\I'” is connected and simply connected, i.e. a conformal disk. We may
find a neighborhood  of z° in X’ and a finite number of continuous functions
ag, Br: 2—Y such that

(1) aw(z), Br(x) €Yy, for all k and all z€;

(2) Ue{aw(z),Br(x)} contains all the critical values of fL for all z€©;
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(3) for all j and k, each of the sets {x€Q:a;(z)=ax(z)}, {z€Q:0a;(x)=PFr(z)}
and {x€Q:6;(z)=0k(x)} is either empty or all of ;

(4) the set of arcs {a(z?), Bk (z°)] coincides with the set of arcs in I'”.

Let 9x: D—C be a univalent meromorphic function such that ®(z?,(0)) is the
midpoint on the arc [o(2°), Bk (x°)]. For A€ D and € let vi(z, A)=®(z;, Y (N)).
Let T, (A) be the union of all arcs [ax(z), yx(x, A)] and [yk(z, A), Bk(z)]. Note that
I'4(0)=I". After shrinking Q if necessary, we have that if €€, then Y, \I',(})
is a conformal disk in Y, for all sufficiently small A. Write I"(A)=U,cq ['z(A)-
Since v, and p;, have no atoms (Lemma 6.5 and Theorem 2.1) and the sets I'V();)
and T”(\2) are essentially disjoint if A\, # ), we may find a small A€D such that
(u+v)(I'(X))=0. Fix such a A. Then there exists a subset £’ CQ of full u'-measure
such that (g, +vg,)(T%(X))=0 for z€'. Write I, =T"(}).

Returning to our previous notation, we have constructed I'), for z in a subset
of full measure of a neighborhood of any point z°€ X! for any . It is now easy
to find disjoint compact subsets Xj |, ... » Xi vy of X! such that Zf(z’i (X ;)=
(1-e)u'(X;) and such that T, can be constructed as above on each X; .. Let Xg
be the union of all the sets X; ;. Then y'(X¢)>1—3¢ and I'; exists for z€ Xp.

For z€ Xg and ¢’ >0, let T', be the ¢'-fattening of T, i.e.
[,={z€Y,, :d(z,T") <e'}.

Since z—I", is continuous, we may choose ¢’ so small that Y,,\fz is a conformal
disk and that ng\I"z is a conformal annulus for all € Xg. Further, we may find a
compact subset X5C X¢ with p'(X5)>1—4e such that for z€ X5,

(1) (i) (F) <o

(2) the modulus of fx\l"; is bounded below by a positive constant.
By the Koebe distortion theorem, the latter property implies that if 1: Y, \I‘;—-)é
is a univalent meromorphic function, then

(6.5) diam (¢ (Yy, \T)) < Cy/area((Yz,\Tz))

for some constant C'>0.

Let n be a large number (how large will be seen later). Write X,=g~ ("% X5.
Then X, is compact and p'(X4)>1—4e.

Using essentially the same procedure as when we constructed I, we may find a
compact subset X3C X, with '(X3)>1—5¢ such that the following holds: for each
z€ X3 there exists a compact subset ['; CY;, , depending continuously on z, such
that

(1) Tz is a finite union of smooth arcs in Y;,;
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(2) Y;, \I': is a conformal disk;
(3) FIDF;"_ﬁ

(4) (uzn_’-yftn)(rr)——:o

For z€ X3 define

Vz :an \an
VI’ = YIn \I‘lln_[ ?
Ve=Y, \ls,_,.

Then V., V] and 17; are all conformal disks in Y. Clearly V;CV, and VzCV;.
Further,

b, (Va) = vz, (Vi) = pa, (V) = Vg, (Vp) =1

and
b, (Ve) > 1—e, v, (Vo) >1—c.
Write
(f:)_lvz - U U:t,'h
iel
U vi=U UL,
jeJ
(f;:l)_l";x = U ﬁz,k;
keK

where U, ;, U;’j and U, are conformal disks in Y, and the three unions are

disjoint. Fix x€X3. We will show that there exists i€ such that
Ve (Ugs) > 4u(Uz ) =4d™".

For each k€ K there exists a unique j=3j(k)€J such that ﬁ,,kCU;)j. Let K;
be the set of k€ K such that f is univalent on U, ;). Recall that V] contains no
critical values of f. _ . Thus |K;|>d"(1—4d~!(d—1))>d"(1—¢) by Lemma 6.7.

If ke K, then we may apply (6.5) to the branch of (f2)~! mapping V; to U ;.
Assume that n is so large that

C? area(C) <esd™,

where x<d(L,m,L,,7z) was chosen above. Let K5 be the set of k€ K; such that
diam(Us k) <s. Then |K2|>d"(1—2¢) by the above estimate. Let K3 be the set of
ke K; such that U xNL, . #@. Since

/"x(ﬁx,k) = d_nﬂzn (‘7:) < ar
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for every k€ Ky, and since piz(Ly;)>1—¢, we have |K3|>d™(1-3¢). Note that if
k€ K3, then U, xNL, o =0.

Given i€ there exists a unique j=j(i)€J such that U, ;CU, ;. If f is uni-
valent on U’ then there also exists a unique k=k(z)€ K; such that ﬁz,kCU;J.

EXTOM
Let I; be the set of i€ such that f7 is univalent on U] i) and such that k(i) € K.
We have
K ( U Uz,i) = pg ( U U:::,j(i)) 2 iy ( U (75’]:) >1-3e
icl; icl, keK;,
and

w(U Uz <wa(72) VAT o

i€l

U ﬁz,k) <e+e,

k€K3

where we have used the fact that U, xNL, =0 for € K3.
Let In=1I\I;. Then

Ho ( U Uz,i) <3,

iciy
Vg ( U Uz,i) >1—2¢.
i€l
Thus there exists i€ s such that
1-2¢ -
(66) Vz(Ua:,i) 2 3e I‘x(Uz,i) 24d ™.

By relabeling the disks U,; we may assume that I={1,...,d"}, that (6.6)
holds for i=1, and that |, x, Uz is relatively open in 7~'(X3) for 1<i<d™. This
completes the proof of Lemma 6.8. [1

Finally we will prove the estimate in Lemma 6.9. For this we need the following
elementary result.

Lemma 6.11. Let ¢ be the continuous function on {(z,y):0<y<zx<1} defined
by

o(z,y) =(1—z)logd+(z—y)log(d~1)—(1—z) log(1—z)— (x—y) log(z —y) —ylogy
for some d>2. Then there exist & <d and y<1 such that p<log8' on the set

{(z,y):y<z<1, 2/d<y<z}.
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Proof. We first consider the restriction of ¢ to the line z=1, i.e.

o(1,y) = (1-y) log(d—1)—(1-y) log(1-y) —ylogy.
It is easy to verify that y—p(1,y) is decreasing on the interval 1/d<y<1 and
that p(1,1/d)=logd. If we let 8" =exp ¢(1,2/d), then 8" <d and ¢(1,y)<log§” for
2/d<y<1. By continuity it follows that if 8” <#’ <d and 7 is sufficiently close to 1,
then p(z,y)<log® when y<z<1 and 2/d<y<z. O

Proof of Lemma 6.9. Throughout the proof, C will denote different positive
constants, depending on d, ng and v but not on n. Let ¢, & and < be as in
Lemma 6.11 and let 6€(¢’, d).

The first sum in A(d, ng,~,n) does not depend on n. To prove the lemma it is
therefore sufficient to show that

(6.7) dmi(d—1)7~ (3") (J) <cor

1

whenever ng<m<n, ym<j<m and 2d~'m<i<j, because Lemma 6.9 then follows
with a slightly larger 6.
By Stirling’s formula there exists r>0 such that

60 (7)< = (1) =omge=

for r<j<m—r and r<i<j—r.
To prove (6.7) we consider four cases. The first case is when m—r<j<m and
j—r<i<j. Then

4™ (d—1)i" (T]") (i) <Cm¥ <Co™.

The second case is when ym<j<m—r and j—r<i<j. Then v<j/m<1, so
by (6.8) and Lemma 6.11 we have
arsta-1p= (") () omram o
AN 33 (m—g)m=7
=Cm" exp (mcp(i, l)) <Cm" (6™ <Co".
m’m
The third case is when m—r<j<m and 2d~!j<i<j—r. Then 2/d<i/j<1, so
by (6.8) and Lemma 6.11 we have

=Cm" exp (mtp(l, ;)) <Cm" (6™ <Co".
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The last.case, finally, is when ym<j<m-—r and 2d~'j<i<j—r. Then we have
v<j/m<1 and 2/d<i/m<1, so by (6.8) and Lemma 6.11 we obtain

d" I (d—17~" (T]n) (Z) <Cdmi(d—1)i-i—"" 5’

i (m—g)md (G-

= Cexp(mw(-:ﬁ, %)) <Cc@)y™<co.

This completes the proof of Lemma 6.9. O

7. Applications to complex surfaces

In this section we apply our techniques to dynamics on ruled surfaces. Our
main result is that, with some restrictions, a holomorphic selfmap of a ruled surface
has a unique measure of maximal entropy. The same conclusion will also be drawn
for certain holomorphic mappings of P2.

For us, a ruled surface is a smooth projective complex surface Y which is a
holomorphic P!-bundle over a compact Riemann surface X. ’I/‘\his means that there
is a holomorphic projection m: Y — X such that n~!(z)~P!~C for every r€ X and
such that every z€ X has an open neighborhood U with 7~ (U)~U xC.

The following result by Dabija tells us that selfmaps of ruled surfaces can be
viewed as fibered rational maps in the sense of Section 2.

Proposition 7.1. (Proposition 7.1 in [D]) Let Y be a ruled surface over X
and let f:Y O be a holomorphic mapping.

(i) If Y#£P!xP?!, then there exists a holomorphic mapping g: XO such that
m semiconjugates f to g: gom=mof.

(i) If Y=P!x P! then the same conclusion holds for f?=fof instead of f.

Remark 7.2. If Y=P!x P!, then f may be of the form f(z,w)=(p(w), q(2)),
where p and ¢ are rational functions.

By Proposition 7.1 we may apply the results of the preceding sections to study
the dynamics of selfmaps of ruled surfaces.

Theorem 7.3. Let Y be a ruled surface over X and let f be a holomorphic
mapping of Y which fibers over a holomorphic map g: X 0. Assume that the topo-
logical degrees 65 and 64 of f and g satisfy 1<8,<8;. Then h(f)=logds and f has
a unique measure of mazrimal entropy.

Proof. We first consider the dynamics of g. For this we use the classification of
compact Riemann surfaces. First note that X cannot be hyperbolic, because then g
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would have to be an automorphism or a constant mapping, contradicting d,>1. If
X is a torus, then since §,>1, g: X O is an expanding linear map. Thus h(g)=log ,
and g has a unique measure u’ of maximal entropy (this is just the pushforward of
Lebesgue measure on C under the universal covering map). If X is the Riemann
sphere C, then g is a rational map of degree §,>1. By results for (non-fibered)
rational maps (see Theorem A in the introduction), h(g)=logd, and g has a unique
measure i’ of maximal entropy.

Now f is a rational map fibered over g of degree d:=67/6,>1. Define the
measure p by (4.1). It then follows from Corollary 6.2 that u is the unique measure
of maximal entropy for f. Finally

h(f)=h(g)+logd=1log §,+log(ds/8,) =logdy,

by Theorem 3.1. This completes the proof. L[l

We now turn to holomorphic mappings of P2. It is known that such mappings
have a measure of maximal entropy [FS3|; this measure can be quite explicitly
described. However, it is an open problem whether the measure is the unique one
with maximal entropy.

Unfortunately, P2 is not a ruled surface, so we cannot apply Theorem 7.3 to
solve this problem. What we will do here is to restrict our attention to a certain
class of selfmaps of P2.

Theorem 7.4. Let f be a holomorphic selfmap of P2 of degree d>2 which
preserves a family of lines passing through a given point O in P2. Then f has a
unique measure of mazrimal entropy.

Remark 7.5. Holomorphic mappings of the form of Theorem 7.4 have been
studied earlier, in other contexts [FS2], {U, Section 3.3], [JW].

Proof. Let d be the algebraic degree of f. Then the topological degree of f is
d? and by a result of Gromov [G] we have h(f)=logd>.

Let X ~P! be the set of lines in P? passing through O and let 7 be the natural
projection P?\O— X. Then 7 semiconjugates f to a holomorphic mapping g: X O
of (topological) degree d.

Let Y be P2 blown up at O and let p: Y —P? be the blow-up map. Note that
the exceptional divisor E=p~1(0) can be identified with X. In fact, 7 extends to
a holomorphic mapping, still denoted 7, of Y onto X and the restriction of 7 to E
is a biholomorphism of FE onto X. Further, f can be lifted in a unique way to a
holomorphic mapping f :Y O, such that m semiconjugates f to ¢: XO.

Now Y is a ruled surface and f is a holomorphic selfmap of Y, which fibers
over g: XO. The topological degrees of f and g are d? and d, respectively. By
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Theorem 7.3, f has a unique measure ji of maximal entropy log d2. Since ji is ergodic
and E is completely invariant for f we must have i(F)=0, because otherwise

hi(f) < h(F, E) = h(g, X) =log d < log d* = h(f).

Let p be the invariant measure for f defined by p=p.fi. Recall that p is a biholo-
morphism outside E. Since ji(E)=0 it therefore follows that h,(f)=hz( f=log 2.
Thus g is a measure of maximal entropy for f. Suppose that v#p is another meas-
ure of maximal entropy for f. Then there exists an invariant probability measure
i for f such that p«v=v. We have h;(f)>h,(f)=logd? so =/ by the uniqueness
of fi. Thus v=p,V=p,ji=u and we are done. [l

In particular, Theorem 7.4 covers the case of polynomial skew products on C2.
Such mappings were studied by Heinemann [H1], [H2], [H3], and by the author [J].

Corollary 7.6. Let f be a polynomial skew product on C? of degree d>2,
i.e. f(z,w)=(p(z),q(z,w)), where p and q are polynomials of degree d, and q has
nonzero w-term. Then f has a unique measure of mazimal entropy.

Proof. The extension of f to P2 is given by
flz:w:t] =[t4p(z/t) : tq(z/t, w/t) : t%).

Thus f satisfies the assumptions in Theorem 7.4 with O=[0:1:0]. O

Acknowledgement. The author thanks Marius Dabija for help on ruled surfaces,
and Dror Varolin for interesting discussions on the definition of fibered rational
maps.
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