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Normality and shared values 

Xuecheng Pang(~) and  Lawrence Za lcman 

Abstract .  Let 5 be a family of meromorphic functions on the unit disc 2~ and let a and b 
be distinct values. If for every fC3 e, f and fr share a and b on A, then 3 c is normal on A. 

I. I n t r o d u c t i o n  

Let D be a domain  in C. Define for f meromorphic  on D and  a E C  

Ef(a)  = f - l ( { a } ) N D - -  {z e D:  f ( z )  = a } .  

Two funct ions f and  g on D are said to share the value a if E f ( a ) = E g ( a ) .  

A meromorphic  funct ion  f on C is called a normal  funct ion if there exists a 

positive n u m b e r  M such tha t  

f #  (z) < M. 

Here, as usual,  f # ( z ) = l f ' ( z ) l / ( l + l f ( z ) l  2) denotes  the spherical derivative. 

W. Schwick seems to have been the first to draw a connect ion  between normal i ty  

criteria and  shared values. He proved the following theorem [12]. 

T h e o r e m  A.  Let 3 z be a family of meromorphic functions on the unit disc A 

and let al,  a2, and aa be distinct complex numbers. I f  f and f l  share al,  a2 and a3 
for every f E J e, then 5 is normal on A .  

In  the present  paper,  we prove the  following result.  

T h e o r e m  1. Let 3= be a family of meromorphic functions on the unit disc A ,  

and let a and b be distinct complex numbers and c a nonzero complex number. I f  

for every f E • ,  
E (o) = (a), •S(c) = (b), 
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then jr  is normal on A.  

The special case a=0,  b = c = l  was proved in [10]. 
As an immediate consequence, we have the following result. 

T h e o r e m  2. Let ~ be a family of meromorphie functions on the unit disc A ,  
and let a and b be distinct complex numbers. If  f and f '  share a and b for every 
f c Y:, then 5 is normal on A.  

Earlier, Mues and Steinmetz had proved the following theorem [8]. 

T h e o r e m  B. Let f be a meromorphic function on C and al, a2, and a3 be 
distinct complex numbers. I f  f and f '  share al, a2, and a3, then f ( z ) = c e  ~. 

We prove the following result. 

T h e o r e m  3. Let f be a meromorphic function on C and a and b be distinct 
complex numbers. I f  f and f '  share a and b, then f is a normal function. 

Example. Let f ( z ) = t a n z .  Then f ' ( z )  l + t a n  2 z, so f and f' share the values 
�89 (1+iv/3) .  More generally, if f is a solution of the differential equation 

w ' = a w 2 + ( b + l ) w + c ,  a,b, c C C ,  

and the quadratic y ax2+bx+c has two distinct roots, then f and f '  share the 
vah  s (-b• ) 

II .  L e m m a s  

L e m m a  1. ([11]) Let 2 c be a family of meromorphic functions on the unit disc 
A all of whose zeros have multiplicity at least k, and suppose there exists A >  1 such 

that I f (k) (z) l<A whenever f ( z )=0 ,  f E F .  Then if ~ is not normal, there exist, for 
each O<~<k,  

(a) a number r, 0 < r < l ;  
(b) points zn, Iz, l<r; 
(c) functions fnEYc; and 
(d) positive numbers & ~ 0 ;  

such that 

locally uniformly with respect to the spherical metric, where 9 is a meromorphic 
function on C such that g # ( ~ ) < g # ( O ) = k A +  l. 
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Remark. In fact, Lemma 1 holds also for - l < a < 0 ,  [9]. For - l < a < k ,  the 
hypothesis on f(k)(z) can be dropped, and kA+l  can be replaced by an arbitrary 
positive constant [2]. 

In the sequel, we shall make use of the standard notation of value distribution 
theory, see [6] and [13]. 

L e m m a  2. (Milloux, [6, Theorem 3.2, cf. Theorem 2.2]) Let f be a meromor- 
phic function of finite order. Then 

T ( r , f ) < N ( r , f ) + N ( r ,  f ) + N ( r ,  f ( k ~ _ b ) - N ( r ,  f ~ ) + S ( r , f ) ,  

where br ~c and S(r, f)=O(log r). If  f is a rational function, then S(r, f )=O(1) .  

L e m m a  3. ([3]; cf. [7]) A normal meromorphic function has order at most 2. 
A normal entire function ( Yosida function) is of exponential type. 

L e m m a  4. (Frank and Weissenborn [4], [13, Lemma 4.6]) Let f be a transcen- 
dental meromorphic function of finite order. Then for every positive number s, we 
have 

kN(r, f)  < ( l@e)N(r,  f ( ~ )  +( l+s)Nl  (r, f )+S(r ,  f), 

where N1 (r, f )=N(r ,  f ) -  N(r, f)  and S(r, f ) =  O(log r). 

L e m m a  5. Let f be a meromorphic function of finite order and a and b be 
distinct nonzero numbers. Suppose that all poles o f f  are multiple, EI(O)=EI,(a), 
and ff(z)7~b. If there exists a nonzero number d such that 

(2.1) F(z) = f ( z ) f ' ( z )  - d ,  
( f ' ( z ) -a) ( f ' ( z )  b) 

then 
(i) n, 
(ii) (n+l)b=a; 

here A(r and c are complex numbers and n(>_2) is a positive integer. 

Pro@ Clearly, f ' ( z ) 5 0 .  We claim that  f must satisfy the following conditions: 
(1) all poles of f have the same multiplicity n (2<n<+oc ) ;  
(2) the principal part of each pole has only one term; 
(3) f has at most finitely many poles; 
(4) all zeros of f f - a  have the same multiplicity 7; and 

(5) EI,,(O)CEI,(a)=Ef(O ). 
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(1) Let  z0 be a pole of f of mult iplici ty n, so tha t  

a-n a n+l 
(2.2) f ( z ) -  (Z__Z0) n ] (Z__Zo) n 1 §  

A simple calculation gives 
1 d=F(zo) = i t - .  
gt 

Since d is constant ,  n is independent  of Zo. 
(2) From (2.2), we have 

a_,, r O. 

I f { i : l < i < n - 1 ,  a_i /~0}/k0,  p u t j = m a x { i : l < i < n  1, a _ i # 0 } .  Now 

f(z)f" (z) =d(f' (z)-a)(f'  (z)-b) = ( l  + l  ) (f' (z)-a)(f'  (z)-b). 

Compar ing  coefficients of 1/(z-zo) n+j+2 on bo th  sides, we have 

n(n + 1) §  (j § 1) = 2dnj = 2 (n + 1)j, 

whence ( n - j ) 2  + ( n - j )  = 0. This  contradicts  1 _<j < n -  1. 
(3) Suppose f is a t ranscendenta l  meromorphic  function. From (1) and (2), 

there  exists a t ranscendenta l  meromorphic  function g such tha t  

(2.3) f(z) = g(n-1)(z) ,  

where all poles of .q(z) are simple. Utilizing Lemma  4, for 1 C = ~  we have 

3 nY(r, g) < ~ N (r, g(--~ff ) § r). 

It follows from (2.3) tha t  

(2.4) n N ( r ,  f )  < 2 r, 777 + O ( l o g r ) .  

From L e m m a  2 and f'(z)r we have 

if(z) n a n  ( - - n + l ) a _ n + l  ~- ~-... , 
(z-zo)n+l (z-z0)  
n(n+l)a_,, 

t- + . . . .  (Z--z0)n+2 
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I t  follows f rom (2.4) and (2.5) tha t  

T(r,f)< (1-2~)-~(r,f)+N(r, f )+O(logr). 

Now f and g have finite order  and N(r, 1/f)<_T(r, f ) + O ( 1 ) ,  so 

O(logr). 

Since n 2 2 ,  it follows tha t  N(r,f)=O(logr), so f(z) has at  mos t  finitely m a n y  
poles. 

(4) Let  z0 be  a zero of f'-a. T h e n  f ( z 0 ) = 0 .  Write  

(2.6) f(z) = a(z- zo) + a~-+l ( z -  zo) ~+1 + . . . .  

As f"(z)~O, 1 < ~ - < + o c .  I t  follows f rom (2.1) and (2.6) t ha t  

aT d F(zo)=a b' 

so 7 is independent  of z0. 

(5) Suppose  Zo is a zero of f". If f'(zo)-ar then  F(zo)=OCd, a contradic-  
tion. 

Having  establ ished the  proper t ies  c laimed for f ,  we t u rn  now to the  proof  of 
(i) and (ii). 

Suppose  then  t ha t  f is a t r anscenden ta l  meromorph ic  function. Since T(r, f)= 
T(r, 1/f)+0(1), N(r, f)=O(logr), it follows f rom (2.5) t ha t  

T(r,f)<T(r, f )-m(r, f )-N(r,  jZ.)+N(r,f)+O(logr) 
(2.7) 

_< T(,-, f)  

so t ha t  

(2.s) 

Pu t  Q(z)=(f'(z)-a)/f(z). Since EI(O)=Ef,(a), we have 

(2.9) T(r',Q) N(r,Q)+m(r,Q)<_N(r,f)+m(r,f---f )+m(r, f) .  
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Prom (2.8) and (2.9), we have T(r,Q)=O(logr). 
whose poles are those of f .  As f '(z)r we may assume that  

eP1 (z) 
(2.10) f'(z) = b+ P2(z~' 

where P1 and P2 are polynomials, deg P1 _> 1. Since 

Thus Q is a rational function, 

we have from (2.10) 

Since deg P1 _> 1, we must have 

( b-a  "~' e PI(�9 ~ '  e Pl(z) / 
+ = b +  

b 
Q(z)/  =b. 

Thus there exists a constant c, such that  

b-a 
Q(z ) -  b(z-e) 

Clearly, - n  Resz=c(f'(z)/f(z))=Res~-cQ(z)=(b-a)/b; so f satisfies the differ- 
ential equation 

n 
(2.11) w' + - - w = a .  

Z - - C  

But all solutions of (2.11) are rational functions, which contradicts the assumption 

on f .  
Hence f must be rational. If  7=1 ,  it follows from (2.1) and (5) that  f"(z)#O. 

Since all poles of f have the same (finite) multiplicity n and f'(z)Cb, we have 

A 
(2.12) if(z) = b p ( z ) n + l  , 

where A( r  is a constant and P is a polynomial all of whose zeros are simple. 
Then 

, 

f" (z) = (n+ l )Ap~Z32  . 

f ' ( z ) -a  f ' ( z ) -b  b-a  e PI(~) b-a 
f ( z ) -  Q(z) - Q(z~  4 Q(z) - Q(z)P2(z) ~ Q(z)' 
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Since P and P '  have no common zeros and f"(z)r we must have P'(z),~O, i.e., 
P is a linear polynomial. We may assume that  

(2.13) 

Then 

(2.14) f(z)=b(z c ) 4 - -  

Since 

P(z)=(z-e). 

A 
FD. 

oll,,l l 

it follows from (2.12), (2.13) and (2.14) that  

nb(z-c)n+l +nD(z-c)n+ A= (a-b)(z-c)~+l + A. 

Thus a=(n+l)b and D=0 ,  i.e., 

A 
f(z)=b(z-C)+n( z c)n, a=(n+l)b. 

If T>2,  it follows from (5) that  

(2.15) E/, ,  (0) = El ,  (a) = E/(0) .  

Again utilizing Lemma 2, we obtain 

T(r,f)<N(r',f)+N(r, f ) N(r, ~5)+S(r,f) , 

where S(r, f)=O(1). As 

we have 

which contradicts n>2 .  

N(r, f) = 1N(r, f), 

This completes the proof of Lemma 5. 

n > 2 ,  
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L e m m a  6. Let f be a nonconstant meromorphic .function of finite order, all 
of whose poles are multiple, and let a and b be distinct nonzero numbers. If E l ( 0 ) =  
Ef,(a), f'(z)r and f"(z)~O, then 

A 
f(z)=b(z c)+n(z_c)n, n>_2, 

and 
a (n+l )b .  

Proof. Following the notation of [13, p. 105], let N1)(r, 1/(f'-a)) be the count- 
ing function for simple zeros of i f - a  and let 

Clearly, 

(2.16) 

Since EI(0  ) E/ , (a) ,  aCi0, and f'(z)r we have by Lemma 2, 

(2.17) 
T(r,f)<<_N(r,f)+N(r, f ) N ( r ,~5 )+S(r , f  ) 

=Y(r , f )+N(r ,  ffl~_a)-N(r, ~ ) + S ( r , f )  �9 

It follows fi'om (2.16) and (2.17) that  

(2.1s) T(r, f) <_N(r, f)+ N1) (r, f f ~  ) + S(r, f). 

Set 
F(z) = f(z)f"(z) 

(f'(z)-a)(f'(z)-b)" 
Then F is an entire function. If F is identically constant, Lemma 5 gives the desired 
result. Suppose, therefore, that  F is not constant. Then 

rn(r,F)=m(r, f f" (r ,  f "  ) ( f ' -a)( f ' -b)  ) < rn(r, f)+rn - ( f ' -a)( f -b)J"  
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Using 
s" 1 ( s "  

( f ' -a)( f '  b) 2(b a) \-fTZa f ' -bJ  
and the lemma on the logarithmic derivative ([6, Lemma 2.3] or [13, Lemma 1.3]), 
we have 

(2.19) re(r, F)  _< re(r, f)+S(r, f), 

where again S(r, f)=O(logr) and S(r, f )=O(1 )  in case f is a rational function. 
Assume now that  z0 is a simple zero of f'-a. As EI(0) E/,(a), f(zo) O, so 

that  writing f(z)=a(z-zo)+a2(z-zo)2+... ,we have f'(z)=a+2a2(z-zo)+.., and 
f"(z)=2a2+..., a2#O. It follows that  F(zo)=a/(a-b), so that  

(2.20) N1)(r, ff@a) <-N(r, F_a)(a_b) ) <T(r,F)+O(1) �9 

Since F is an entire function and all poles of f are multiple, we have from 
(2.18), (2.19) and (2.20), 

i.e., 

(2.21) 

T(r, f) <_ �89 f) +re(r, f) +S(r, f) 

N(r, f) = S(r, f )  = O(log r). 

Thus f has only finitely many poles. By (2.17), 

T(r,f)<_N(r,f)+N(r, f ) N(r,~)+S(r,f)  

Thus 

(2.22) r e ( r ,  f )  = S(r, f )  = O(logr). 

From (2.21), (2.22) and E/(O)=E/,(a), we have, as in Lemma 5, that  f(z) is a 
rational function. 

Thus 

(2.23) N(r ,  f )  = S(r, f )  = O(1), 

i.e., f is a polynomial. Since f'(z)r f' is a constant. This contradicts f"(z)~O. 
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III. P r o o f s  o f  t h e  t h e o r e m s  

Proof of Theorem 1. Assume lal </bl. (Otherwise, we consider the family 9~l-- 
{ f -c : fc~} . )  Suppose that  5 c is not normal on A. Then, by Lemma 1, we have 
fnC~, znCA, and g~-+0+ such that  

9~(4)- f~(~n+~4) _~g(4) 

locally uniformly with respect to the spherical metric, where g is a nonconstant 
meromorphic function satisfying g# (4) <g#  (0) = (/al + 1) + 1= lal + 2. 

We claim that ~ ( 0 ) = E ~ , ( a ) ,  9'(4)r 
Indeed, suppose g(~o)=0. Since g is not constant, there exist ~n, 4 ~ 0 ,  such 

that  

gn(4n)-- f~(Zn+~n4~) = 0  (n large enough). 

Since Efn(O)=Ef;(a), we have g~(4n)=f~(z~+~n4~)--a. It follows that  g'((o) 
lim~.~ g'(4n)=a Thus ~(0)CE~, (a) 

Suppose ROW that  4o is a point such that  g'(4o) a. If g'(4) =a ,  then g# (4) -< I al, 
which contradicts g# (0) = l a l+  2. Thus, g' (4) ~ a, so there exist 4n, 4~ ~ 40, such that  

g:~(4n) ' = f~(z~+Qn~,~) = a ;  

and hence 

gn(4.n)- f,~(zn+a~4n) --0. 
gn 

Thus g(~o)=limn_~gn(r It follows that  Eg,(a)CEg(O), so that  Eg(O) 

Finally, suppose that  there exists 40 satisfying g~(4o)=b. One sees easily that  
g~(C)~b, so the previous reasoning shows that  there exist (~--+40, such that  

g~(~n) = j~[~(z~ +p~(n) = b 

and 

It follows that 

g~ gn 
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which contradicts g ' (@)-b .  Thus g'(C)r 
If ab=O, then a = 0  since lal<lbl. Thus Eg(0)=Eg,(0) ,  so all zeros of 9 are 

multiple. By Lerama 3, the order of g is at most 2. It follows from [1, Theorem 3] 
that  g has only a finite number of zeros. Hence, by Hayman's inequality ([5], [13, 
Theorem 4.5]), g must be a rational function. Since g'(C)#b, it follows that  

g'(r g(() bC+O(1), C--+ec. 

But g(C)/g'(C) is a polynomial, which must be linear; and this contradicts Eg(0)= 

Suppose, therefore, that  abr Let C0 be a pole of g(C). Since g(C)~oc, 
there exists a closed disc K={C:  Ir _<6} on which 1/g and 1/g~ are holomorphic 
(for n sufficiently large) and 1/gn-+l/g uniformly. Since 1/g,~(C)-a~/c-+l/g(r 
uniformly on K and 1/9 is nonconstant, there exist C~, ~--->@, such that  (for n 
large enough) 

1 L)~ 

c 

g n ( r  c _ f, ffzn+enC )-e = 0 .  

Qn g,~ 
Thus fi~(z~+g,~r so that  

(3.2) g'~,(~) = f:~(zn+o,~Cn) = b. 

It follows from (3.1) and (3.2) that  

\g(Q/( 1 ~ '  ~ g'(~o) l i t  g~(r 

so that  C0 is a multiple pole of g(C). Thus all poles of g are multiple. 
By Lemma 6, either a=(n+l)b, where n is a positive integer, or gH(C)--O. If 

a =  (n+  1)5, then In[ > ]b[, which contradicts ]a[ < ]5]. If g " ( ( ) - 0 ,  then g (C)=a(~-@) ,  
which contradicts E g ( 0 ) = E  V (a). This completes the proof. 

Proof of Theorem 2. By Theorem 1, ) c l = { f  a:fc,~} is normal; hence, so 
is f .  

Proof of Theorem 3. Suppose f is not a normal function. Then there exist 
z , ~ o o  such that  l im,~oo f#(z,~)=oo.  Write .[~,(z)=f(z+z~) and set be=(fi~}. 
Then by Marty's criterion, b c is not normal on the unit disc. On the other hand, 

since Ef,(a)=EF(a ) and Ef.,~(b) Eft(b), Theorem 2 implies that  ~- is normal. 
The contradiction proves the theorem. 

i.e., 

(3.1) 
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