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On Kneser solutions of higher order
nonlinear ordinary differential equations

Vladimir A. Kozlov(!)

Dedicated to Professor Vladimir Maz’ya on the occasion of his 60th birthday.

Abstract. The equation z(™ (t)=(—1)"|z(t)|* with k>1 is considered. In the case n<4 it
is proved that solutions defined in a neighbourhood of infinity coincide with C’(t—to)'"/ (k‘l),
where C is a constant depending only on n and k. In the general case such solutions are Kneser
solutions and can be estimated from above and below by a constant times (£—to)~™/(*=1_ It is
shown that they do not necessarily coincide with C(t—to)‘”/ (k=1) | This gives a negative answer
to two conjectures posed by Kiguradze that Kneser solutions are determined by their value in a
point and that blow-up solutions have prescribed asymptotics.

1. Introduction

In [KM1] V. Maz’ya and the author studied a linear equation of the form
M (d/dt)z(t) —w(t)z(t) = g(b),

where M is an ordinary differential operator with positive Green’s function and
w is a nonnegative function. This equation plays an important role in the theory
of linear differential equations with operator coefficients developed in [KM2]. An
attempt to extend the linear theory to the nonlinear case leads to equations of
the above form with w(#)z(¢) replaced by a nonlinear term f(,z(t)), where f is a
nonnegative function. This paper deals with one such type of equations,

(1) 2™ () = (=1)"|=(1)|F,
with k>1. Here 2{™ denotes the nth derivative of z with respect to t.

(1) The author was supported by the Swedish Natural Science Research Council (NFR) grant
M-AA/MA 10879-304.
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One can directly verify that the functions

(2) xa(t):(a(a+1)...(a+n—1))1/(k_1)(t—a)“°‘

and

(3) zp(t) = (1) (a(a+1) ... (a+n— 1))1/('“_1) (b—t)~“,
where

@ o=

satisfy (1) on the semiaxes (a,00) and (—oo,b), respectively. One of the main
questions studied here is:

Do solutions of (1), defined in a neighbourhood of +o0o, coincide with x, or zy?

In Section 6 the existence of n and k, k> 1, such that equation (1) has solutions
of the form

() (t—a) “h(log(t—a))

where h(7) is a nonconstant periodic function, is proved. This gives, in particular,
a negative answer to the following conjectures by 1. T. Kiguradze.
I. Consider the equation

(6) M) = (=1)"f(t,z) for t>0,

where f is a continuous nonnegative function of t>0 and >0 such that f(¢,0)=
0 and f(t,2)>f(t,y) if >y. In the case n=2 this equation was studied by A.
Kneser [Kn|, and it was proved that for every positive ¢ there exists exactly one
Kneser solution (i.e., a solution whose derivatives change sign) satisfying z(0)=c.
Kiguradze [K] (see also [KC, Section 13.5]) conjectured that the same is valid for
arbitrary n, possibly, if it is additionally assumed that z(t)—0, as t—+occ.

It is clear that f(¢,z)=|z|* satisfies the above assumptions, and, by Theo-
rem 1.1(i) below, all solutions defined in a neighbourhood of infinity are Kneser
solutions. The functions (5) and (2) with an appropriate choice of a have the same
value at a point.

II. Consider the Emden—Fowler equation of order n,

(7) 2™ =p(t)|z|* sgnz,
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with k>1 and p being a positive continuous function in a neighborhood of . The
conjecture on blow-up solutions is the following: If |z(t)]—+o0c as t—b, t<b, then

l2(t)] = c(b—6) " FD (1+0(b-1)),

where c¢ is a constant (see [KC, Section 16.4]). For n=2, this asymptotic represen-
tation is justified by Kiguradze and Chanturia [KC, Section 20], and for n=3, 4 by
Astashova [A].

If one takes p(¢)=1 in (7) and changes the variable t to —t, then z satisfies (1)
provided z is positive. Thus the above counterexample shows that this conjecture
also fails.

Despite that both conjectures fail, the following assertion (proved in Section 3)
on two-side estimates for solutions to (1) is still valid.

Theorem 1.1. (i) Let x be a nontrivial solution of (1) defined in a neighbour-
hood of +oo. Then the mazimal interval of existence of T is a semiazis (a,00) with
some finite a, where x satisfies

(8) e (t—a)~ ™ < (=)™ () <ca(t—a) "™, m=0,..., n—1,

fort>a.

(ii) Let  be a nontrivial solution of (1) defined in a neighbourhood of —oo.
Then the maximal interval of existence of x is a semiazis (—oo,b) with some finite
b and the following estimates hold

(9) e (b—t) ™ < (=12 () <ea(b—t) "™, m=0,.., n—1,

for t<b.

(iii) Let z be a solution of (1) with finite mazimal interval of existence (a,b).
Then x satisfies (8) in a right neighbourhood of a, and the estimates (9) hold in a
left neighbourhood of b.

In both inequalities (8) and (9), c1 and ca are positive constants depending only
onn aend k.

In the case n<4, Theorem 1.1 can be improved. The inequalities in (i) and (ii)
can be replaced by the equalities z=z, and x=x, and the two-sided estimates in
(iii) can be replaced by an asymptotic representation for z near a and b. This is
done in the last section. Thus the first conjecture is true for n<4.

2. Two lemmas

We begin with the derivation of an integral equation for solutions to (1) defined
on a semiaxis.
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Lemma 2.1. Let x=x(t) satisfy (1) on the semiazis (a,00). Then

(10 )= [t ar

fort>a.

Proof. For n=1 the assertion is trivial. Therefore we shall suppose that n>2.

From (1) it follows that only one of the following alternatives for the solution
z hold:

@) (=1)"z®(£)>0, k=0, 1,..., n, on a semiaxis t>t;, where t;>a;

(ii) (=1)*z®) (£)>0, k=0, 1, ..., n, on a semiaxis t >, and z*) (£} —0, as t—o0,
k=0,1,..., n.

Consider first (i). Integrating (1) n times over the interval (¢1,t) and using
positiveness of derivatives of the function (—1)"z we arrive at

t—7)nt

1ra) >t [ el ar

with a positive constant ¢;. Suppose that we have constructed a positive function
y satisfying the opposite inequality, i.e.,

ay v <ot [ S Dmar
for teft;,T) and y(t1)<ecy. Then

(12) (=) z(t)>y(t) fortel0,T).
If, additionally,

(13) y(t)— o0, ast—T,

then (—1)"z(t)—oo, as t—T, which contradicts the fact that z(¢) is a locally
bounded function on [t1, 00). Thus, it suffices to construct y subject to (11) and (13).
We are looking for y of the form

y(t) =q(T )",

where « is given by (4), and ¢ and T are constants. Inserting this expression into
(11) and changing variables

t=t1+(T—t1)n, T=t1+(T—t1)¢
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we get that (11) is equivalent to

19 @ sagt@-nes [ g,

where 0<n<1. Since the last integral is estimated by Const(1—n)~*, we can satisfy
(14) for all n€[0, 1) by choosing q and then T sufficiently large. Thus (12) is proved
and hence the alternative (i) is impossible.

Suppose that (ii) is valid. Then

(_1)n71x(n—1) (t2)+/tz |m(7—)|k dr = (—1)n71$(n—1)(t1)'

t1

Since both terms on the left have the same sign, we obtain
(=)= D() :/ |z(7)|Fdr for t>a.
t

Successively integrating this equality n—1 times and using the positiveness of
(—1)kx®)(t) we arrive at (10). [

In the following lemma we give two-sided estimates for solutions with a finite
maximal interval of existence.

Lemma 2.2. Let z be a solution to (1) defined in a right neighbourhood of 0
and let z be noncontinuable to the left from 0. Then (—1)*z*)(t)—o0, as t—0,
and

¢ (rpyn—1-k S (r_pyn—i—k
) 3 [ et ars (osop <2 [0 Sk

for te(0,6), where € and § are positive numbers, §<e.

Proof. From (1) it follows that

€ n—1

(16) z(t) :/t %lx@'ﬂk dr+p(¢)

for t€ (0, £), where ¢ is a sufficiently small positive number and p(¢) is a polynomial
of degree <n—1. Let us show first that x(t)—o0, as t—0. Suppose that z is
bounded. By (16), z*) k=1,..., n, are bounded also. Hence z can be extended
to the left from 0. This contradiction shows that z should be unbounded. By
(16), (—1)*2F) (t)—o00, as t—0. Since the integral in (16) diverges, (15) follows
from (16). O
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3. Proof of Theorem 1.1(i)
The maximal interval of existence of x

Suppose that x can be extended to (—oco,00) as a solution to (1). Then by
(10), z is a positive and strictly decreasing function. The function t— (—1)"z(—t)
also satisfies (1) and, using {10) again, we obtain

R O e e

which implies that the function x is negative or increasing. This contradiction
proves that the maximal interval of existence is (a, c0) with a finite a. Furthermore,
z(t) =00, as t—a. In fact, if  is bounded in a neighbourhood of a then, by (10),
z®) k=1, ..., n, is bounded there also. Hence z can be extended to the left from a.

Since equation (1) is invariant with respect to translations we shall suppose, in
what follows, that a=0, and the semiaxis (0, 0o) is the maximal interval of existence
of z, and

(17) z(t) 00, ast—0.

The upper estimates

Let us first prove the estimate
(18) z(t) <ect™ for ¢>0,

where « is given by (4) and ¢ depends only on n and k. Formula (10) implies that
the function z is bounded, nonnegative and decreasing. So, if 0<<a<b then one has

bt (1 _ )1 Q)M
(19) x(at)Z/at %drim(btﬂk:(b——%i—lx(btﬂk.

Now let
0,0:2, aj+1:aj—2_j“l, jZO, 1,... .

Using (19) with b=qa; and a=a;11 we get

z(azt) < (@MUl Yoy (a, 1)

Hence
z(2t) < (2"nlt~")52mQ
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where

This yields (18).
Differentiating (10) one obtains

oo (T_t)nfm—l

(20) (e = [l ar,

for m=1, ..., n—1. This together with (18) gives

(21) 0<(-D)mzM @) <ct™™ ™ for t>0,

where m=0, 1,..., n and ¢ is a positive constant depending only on n and k.

Transformation of equation (1)

We represent z as
(22) z(t) =t~ y(1).
Inserting this in (1) and using
(—D)"ae™ () =t""L (—t %) z(t),
where
(23) L{z)=2(z+1) ... (z+n-—1),
we obtain d
L(a—t E)y(t) =|y(t)|F for t>0.
Changing the variable t=¢” and introducing
(24) u(r) = L(a) ™/ * Dy (e7)
we arrive at
(25) L(a—%)u(ﬂ') = L(a)ju(r)|* for T€R.
From (21) it follows that
(26) W™ (1)< C for TeR

for m=0, 1,..., n, where C is a constant depending only on &k and n.
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The lower estimate

Let us show that there exists a positive constant ¢y, depending only on n and
k, such that

(27) u(t)>¢cy for all T€R.

Inserting (22) into (10) and changing the variable in the integral we obtain

(25) v0= [ e

Therefore

o (e [ (£ e
for m=1,..., n—1. For every positive §€(0, 1) the estimate

(30) } <1+s (%)ms_ka(s— Dl <osTms TR (s 1)t

holds for s>1+6, where C' depends only on n and k. Using this estimate together
with (28), (29) and the boundedness of y one gets

d m
(3) (15) vl <cmuvo
for m=1,..., n—1. Let y(t)<1. Taking §=y(t)*/(™*1) we obtain

m
(32) ‘(t %) y(t)\SC'y(t)l/(mJ”l) form=1,..., n—1,
or, what is the same,
(33) [ul™ (1) < Cu(r)Ym™HD for m=1,..., n—1.

Thus, if u(7) is small at & certain point then all its derivatives up to the order n—1
are also small at the same point.
Furthermore, equation (25) can be written as the first order system

d
(34) -~ U+AU =L(a) col(0, ..., 0, \U1 %),
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where Uy =u, Uj=(a+j—2—d/dr)U;_y for j=2,..., n and A is the matrix with
the elements o, a+1,..., a+n—1 on the main diagonal, with —1 on the diagonal
above the main one and with zero otherwise. Since all eigenvalues of the matrix A
are positive, there exists a positive matrix B such that the matrix BA+A* B is also
positive. If v is sufficiently small at ¢, then by (33) the norm of U(t.) is also small
and we derive from (34) that

d
E(BU(T), U(r)) >e(BU(1),U(t)) for T <1,
with a positive ¢ depending only on n and k. This implies that

(BU(7),U(1)) <Ce"  for 7 <t,,

and hence
u(r) < ces™/2

for the same 7.
Now we rewrite (25) as

L(a—%)u(T)zp(T)u(T),

where p(7)=0(e5*~17/2) for 7 <0. Hence the asymptotics of u at ~oo are described
by the zeros of L(a—d/dr)v(r)=0. This implies, in particular, that

u(T) <ce®”,

which gives the boundedness of z(¢), as t—0. This contradicts (17).

Proof of (8)

The upper estimate in (8) is a consequence of (21). From (27) one derives the
lower estimate in (21) for m=0. The lower estimates for m=1,..., n—1 follows
from the one just proved and from (20).

4. Proof of Theorem 1.1(ii) and (iii)

One can verify directly that if x=z(t) is a solution to (1) then the functions
z(t+q) and (—1)"x(—t), where g is real, are also solutions to (1). Therefore, (ii)
follows from (i) and in part (iii) it is sufficient to only prove the estimate (8),
where ¢=0. This inequality is proved in the same way as the estimate (8) (in
Theorem 1.1(i)), but instead of the representation (10) one should use the inequal-
ities (15).
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5. On zeros of the polynomial L(a+2)—L(a+1)
Here we study roots of the equation
(35) L{a+z)~L{a+1)=0,

with a>0. The information obtained here will be used in the next section, where
we shall construct a solution to (1) of the form (2) with nonconstant h.

It is clear that z=1 satisfies (35) and there are no other real roots z on the
semiaxis z<—2a—mn. In the next lemma we collect some simple properties of pure
imaginary roots of equation (35).

Lemma 5.1. (i) Equation (35) has at most one root on the positive part of
the imaginary axis.

(ii) If z=iq, ¢>0, is a root of (35) and a>n then
(36) a+n<q® <2a4+2n—1

(the right-hand inequality is valid for all a>0).
(iil) For pure imaginary z

dilZL(a—Fz) #0.

In particular, all pure imaginary roots of (35) are simple.
Proof. (i) Let z=igq, ¢>>0, be a root of equation (35). Then
(@*+a*)((a+1)*+¢%) . ((at+n—1)*+¢%) = (a+1)*(a+2)* .. (a+n)*.

Since the left-hand side is a monotone function of ¢ this equation has exactly one
positive root gq.
(ii) If the right-hand estimate in (36) fails then

(a+5)*+¢* > (a+j+1)°
for j=0, 1, ..., n—1. Moreover the inequality is strict for j<n—1. Hence |L(a+2)|>

L(a+1). This contradiction proves the right-hand estimate in (36).

Suppose now that ¢><a-+n. Then

(a+2)?+¢* < (atx)’+at+n < (atz+1)?

provided a>n and £>0. These estimates imply |L{a+2)|<L(a+1). This proves
the left-hand inequality in (36).

(iii) Let L(z)=L(a+2)—L(a+1). Then L'(z)=L'(a+z). The zeros of the
polynomial L(a+z) are —a, —a—1,..., —a—n+1. Therefore the zeros of L'(z) lie
in the interval (—a, —a—n+1). This completes the proof. [

The existence of pure imaginary roots to equation (35) will be obtained from
the following two lemmas.
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Lemma 5.2. Let n be a given positive integer. For sufficiently large positive
a all roots of equation (35) except z=1 lie in the half-plane Re z<0.

Proof. We are looking for solutions of (35) in the form

{37) zjla) =(—14¢;)a+cy; +Z crja ",
k=1

where ¢;=e%™/" and j=1,..., n—1. Since 2=1 is always the root of (35), z;(c)
should give all other roots of (35). We rewrite (35) as
(38)

(n—

Dn _ " _ n(n+1) ,_ " _
(z+a)"+—2—)(Z+a)” Y3 ap(zta)” k:an+(T)O‘ ") " beamF,
k=2 k=2

where a; and by are positive constants. Inserting (37) in (38) one can find all terms
in the left-hand side of (37). In particular,

coj=3{n+1)e;—3(n—1).
The proof of the fact that the series in (37) is convergent is standard. Since all roots
zj(a), j=1,..., n—1, are located in the plane Re z<0, the proof is complete. [J

Lemma 5.3. Let a=cn, where ¢ is a fized positive constant. Then for a
sufficiently large n equation (35) has roots in the half-plane Re z>0 different from
z=1.

Proof. We rewrite (35) as
(39) Fla,z)=1,

where

_ L{a+z) D(z+a+n)T(a+1)
(40) Fla,2) = L(a+1) T(a+n+DI'(z4a)

Using Stirling’s formula we obtain
(41)

1 1 1 1
F — P(a,z) 1 - -
(o2) =e ( +0 z+a+n +0 at+n+1 +0 a+1 +0 2ta))’

where

®(a, z) = (z+a+n—1) log(z+a+n)— (a+n+3) log(a+n+1)

(42 + (a4 1) log(a+1)— (2 +a—3) log(z+a).
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We are looking for solutions of (39) which are bounded by a constant independent
of n and a. From (42) we derive

(43) B(a, ) = (z—l)log(%> +o(%).

We introduce the rectangle
1 1
1= {z —(2x+ D)7 <Imzlog<i) <(2»x+ 17, |Rez—1|< 5},
¢
where s is a positive integer, and denote by OII its boundary. Using (41) and (43)
one verifies that
|F(a, 2) _elzm1) log((c+1)/c)| > %|e(z—1) log((c+1)/c) _ 1|

on OTI. Therefore equation (39) has the same number of roots in the rectangle 11

as the equation
eF—Dlog((c+1)/e) _ 1

This number is greater than 1 for large ». O

Theorem 5.4. For every ng and cg there exist n>ng and a>con such that
equation (35) has a pure imaginary root.

Proof. By Lemma 5.3 equation (35) has a root in the half-plane Rez>0 for
a certain n>ngy and a=cgn. By increasing « and using Lemma 5.2 we obtain the
existence a>>con such that there exists a root of (35) on the imaginary axis. O

We conclude this section by the following technical assertion.

Lemma 5.5. Let n and a/n be sufficiently large. Lel also z be a pure imagi-
nary number such that |z|<C/a, where C is a constant independent of n and a.
Then

(44) 9. F(a,z)= (10g a;n —~ ﬁ‘\'O(%))e@(a’z)
and
(45) BoF(ar, 2) = (ﬁ <1_Z+§)+O<W))e¢(a’z)7

where F' is introduced by (40).
Proof. By (41) we have

(46) 8, F(a, z) = (az@(a, Z)JFO(%))e@(a,z)
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and
1
(47) OuF(a,2)= (@ﬁb(a, Z)+O<¥>>e@(a,z).
Furthermore, from (42) we derive
atntz L 1 a+n nz n
0:0(a, 2) =1 - =1 — o =
(0 2) =log = = o Tt~ % w ataga) (aZ)

and

(z—1)n )+ n 3 n
(a+z)(a+n+1)/  2(a+z)(a+n+z) 2(a+l)(at+n+1)

B n . 22 2z Lo n?
~ ala+ntl) at+z  « ad )’

These relations together with (46) and (47) give (44) and (45). O

0,P(a, 2) zlog(l—

6. Existence of periodic solutions

Theorem 6.1. For every number N and K, K>1, there exist an integer
n>N and a real number ke(1, K) such that equation (1) has a solution

(48) z(t)=t " *Vp(logt), t>0,

where h is a periodic nonconstant function on R.

Proof. We seek an h on the form
k() = L)Y (1 +v(r)).

If (48) solves (1) then v should satisfy

(19) (L(a—8)~Lia+1))o(t) = L(a) (D) (1),
where
(50) Jy) = My‘l—"“y

Clearly, f is real analytic for y>—1.
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According to Theorem 5.4, for every positive integer N and real number K >1
there exist n>N and ko&(1, K) such that equation (35) with
on
 ko—1
has a root on the imaginary axis. We denote this root by ig, ¢>>0. By the same
theorem we can suppose that n and «p/n are sufficiently large. It is clear that —ig
is also a root of (35) and by Lemma 5.1(i) there are no other pure imaginary roots.
Let z(c) be the root of (35) which is situated near iq for a close to ap and such
that z(ag)=ig. Clearly, the function z(a) is analytic in a neighbourhood of aq.
Since z satisfies (39) we get

=0y

, OuFla, 2)
Zla)=- 8, F(a,2)

By Lemma 5.1(ii) all assumptions of Lemma 5.5 are fulfilled (where z2=iq). There-
fore we can use formulae (44) and (45) for calculation of 2/(ag). Hence

1 22 n 1 |7
— (1—24-—)-‘1-0 S+ ——+—=
ag+n (7)) ag  noy o

z 1 ’
@log(uﬁ)— +O<~>
n (%) Qg+n (o 7))

'(a0) 1-2 . 1
2 =— ol — |.
0 ag+n (o7

Re 2’ () #0.

Now the application of the Hopf bifurcation theorem (see, for example, [GH, Sec-
tion 3.4]) completes the proof. [1

Z'(ao) =

which implies

This yields

7. The case n=1, 2, 3, 4
Here we improve Theorem 1.1 for the case n=1, 2, 3, 4.

Theorem 7.1. Let n<4. Then the following assertions hold.

(i) Let x be a nontrivial solution of (1) defined in a neighbourhood of +oo.
Then the mazimal interval of ezistence of x is a semiazis (a, oc) with some finite a
and r=1x,, where z, is given by (2).

(i) Let z be a nontrivial solution of (1) defined in a neighbourhood of —oc.
Then the mazimal interval of existence of x is a semiaxis (—oo,b) with some finite
b and x=1x3, where xy, is given by (3).
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Theorem 7.2. Lef x be a solution of (1) with finite maximal interval of exis-
tence (a,b). Then

(51) z(t) =za(t)(1+0(t7))
in a right neighbourhood of a and
(52) 2(t) =z (1) (1+0(t7))

in a left neighbourhood of b. Here o is a positive constant, which depends only on
n and k. The asymptotic formulae for ®), k=1,..., n—1, are obtained from (51)
and (52) by differentiation.

We start with an auxiliary assertion which is valid for all n.

Lemma 7.3. Let all the roots of equation (35), except z=1, lie in the half-
plane Re 2<0.
(i) If v is a solution of (49) on R such that

v(t) >0, ast— +oo,

then v=0.
(il) If v is a solution of (49) in a neighbourhood of —co such that

v(t) —0, ast— —oo,
then
(53) v(t)=0(e), ast— —oo,

where ¢ is a positive number.

Proof. (i) We suppose that v£0. The function v is bounded since
(54) z(t) =t *L(a)Y/* V(14 v(logt))
solves equation (1) on (0,c0). We rewrite (49) as
(55) (L{a=8;) = L{a+1)v(t) = p(t)v(t),

where
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and, therefore, p(t)—0, as t—+o00. Since there are no roots of (35) on the imaginary
axis, we obtain v(t)=0(e~%), §>0, for large positive t. Therefore, v satisfies (55)
with p(t)=0(e~®"). Using the assumptions on the roots of (35) we derive from (55)
that

v(t) =ce ' +0(e™?), ast— +oo,

with a nonzero constant ¢. This together with (54) implies that
z(t) =Cut ™ *(1+ct ' +0(t™%)), ast— +oo,

where C,=L(a)Y/ (k1)
(a) Let ¢>0. Then

(56) 2(t) > Colt—c1) ™

for large t with 0<c; <e¢. From (10) it follows that (56) holds for all ¢>>¢;. This
contradicts the fact that the maximal interval of existence of z is (0, co}.
(b) Let ¢<0. Then

(57) z(t) < Cut—c1)™¢

for large t, where c<¢q <0. From (10) we obtain that (57) is valid for all positive ¢.
This implies that u(t)—0, as -0, which contradicts (27).

(ii) We rewrite equation (49) as (55). Since p(t)—0 and v(t)—0, as t——oo0,
and since there are no pure imaginary roots of L(a—z)—L({a+1)=0 we arrive at
the estimate (53). [J

The main step in the proof of Theorems 7.1 and 7.2 is contained in the following
lemma.

Lemma 7.4. Let n<A4.
(1) If v is solution of (49) on R then v=0.
(ii) If v solves (49) in a neighbourhood of —co then

(58) v(t)=0(e")  for large negative t.

Proof. One can verify that in the case n=1, 2, 3, 4 all roots of the equation
(35) except z=1 lie in the half-plane Re 2<0.
We rewrite equation (49) as

(59) (L{a=8;)~L(a))v(t) = L(e)g(v)v,
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where

(1+7)r—1-71

e

It is easy to check that g(7)>c.>0 for 7>—1+¢, £€>0. By (54) and (8) —1+6<
v(t)<C with some positive §, therefore

g(T)=

co<g(v(t))<ep forallt,

where ¢y and ¢; are positive constants.
For n=1, 2 the assertion is trivial. Let n=3. Multiplying (59) by v, integrating
over an interval (a,b) we obtain, after partial integration, that

b b
“3(a+1) / () dt = L(o) / g(u(E)2(6) dt+C(a,b),

where the constant C(a,b) is bounded uniformly with respect to @ and b because of
the boundedness of v(*), k=0, 1,..., n—1. This implies that

/ (2 (£)+2(t)) dt < 00,
R

Hence v(t)—0, as t—+o0, in the case (i) and v(t)—0, as t——o0, in the case (ii).
Referring to Lemma 7.3 completes the proof for n=3.
Let n=4. Multiplying again (59) by v, integrating from a to b and making
partial integration we get
b b
(60) / (i}Q(t)—cszz(t))dt:L(a)/ g(v(£)v?*(t) dt+Ci(a,b),
a a
where
c2 =a(3a+6)+(a+1)(2a+5)+(a+2)(a+3)

and Ci(a,b) is a bounded function of a and b. Multiplying (59) by ©, integrating
from a to b and making partial integration we get

b
(61) / (r#(£) — csi()) dt = Ca(a, b),

where
c1=40+6 and cz=a(a+1)(2a+5)+{a+1)(a+2){a+3)

and Ca(a, b) is a bounded function. From (60) and (61) we derive that

b b
—(erca—ca) / o(t) dt = 1 L(a) / g(u(8)v(t) dt+Ca, b).
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Since ¢1ce>c3 we obtain
/ (P (8)+0%(0)) dt < o0,
R

This implies v(t)—0, as t—+o0, in the case (i) and v(t)—0, as t——o0, in the
case (ii). Referring to Lemma 7.3 completes the proof. [

Proof of Theorems 7.1 and 7.2. We can suppose that a=0 and represent z
as (54). Then the function v satisfies (49) and by Lemma 7.4(1) v=0 provided
x is a solution to (1) for >0 and v is subject to (58) if = solves (1) in a right
neighbourhood of 0. This proves Theorem 7.1(i) and (51). The assertion (ii) in
Theorem 7.1 and (52) follow from the just proved lemma due to the invariance of
equation (1) with respect to the transformations

z(t)—x(t+q) and z(t)— (-1)"z(—t). O
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