
Ark. Mat., 37 (1999), 305 322 
@ 1999 by Institut Mittag-Leftler. All rights reserved 

On Kneser solutions of higher order 
nonlinear ordinary differential equations 

Vladimir  A. Kozlov(1) 

Dedicated to Professor Vladimir Maz'ya on the occasion of his 60th birthday. 

Abstract .  The equation x(~)(t)=(-1)nlx(t)lk with k > l  is considered. In the case n<4 it 
is proved that solutions defined in a neighbourhood of infinity coincide with C(t-to) -n/(k-1), 
where C is a constant depending only on n and k. In the general case such solutions are Kneser 
solutions and can be estimated from above and below by a constant times (t-to)-n/(k-l). It is 
shown that they do not necessarily coincide with C(t-to) -n/(k-1). This gives a negative answer 
to two conjectures posed by Kiguradze that Kneser solutions are determined by their value in a 
point and that blow-up solutions have prescribed asymptotics. 

1. I n t r o d u c t i o n  

In [KM1] V. M a z ' y a  and the  au thor  s tudied  a l inear equa t ion  of the form 

dr4 (d/dt)x(t)-w(t)x(t)  g(t), 

where Ad is an ord inary  differential  opera to r  wi th  posi t ive  Green ' s  funct ion and 

w is a nonnega t ive  function.  This  equa t ion  plays an i m p o r t a n t  role in the  theory  

of l inear differential  equat ions  wi th  ope ra to r  coefficients developed in [KM2]. An  

a t t e m p t  to ex tend  the  l inear theory  to  the  nonl inear  case leads to equat ions  of 

the  above form wi th  w(t)x(t) replaced by a nonl inear  t e r m  f(t ,  z(t)), where f is a 

nonnega t ive  function.  This  paper  deals wi th  one such type  of equat ions,  

(i) x(n) (t) = k, 

with  k > l .  Here x (n) denotes  the  n t h  der ivat ive  of x wi th  respect  to t. 

(i) The author was supported by the Swedish Natural Science Research Council (NFR) grant 
M-AA/MA 10879-304. 
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One can directly verify that  the functions 

(2) xa(t) = ( a ( a + l ) . . .  (a+n--1))l/(k-1)(t--a)-~ 

and 

(3) Xb(t) = (--1)n(c~(c~+ 1)... ( ~ + n - -  1)) 1/(k-l) (b-t)  -~, 

where 

n 
(4) c~ = ( k -  1~' 

satisfy (1) on the semiaxes (a, oo) and ( -oo ,  b), respectively. One of the main 
questions studied here is: 

Do solutions of (1), defined in a neighbourhood of • coincide with Xa or Xb? 

In Section 6 the existence of n and k, k>  1, such that  equation (1) has solutions 
of the form 

(5) ( t -a)  ~h(log(t-a)) 

where h(~-) is a nonconstant periodic function, is proved. This gives, in particular, 
a negative answer to the following conjectures by I. T. Kiguradze. 

I. Consider the equation 

(6) x(n)(t)=(--1)nf(t,x) for t > O ,  

where f is a continuous nonnegative function of t_>0 and x > 0  such that  f(t,  0)=  
0 and f ( t ,x)>_f(t ,y)  if x>_y. In the case n = 2  this equation was studied by A. 
Kneser [Kn], and it was proved that  for every positive c there exists exactly one 
Kneser solution (i.e., a solution whose derivatives change sign) satisfying x(0)=c.  
Kiguradze [K] (see also [KC, Section 13.5]) conjectured that  the same is valid for 
arbitrary n, possibly, if it is additionally assumed that  x(t)--~O, as t--~+oo. 

It is clear that  f ( t ,x )=lx l  k satisfies the above assumptions, and, by Theo- 
rem 1.1(i) below, all solutions defined in a neighbourhood of infinity are Kneser 
solutions. The functions (5) and (2) with an appropriate choice of a have the same 
value at a point. 

II. Consider the Emden Fowler equation of order n, 

(7) X (n) =p(tDIxl k sgnx,  
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with k > l  and p being a positive continuous function in a neighborhood of b. The 
conjecture on blow-up solutions is the following: If Ix(t) l--+ +oc as t--~ b, t <  b, then 

)x( t)l = c (b - t ) -~ / ( k - i )  ( l +o(b - t )  ), 

where c is a constant (see [KC, Section 16.4]). For n=2 ,  this asymptotic represen- 
tation is justified by Kiguradze and Chanturia [KC, Section 20], and for n=3 ,  4 by 
Astashova [A]. 

If one takes p ( t ) = l  in (7) and changes the variable t to - t ,  then x satisfies (1) 
provided x is positive. Thus the above counterexample shows that  this conjecture 
also fails. 

Despite that  both conjectures fail, the following assertion (proved in Section 3) 
on two-side estimates for solutions to (1) is still valid. 

T h e o r e m  1.1. (i) Let x be a nontrivial solution of (1) defined in a neighbour- 
hood of +oc. Then the maximal interval of existence of x is a semiaxis (a, oc) with 
some finite a, where x satisfies 

(8) cz ( t -a ) -~ -m<_( -1 )mx(m) ( t )K_c2( t -a ) -~ - '~ ,  m = 0 , . . . ,  n - i ,  

for t>a.  
(ii) Let x be a nontrivial solution of (1) defined in a neighbourhood o f - o o .  

Then the maximal interval of existence of x is a semiaxis ( -oc ,  b) with some finite 
b and the following estimates hold 

(9) ci(b-t)-~- '~<_(-1) '~x( '~)(t)<_e2(b-t)  -~- '~,  m = 0 , . . . ,  n - l ,  

for t<b. 
(iii) Let x be a solution of (1) with finite maximal interval of existence (a, b). 

Then x satisfies (8) in a right neighbourhood of a, and the estimates (9) hold in a 
left neighbourhood of b. 

In both inequalities (8) and (9), el and c2 are positive constants depending only 
on n and k. 

In the case n<4 ,  Theorem 1.1 can be improved. The inequalities in (i) and (ii) 
can be replaced by the equalities x=xa and X=Xb, and the two-sided estimates in 
(iii) can be replaced by an asymptotic representation for x near a and b. This is 
done in the last section. Thus the first conjecture is true for n K4. 

2. T w o  l e m m a s  

We begin with the derivation of an integral equation for solutions to (1) defined 
on a semiaxis. 
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L e m m a  2.1,  Let x=x( t )  satisfy (1) on the semiaxis (a, oc). Then 

(lO) x(t) : r / 
(T-- t)  n-1 

j t  ( n - - 1 ) !  Ix(m)lkdT 

for t>a.  

Proof. For n = l  the assertion is trivial. Therefore  we shall suppose tha t  n_>2. 
From (1) it follows tha t  only one of the following al ternat ives for the solution 

x hold: 
(i) ( -1)nx(k)  (t) _>0, k : 0 ,  1, ..., n, on a semiaxis t>t l ,  where t l>a; 
(ii) ( - 1 ) k x  (k) (t) _>0, k=0 ,  1, ..., n, on a semiaxis t>_tl and x(k) ( t ) 4 0 ,  as t -*oc ,  

k=0 ,  1, . . . ,  n. 
Consider first (i). Integrat ing (1) n t imes over the interval (tl , t)  and using 

positiveness of derivatives of the function ( 1)nx we arrive at 

~ t (t__T)n--1 
( 1)nx(t)>Cl-F (n--Z)[  IX(T)lkd~' 

1 

with a positive constant  61. Suppose tha t  we have const ructed  a positive function 
y satisfying the opposite  inequality, i.e., 

jft] ( t -T)n-1 
(11) y(t)<<Cl+ (n 1)! lY(T)lkd7 

for tE[t l ,T)  and y( t l )<cl .  Then  

(12) ( - -1)ha( t )  > y(t) for t E [0, T).  

If, additionally, 

(13) y(t) --~ oc, as t - *  T, 

then  ( - 1 ) n x ( t ) ~ o c ,  as t---~T, which contradicts  the fact t ha t  x(t) is a locally 
bounded  funct ion on [tl, oc). Thus,  it suffices to construct  y subject  to (11) and (13). 
We are looking for y of the form 

y(t) -- q(T t) -~,  

where c~ is given by (4), and q and T are constants.  Insert ing this expression into 
(11) and changing variables 

t=tl+(T-tl) , 
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we get that  (11) is equivalent to 

f0" (~_~)~-1 (14) ql-k(1--~])-a~--Clq-k(T--tl)~ ( n - - l ) !  ( 1 - ~ ) - a ~  d~' 

where 0 < ~1 < 1. Since the last integral is estimated by Cons t (1 -  ~/)-a, we can satisfy 
(14) for all ~/~ [0, 1) by choosing q and then T sufficiently large. Thus (12) is proved 
and hence the alternative (i) is impossible. 

Suppose that  (ii) is valid. Then 

( -1 )  ~ 1 x ( ~ - l ) ( t 2 ) + [  t2lx(T)l k d T = ( - 1 )  n lx(n-1)(Q). 
Jtl 

Since both terms on the left have the same sign, we obtain 

S Ix(T)l  d  for t > a .  

Successively integrating this equality n - 1  times and using the positiveness of 
( 1)kx (k)(t) we arrive at (10). [~ 

In the following lemma we give two-sided estimates for solutions with a finite 
maximal interval of existence. 

L e m m a  2.2. Let x be a solution to (1) defined in a right neighbourhood of 0 
and let x be noncontinuable to the left from O. Then (--1)kx(k)(t)--~oe, as t--~O, 
and 

1 e(T_t) ,~ I klX(T)lkdT< ( 1)kX(k) (t) -- < 2  IX(T) dT 
(15) ~ ( n - l - k ) !  - (n l - k ) !  

for rE(0,5),  where e and 5 are positive numbers, 5<c. 

P w @  From (1) it follows that 

(16) x(t) f ~  (T - t )~  llX(T) lk dT+p(t) 
~ (n-l)! 

for tC (0, e), where c is a sufficiently small positive number and p(t) is a polynomial 
of degree _<n-1. Let us show first that x(t)--*oc, as t--*0. Suppose that x is 
bounded. By (16), x (k), k = l , . . . ,  n, are bounded also. Hence x can be extended 
to the left from 0. This contradiction shows that x should be unbounded. By 
(16), ( 1)kX(k)(t)--~oc, as t ~ 0 .  Since the integral in (16) diverges, (15) follows 
from (16). [] 
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3. P r o o f  o f  T h e o r e m  1.1(i)  

T h e  m a x i m a l  i n t e r v a l  o f  e x i s t e n c e  o f  x 

Suppose tha t  x can be extended to ( - ~ , o e )  as a solution to (1). Then by 
(10), x is a positive and strictly decreasing function. The function t~-+(-1)nx(-t) 
also satisfies (1) and, using (10) again, we obtain 

/~ (t__T)n--1 ik 
( - 1 ) ~ x ( t ) =  ~ ~ _ ~  Ix(~) d~, 

which implies tha t  the function x is negative or increasing. This contradiction 
proves tha t  the maximal  interval of existence is (a, c~) with a finite a. Furthermore,  
x(t)--~oe, as t-+a. In fact, if x is bounded in a neighbourhood of a then, by (10), 

x (k), k = l ,  ..., n, is bounded there also. Hence x can be extended to the left from a. 
Since equation (1) is invariant with respect to translations we shall suppose, in 

what follows, tha t  a = 0 ,  and the semiaxis (0, cx~) is the maximal  interval of existence 
of x, and 

(17) z(t) -~ ~ ,  as t -~  0. 

T h e  upper  e s t i m a t e s  

Let us first prove the est imate 

(18) x(t)<_ct -~ f o r t > 0 ,  

where a is given by (4) and c depends only on n and k. Formula (10) implies that  
the function x is bounded, nonnegative and decreasing. So, if 0 < a < b  then one has 

(19) 

Now let 

~a bt (7_a t )n  1 dTtx(bt)l k (b_a)~t~ Ix(bt)l k" 
x(at)  ~ t (n-- l ) !  - -  n.V 

a 0 = 2 ,  aj+l=aj - -2  - j - l ,  j = 0 ,  1, . . . .  

Using (19) with b=aj and a=aj+l we get 

x(ajt) <_ (2~(J+l)n!t-n)l/kx(aj+lt)l/k. 

Hence 
X(2t) ~ (2nn!t--n)S2 nQ, 
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where 
1 

S = E k - J -  k - l '  
j= l  

This yields (18). 

Differentiating (10) one obtains 

(20) 

for m = l ,  ..., 

(21) 

OO 

Q = E j k  -j. 
j=0 

(t) = rj~ (_1)rex(-~) 
( n - m - i ) !  [xO-)(a dT-, 

n - 1 .  This together  with (18) gives 

O<(-1)'~x('~)(t)<ct -~-'~ f o r t > 0 ,  

where m = 0 ,  1, ..., n and c is a positive constant  depending only on n and k. 

Transformation of equation (1) 

We represent x as 

(22) 
Inser t ing this in (1) and using 

where 

(2a) 
we obta in  

x(t) =t-my(t). 

(-1)~x(n)(t)=t-nL(-td )x(t), 

L ( z )  = z ( z  + l )  ... (~ + n -  1), 

for t > 0 .  

Changing  the  variable t=e ~ and in t roducing 

U(T) = L(ol)-l/(k-1)y(e7) (24) 

we arrive at  

(25) 

~rom (21) it follows that 

(26) [u 0~)(T)I < C for T e R 

for rn=0 ,  1, ..., n, where C is a constant  depending only on k and n. 

31] 
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T h e  l o w e r  e s t i m a t e  

Let us show tha t  there exists a positive constant co, depending only on n and 
k, such thut  

(27) ~(~) _> t0 for 311 ~ c R.  

Inserting (22) into (10) and changing the variable in the integral we obtain 

/ 2 s _ k ~ ( s _ l ) ~ _ l  
y(t)  = ly(ts)l  k ( ~ - 1 ) !  ds. (28) 

Therefore 

( dtdf ~ ~oo fl d~m8 kc~(8--1)n 1 ~ - _ _ 1 ) i  (29) t y(t) ---- ( - 1 )  "~ [y(ts)l k ~ +S~s ) ds 

for r e = l ,  ..., n - 1 .  For every positive BE(0, 1) the estimate 

(30) (l+sd)'~s-k~(s-l)n 1 ~_CS-~s-k~(s--l) n-~ 

holds for s > 1 + 8 ,  where C depends only on n and k. Using this estimate together 
with (28), (29) and the boundedness of y one gets 

(31) (t d )'~y(t) ~ C(5-my(t)+5) 

for r e = l ,  ..., n - 1 .  Let y ( t ) < l .  Taking 8=y(t) 1/('~+1) we obtain 

(32) t ~  y(t) <_Cy(t) 1/(m+1) f o r m = l , . . . ,  n - l ,  

or, what  is the same, 

(33) [U(m)(T)I ~ C~(T) 1/('rn+l) for m = 1, ..., n - 1 .  

Thus, if u(~-) is small at a certain point then all its derivatives up to the order n -  1 
are also small at the same point. 

Furthermore,  equation (25) can be writ ten as the first order system 

d 
(34) d~ U+AU = L(~)  co1(0, ..., 0, IUllk), 
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where  Ul=u, Uj=(a+j-2-d/dT-)Uj_l for j = 2 , . . . ,  n and A is the  ma t r i x  wi th  
the  e lements  a ,  a + l ,  ..., c ~ + n - 1  on the  ma in  diagonal,  wi th  - 1  on the  diagonal  
above the  ma in  one and  wi th  zero otherwise.  Since all eigenvalues of  the  ma t r i x  A 
are posit ive,  there  exists a posit ive m a t r i x  B such tha t  the  ma t r i x  BA+A*B is also 
positive. I f  u is sufficiently small  a t  t ,  then  by (33) the  no rm of U(t,) is also small  
and  we derive f rom (34) t h a t  

d (Bv(7-), U(T)) > ~(BU(7-), U(7-)) for 7- < t , ,  

wi th  a posi t ive s depending only on n and  k. This  implies t h a t  

and  hence 

for the  same  7-. 
Now we rewri te  (25) as 

(BU(7-), U(7-)) < Ce ~ for 7- < t , ,  

u(T) <_ ce 

where p (7 - )=O(e  ~(k-1)~/e) for 7-<0. Hence the  a sympto t i c s  of u a t  - o e  are descr ibed 
by the  zeros of L(c~-d/d7-)v(~-)=O. This  implies, in par t icular ,  t ha t  

u(7-) _< 

which gives the  boundedness  of x( t) ,  as t---~0. This  cont radic ts  (17). 

P r o o f  o f  (8) 

The  uppe r  e s t ima te  in (8) is a consequence of (21). F rom (27) one derives the  

lower es t imate  in (21) for m = 0 .  The  lower es t imates  for r e = l , . . . ,  n - 1  follows 
f rom the one jus t  proved and  f rom (20). 

4. P r o o f  o f  T h e o r e m  1.1(ii)  and (iii) 

One can verify direct ly  t ha t  if x = x ( t )  is a solut ion to (1) then  the  funct ions 
x(t+q) and ( - 1 ) n x ( - t ) ,  where q is real, are also solutions to  (1). Therefore ,  (ii) 
follows f rom (i) and in pa r t  (iii) it is sufficient to only prove the  es t imate  (8), 
where  a = 0 .  This  inequal i ty  is proved in the  same  way as the  es t ima te  (8) (in 
T h e o r e m  1.1(i)), bu t  ins tead of the  represen ta t ion  (10) one should use the  inequal- 
ities (15). 
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5. O n  ze ros  o f  t h e  p o l y n o m i a l  L ( t ~ + z ) - - L ( t x + l )  

Here we study roots of the equation 

(35) L ( a + z ) - L ( a +  1) -- 0, 

with a > 0 .  The information obtained here will be used in the next section, where 
we shall construct a solution to (1) of the form (2) with nonconstant h. 

It  is clear that  z = l  satisfies (35) and there are no other real roots z on the 

semia• z < - 2 a - n .  In the next lemma we collect some simple properties of pure 
imaginary roots of equation (35). 

L e m m a  5.1. (i) Equation (35) has at most one root on the positive part of 
the imaginary axis. 

(ii) If  z=iq, q>O, is a root of (35) and a>>n then 

(36) a+n < q2 < 2 a + 2 n -  1 

(the right-hand inequality is valid for all a > 0 ) .  
(iii) For pure imaginary z 

dL( +z) r O. 

In particular, all pure imaginary roots of (35) are simple. 

Proof. (i) Let z=iq, q>0,  be a root of equation (35). Then 

( a2+q2) ( ( a+1 )2+q2)  ... ( ( a + n  1)2+q 2) = ( a + 1 ) 2 ( a + 2 )  2 ... ( a + n )  2. 

Since the left-hand side is a monotone function of q this equation has exactly one 
positive root q. 

(ii) If  the right-hand est imate in (36) fails then 

+q2 >_ 

for j =0,  1, ..., n -  1. Moreover the inequality is strict for j < n -  1. Hence [L(a+z) l> 
L ( a + l ) .  This contradiction proves the right-hand est imate in (36). 

Suppose now tha t  q2 <a+n. Then 

2 < < 

provided a > n  and x_>0. These estimates imply [L(a+z)]<L(~+I). This proves 
the left-hand inequality in (36). 

(iii) Let s  Then s L'(a+z). The zeros of the 
polynomial L(a+z) are - a ,  - ( ~ - 1 ,  ..., - ( ~ - n + l .  Therefore the zeros of s lie 

in the interval ( - a , - a - n + 1 ) .  This completes the proof. [] 

The existence of pure imaginary roots to equation (35) will be obtained from 
the following two lemmas. 
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L e m m a  5.2. Let n be a given positive integer. For sufficiently large positive 
c~ all roots of equation (35) except z = l  lie in the half-plane Rez<0 .  

Proof. We are looking for solutions of (35) in the form 

O O  

(37) zj (c~) = ( - l + c j ) a + c 0 i  + E  ckJ a - k '  
k=l  

where e j=e  2jTri/n and j = l ,  ..., n - 1 .  Since z = l  is always the root of (35), Zj(O~) 
should give all other roots of (35). We rewrite (35) as 
(38) 

n n (~+~)~ (~-On(~+~)~_~+~a~(z+~) ~-~ = ~ +  n ( ~ + l ) ~ n _ ~ + ~ _ ~  
2 2 

k=2 k 2 

where a~ and bk are positive constants. Inserting (37) in (38) one can find all terms 
in the left-hand side of (37). In particular, 

c0j = �89 (~+ 1>,- �89 (~- 1) 

The proof of the fact that the series in (37) is convergent is standard. Since all roots 
zj (a), j = 1, ..., n - 1 ,  are located in the plane Re z <0, the proof is complete. [] 

L e m m a  5.3. Let a=cn ,  where c is a fixed positive constant. Then for a 
sufficiently large n equation (35) has roots in the half-plane R e z > 0  different from 
z = ] .  

Pro@ We rewrite (35) as 

(39) F(c~, z) = 1, 

where 

L (~+z )  r ( z + ~ + n ) r ( ~ + l )  
(40) F(c~, z ) =  L(c~+l) -- r ( ~ + n + l ) r ( z + ~ )  

Using Stirling's formula we obtain 
(41) 

F(c~,z) =e ~(~'z) ( l q - O ( z §  (c~_t_ ln+ 1 ) + O ( ~ + 1 ) - b O  ( z @ ~ ) )  ' 

where 

�9 (~, z) = (~+~+~- �89 �89 log(~+n+ 0 
(42) +(~+�89 log(a+l)-(z+~-�89 
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(44) 

and 

We are looking for solutions of (39) which are bounded by a constant independent 
of n and c~. Prom (42) we derive 

(43) ~(c~,z) = ( z -  l) log( ~ ) + O ( 1 ) .  

We introduce the rectangle 

Il= z: - (2x+l)~r<Imzlog <(2x+1)Tr ,  IRez-ll<~ , 

where z is a positive integer, and denote by OH its boundary. Using (41) and (43) 
one verifies tha t  

1 l e ( Z - 1 ) i o g ( ( c + l ) / c )  _ 11 IF(a ,  z) - e  (z-l) l~ I > 

on 011. Therefore equation (39) has the same number of roots in the rectangle II  
as the equation 

e(z  1) Iog ( ( c+ l ) / c )  = 1. 

This number is greater than 1 for large x. [] 

T h e o r e m  5.4. For every no and co there exist n>_no and c~>con such that 
equation (35) has a pure imaginary root. 

Proof. By Lemma 5.3 equation (35) has a root in the half-plane R e z > 0  for 

a certain n>no and c~=eon. By increasing cr and using Lemma 5.2 we obtain the 
existence a>con such that  there exists a root of (35) on the imaginary axis. [] 

We conclude this section by the following technical assertion. 

L e m m a  5.5. Let n and c~/n be sufficiently large. Let also z be a pure imagi- 
nary number such that [z]<_Cx/~, where C is a constant independent of n and c~. 
Then 

( (5)) O~F(a,z) = log a a ( a + n )  4-0 e *(~' ' )  

n 

where F is introduced by (40). 

Pro@ By (41) we have 

(46) OzF(a,z)= (Ozq2(c~,z)+O( ~ )  ) e  ~(~'z) 
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and 

(47) O~F(a, z) = ( O~ r z) +O ( ~ ) ) e ~('~'~). 

Furthermore, from (42) we derive 

a+n+z 1 1 
a~( ,~ ,  z) = log a + z  2 ( a + n + z )  ~- 2 ( a + z )  = log - -  a a(c~+n) FO 

and 

a~O(a,z) = log(1 ( z - 1 ) n  ~ n 
( a + ~ + l ) )  ~ 2(a+z)(a+n+z) 

_ ( 2Z +ofn2 ~(~+n+l) \ l - z +  ~+z ~ ] k~3 ]  

n 

2(o~+ 1)(o~+n+ 1) 

These relations together with (46) and (47) give (44) and (45). [] 

6. E x i s t e n c e  o f  per iod ic  s o l u t i o n s  

T h e o r e m  6.1. For every number N and K, K>I,  there exist an integer 
n> N and a real number kc(1, K) such that equation (1) has a solution 

(48) x(t) : t  n/(k-1)h(logt), t > 0, 

where h is a periodic nonconstant function on R. 

Proof. We seek an h on the form 

h(T) = L(a)l/(k-Z)(l+v(~-)) .  

If (48) solves (1) then v should satisfy 

(L(a-  Or) - L ( a §  1))v(t) = L(a)f(v(t))v 2 (t), (49) 

where 

(50) f(y) 

Clearly, f is real analytic for y > - l .  

(l+y)k--l--ky 
y2 



3 1 8  V l a d i m i r  A .  K o z l o v  

According to Theorem 5.4, for every positive integer N and real n u m b e r / 4 >  1 
there exist n>_N and hoe (1,/4) such that  equation (35) with 

n 
OL S 0 - -  

k 0 - 1  

has a root on the imaginary axis. We denote this root by iq, q>0. By the same 
theorem we can suppose that  n and s o / n  are sufficiently large. It is clear that  - i q  
is also a root of (35) and by Lemma 5.1(i) there are no other pure imaginary roots. 

Let z (s )  be the root of (35) which is situated near iq for s close to s0 and such 
that  z(ao)=iq.  Clearly, the function z(a)  is analytic in a neighbourhood of s0. 
Since z satisfies (39) we get 

z ' ( s ) -  0 a F ( s , z )  
&F(s,z) 

By Lemma 5.1(ii) all assumptions of Lemma 5.5 are fulfilled (where z=iq).  There- 
fore we can use formulae (44) and (45) for calculat ion of z ' ( s0 ) .  Hence 

1 1 z +  + O  + + 
s 0 + n  na0 s l )  ' 

Z / ( S 0 )  z 

n s 0 + n  

which implies 

This yields 

- -  - ~ o  . 

s 0 + n  

Re z ' (s0)  50 -  

Now the application of the Hopf bifurcation theorem (see, for example, [GH, Sec- 
tion 3.4]) completes the proof. [] 

7.  T h e  c a s e  n = l ,  2, 3~ 4 

Here we improve Theorem 1.1 for the case n = l ,  2, 3, 4. 

T h e o r e m  7.1. Let n<4 .  Then the following assertions hold. 
(i) Let x be a nontrivial solution of (1) defined in a neighbourhood of +oc. 

Then the maximal interval of existence of x is a semiaxis (a, c~) w~th some finite a 
and x=xa ,  where Xa is given by (2). 

(ii) Let x be a nontrivial solution of (1) defined in a neighbourhood o f - c ~ .  
Then the maximal interval of existence of x is a semiaxis ( -oc ,  b) with some finite 
b and x=xb,  where xb is given by (3). 
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T h e o r e m  7.2. Let x be a solution of  (1) with f inite max imal  interval of  exis- 
tence (a,b).  Then 

(51) x(t)  = xa(t)(1  + o < ) )  

in a right neighbourhood of  a and 

(52) x( t )  = xb( t ) ( l  ) 

in a left neighbourhood of b. Here cr is a positive constant, which depends only on 

n and k. The asymptot ic  formulae  for  x (k), k = l ,  ..., n - l ,  are obtained f rom (51) 
and (52) by differentiation. 

We start with an auxiliary assertion which is valid for all n. 

L e m m a  7.3. Let all the roots of  equation (35), except z = l ,  lie in the half- 
plane Re z<0.  

(i) I f  v is a solution of  (49) on R such that 

v(t)  -~ O, as t -~ +oc,  

then v=0.  
(ii) I f  v is a solution of  (49) in a neighbourhood o f - e c  such that 

v( t)  ~ 0 ,  as t ~ - o c ,  

then 

(53) v(t) = 

where cr is a positive number.  

a s  ~ ~ - - ~  

P r o @  (i) We suppose that vr  The function v is bounded since 

(54) x ( t ) = t - ~ L ( c ~ )  1/(k 1) ( l+v( log t)) 

solves equation (1) on (0, oo). We rewrite (49) as 

(55) (L(c~-Ot)  - L(c~+ 1))v (t) - -p ( t ) v ( t ) ,  

where 
p(t)  = L(c~) f (v ( t ) )v ( t ) ,  
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and, therefore, p(t)--*O, as t--~+cc. Since there are no roots of (35) on the imaginary 
axis, we obtain v(t)=O(e-et), 5>0, for large positive t. Therefore, v satisfies (55) 
with p(t)=O(e-et). Using the assumptions on the roots of (35) we derive from (55) 
that  

v ( t ) = c e - % o ( e  2~), as t ~ + o ~ ,  

with a nonzero constant e. This together with (54) implies that  

x(t) = C ~ t - ~ ( l + c t - l  +O(t-2)), as t ~ + e c ,  

where C a = L ( a )  1/ (k-1)  . 

(a) Let c>0.  Then 

(56) x(t) > C~( t -c l )  -~ 

for large t with 0 < C  1 <C. Prom (10) it follows that  (56) holds for all t>t l .  This 
contradicts the fact that  the maximal interval of existence of x is (0, oc). 

(b) Let c<0.  Then 

(57) x(t) < c . ( t - c l )  -~ 

for large t, where c < c l < 0 .  Prom (10) we obtain that  (57) is valid for all positive t. 
This implies that  u(t)--~O, as t-~0, which contradicts (27). 

(ii) We rewrite equation (49) as (55). Since p(t)--~O and v(t)-~O, as t - ~ - o c ,  
and since there are no pure imaginary roots of L(c~-z)-L(c~+l)=O we arrive at 
the estimate (53). [] 

The main step in the proof of Theorems 7.1 and 7.2 is contained in the following 
lemma. 

L e m m a  7.4. Let n<_4. 
(i) If  v is solution of (49) on R then v=0.  
(ii) If  v solves (49) in a neighbourhood o f - o c  then 

(58) v(t) = O(e ~t) for large negative t. 

Proof. One can verify that  in the case n = l ,  2, 3, 4 all roots of the equation 
(35) except z = l  lie in the half-plane Re z<0.  

We rewrite equation (49) as 

(59) (L(a-cgt)-L((~))v(t) = L(c~)g(v)v, 
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(60) 

where 

where 
g(7) = ( 1 + 7 ) k - 1 - r  

q- 

It is easy to check that  9(r)>ce>O for r > - l + c ,  c>0. By (54) and (8) - 1 + 6 <  
v(t)<C with some positive 5, therefore 

Co <_ g(v(t)) < cl for all t, 

where c0 and cl are positive constants. 
For n = l ,  2 the assertion is trivial. Let n=3.  Multiplying (59) by v, integrating 

over an interval (a, b) we obtain, after partial integration, that  

/a -3(c~+1) i~2(t)dt=L(c~) g(v(t))v2(t)dt+C(a,b), 
J a  

where the constant C(a, b) is bounded uniformly with respect to a and b because of 
the boundedness of v (k), k=0,  1, ..., n - 1 .  This implies that  

a(v2(t)+i~2(t)) dt < oc. 

Hence v(t)--+O, as t--~+oe, in the case (i) and v(t)-~O, as t---*-oc, in the case (ii). 
Referring to Lemma 7.3 completes the proof for n=3 .  

Let n=4 .  Multiplying again (59) by v, integrating from a to b and making 
partial integration we get 

f b(i)2(t)--c2i?(t))dt= L(a) f bg(v(t))v2(t)dt+Cl(a,b), 

(61) 

where 

c2 = a (3a+6)  + ( a +  1) (2a+5) + ( a +  2) ((~+3) 

and Cl(a, b) is a bounded function of a and b. Multiplying (59) by +, integrating 
from a to b and making partial integration we get 

f f (c l~2(O-c3+2( t ) )  =C2(a,b) ,  dt 

c 1 = 4 a + 6  and c3=c~(c~+l)(2a+5)+(a+l)(c~+2)(c~+3) 

and C2(a, b) is a bounded function. From (60) and (61) we derive that  

/a --(ClC 2 --C3) i)(t) dt = clL(a) g(v(t))v2(t) dt+C(a, b). 
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Since ClC2 >c3 we obtain 

s  dt < 0 0 .  

This implies v(t)---~O, as t--~+oc, in the case (i) and v(t)---~0, as t - -+-ec ,  in the 
case (ii). Referring to Lemma 7.3 completes the proof. [] 

Proof of Theorems 7.1 and 7.2. We can suppose that  a = 0  and represent x 
as (54). Then the function v satisfies (49) and by Lemma 7.4(i) v = 0  provided 
x is a solution to (1) for t > 0  and v is subject to (58) if x solves (1) in a right 

neighbourhood of 0. This proves Theorem 7.1(i) and (51). The assertion (ii) in 
Theorem 7.1 and (52) follow from the just proved lemma due to the invariance of 
equation (1) with respect to the transformations 

x ( t ) ~ x ( t + q )  and x ( t ) ~ ( - 1 ) ~ x ( - t ) .  [] 
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