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Irreducibility of the punctual
quotient scheme of a surface

Geir Ellingsrud and Manfred Lehn

Abstract. It is shown that the punctual quotient scheme Q] parametrizing all zero-dimen-
T

sional quotients (’)j‘i2 —T of length ! and supported at some fixed point 0€ A2 in the plane is
irreducible.

Let X be a smooth projective surface, F a locally free sheaf of rank r>1
on X, and let [>1 be an integer. Let Quot(E,l) denote Grothendieck’s quotient
scheme [8] that parametrizes all quotients E—T, where T is a zero-dimensional
sheaf of length . Sending a quotient E—T to the point ) x {(T;)z in the sym-
metric product S'(X) defines a morphism 7: Quot(E, 1) —S'(X) [8]. It is the pur-
pose of this note to prove the following theorem.

Theorem 1. The scheme Quot({F,1) is an irreducible scheme of dimension
I(r+1). The fibre of the morphism m: Quot(E,l)— S (X) over a point >, l.x is
irreducible of dimension . (rl—1).

Using the irreducibility result, one can check that a generic point in the fibre
over 1, €S'(X) represents a quotient E—T, where T=Ox ,/(s,t') and s and t are
appropriately chosen local parameters in Ox ,, i.e. T is the structure sheaf of a
curvilinear subscheme in X.

If r=1, i.e. if E is a line bundle, then Quot(£,!) is isomorphic to the Hilbert
scheme Hilb!(X). In this case, the first assertion of the theorem is due to Fogarty (6],
whereas the second assertion was proved by Briangon [2]. For general r>2, the first
assertion of the theorem is a result due to J. Li and D. Gieseker [9], [7]. We
give a different proof with a more geometric flavour, generalizing a technique from
Ellingsrud and Strgmme [5]. The second assertion is a new result for r>2. After
finishing this paper we learned about a different approach by Baranovsky [1].

The natural generalizations of the theorem to higher dimensional or singular
varieties are false, as is already apparent in the =1 case of the Hilbert schemes [3].
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1. Elementary modifications

Let X be a smooth projective surface and z€X. If N is a coherent Ox-
sheaf, then e(N,)=homx (N, k(z)) denotes the dimension of the fibre N(z), which
by Nakayama’s lemma is the same as the minimal number of generators of the
stalk N,. If T is a coherent sheaf with zero-dimensional support, we denote by
i(Ty)=homx (k(z),T) the dimension of the socle of Ty, i.e. the submodule Soc(T;)C
T, of all elements that are annihilated by the maximal ideal in Ox ;.

Lemma 2. Let [q:E—T|€Quot(E,!1) be a closed point and let N be the kernel
of g. Then the socle dimension of T and the number of generators of N at x are

related as _
e(Nyg)=1(Tg)+r.

Proof. Write e(N,)=r-+i for some integer ¢>0. Then there is a minimal free
resolution 0—>O§(’z—g~>(’)§g;‘—>Nz—>O, where all coeflicients of the homomor-
phism a are contained in the maximal ideal of Ox . We have Hom(k(z),T,)=
Exty (k(z), N;) and applying the functor Hom(k(z), - ) one finds an exact sequence

0 — Extl (k(), N,) — Ext (k(z), O ,) =5 Ext (k(z), O%).

But as « has coefficients in the maximal ideal, the homomorphism o' is zero. Thus
Hom(k(z), T)=Ext% (k(z), O% ,) =k(z)". O

The main technique for proving the theorem will be induction on the length
of T'. Let N be the kernel of a surjection E—T, let x€X be a closed point, and let
A: N —k(z) be any surjection. Define a quotient E—T" by means of the push-out di-
agram

0 0
0 k(z) —— 77 T 0
: |
0 N E T 0
N =—— N
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In this way every element (A) €P (N (x)) determines a quotient E—T" together with
an element (u)€P(Soc(T,)V). (Here WY:=Homy(W, k) denotes the vector space
dual to W.) Conversely, if E-—T" is given, any such (u) determines E—T and a
point {A\). We will refer to this situation by saying that 7" is obtained from T by
an elementary modification.

We need to compare the invariants for 7 and T7. Obviously, I(T")=I(T)+1.
Applying the functor Hom(k(z),-) to the upper row in the diagram we get an exact
sequence

0 — k(x) — Soc(T") — Soc(T,) — Bxtk (k(x), k(z)) = k(x)?,

and therefore |¢(T;)—i(T.)|<1. Moreover, we have 0<e(T.)—e(T,)<1. Two cases
deserve closer inspection. Firstly, if e increases, then T" splits.

Lemma 3. Consider the natural homomorphisms f:Soc(T))—T.—T'{z} and
g9: N(x)— E(x). The following assertions are equivalent:

(1) e(Ty)=e(Tz)+1,

(2) (uygP(ker(f)"),

(3) (M) eP(im(g)).
Moreover, if these conditions are satisfied, then T'2Tok(z) and +(TL)=i(Ty)+1.

Proof. Clearly, e(T,)=e(T;)+1 if and only if (1) represents a non-trivial ele-
ment in 7”(x) if and only if u has a left inverse if and only if A factors through £. [J

Secondly, if 4 increases for all modifications A from T to any 7", then the same
phenomenon occurs for all ‘backwards’ modifications u’ from T' to any T~ .

Lemma 4. Still keeping the notation above, let E—T5 be the modification of
E—T determined by the point (\)€P(N(z)). Similarly, for (¢')€P(Soc(Ty)Y) let
T, =T/ (k(x)). Ifi(T} ;) =i(Tz)+1 for all (\) EP(N(z)), then i(Ty)=i(T, ,)—1
for all (u')€eP(Soc(T,)V) as well.

Proof. Let
®: Homx (N, k(z)) — Homy (Ext (k(z), N), Extx (k(z), k(z)))
be the homomorphism which is adjoint to the natural pairing
Homx (N, k(z)) @Ext (k(z), N) — Ext (k(z), k(z)).

By identifying Soc(T%) =Ext (k(z), N), we see that i(T} ,)=1+4(T;)—rank(®())).
The action of @()) on a socle element u': k(z)—T can be described by the following
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diagram of pull-backs and push-forwards

0 N E T 0
|1
0 N N k(x) 0
)]
0 k(z) ¢ k() 0.

The assumption that i(Ty ,)=1+i(T}) for all A, is equivalent to &=0. This implies
that for every u’ and every A the extension in the third row splits, which in turn
means that every A factors through N, i.e. that N(z) embeds into N, (z). Hence,
for T, =E/N , =coker(u) we get i(T,, I) e(N7, )—r=e(Ny)+1—r=i(T,)+1. O

w'

2. The global case

Let Y;=Quot(E,1)x X, and consider the universal exact sequence of sheaves
on Yy,
0—N— Oquot ®F — T — 0.
The function y=(s, z)—(7; ;) is upper semi-continuous. Let Y;; denote the locally
closed subset {y=(s, )€Y |i(7; )=1} with the reduced subscheme structure.

Proposition 5. The scheme Y; is irreducible of dimension (r+1)I+2. For
each >0 one has codim(Y] ;,Y;)>2i.

Clearly, the first assertion of the theorem follows from this.

Proof. The proposition will be proved by induction on [, the case [=1 being
trivial: Y1=P(F)x X, the stratum Y7 ; is the graph of the projection P(E)—X
and Y7 ;=0 for i>2. Hence suppose the proposition has been proved for some > 1.

We describe the ‘global’ version of the elementary modification discussed above.
Let Z=P(N) be the projectivization of the family A and let o=(01,p2): Z—
Y;=Quot(F,!)x X denote the natural projection morphism. On Zx X there is a
canonical epimorphism

A: (p1 xidx )N — (idz, p2)« "N — (idz, 02): Oz (1) =: K.
As before we define a family 7”7 of quotients of length [+1 by means of A,
0 K T’ g01, ldX *T —— 0

| T |

0— (p1,idx)*N —— 00 F —— (¢1,idx)*T —0.
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Let ¢1: Z—Quot(E, [+1) be the classifying morphism for the family 77, and define
=11, ¥2:=p2): Z—Y; 1. The scheme Z together with the morphisms ¢: Z—Y;
and ¢: Z—Y,;; allows us to relate the strata Y;; and Y;44 ;. Note that ¢(2)=
Uj21 Yigr-

The fibre of ¢ over a point (s,z)€Y;; is given by P(N;(z))=P 1%, since
dim(Ny(z))=r+i(Ts )=r+i by Lemma 2. Similarly, the fibre of ¢ over a point
(s, z)eYi1,; is given by P(Soc(T) ,)V)=PI~!. If T is obtained from T by an
elementary modification, then [§(T")—i(T)|<1 as shown above. This can be stated
in terms of ¢ and % as follows: For each 7>1 one has

P (Yip,5) C U o (Via)-
li—j<1
Using the induction hypothesis on the dimension of Y ; and the computation of the
fibre dimension of ¢ and 1, we get

dim(Y41,5)+(G-1) < l‘m%><<1{(r+1)l+2—2i+(r~l—i—i)}
i—j|<

and
dim(¥z41,5) < (r+1)(l+1)+2—2j—‘.mj[rél{i—j—l-l}.
=S

As minj;_j<1{i— j+1}>0, this proves the dimension estimates of the proposition.
It suffices to show that Z is irreducible. Then Quot(E,[+1)=11(Z) and Y;4+1
are irreducible as well.
Since X is a smooth surface, the epimorphism Oquot® E—T can be completed
to a finite resolution

0—A—B—0qut®F —T —0

with locally free sheaves A and B on Y] of rank n and n-+r, respectively, for some
positive integer n. It follows that Z=P(N)CP(B) is the vanishing locus of the
composite homomorphism ¢*A—¢*B—0py(1). In particular, assuming by in-
duction that Y; is irreducible, Z is locally cut out from an irreducible variety of
dimension (r+1)I+2+(r+n—1) by n equations. Hence every irreducible compo-
nent of Z has dimension at least (r+1)(I41). But the dimension estimates for the
stratum Y ; and the fibres of ¢ over it yield

dim(e™ (V1)) < (r+1)I42 - 2i+(r+i—1) = (r+1)(I4+1) -,

which is strictly less than the dimension of any possible component of 7, if i>1. This
implies that the irreducible variety ¢ !(V] o) is dense in Z. Moreover, since the fibre
of ¢ over Y 11,1 is zero-dimensional, dim(Y;41)=dim(Y;11,;)+2=dim(Z)+2 has the
predicted value. O
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3. The local case

We now concentrate on quotients E—T, where T has support in a single fixed
closed point x€ X. For those quotients the structure of F is of no importance, and
we may assume that E=20% . Let Q] denote the closed subset

{[0% — T1 € Quot(O%, 1) | Supp(T') = {z}}

with the reduced subscheme structure. We may consider Q)] as a subscheme of Y7 ;
by sending [g] to ([g], ). Then it is easy to see that ¢~ (Q])=9~1(Q7, ). Let this
scheme be denoted by Z’.

We will use a stratification of Q] both by the socle dimension ¢ and the number
of generators e of 7" and denote the corresponding locally closed subset by Q;f .
Moreover, let Q7 ;={J, Q;; and define Q"° similarly. Of course, @y is empty
unless 1<i<! and 1§e§1ﬁin{r,l}.

To prove the second half of the theorem it suffices to show the following.

Proposition 6. The scheme Q] is an irreducible variety of dimension rl—1.
Lemma 7. We have dim(Q))<(rl—1)—(2(i—1)+(3)).

Proof. The proof is done by induction on I. If =1, then Q7 =P, and Q7 =0
if e>2 or i>2. Assume that the lemma has been proved for some [>1.

Let [¢":O0% —T"]€Q)Y, ; be a closed point. Suppose that the map p:k(z)—

T'(z) represents a point in ¥~ *([¢']) =P (Soc(7T)V) and that T, =coker (i) is the cor-
responding modification. If ¢=i(7), ;) and e=e(7), ;), then, according to Section 1,
the pair (¢,¢) can take the following values

(1) (i,&):(j—l,e—l), (j_lye)’ (jae) or (j+17e)7

in other words

PHRE ) Ce @ THu U e @)

li—jl<1

Subdivide A=Q}’] into four locally closed subsets A;. according to the generic
value of (i,€) on the fibres of 1. Then

dim(Ai,E) +(j— 1) < dim(Q;,’f)+di,g,
where d; . is the fibre dimension of the morphism

P (Ase) N Q1) — Q-
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By the induction hypothesis we have bounds for dim( ;"f ), and we can bound d;
in the four cases (1) as follows.

(A) Let [q: 0% —T] EQZ’;:II be a closed point with N =ker(g). As we are looking
for modifications 7" with e(T),)=e, we are in the situation of Lemma 3 and may
conclude

@ ()N~ (Ae1,j-1) = P(im(g: N(z) — k(z)"))
2 P(ker(k(z) —T(z))) =P"°,

since im(k(z)" —>T'(z))=2k* !. Hence d;_1,_1=r—e and
dim(Aj1,e-1) dim Q5 =) +(r—e) = (j—1)

< {(rl—l)—2(j~2)— (€g1> }-l—(r—e)—(j—l)

- {(r(l—i—l)—l)—Q(j—l)“ (;)}—(j—”'

Note that this case only occurs for j>2, so that (j—2) is always nonnegative.
(B) In the three remaining cases

e=e and i=j—-1, j, or j+1,

we begin with the rough estimate d; . <r-+¢—1 as in Section 2. This yields
dim(4,;,.) < {(rl—l)-Q(i—l)— (;) }+(r+i—1)f(j—1)

_ {(r(l+1)——1)—2(j—1)— <;)}—(i—j).

Thus, if i=7 we get exactly the estimate asserted in the lemma, if i=j5+1 the
estimate is better than what we need by 1, but if i=j—1, the estimate is not
good enough and fails by 1. It is this latter case that we must further study. Let
lg: 0% —T1] be a point in Q]’;_; with N=ker(g). There are two alternatives.

(i) Either the fibre ¢~ ({g])NyY (A _1.) is a proper closed subset of P(N(z))
which improves the estimate for the dimension of the fibre ¢=1([g]) by 1;

(ii) or this fibre equals with P(N(z)), which means that the socle dimension
increases for all modifications of 7. In this case we conclude from Lemma 4 that
also +(T~)=i(T)+1 for every modification T~ =coker(p~: k(z)—T). But, as we just
saw, calculation (2), applied to the contribution of @} ; to Q;”;_l, shows that the
dimension estimate for the locus of such points [g] in QZ’;YI can be improved by 1

(2)

compared to the dimension estimate for @7, as stated in the lemma.
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Hence in either case we can improve estimate (3) by 1 and get

dim(A;10) < (rI+1)~1)~2(j —1)— (;)

as required. Thus, the lemma holds for [+1. O
Lemma 8. We have ¢(¢ Q%)) CQ;.
Proof. Let [¢: O% —T]€Q;’; be a closed point with N=ker(g). Then o Yq)=

P(N(2))=P™"! and o ([g)) Ny~ H(QT =P (im(G))=P" 1. Since we al-

ways have e>1, i>1, a dense open part of ¢~!([q]) is mapped to Q}'%. [

Lemma 9. If r>2 and if Q] " is irreducible of dimension (r—1)i—1, then

U=, Q1 is an irreducible open subset of QF of dimension rl—1.

Proof. Let M be the variety of all rx (r—1) matrices over k of maximal rank,
and let O—>(’)}{21 — 0%, — L—0 be the corresponding tautological sequence of locally
free sheaves on M. Counsider the open subset U C M x @} of points (A4, [O" —T1) such
that the composite homomorphism

Or~1 i>OT T

is surjective. Clearly, the image of U under the projection to Q7 is @7"". On the
other hand, the tautological epimorphism

Obxx — Otxx — (Ou®T)|uxx
induces a classifying morphism g¢’: U HQ;”. The morphism
9=(pr1,9"):U — MxQ;
is surjective. In fact, it is an affine fibre bundle with fibre
9 (9(A,[0"7 > T1)) = Homy(L(A), T) = Aj.

Since er‘l is irreducible of dimension (r—1){—1 by assumption, U is irreducible of
dimension ri—1+dim(M), and Q<" is irreducible of dimension ri—1. O

Proof of Proposition 6. The irreducibility of Q] will be proved by induction
over r and [. The case [=1, r arbitrary is trivial; whereas the case ! arbitrary,
r=1 is the case of the Hilbert scheme, for which there exist several proofs ([2], [5]).
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Assume therefore that r>2 and that the proposition holds for (I,7) and (I+1,7—1).
We will show that it holds for (I41,7) as well.

Recall that Z":=¢~1(Q7)=Q7 xv, Z. Every irreducible component of Z’ has di-
mension greater than or equal to dim(Q7)+r—1=r(l4+1)—2 (cf. Section 2). On the
other hand, dim(p™* Q1) <ri=1-2(i-1)+(r+i—1)=r(l+1)—i. Thus an irre-
ducible component of 7’ is either the closure of 4,0*1(@}")1) (of dimension 7(I+1)—1)
or the closure of ¢~ (W) for an irreducible component W CQj , of maximal possible
dimension rl—3. But according to Lemma 8 the image of ¢ ' (W) under ¢ will be
contained in the closure of Q;ff, unless W is contained in @;. But Lemma 7
says that Q)5 has codimension >2+- (5) >3 if r>2, and hence cannot contain W for
dimensional reasons. Hence any irreducible component of Z’ is mapped by ¢ into
the closure of Q;flr, which is irreducible by Lemma 9 and the induction hypothesis.
This finishes the proof of the proposition. O
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