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Space-time scattering for 
the SchrSdinger equation 

Arne Jensen 

A b s t r a c t .  Results  are obta ined on the  scat ter ing theory  for the  SchrSdinger equat ion 

iOtu(t, x) -Axu(t, x)+V(t, x)u(t, x)+F(u(t, x)) 

in spaces LT"(Ft; Lq(Rd)) for a cer tain range of r ,  q, the  so-called space- t ime scat ter ing.  In  the  
linear case (i.e. F----0) the  relation wi th  usual configuration space scat ter ing is established. 

1. I n t r o d u c t i o n  

We discuss the space-time scattering for a class of Schr5dinger operators with 
a multiplicative potential depending explicitly on time and with non-linear inter- 
actions. In the paper [8] T. Kato studied the scattering theory for the non-linear 
SchrSdinger equation 

iOtu(t, x) = - A x u ( t ,  x)+ F(u(t, x)) 

in spaces L~(R;Lq(Rd))  for a certain range of r, q. We call this type of results 
space-time scattering, the idea being to consider time and position on an equal 
footing. 

In this paper we study the space-time scattering for the SchrSdinger equation 

(1.1) iO~u( t, x) = -AxU( t, x) + V ( t, x)u( t, x)+F(u(t,  x)) 

for a class of explicitly time-dependent potentials V and the same class of non- 
linearities as in [8]. The goal is to obtain a better  understanding of the relation 
between the space-time scattering and the usual scattering theory. Associated with 
the equation (1.1) with F ~ 0  is a unitary propagator U(t, s). The free Schr5dinger 
group is denoted by Uo(t). The usual wave operators are defined by 

W• : s-lira U(s, t)Vo(t-s).  
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They have been studied for a large class of potentials, see e.g. [3], [9], [10], [14], and 
references therein. Essential to our comparison with the space-time scattering is the 
result in [5] tha t  under our assumptions (see Assumption 2.1) the wave operators 
extend to bounded invertible operators o n  Lq(Rd), 1 <q<oc, with norm bounded 

uniformly in s E R.  

The main results comparing the two approaches are stated in Theorems 4.9 
and 4.10. In particular, the last result shows that  the well-known per turbat ion 
expansion of the scattering operator  for a t ime-dependent per turbat ion (see e.g. [11, 
p. 184]) can be given in closed form under our assumptions. Note that  the potential  
is not assumed to be small in some norm. 

The present approach has certain similarities with the Howland Yajima ap- 
proach [4], [15], but differs by considering a range of r, q, not just r = q = 2 ,  for the 
spaces L~(R; Lq(Rd)), and by not introducing an auxiliary t ime parameter .  

Let us briefly describe the contents of the paper. In Section 2 we recall some 
results from [5]. In Section 3 we introduce various operators and their mapping 
properties. This section relies heavily on the results in [5], [8]. In Section 4 we 
establish the main results in space-time scattering in the linear case, and compare 
with the usual scattering theory. In Section 5 we extend the results to include a 
class of non-linearities, and establish the space-time scattering for small initial data. 
This section relies on ideas from [8]. In a subsequent paper  the results obtained 
here will be used to discuss some per turbat ion results for the non-linear SchrSdinger 
equation. 

2. P r e l i m i n a r i e s  

We star t  by fixing our notation. After that  we recall some results from [5]. 
Let ?-/--L2(R d) and let H o = - A  with domain :D(Ho)=H2(Rd), the usual 

Sobolev space of order 2. The propagator  for the free Schrhdinger equation is 
denoted by Uo(t)=exp(-itHo). 

Let V(t, x) be a real-valued function on R •  R d. We denote by V(t) the multi- 
plication by V(t,. ) on ~ ,  and by V(t, 4) the Fourier t ransform with respect to the 
x-variable. The Banach space of finite regular complex measures on R d is denoted 
by .M (Rd). 

A s s u m p t i o n  2.1. Let V(t,x) be a real-valued function such that VE 
L I ( R ;  Ad(Rd)).  

This assumption is imposed throughout the paper. A consequence of this as- 
sumption is that  VeD(R;L~(R~)). Let H(t)=Ho+V(t) for each t c R .  Then 
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H(t) is self-adjoint on 7-/ with domain ~D(H(t))=~D(Ho) for all tER.  Associated 
with the problem 

(2.1) i da ( t )  H(t)~(t), ~P(s)=~0, 

is the propagator U(t,s) such that  the mild solution to (2.1) is given by ~ ( t ) =  
U(t, s)~o. The family U(t, s) consists of unitary operators on 7-{ with the properties 
U(t, t )=I (the identity operator on 7-/), and U(t, s)U(s, r)=U(t, r) for all t, s, r E R .  

It is well known that the condition V c L I ( R ;  L~176 implies the existence 
of a unitary propagator U(t, s) for the problem (2.1). The function ~(t)=U(t, s)~o 
solves the integral equation 

(2.2) r  = U o ( t - s ) ~ 0 - i  f~ Uo(t-~-)v(~-)r d~- 

and in that  sense ~,(t) solves (2.1). Additional conditions are needed on V in order 
to get a strongly differentiable solution ~b(t). See [16] and references therein for 
some results in that  direction. See also the discussion in [3]. 

The wave operators for the problem (2.1) and the free SchrSdinger equation 
are given by 

(2.3) W~ (s) = s-lira U(s, t)Uo(t-s). 
t---~-t- o c  

We recall the main result from [5]. 

T h e o r e m  2.2. ([5]) Let V satisfy Assumption 2.1. Then the following results 
hold: 

(i) For each sER the limits 

W-k(s) lira U(s,t)Uo(t-s) 
t ~ 4 c o o  

exist in operator norm in U(C2(Ud)) and are ~nitarv. 
(ii) The operators W• extend to bounded operators on LP(Rd), l<_p<_oc. 

F~rthe.more, W• are in~ertible i~ B(L~(R~)), and we ha~e 

sup [[W~(s)ll~(L~)< o~ 
sER 

and 
sup" ~" "lIW~s)-l l tB(L~)<~. 
sGR 

We recall the intertwining relation (in B(L2(Rd))) 

(2.4) U(t, s)W• = W• t, s ~ R. 
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3. Space-t ime est imates  

It is well known that space-time estimates for the free propagator Uo(t) play 
an important role for the study of both Schr6dinger operators with time-dependent 
potentials [3], [16], [17] and for non-linear SchrSdinger operators [1], [6], [7], [13]. 

Theorem 2.2 and the intertwining relation (2.4) allow us to transfer these esti- 
mates from Uo(t-s) to U(t, s). We need these results below, so we will state them 
in detail, referring to [7], [8] for the proofs for U0 ( t - s ) .  See also the results in [2]. 

We define two operators, initially from L2(R d) to L~176 L2(Rd)), as follows. 
Let r  d) and sCR,  

(3.1) F0 ( s ) r  s)r 

(3.2) r ( s ) r  = u(t, s)r 

For f E Co (R; L 2 (Rd)) (the continuous functions with compact support) the adjoints 
are given by 

(3.3) r0 ( s )* f  = Uo(s-t) f( t )  dr, 
O O  

( (3.4) F(s )*f  = U(s, t)f(t) dt. 
O 0  

For fECo(R; L2(Rd)) we define maps with values in L ~ ( R ;  L2(Rd)) as 

/; (3.5) (G~ f)(t) = Uo(t-s) f(s)  ds, 
O 0  

/2 (3.6) (G• = U(t, s)f(s) ds. 
c X )  

We have the following relations, valid for any sEN,  

(3.7) a ~ - a ~ = F0 (s)F0 (s)*, 

(3.S) C - C +  : r ( s ) r ( s ) * .  

On n ~ ( m  L2(~d)) we define 

(3.9) (W• f ) ( t )  = W+ (t) f (t) 

and then we get from the intertwining relation the following results: 

(3.10) 
(3.11) 
(3.12) 
(3.13) 

C+ W+G~ 1, 
G _ - W  G~ -1, 

r(s) = w+ro (s)w+ (s) - i  
r ( s ) - w  ro(s)w_(s) -1. 
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The operators W• were also considered in [4]. 
Let us now recall the notation from [8]. We denote by [] the closed unit square 

[0,1] x [0,1] in R 2. We write P6[~, P=(1/q, 1/r), l<q<_oc, l < r < e c ,  with the 
usual convention 1/oo=0. We use the notation 

L(P) =L~(R; Lq(Rd)), P = (1/q, 1/r) E D. 

The norm on L(P) is denoted by Ill" Ill- or IIJ'IIIL(p/. For POD we write P =  
(~(P), y(P))  for the coordinates, and de~ne the function ~-: S ~ R  by ~(P)=~(P)+ 
2y(P)/d. 

The following notation for special points in [B comes from [8]. 
For d_>2, 

and for d= 1, 

B'=(�89 
( 1  1 1 )  C' (1  1 ~)  

c =  d '  ' = + ~ '  ' 

d - 2  d 2 
D =  (2 (~- -1 ) '2 (d~1) )  ' D ' :  (2(d-d_1)' 2 ~ i - i ) )  ' 

1 1), E ' : ( l + d , 0  ) ,  

F :  ( ~ - d , 0 ) ,  F t (~q-d,  1), 

C (0, �88 C'--  (1, 3), 

D =  (0, �89 D ' =  (1, 1), 

E =  (0, �89 E ' =  (1, �89 

F = (0, 0), F '  = (1, 1). 

We denote by T the triangle determined by B, N, and F, and by T' the triangle 
determined by B', E', and F'. The triangles are open except that BET and B'CT'. 
The triangle 5~ is determined by B, C, and D. We have 2~CT, and the side ]CD[ 
is included in T. Similarly, T ' c T '  is determined by B', C', and D'. See Figure 1. 

Theorem 3.1. Assume PET, Q6T', and 7r(Q)-Tr(P)=2/d. Then a~ 
/~(L(Q), L(P)) and Gi  613(L(Q), L(P)). 

Proof. For G ~ this is [8, Theorem 2.1], and for G+ the result follows from 
Theorem 2.2, (2.4), and the result for Go,. 
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Figure 1. The unit square and some important points (for d_>3). 

1 _< l/p_< 1). l < l / p < d / 2 ( d - 1 )  (for d = l  we assume T h e o r e m  3.2. Assume ~_  

Let PeTU[B,  C[ with 7r(P)=l/p. Then 

F0(s), r ( s )  E B(LP(Rd), L(P)).  

Let q be conjugate to p and let QET'U[B', C[  with 7r(Q)- l /q+2/d .  Then 

Fo(S)*, F(s)* 6 B(L(Q), nq (ad)) .  

Proof. For F0(s) and F0(s)* the results are in [8, Theorem 3.2], and for F(s) 
and F(s)* they follow from these results, Theorem 2.2, and (2.4). 

One more assumption on V will be needed. 

A s s u m p t i o n  3.3. Let V be a real-valued function such that V c L( R) for some 
ReD satisfying V(R)>0 

Definition 3.4. Let V satisfy Assumption 3.3 for some R. A pair P, Qc[~ is 
called V-admissible, if PCT,  QCT', and Q = P + R .  

We sometimes shorten notation and call P a V-admissible point, if there exists 
Q such that  the pair P,  Q is V-admissible. 

L e m m a  3.5. Let V satisfy Assumption 3.3. Then there exists at least one 
V-admissible pair P, Q �9 [~. 

Proof. The result is verified by straightforward computations, which we omit. 

Remark 3.6. If V satisfies Assumption 2.1 then the pair B, B' is V-admissible. 
If V furthermore satisfies Assumption 3.3 for some R0, then by interpolation this 
assumption is satisfied by all R on the line segment [(0, 1), R0]. 
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L e m m a  3.7. Let V satisfy Assumptions 2.1 and 3.3. Let P, Q be a V- 
admissible pair. Then the following identities hold in B(L(Q), L(P) ) 

(3.14) 

(3.15) 

G ~  - i G  ~  =iG VG ~ 

=ia~ =ia+va  ~ 

Proof. Note that  the assumptions imply 7c(Q)-Tr(P)=Tc(R)=2/d. We only 
prove the first equality in (3.14). Let f E C 0 ( R ;  L2(Ra)).  First change the order of 
integration, and then use (2.2) to get (recall that  V E L I ( R ;  L ~ ( R a ) ) )  

i ? ( iG~ f ) ( t ) = i  Uo(t-s)V(s) U(s ,T) f@)dvds 
O 0  (~ )  

= i Uo(t-s)V(s)U(s, T)f(~-) ds d~- 
O ~  

? = (g0 ( t - r  r  d r  = (a~ 
O ~  

The second equality in (3.14) is proved using 

u(t, 7)-Uo(t-~) = -i  f*  u(t, s ) v ( s ) u 0 ( s - ~ )  ds, 

instead of (2.2). This proves (3.14) on a dense subset of L(Q). The extension to all 
of L(Q) follows, since all terms are bounded operators from L(Q) to L(P). Note 
that  VEB(L(P),  L(Q)) due to Assumption 3.3 and HSlder's inequality. 

The results in (3.15) are proved analogously. 

L e m m a  3.8. Let V satisfy Assumptions 2.1 and 3.3, and let P, Q be a V- 
admissible pair. Then I + i G ~  is invertible in B(L(P)) with inverse 1 - i G  V. 
Similarly, l + iG~ V is invertible with inverse 1 iG + V. 

Proof. The result is a consequence of (3.14) and (3.15), as is seen by a straight- 
forward computation. 

4. S p a c e - t i m e  s c a t t e r i n g  in t h e  l inear case  

We now establish the results on space-time scattering in the linear case. For 
that  purpose we recall further definitions and results from [8]. 
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Definition 4.1. A distribution u E S ' ( R •  d) is called a free wave, if 

(ia +zxx)u=0 in S'(R• 

It is well known (see for example [12]) that  a free wave u can be written as 
u=P0(0)~b for some qSES'(Rd). Furthermore, Uo(t) is a C~176 on S ' (Rd) .  

Definition 4.2. Let PC[~. We define 

s = {u E L(P) In is a free wave}. 

If P is on the line ]BE] or to the right of this line (see Figure 1), then s 
{0}. Otherwise, s is a closed subspace of L(P) which is quite large, due to the 
result [8, Theorem 3.6]. 

We note the following easy result. 

L e m m a  4.3. s  , ~bcL2(Rd)}. 

One can use a space smaller than 3 ' ( R  d) in the description of properties of the 
free waves, and thus get stronger results concerning free waves. We recall that the 
weighted L2-space is given by L2'I(Rd)={r The Ginibre 
Velo space is given by E=HI(Rd)NL2,1(Rd). The dual Hilbert space is denoted 
by E* and is obtained using the duality given by the inner product on L2(Rd). 
Thus E~--+L2(Rd)~-+E *. The group Uo(t) is a continuous group on both E and E*. 
However, it is not uniformly bounded. We denote by Coo(R; E*) the continuous 
functions v:R--+E* such that  v(t)--+O in E* as tt]--~oo. The bounded continuous 
functions are denoted by BC(R;  E*). 

L e m m a  4.4. ([8]) Let P C T  and uEs Then uECoo(R; E*). 

Proof. See [8, Lemma 4.1]. 

L e m m a  4.5. ([8]) Assume f cL(Q) ,  QET'. Then we have 
(i) G~ r*) ;  
(ii) let h•176 f)(t), then h•  E*) and h+(t)-+O in E*, as 

t -~ -b oo . 

Proof. See [8, Lemmas 4.2 and 4.3]. 

Definition 4.6. Let PGT and let u, vEL(P).  Then u is said to be asymptotic 
to v at • if 

Uo(-t)(u(t)-v(t))-+O in E*, as t--+4-oo. 

In that  case we write u~v  at -boo. 

One more piece of terminology is needed. We abuse notation and let H ( t ) =  
- A + V ( t )  denote the operator also acting on certain functions uEL(P). 
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Definition 4.7. Let u c L ( P ) ,  P E T .  We say tha t  ( iO t -H( t ) )u=O holds in the 
weak sense, if 

( ( iOt-  H(t )  )tL u) = 0  

for all ~ E S ( R x R d ) .  

Note that  this definition makes sense when V satisfies Assumptions 2.1 and 3.3. 
Here the duality ( - , . )  between S ( R  x R a) and S ' ( R  x R d) is obtained from the inner 
product on L 2 ( R x R d ) .  

Given this framework we can present our results on space-time scattering in 
the linear case. 

T h e o r e m  4.8. Let V satisfy Assumptions 2.1 and 3.3. Let P be V-admissible. 
(i) Let u E L ( P )  satisfy ( iO t -H( t ) )u=O in the weak sense. Then there exist 

unique free waves u• EEo(P)  such that 

u ~ u •  at •  

Furthermore, the map u ~--~u+ is given by 

(4.1) u+ = (l q - iG~  + i G ~  

(ii) Let u_Cs  Then u = ( 1 - i G  V ) u _ ~ L ( P )  solves ( iO t -H( t ) )u=O in 
the weak sense, and u ~ u  at -oo .  An analogous result holds in the +oo-ease. 

Proof. Assume that  u E L ( P )  and ( iOt -H( t ) )u - -O in the weak sense. Let u = 
(l+iG~ We have 

( iOt - Ho )u = ( iOt - Ho )u + (iOt - Ho ) ( iG~ Vu  ) = ( iOt - Ho - V )u  = O. 

Since u E L ( P ) ,  we have u < s  Furthermore,  

Uo(-t)(u_ u)=Uo(-t)ic~ in as t 

by Lemma 4.5. In the +oc-case we take u + = ( l + i G ~  and proceed in the same 
manner. Uniqueness of u• is trivial. This proves part  (i). 

To prove part  (ii), let u EE0(P)  and u = ( 1 - i G  V)u  EL(P) .  By Lemma 3.8 

(4.2) 1- - iG V = ( l q - iG~  -1 ---- 1 i G ~ 1 7 6  -1. 

Thus, using ( iOt -Ho)u_=O and ( i O t - H o ) ( - i G ~  we get 

( i O t - H ( t ) ) u  = ( i O t - H o - V ) ( u _  - i G ~ 1 7 6  ) 

- - - V u  § 2 4 7 1 7 6 1 7 6 1 7 6  = 0  
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by (4.2). 
We also have 

Uo(- t ) (u-u_)  = Uo(- t ) ( - iG~176 ~ 0 in E*, as t - - * -o o ,  

by Lemma 4.5. The +oc-case is handled analogously: 

We introduce the notation 

(4.3) S : (i +iG~ V)(I +iG ~ v)-z 

for the operator in (4.1), and call S the space-time scattering operator on s  
The following two theorems establish the relation between the usual configu- 

ration space scattering theory and the space-time approach. 

T h e o r e m  4.9. Let V satisfy Assumptions 2.1 and 3.3, and let P E T  be V- 
admissible. Then the following results hold on s 

(4.4) W• = 1 - i G i V ,  

(4 .5 )  S = w + l w _ .  

Proof. We start by computing on L2(Rd). Let CEL2(Rd). Then (2.2) is rewrit- 
ten as 

Uo(s t)u(t,s)r162 Uo(s-~)V(~)U(r,.~)r 

Hence 

/; Uo(s-t)U(t, s ) r  s)r = - i  Uo(s-~-)V(T)U(T, s)r 

Taking the limit T---~-oc, which is justified since V E L I ( R ;  L~ we get 

/ Uo(s-t)U(t, s)r = W_ ( s ) - l r  Uo(s-~-)V(r)U(r, s)r dr. 
oo 

Take ~ - - W _ ( s ) - l r  in order to get 

f u(t,8)w_(~)r i uo(t-~-)vb-)uo-,s)w_(s)r 

Using the notation fi'om Section 3, this equation can be written 

r(s)w_ (~)~ = r0(~)r -ic~ y r ( ~ ) m  (s)~e 

or, using Lemma 3.8 and (3.13), 
r0(s)~ = (l+iG~ = (z - ic_V)  lw_r0(~)r 

The result in the case P = B  now follows from Lemma 4.3. The general case follows 
from a density argument. The result for S follows from this result and the definition. 

The usual scattering operator then has the following representation formula. 
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T h e o r e m  4.10. Let V satisfy Assumptions 2.1 and 3.3. Let sER.  Then 

(4.6) W+(s) - lW_(s )  =i i ro (s )*V( l+iG~ 

on L2(Rd). 

Proof. Using Lemma 3.8 and (3.7) we get for any sER,  

(I+iG~ V) (1 - iG_V)  = ( l + i G ~ 1 7 6 1 7 6  V) 

= 1-iro(s)ro(~)*V(l-iC v ) .  

Thus if u• = r o ( s ) r  u+=Su  (cf. Lemma 4.3), for some fixed sER,  then 

~+ = ro(~)r = ( 1 - i r o ( ~ ) r o ( s ) * v ( 1 - i c _ v ) ) r o ( s ) r  

= Fo (s)(1 - iPo (s)* V (1 - iC_ V)Fo (s))r . 

Since P0(s) is injeetive, we conclude the result (4.6). 

Remark 4.11. The expression (4.6) is the closed form of the well-known per- 
turbation expansion from physics textbooks, see e.g. [11, p. 184]. Explicitly, with 
the usual notation, we have a formal expansion 

/? w+(s) -~w_(s )  = i-i ~ ( ~ - ~ ) ~ ~ 1 7 6  dt 
O 0  

+i s d(~-~)Hov(t) e-~(~-~)HovO_)e ~(,-~)Ho d~-dt+... , 
O G  ~ 0  

which converges, if ]lvIl~(c(m,c(e)) is sufficiently small. 

Remark 4.12. By Theorem 2.2 the operator W+(s)-IVV(s) is bounded on any 
LV(Ra), whereas the mapping properties of the individual operators in the right- 
hand side of (4.6) established in Theorem 3.2 and in [8] are insufficient to draw the 
same conclusion for the composite operators. However, the expression in (4.6) is 
densely defined on the relevant LP(Ra). 

Remark 4.13. In some cases a stronger statement than the free wave asymptotic 
statement in Definition 4.6 holds. Let r EL2(Rd)fqLq(Ra), 1/q=x(P),  and let 

u_ = r 0 ( 0 ) r  

r ( 0 ) w _ ( 0 ) r  . 

Note that  u = W u .  We have, using the various definitions from Section 3, 

go(- t )  (u_ -*,) = r - Uo(-t)V(t,  0 ) W  (0)r 



374 Arne Jensen 

Then 

Ilgo(-t)(u --u)IIL~ ~ [ll--go(--t)U(t,O)W-(O)llaL~)llr ~0 ,  as t--+--oo, 

by [5, Theorem 1.2]. The Lq-norm is stronger than the E*-norm by the conditions 
on P and the Sobolev embedding theorem. Thus this result is stronger than the 
free wave asymptotic statement. 

Let us briefly look at an application of the representation (4.6) for the scattering 
operator. To simplify the discussion we take s=0.  We have 

S(0) = 1 - i F 0  (0)*vr0  ( 0 ) - r 0 ( 0 ) * v a  ~ V(l+ia~ 

The second term has in the Fourier space (momentum space) an integral kernel 
which can be written as 

(4.7) F K(~, ~]) = i eU(~:-v2)V(t, ~-~) dr. 
O 0  

If we assmne 
/ \~d JA 
~ )  V(t) C LI(R;  LI(Rd)) ,  

integration by parts yields an estimate 

j = 0 , . . . , N ,  

II(1-x.+o)Kx~ll <CN~ -N, ~> 1. 

Here XR denotes multiplication by the characteristic function for the ball {I~I2<R} 
in Fourier space. Thus we have good momentum localization properties for the 
scattering operator S(0) for this class of potentials. With additional effort explicit 
error estimates are obtainable. This result is to be compared with the case of time- 
independent V, where S(0) commutes with H0, and therefore is decomposable in 
the spectral representation of H0 into a direct integral of scattering matrices. Note 
that the expression (4.7) formally becomes the usual Born term for a V independent 
of t. 

5. N o n - l i n e a r  s c a t t e r i n g  for smal l  d a t a  

In this section we briefly discuss some results where a nonlinear term is added. 
These results are minor extensions of those obtained in [8]. We consider nonlinear- 
ities given by a function F: C--*C. The following assumptions are needed. 
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A s s u m p t i o n  5.1. The function F is continuously differentiable in the real 
sense and satisfies F(O)=0 and 

IF'(r = 10xF(r 10~r(r ~M[r  k-1 , k >  1. 

Under this assumption we have 

(5.1) ]F(r _< M]r k. 

A s s u m p t i o n  5.2. We assume that 

d+2+ v/d2 +12d+4 4 
< k < l + - -  

2d d 2 

(For d = l ,  2 the right-hand side is +oc). 

To apply the mapping results we need to be able to pick P E T  and QET' 
with Q=kP. The conditions in Assumption 5.2 imply that  this is possible, see [8]. 
We also need the conditions in Assumption 3.3. Thus we introduce the following 

assumption. 

A s s u m p t i o n  5.3. Let PCT, QET', and RE[~, and let k>l ,  such that k 
satisfies Assumption 5.2. Furthermore, we assume R = ( k - 1 ) P ,  and V a real-valued 
function, VE L(R). 

Under these assumptions the map u~-~F(u) is bounded from L(P) to L(Q). 
Thus G• 

L e m m a  5.4. The maps I+iG•  are injective on L(P). 

Proof. The argument in [8] can be used unchanged, due to Theorem 3.1. 

T h e o r e m  5.5. Let V, F, and P satisfy Assumptions 5.2 and 5.3. Assume 
that uE L(P) solves 

(5.2) iO~u- H ( t ) u -  F(u) = 0 

in the weak sense. Then there exist u•163 such that u~u~= at • We have 

(5.3) u• = ( l+iG~177 

The maps u ~ u  and u~u+ are injective and uniformly continuous on bounded 
sets of solutions. 

Proof. These results follow easily from the results already proved. We note the 
following consequence of Lemma 3.7: 

(5.4) (I+iG~ = l + i G ~ 1 7 6  +G )F = l+iG ~ - (V+F).  

This equation allows us to move freely between the solution sets. 
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T h e o r e m  5.6. There exist balls (all centered at zero) B • 1 6 3  B c L ( P ) ,  

such that the following results hold: 
(i) given u EB_,  then there exists a global solution (in the weak sense) u E B  

to (5.2), such that u ~ u  at cx~; furthermore, there is u+EB+,  such that u~u+ 
at +c~; 

(ii) the map S: u ~-+u+ is well-defined, continuous, and injective from B to 
&(p); 

(iii) S(B )_DB+; 

(iv) u ,u •  E*). 

Remark 5.7. We can also find open sets O • 1 6 3  0E(9• such tha t  S is an 
isomorphism of (9_ onto (9+. 

Proof. Let ~ ( u ) = v  - i G  g (u ) ,  where v_ e L ( P )  is fixed. There exists a 5>0  

such that  for each v_ EB_ = {v EL(P)  IIIIv Iiie< �89 the equation ~ ( u ) = u  has a 
unique solution u E B = { u c L ( P )  itiluli]p<_~ }. F~rthermore, u depends continuously 
on v EB . By continuity, we can find a ball B c s  (centered at 0) such that  

( I + i G  ~ V ) - I  B_ C B_.  

Let u EB and denote by u the fixed point above with the choice v = ( l + i G ~  . 
Then clearly u solves (5.2) in the weak sense, and u ~ u _  at c~, by the argument 
in the proof of Theorem 5.5. We find u+ from Theorem 5.5. This argument can 

be reversed, and, after adjusting the radii of the balls, we find B and B+. The 
remaining results follow easily. 
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