Ark. Mat., 36 (1998), 233-239
© 1998 by Institut Mittag-LefHler. All rights reserved

Compactness of operators acting
from a Lorentz sequence space
to an Orlicz sequence space

Jelena Ausekle and Eve Oja(?)

Abstract. Let X and Y be closed subspaces of the Lorentz sequence space d(v,p) and the
Orlicz sequence space I, respectively. It is proved that every bounded linear operator from X to
Y is compact whenever

p> Bar :=inf{g>0:inf{M(X\&)/M(A)?:0< X, t <1} >0}

As an application, the reflexivity of the space of bounded linear operators acting from d(v,p) to
Ipr is characterized.

1. For Banach spaces X and Y, let L{X,Y") be the Banach space of all bounded
linear operators from X to Y, and let K(X,Y) denote its subspace of compact
operators.

Let 1<p,g<oo. By the classical Pilt’s theorem (cf. e.g. [5, p. 76]), K(lp,1lq)=
L(l,,1,) whenever p>gq. On the other hand, if p<gq, then K(I,,1;)#L(ly,,1q) (be-
cause the formal identity map from I, to [, is clearly non-compact).

One of the closest analogues of the space I, is the Lorentz sequence space d(v, p).
Recall its definition. Let v=(vy)=(vi)3>, be a non-increasing sequence of positive
numbers such that vy =1, limy v, =0, and ZZ’;I v =00. The Lorentz sequence space
d(v, p) is the Banach space of all sequences of scalars z=({) for which

o0 1/p
Hx||=sup(zvk\s,r(k>|p) <0,
T Ng=1

where 7 ranges over all permutations of the natural numbers N.
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The spaces d(v,p) and [, are never isomorphic but they have similar proper-
ties. For example, every infinite-dimensional closed subspace of I, or d(v,p) has a
subspace which is isomorphic to I, (cf. e.g. [5, pp. 53, 177]). Background material
on Lorentz sequence spaces can be found e.g. in [5].

In [6], E. Oja proved the following analogue of Pitt’s theorem for the case of
operators acting from I, to d(v, q).

Theorem 1. (cf. [6]) Let X and Y be closed subspaces of 1, and d(v,q), re-
spectively. If p>q and v¢l, gy, then K(X,Y)=L(X,Y). Ifp>q and v€ly/(p—q),
then K (L, d(v, 0)) £ (L, d(0,q)).

Here again, if p<g, then K(I,,d(v,q))#L(l,,d(v,q)) because the formal iden-
tity map from I, to d{v, q) is not compact.

We shall prove the analogue of Pitt’s theorem for the case of operators acting
from d(v,p) to l,. However, we shall do it in a much more general context, con-
sidering instead of the spaces I, their well-known generalizations—Orlicz sequence
spaces L.

Recall the definition of Orlicz sequence spaces. An Orlicz function M is a
continuous convex function on [0,00) such that M(0)=0, M(¢)>0 if t>0, and
limy_, oo M(t)=00. The Orlicz sequence space I is the Banach space of all sequences
of scalars z=(£) such that Y70 ; M(€x]/0) <oo, for some p=p(z)>0, under the
norm

ol =inr{o>0: Y Ml /o) <1},

k=1

Denote

apr =sup{q > 0:sup{M(At)/M(M)t?:0< A, t <1} < oo},
B =inf{g>0:inf{M(M)/M(\)E:0< A, ¢ <1} >0}.

It is easily verified that 1<ap <fp <oo, and By <oo if and only if M sat-
isfies the As-condition at zero, i.e. limsup,_,, M (2t)/M(t)<oo. This implies that
limsup,_,o M(Qt)/M(t)<oo for every positive number Q).

It is also easily checked that lps=[; whenever M (t)=t?, and, in this case,
oy =pFm=q.

These and other necessary facts on Orlicz sequence spaces can be found e.g.
in [5].

2. Let us state the main result of the present note.
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Theorem 2. Let X andY be closed subspaces of d(v,p) and la, respectively.
If p>Bum, then K(X,Y)=L(X,Y).

The proof of Theorem 2 is based on the following result from the paper [1] by
J. Ausekle and E. Oja. It uses the definition of a-domination of sequences. Let
a=(ay) be a sequence of numbers, and let (zx) and (yx) be two sequences in some
Banach spaces. We say that (zx) a-dominates (y) if there exists C>0 such that

n
E AxYk
k=1

In this case, we write (zx)>q (yk)-

n

E AT

k=1

<C for all ne N.

Proposition 3. (cf. [1]) Let a=(aix) be a sequence of numbers. Let (eg)
and (¢r) be two sequences in some Banach spaces. Suppose that (gi) does not
a-dominate (py). Let (ex) and (fx) be bases in Banach spaces E and F, respec-
tively. Suppose that (er) a-dominates any normalized block-basis (ug) of (ex) and
any normalized block-basis (vy) of (fi) has a subsequence (vn, )>a(¢r). If X and
Y are closed subspaces of E and F, respectively, with X* being separable, then
K(X,Y)=L(X,Y).

Proof of Theorem 2. Let ¢ be such that p>q> 8y and, for some k>0,
(1) BtIM(A) <M(A), 0<\t<1.

Put a=(1,1,...). Denote by () and (py) the unit vector bases in I, and I,
respectively. First of all, notice that (e) does not a-dominate (py), because

Z Pk
k=1

n

>e

k=1

:nl/q’ :nl/p’

lq Ly

and n'/9=1/P 0.

Since d(v, p) is reflexive and separable, X is also reflexive and separable, and
therefore X* is separable.

For completing the proof of the theorem, it remains to show that, in Propo-
sition 3, one can take E=d(v,p) and F=Is with their unit vector bases (ex) and
(fx), respectively.

Let (ux) be a normalized block-basis of the unit vector basis (ex) of d(v,p). It
is easily checked (cf. e.g. [5, p. 177]) that

n
> uk
k=1

n

S

k=1

<pllr =
d(v,p)

for all neN.

lp
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Hence (eg)>q (ur).
Finally, we show that (vi)>, (k) for any normalized block-basis (vi) of the
unit vector basis (fi) of Iy, i.e. there exists C'>0 such that

n n
(2) Uy 1= ka >C ank =Cn'? for allneN.

k=1 Iar k=1 lq
Let

M1
v = Z c;f;, keN.
J=mg+1

Since

—1nf{g>0 Z mf: M( |cj|/g)<1}

k=1j=mp+1
we have ;1 <y <... and
n MEe41
(3) Z Z M(l¢j|/v,)=1 for all neN.
k=1j=mr+1
We also have that
ME+1
(4) > M(gl)=1 forall kEN,
J=mg+1

because ||vg|/i,, =1. It follows from (4) that {c;|<~, jEN, for some y>1.

Note that v, —o00. In fact, if v, <Q, neN, for some >0, then we also could
assume that |¢;| <Q, j€N. Since Bar <oo, the function M satisfies the As-condition
at zero. Hence, for some K >0,

M(QH)<KM(t), 0<t<1.

Consequently, by (3) and (4), we would have that

MEg1 mEgy1
1—2 Y. Mel/va) >Z > M(e1/Q)
k=1j=mr+1 k=1j=mg+1
n ME41

Z Z M(e;)) 1% for all neN,

k‘ 1j=mg+1

a contradiction.
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Since 11 <15 <... and v, — o0, for the proof of (2), it is sufficient to consider
those n€N for which v, >+. In this case, by (1) and the Ay-condition at zero,

Myl )= ({5 /7)) 2 KM sl ) Dy = 3o M) for all €N

for some K >0. It follows from (3) and (4) that

n k"}/q Mk 41 k"yq
123 e 2 M= an
k=1 J=mr+1

This proves (2). The proof is complete. O

Remark. In [1], we proved the equality K (X,Y)=L(X,Y) for closed subspaces
X Cd(v,p), Y Cd(w, q) with p>q, wél,,,—q) and also for closed subspaces X Chp,
Y Cly with apr>08N.

3. The next result shows that the condition p>[p; is essential in Theorem 2.

Theorem 4. Let X be an infinite-dimensional closed subspace of d(v,p). If
< B, then K(X,lp)#L(X, lar).

The proof of Theorem 4 uses the following easy observation whose proof is
straightforward.

Proposition 5. Let X, Y, Z, W be Banach spaces and K(X,Y)=L(X,Y).
Suppose that Z is isomorphic to a complemented subspace of X and W is isomor-
phic to a subspace of Y. Then K(Z, W)=L(Z,W).

Proof of Theorem 4. Assume for contradiction that K{(X,lp)=L(X,1sr). Set
g=0u. Since g€|anr, Bum), In contains a subspace isomorphic to I, (see [5, p. 143]).
It is also known (see e.g. [5, p. 177]) that every infinite-dimensional closed subspace
of d(v,p) contains a complemented subspace isomorphic to l,. Therefore, we get
from Proposition 5 that K(I,,ly)=L(l,,14). Since p<g, this is a contradiction and
we have K(X,lp)#L(X, 1) O

Since every infinite-dimensional closed subspace of [, contains a subspace iso-
morphic to I, (cf. e.g. [5, p. 53]), the following is clear from the proof of Theorem 4.

Corollary 6. Let X and Y be infinite-dimensional closed subspaces of d(v,p)
and 1,, respectively. If p<q, then K(X,Y)#L(X,Y).

Remark. In Theorem 4, the space s cannot be replaced by its infinite-dimen-
sional closed subspace (cf. Theorem 2 and Corollary 6). For example, let Iy be
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an Orlicz space such that apr <, and let pe(anr, Bar). Putting g=aur, we get
that Ip; contains a subspace Y isomorphic to [,. We also know that d(v,p) con-

tains a complemented subspace X isomorphic to [,. Since g<p, by Pitt’s theorem,
K(lp,ly)=L(ly,1;). Hence K(X,Y)=L(X,Y).

4. We conclude with some applications to the reflexivity of spaces of operators
acting from d(v, p) to lp;. Recall that d(v,p) is reflexive if and only if p>1. Recall
also that [ is reflexive if and only if both M and its complementary Orlicz function
M* satisfy the As-condition at zero. This means that 8y <co and ajpr>1.

We shall apply the following result proved by S. Heinrich [3] and independently
by N. J. Kalton [4]: if X and Y are reflezive, and K(X,Y)=L(X,Y), then L(X,Y)
is reflexive. This result, together with Theorem 2, yields Corollaries 7 and 8 below.

Corollary 7. Let X be a closed subspace of d(v,p), and let Y be a reflexive
subspace of lyr. If p>Pur, then L(X,Y) is reflexive.

Corollary 8. Let X and Y be closed subspaces of d(v,p) and g, respectively.
If p>q>1, then L(X,Y) is reflexive.

We now come to the main application of this note.

Theorem 9. The following assertions are equivalent:
(a) L(d(v,p),lpr) is reflexive,

(b) K(d(v,p),lar) is reflexive,

(¢) 1<am<Bu<p.

Proof. (a) = (b) This is true because the reflexivity passes to closed subspaces.

(b) = (c) Since K(d(v,p),ln) is reflexive, its subspace [y is also reflexive.
Hence apr>1. It is well known (cf. e.g. [2, p. 247]) that if X and YV are Banach
spaces, one of them having the approximation property, and K(X,Y) is reflexive,
then K(X,Y)=L(X,Y). This implies K(d(v,p),!n)=L(d(v,p),lrs). Therefore,
B <p by Theorem 4.

(c) = (a) This is clear from Corollary 7 because apr>1 and By <p imply the
reflexivity of {5y, O

The next corollary is immediate from Theorem 9.

Corollary 10. The following assertions are equivalent:
(a) L(d(v,p),l,) is reflexive,

(b) K(d(v,p),l,) is reflexive,

(c) 1<g<p.

The last result can be derived from Theorem 1 similarly to the proof of Theo-
rem 9. We include it for comparison with Corollary 10.
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Theorem 11. The following assertions are equivalent:
(a) L(l,,d(w,q)) is reflexive,

(b) K(Ip,d(w,q)) is reflexive,

(¢) 1<g<p and wily,/p—q)-
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