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Dual spaces of dyadic Hardy spaces generated
by a rearrangement invariant space X on [0, 1]

Nicolae Popa

Abstract. First we define the dyadic Hardy space Hx (d) for an arbitrary rearrangement
invariant space X on [0,1]. We remark that previously only a definition of Hx (d) for X with the
upper Boyd index gx <co was available. Then we get a natural description of the dual space of
Hx, in the case X having the property 1<px <¢x <2, improving an earlier result [P1].

1. Introduction

In the last 20 years many papers about Hardy spaces have been published.
The interest in the topic includes Hardy spaces of analytic functions having the
classical spaces H'(D) and HP(R"™) as representative examples and Hardy spaces
of martingales, for instance the dyadic Hardy space H(d).

Motivated by the deep study of the rearrangement invariant spaces (r.i.s.)
which was carried out by W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri
in 1979 [JMST], we initiated a detailed study of dyadic Hardy spaces Hx(d) gen-
erated by a r.i.s. X on I=[0,1]. (See [P1], [P2], [P3].)

Using the ideas of M. Frazier and B. Jawerth [FJ], very recently we improved
some earlier results on this subject and proved some new results.

For the unexplained terminology we refer to [LT1] and [LT2].

We recall the notion of a rearrangement invariant space of functions (r.is.) X
on I=0,1], following [LT2]. We consider without any contrary mention that all
Banach spaces are real.

Now we say that X is a r.i.s. on I=[0,1] if:

(1) The space X is a Banach lattice of Lebesgue measurable functions with
respect to the a.e. pointwise order relation on I=[0,1].

(2) The space X is an order ideal of the space M (I) of all Lebesgue measurable
functions on I, ie. if f,ge M(I) with |f|<|g| and g€ X it follows that f€X and

IFI1<llgll-
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(3) The space X contains all characteristic functions of all Lebesgue measur-
able subsets ACI.
(4) If f and g are equimeasurable (i.e.

Hte ;£ (D)1 > =Htel;|g(t)] > Al

for every A>0, where |A] is the Lebesgue measure of ACT), then for f€ X it follows
that ge X and || f]lx=llgllx.

(5) We assume that the canonical injections i: L. —X and j: X — L1 (I) have
norms less than or equal to 1.

(6) We assume also that X is either a minimal space (i.e. the simple functions
are dense in X) or a mazimal space, i.e. X=X". where X'={¢:I—-R;||g|x =
sup| <1 | f fgl<oc} is the associate Kithe space of X.

We call a space X having properties (1), (2) and (3) a Kéthe function space
on I. The classical Orlicz and Lorentz spaces are examples of r.i. spaces.

Now we recall the useful definition of Boyd indices for a r.is. X. Let 0<s<oo
and put

f(t/s), if t<min(l,s),
D50~ |
0, otherwise.
Now put
. s log s
=Su e
XS log D4l
and
log s
ax g

T 0<s<1 log | Dsll”

Here px and gx are called the Boyd indices of X, and they satisfy the relations
1<px <qx <oc and px'=(gx); ¢x'=(px)’, where 1/p+1/p'=1.

We now define the dyadic Hardy space Hx(d). Let QCI be a dyadic interval.
Let hg be the Lo-normalized Haar function supported by @Q, i.e.,

1
hg= m—l/Q(lQl —1q.);

where Q1 (resp. Q2) is the left half (resp. the right half) of the interval Q. Then
for every Lebesgue measurable function f on I with f=)_, sqhg a.e., put

1/2
S(f) = (leQP/@uQ) |
Q
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Now let X be ar.i.s. on I such that ¢x <oo. We define

Hx(d)={f e M(I); | fllx = I1S(Hllx < o0}

and call Hx (d) the dyadic Hardy space generated by the r.i.s. X on I.

If X=L!, then Hx(d) coincides with the dyadic Hardy space H'(d) introduced
by A. Garsia [G]. It is known (see [P1]) that Hx(d) is a Banach space and that
Hx (d) is isomorphic to a closed subspace of X itself, whenever gx <.

But more is true (see [A]).

Theorem 1.1. Let X be a r.i.s. on I. The following assertions are equivalent:
(1) The Boyd indices of X satisfy the inequalities 1<px <gx <00.
(2) There is a constant C>0 such that

CHIfllx <IS(Hllx <Cliflix
forall feX.
Therefore from the point of view of the isomorphic theory of Banach spaces,
ounly the r.i.s. X such that either px =1 or gx =00 are of interest.
Now we extend the previous definition to r.i.s. X with gx=00. We use some

ideas of M. Frazier and B. Jawerth (see [FJ]).
First we extend a well-known inequality of C. Fefferman and E. Stein (see [FS]).

Theorem 1.2. (Fefferman-Stein inequality) Let (f;)3<, be a sequence of func-
tions on R. Then the following inequality holds:

(i |Mfk|r)1/r (g w)w

k=1
Mf(@)=  sup Fclz"t /Q £ (z)|dz,

Q3z,Q interval

(1.1) )

<Arp
L

I4

(1<r,p<oo).
LP

Here

for feL'(R).
We omit the proof but instead we extend the theorem to an arbitrary r.i.s. X
on I such that 1<px <gx <oc.

2. Dyadic Hardy spaces Hx(d) for r.i.s. X with gx=o00
Theorem 2.1. Let X be a r.i.s. on I, I being either (0,00) or (0,1), such that

1<px <gx <o and let 1<r<oo. Then we have
n 1/r
(Suar)
i=1

) o
(; MAl)

<C(X,r)
X

(2.1) ’

X
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for any choice of elements f;€X, i<n, and every n€N.

Proof. We use Theorem 1.2 and interpolation techniques. (See [BS].)
Let 7>0 and 1<p<px <gx <g<oc. Put f:=3"7_, | fe|")Y/" and

fr(=), if fr(z) < (1),
fk_{

f(T)fk(I) , lf fT(ZL') > fT(T),

f(z)

1<k<n. Here we let

f@)= inf sup |f(u)], z>0.
|El=2 ye\E

Then 5
N[ F@), i @) < ),
(Z'f’“' ) _{ frm), i fr(z)> fr ().
(See [BS, pp. 223-224].) So

(Zw) (t)=min(F"(t), /(7).

Put now

@ =fu(@) = fi @) sgn fu(z), k=1,2,...7m.

Thus it follows

(2.2) |fe(@)" = |fa (@) +| 2 (=), 1<k<n
Moreover,
: if f7(t) < fr(7) i g
l‘ r . — t)— T
(@) 0={ Ty, e} =0T

and
(Zw) )= (F (- (7))

for every tel.
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Put now

00 i/
i U wror ) | o<a<m
P,g

sup t'/7f(t), g=oc.
0<t<o0o

Then it follows that

- ()| —erssre [~ onien
and
(2.4) n (zk: |f’3|r)1/r o /OT Py~ fr(r)MT d_t{

<2 / (e f(t) & - pi(r)rr.

167

Since 1< p, g<oo, by Theorem 1.2 it follows that there is a constant A>0 such
that we have the inequality (1.1) for 1<r<oo, p, ¢ and the functions (fZ)7_, and

(f]z:)z:l N
By Proposition 4.2 in [BS, p. 217] it follows that

\ (Z M7 |T)1/T (; ML |T)1/r

(25) k=1 1

;mr)

q,0 ‘ q

1/r

(Ekj |f;i|’>

T

<]

<C”'
q q,1

and similarly

(2.6) ” (E,C: !Mf,f[fj/r
By (2.5) we get
en ((Swar) ] an<egn

and (2.6) implies that

e ((Smar) Y anscun”

k

S Ch’]

(}:kj If;?lrj/r

P, p,l
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Using (2.3) and (2.7) we get

L/m\~ o o dt
1|r 1. Y 1/ -
2o ((Zwar)”) anze(-ve [T enio g eie)
and similarly
1/r\~ R B T B dt
(2.10) ((zk:le,f| ) ) (%T)§C<~pf(r)+2r 1/P/O t/P f(t) 7).
But, in view of (2.2) it follows that

1/r
<(Zonanr i)

k

< (Zoasi+1520) )W <(x |Mf¢|f)l/r+(2 IMf;?IT)l/T,

k k k

1/r

(; MAF)

thus

((?Mf’“y)l/r) ((zk: M) )m) %T)+(<2kj(zuf£)r)l/r)w(%f)
<c(rvn [Tonj Gz [Mor50 )
—C8, ().

where o is the interpolation interval [(1/g,1/q),(1/p.1/p)] and S, is the Calderén
operator. (See [BS].)
Thus, since p<px and gx <g¢, the proof of Theorem 5.16 in [BS, p. 153] gives
1/r

|(Snr)] <el($r)

Now we use Theorem 2.1 in order to get an equivalent norm on Hx (d), when-
ever X is a r.i. space on I=[0, 1] with ¢x <oc.

For a dyadic interval QCI, let FoCQ be a Lebesgue measurable subset such
that |Eq|>3|Q|, and for f=3, sqhg put

1/2
521)= (X bsol?/ 1Bz, ) -
Q

Then we have the following corollary.

us

.

X



Dual spaces of dyadic Hardy spaces generated by a rearrangement invariant space on [0,1] 169

Corollary 2.2. Let X be a r.i. space on I=(0,1) with 1<px <gx <oo. Then
I fllzx ~inf{|Se(f)llx: EQ CQ, |Eql> 11Ql}.

Proof. Obviously [|Sg(f)llx <2[[S(f)llx=2[lfll#x-
Conversely, it is clear that 19 <2M (1g o). Therefore, for every A>0 and every
dyadic interval Q, we have 19 <2%/4 []\I(lEQ)]l/A and

A 2/A\1/2
1/A |sql
(211) S(f)<2 (; {M(| Fo 72 IEQ)} ) ‘
We choose A>0 such that 1<px/A and 1<2/A. Put r=2/A and, since
1<EA£:pX1/A < %:QXI/A < o0,

(where XYA={f:I-R;|f|"/4€X} and ||| x1/a:=||fI*/4|%) we have by (2.11)
and Theorem 2.1

R e

Q

1A lsg2.  \?
<2 1
- (Z |Eq] EQ) X1/4

1/A ISQI2 V2
=7 (Z|E|1EQ) X

X
1/4

=2/4Se(f)lix. O

Define now for f=3" sqhq,

Q dyadic interval

e = s (S '3;'21;))1/2]@@01@-
PCcQ

Then we get the following theorem.

Theorem 2.3. Let X be a r.i. space on I=[0, 1] with gx <oco. Then

(2.13) Il mx ~inf{IISE(f)lx : EQ CQ. |Eq|>31Ql} ~IIm(f)llx-

Proof. We use the argument of Proposition 5.5 in [FJ]. Since the operator M
is of weak type (1,1) there is a constant C'>0 such that, for each >0,

Ha;m(f) (@) >t} < [{z; M(1gy.5(5))>) (@) > 1} < cl{z; S(F) () > t}].
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Since X is a r.i. space it follows that

(2.14) Im(Hllx <cllS(HIx

for all feHx.
For z€! put

y(x)zinf{uéZ;( )y 'Tgl 1 (x))msm(f)(:c)},

Q<2

where [(Q) is the length of the interval Q. Put

Eq={z€Q;27"9 >1(Q)} = {z € Q; So(f)(z) <m(f)(z)}

for every dyadic interval (), where

san=(5 )

PCQ

By definition of mo(f):=Sq(f)(31Q]), it follows that |Eg|>%|Q| and

(2.15) (z lsql? 1g (;c))l/2 <Cm(f)(x)
5 1EBal ¢ -

for zel.
Therefore we have

(2.16) 1SE(Hlix <cllm(f)llx-
By (2.14), (2.16) and Corollary 2.2, (2.13) follows. U
Thus, if gx <oo, we have
Hx(d)={f € L'(I);|lm(f)llx <oo}.

Now for an arbitrary r.i. space X on I=(0,1) (even in the case gx=00) we
may define Hx(d) as follows.
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Definition 2.4. Let X be an arbitrary r.i. space on 7. Then we put

(2.17) Hx (d):={f € LY(I); Ifllzrx = Im(f) ]| x < oo}

The above definition permits us to improve the description of the dual space of
Hx(d) whenever X is ar.i.s. on I such that 1<pyx <qx <2, which was done in [P1].

In order to prove that we extend Theorem 5.9 in [FJ]. First of all we extend
Proposition 5.5 in [FJ].

For f=3", sqhq put

ro=ae(r [ 2 Tolate )1/2

QCP

e o) =gy s a)

QCP

where fp:=(1/|P|) [ f(u) du.
We then have the following result.

(2.18)

Proposition 2.5. Let X be a r.i. space on I such that 2<px <qx <o0.
Then it follows

(2.19) lm(F)llx ~ 114 x-

Proof. By Chebyshev’s inequality we have

IQI

220 Hee@iSel)@>els 5 [ (SalN@) de s ()

for every t€@ and £>0.
If e>2f%(t), we have, by (2.20),

(2.21) HzeQ;So(f)(z)>e} < 4Ql,

which in turn implies that

mq(f) <2f4(t),

n=-(X 'Tj;’l ) L)

PCQ

where
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for all teQ).
Thus
m(f)(t)= sup mo(flg(t) <241
and
(2.22) Im(H)llx <2/ f*lx.

Conversely we consider

(2.23) V($):inf{uez;( > 5ol (z)>1/2§m(f)(x)}-

worss—r @l

Now let Eg={zcQ;27"® >1(Q)}={z<cQ;So(f)(z)<m(f)(z)} for every dy-
adic interval Q. As in the proof of Theorem 2.3 it follows that |Eg|/|Q{>3 and

1/2
(2.24) (Z 'TgrlEQ ) <Cm(f)(z)

for every zel.
Integrating (2.24) on the dyadic fixed interval P we have

2 m2 xT
S Isal sc/P (f)(x) dz

QCP

t) <Csu / m?
par 1P|
for all t€1.

Now, using the fact that M is a bounded (non linear) operator on Y, for every
r.i. space Y such that 1<py <gy <oo, we have, denoting by X, the space

or

Xo={f:I-R;|f'? € X}
with the quasi-norm || f| x, :=|| |f|1/2l|i, and using the hypothesis px,>1,
17711 x, <CIM (m*(f)lix, < Cllm* () x, = Clim(£)%-
Thus

(2.25) I x < Clm(f)lx.
and (2.22) and (2.25) prove Proposition 2.5. O
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Theorem 2.6. Let X be a 7.1. space on I such that 1=px <gx <2. Then the
dual space of Hx may be identified with Hx,, by the map carrying l€(Hx)* onto
t=>_gtohqo€Hx, where to=I(hq) for every dyadic interval Q. Moreover,

12l ey ~ Nl -

Proof. Let t=3"tqhq and $=)_oS@hq. Using the notation of Proposi-
tion 2.5 we have, by the Cauchy-Schwarz inequality and (2.24),

e[ 5 et
() (S
1/2

(5 =)

<cllsllax

<clsllax Im®)llx: =cllsllax 1t a2y
X

i.e.

3

(2.26) Wl (rs)- < clthay. -

Conversely, let 1€ (Hx)*, to=I(hq) and s=3", sqhq€Hx. Now fix a dyadic
interval P and let us consider the space X;={Q;QCP} endowed with the measure

wQ)=1Ql/|1P|.
Then
( . ‘tQP) H(%) = sup Z SQtQ\Q‘l/Q
IPI QCP |Q| Qlitz(xy,du)  lslhiz(x, 4 St I QCP
<l . SQlQ[1/2h
< H(Hx) ||s||12(s):2u)§1 OcP |P| Hyx
But
sqlQl'”? :H< 50l )“2
c;;P P, QXC;JPPQ x

= o [l 5ge) T

P
h decreasing Qc
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since X is a r.i. space.
On the other hand, for a fixed £>0 there is an s€1?(X;, du) such that

lslliz (1 ,dm <1

and an he X', ||| x- <1, h decreasing, such that

o cxp <1 Qcpsﬁ%f’@ P f_g_lT?D_lil/th e
< [[( ara) Tree
Consequently,
(S ) =ml](35 5efe) e
sunl( ) (1.5 5ee)
< —(lll:’l / h2)”2+5],
Now

£ < UM (%)% +e)
and, since py; =ipx:>1,

1910 x < (1 [N (B2 o +e] = NNIM (RD)]Y, +e]
< IR +e] = 11l [Nalxo+e] < el (1+e)-

Since £>>0 is arbitrarily small we have
(2.27) 141l < W2l crrsey--

Thus (2.26) and (2.27) prove the theorem. 0O

It is clear by Theorem 2.6 that for X=L!, Hy: coincides with the classical
space

BMO(d) :={f: ] =R ||f*]l.. <oo}.
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