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Average decay of Fourier transforms
and integer points in polyhedra

Luca Brandolini, Leonardo Colzani and Giancarlo Travaglini

1. Introduction

Let xg be the characteristic function of a compact connected set B in R™.
Precise estimates of the decay of the Fourier transform

W)= [ i
B

are crucial for several applications in Fourier analysis, geometry of convex sets and
geometry of numbers. See e.g. [10], [9], [7], [8]. In the literature B has often been
assumed to be convex, with a smooth boundary of strictly positive curvature. Under
these assumptions the decay of Xp along a fixed direction represents the global
behavior. This is not always true if the boundary 8B is not smooth or if it is smooth
but with curvature vanishing at some points; in both cases the decay of the Fourier
transform may depend on the direction. For example, if P is an n-dimensional
polyhedron, then Xp(£)=3; Q;(¢ )e?™iei € with @; homogeneous of degree —n and
it can be seen that ' p(§) decays as fast as ||~ along almost all directions, but only
as |¢|~! along directions perpendicular to the (n—1)-dimensional faces. Therefore,
when studying the behavior of the Fourier transform, one may be led to introduce
an average decay. This point of view has been exploited e.g. in [14], [13], [20],
[11], [2].

In this paper we study an average decay of Xp when P is a polyhedron and
then we apply our results to obtain estimates for the number of integer points in a
dilated copy of P, randomly positioned in the space. We also compare polyhedra
with more general domains.

Our first result is the following. Let X,,_;={c€R":|o|=1} be the unit sphere
equipped with the Lebesgue surface measure and let 9>0. When n=1 the polyhe-

dron reduces to a segment, say [—3, %], and the sphere consists of the two points
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Fp. In this case one has the pointwise estimate

<ec(240)7L

N sin (7o)
IX[-1/2,1/2)(£0)| = Tg‘ (

When n>2 the average decay of Xp is different when measured by different
norms. We prove that

(') sup 50 Al{T € Tn—1:[Xp(00)|> A} <e(2+0) og"*(2+0),

(ii) fz IXP 00)| do<c(2+p0) "log"~ 1(2+g)
(iii) (fz IXp(00)|P do) /p§0(2+g) I=(n=1)/p 1 <p<+4o0,
and we also shovv that these estimates are essentially sharp.

Here and in the sequel the letter ¢ denotes a positive constant which may vary
from step to step but does not depend on p. Moreover, when A is a measurable set
in some measure space, |A| denotes its measure.

Observe that the above estimates may be easily checked in the case of the unit
square in the plane,

sin(7p cos(f)) sin(wgsin(6))
mocos(f) mosin(f)

X[-1/2,1/2]x|-1/2,1/2] (@ cos(0), osin(F)) =

The case of a polygon is similar since we still have a quite explicit expression for
the Fourier transform. Such a formula gets more complicated for an n-dimensional
polyhedron and this general case will be handled through an induction argument
on the dimension. Indeed, by the divergence theorem, the n-dimensional Fourier
transform of a polyhedron is essentially a sum of the (n—1)-dimensional Fourier
transform of its faces.

Some of the above estimates of the decay of Fourier transforms do not hold
only for polyhedra but also for a large class of “regular” domains. Indeed, we shall
see that when the boundary of a domain B has finite Minkowski measure, that is
HxeR™:d(z,0B)<e}|<ce, then

1 - VP [ e(240) D2 1<p<y,
(—/ Xe(E)P dﬁ) S{ Y
Ho<I€1 <20} Jiegiei<2ey c(2+0) P, 2<p<+oo.

The main result here is the L? estimate, which is a quite immediate conse-
quence of the direct and inverse approximation theorems of Jackson and Bernstein.
See e.g. [12]. Indeed (f{ng} IXB(€)[* dE) /2 is the best approximation in L*(R™)
of the function xp by means of entire functions of exponential type p. This best
approximation is related to the L? modulus of continuity of x5 and hence to the
Minkowski dimension of the boundary dB. Observe that for p>2 the above esti-
mates match with the corresponding ones for polyhedra. The estimates for p<2 are
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a trivial consequence of the case p=2, nevertheless they are sharp as the explicit
example of a ball shows.

The second part of this paper is devoted to the classical problem of estimating
the number of lattice points in large domains. Let P be our polyhedron and let
0>0, #€SO(n), teR". Define the discrepancy D(p,0,t) as the difference between
the number of integer points in the set p§~1P—t, a dilated, rotated and translated
copy of P, and the expected number |gf =1 P—t|=p"|P|, i.e.

D(Q»g)t) = Z XQO*IP—t(m)_Qn|P|'
meZm™

Since this function is periodic with respect to translations, we may restrict the
variable t to the torus T"=R"/Z".

It is easy to check that D(g, 8,t) may be of the order of o"~! as p—o00. On the
other hand, Hardy and Littlewood have shown that, in dimension two and for par-
ticular choices of 8 which give suitable irrational slopes of the sides of the polygon,
the error can be logarithmically small: |D(g, 8,t)|<cg . log(2+p). An extension of
this result to several variables has recently been proposed by Skriganov. See [5],
[6], [15], [16]. See also [14], [19], [20], [1], [11] for related results. Our purpose is to
extend, in a probabilistic framework, the result of Hardy and Littlewood to several
variables. Our methods are different from the ones developed by the above authors,
but we acknowledge the influence of the paper of Kendall [10]. Our result is the
following,

(i) supyso A{O€SO(n), teT™:[D(0,6,1)]> A} <c log"}(2+0),

(i) Jsomy Jon [D(0,0, 1) dt df<c log"(2+0),

(iii) (fso(n) Jn |D(0,0,t)|P dt dH)1/p§0(2+g)("_1)(1_1/p), 1<p<+oco.
To prove these estimates, the idea is to use the Fourier expansion of the dis-
crepancy, as a function of t€T”,

D(p,0,t) = Z o™X p(00m)e?™ vt
meZn\{0}

The mean square estimate of the discrepancy follows from Parseval’s formula
and the previous estimates for the L? decay of the Fourier transform. However,
in our opinion, the main result is (i), since the case p=+o0 is quite immediate
and the remaining cases, although they need a direct proof, may be considered as
an interpolation between these extreme cases. We shall see that the estimates in
(iii) are sharp and we shall also give estimates from below for (i) and (ii). These
estimates all together give an idea of the size of the discrepancy, which can be very
large, but only around some singular points. In particular (i) shows that

{6 €SO(n), teT":|D(0,0,t)| >c log" ' (240)}| < ce.
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We can give to the above result the following probabilistic interpretation.
Throwing at random a dilated polyhedron ¢P in the space, the difference between
the number of integer points in it and its volume can be as large as the surface
measure of the boundary, co™ !, however, the probability for this difference to be
much greater than log"™*(2+p) is very small.

We also consider the discrepancy associated to domains more general than
polyhedra. When the domain has a boundary with finite Minkowski measure, then
the estimates on the Fourier transform when applied to the study of the discrepancy
give

20 1/p ¢ 2+ (‘n—l)/Q’ 1< <2)
(1/ / / |D(T,9,t)|pdtd6d7-> g{ (2+o) o =ps
@ Je Jso(n) n c(2+g)(n_ - /P)7 2<p<+o0.

Again these estimates are sharp and it may be interesting to compare them
with the corresponding estimates for polyhedra.

Finally, revisiting [1] and [11], we briefly consider the problem of the discrep-
ancy associated to an arbitrary distribution of a finite set {z; }J]‘il of points in T™.
Generalizing the previous definition without changing the notation, for a given do-
main B contained in T we define the discrepancy as

M

D(E, 97 t) = ZXEG*lB—t(Zj)_MgnIBL
j=1

Assuming the set B satisfies a|h|<|((B—h)\B)U(B\(B—h))|<b|h| for suffi-
ciently small |h|<1, we prove that

1 1/2
(// / |D(e,0,t)| dt d@ds) > cM(n=D/2n
¢ J50(n) JTn

for suitable constants 0<q<1 and ¢>0 independent of the distribution of points
{2 }]]Vi1 :

The 2-dimensional case of this result has been proved by Montgomery in [11],
while the n-dimensional case has been proved in [1] by Beck assuming the domain
convex.

When this research started, the authors were visiting the International Centre
for Mathematical Sciences in Edinburgh. We thank A. Carbery and A. Gillespie
for the warm hospitality. The authors wish also to thank R. Schneider for bringing
the paper [4] to their attention.
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2. Average decay of Fourier transforms

Let X be a measure space and let 0<p<oo. The Lebesgue space LP(X) consists
of all measurable functions with quasi-norm

P
lgllzr(x) = </ lg(z |pd$> < H4-00.

The space weak-LP(X), or LP»*°(X), is defined by the quasi-norm
lgllzr.mx) =sup M{z € X :|g(2)| > AP

See e.g. [18].

The main result of this section is the following.

Theorem 2.1. Let P be a compact polyhedron in R™. Then, for n>2,

@) IXp(0)llLtoo s,y Se(2+0)"og"*(2+0),

(i) 1xp(e)llri(z, sy Se(2+e) Mog™ ' (2+0),

(iii) [IXp(0)llze(z, 1y Se(240)" = 7D/P, 1<p<too.

Before starting the proof of the theorem we recall the explicit expression of the
Fourier transform of the characteristic function of a polygon in the plane.

Lemma 2.2, Let P be a polygon in the plane with counterclockwise oriented
vertices {a;}JL,. Denote by o; the unit vector parallel to the side [a;, a;11] and by
v; the outward unit normal to this side. Then, defining ami1=a1, we have

m
X\p(g):/ e 2mibT Jo (2rlg|) 22 —2m’§-aj+1__e—2ﬂi5-aj)£'vj.
p
Jj=1

§-0;

Proof. By the divergence theorem,

/e_Qﬁig‘”dx:—(2W|§|)"2/ A[e"sz'z] dx
P

27‘(‘|€] -2 —27ri§-z} dx
Z laj,az41] 6U]
—(2nle)) -2 Z _2m'5.aj+1 _e—zmgaj)g:g 0
Jj=1 J

Proof of Theorem 2.1. From now on we assume p large, since the estimates
for ¢ small are immediate. The proof of (i) is by induction on the dimension n,
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starting with n=2. In this case the explicit expression of the Fourier transform of
the characteristic function of a polygon shows that X p(ocos(¢), psin(¢)) is domi-
nated by a finite sum of terms of the form ¢72|cos(¢—¢;)|~1. Since the functions
|cos(¢p—g;)| ™" are in L1>°(E;), the desired estimate for n=2 follows.

We now consider the case n>2. By the divergence theorem

wZﬂzﬁ T Jp— 7’& vj / —2mif-x d
/p Z < 2rgf? "

where the F}’s are the faces of P and the v;’s are the outward unit normals to these
faces.

Write z=(t,y) with t€R and yeR"™!, £=p0o with >0 and c€¥,_;. Also
write o=(cos(¢), sin(¢)n) with 0<¢<w and n€X, . Let us choose a face F, with
unit normal v. We can assume that this face lies in the hyperplane {¢=0} with
outward normal (1,0,...,0). Then

iU'§ —2mi€-x i COS<¢) / —2mipsin(@)n-y _ Z-COS((b) < :
2lef )€ do=— = € == Xr{esin(é)n),

where Xr is an (n—1)-dimensional Fourier transform. Hence, roughly speaking,
the n-dimensional Fourier transform of the characteristic function of a polyhedron
is a sum of the (n—1)-dimensional Fourier transforms of its faces, multiplied by a
factor op~!. Now we estimate the weak norm of Xp using the induction assumption
on Y. Integrating in polar coordinates we have

i C;Sr(j) Xr(o Sin(qﬁ)n)‘ > )\}

A|{(cos<¢>,sin<¢> Ye Dy

0

By induction, the above term is bounded by

[T log 2 rgsin(e) e [0 2 s)
o | Taramigper @ deses [T

<co " log" (o).

{n € Sa: |Tr (osin(d)m)] > ﬁ’@—}

cos(@)] sin"™"2(¢) dep.

The proof of (i) is thus complete. In order to prove (ii) and (iii) we start the
induction with the trivial case n=1. When n>1 and 1<p<+o0, arguing as before,
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we bound ||)?P(Q')“I£p(zn_1) by

P
/ / et Xr(esin(¢)n)| sin""*(¢) dndg
log" *(2+0sin(¢)) . - 0g" Xo) ..
_/0 (2+osin(g))" 1 sin 2(¢)d¢>SCT if p=1,

<
—/ (2+40sin(¢)) P~ Dsin" (@) dp < co P~V ifp>1.

When p=+o0 it suffices to control the decay of ¥p with the L' modulus of
continuity of xp as follows.

/ 2Ty L (2 dp = — / =2 @+ 3 1 () d

:%/n e—ZWiE-x (XP(ZIJ)—XP ($—2é|2)> dzr.

- 1 ¢
|XP(§)|S§/Rn XP(x)_XP(x—W> dz

For a generic polyhedron the previous estimates cannot be improved, as the
following theorem shows.

Hence
<cl¢l™t. O

Theorem 2.3. Let S be a simplex in R™, n>2. Then
() IXs(@)lzreo(s,_1)=c(2+0)"og"*(2+0),
(i) IXs(e)ri(m, 1) =c(2+0) Mog™ ' (2+0),
(i) [R5(2) v,y > e(2+0) 1177, 1<p< oo,

Proof. We first prove (i) and (ili). Arguing as in the proof of Theorem 2.1 we

have
—2wik-x de = l£ vy / —27ié-x dx
frrrmera=y

where the S;’s are the faces of S and the v;’s are the corresponding outward unit
normal vectors. Since S is a simplex, all the v;’s are different. Write £=go with
0>0and o€X,_;. Let >0 and let U={0€X,,_1:0-v9>cos(6)}. Then, for large g,

/ e—27‘rzgo’-m dx
So

IXF(0)|lLr )

=5(/,

pd0,> z": E ( —2migo-x dz
0

j=1

P 1/p
da) .

J
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By induction, as in the proof of Theorem 2.1 we get

1 ; b
- </ / ev27mgc7-a: dx
2 \JulJs,

Let us now consider the contribution of one of the faces 5; when j>1. We may
assume that this face lies in the hyperplane orthogonal to v;=(1,0,... ,0). Since
the normal vg to the face Sy is not parallel to this v;, if 6§ is suitably small we may
also assume that U is contained in {(cos(¢),sin(¢)n):é6<¢p<w—§, neX, 2} We
apply Theorem 2.1 to the (n—1)-dimensional Fourier transform of S; to get

/ e—27riga~m dx

log" ™ *(0)

/v c————==  when p=1,
do > o"

co~1=("=D/P  when p>1.

p

1
o

T—8
dor<< | / IR, (esin(6)n) P sin™2 (@) e dy

7|'/21 n—2 1 n—2
_/ og _1(9¢) dp<c® @ g
<) els oo o"
- /2
Q—Cp 02 VP Pdp=co> P ifp>1.

Hence the contribution of the faces S;, j>1, is negligible when compared with
the contribution of Sy. Therefore the proof of (ii) and (iii) is complete.

We now prove (i). The idea is to show that if the estimate (i) fails, then (ii)
fails as well.

Let g be the non increasing rearrangement of Xs(o-), that is ¢ is a non neg-
ative non increasing function, defined on the interval (0, |%,_1|), with the same
distribution function as Xs(g-): for every A>0

Hu € (0,1Zn11): g(u) > A = {o €Zn: [Xs(00)| > A}l-

See e.g. [18]. Then we have g(u)<||xXs(0')llze(z._,)<|S|, and if we assume that

IXs(@)llroo(s, ) <eo™ log"“z(g), we also have g(u)<ep™™ log"_2(g)u‘1. Hence

|En 1|
1%, = / o(u) du

g_n l n—2 ]En,1| d
<18 duteos” (@ du
Y£3
0 0 0

—n u
log” (o)

10 n—2 o
:5n9—n+510g(|2n—1’>gT(g)+|S|g

Since we know, by (i), that |[Xs(¢)lz1(z,_,)=co™ log" " (p), we deduce that
€ cannot be too small. [
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The proof shows that the above theorem holds true not only for a simplex but
also for every polyhedron with a face not parallel to the others. However we cannot
go much further since the example of a cube shows a different behavior. This fact
seems to be related to the location of the zeros of the Fourier transform.

Theorem 2.4. Let Q=[—1,1]" be the unit cube in R", n>2.

(i) There exist two positive constants a and b such that for any positive g,

log" 1 (24 0)
(2+o)"

log" ' (2+0)

<% . L <p
(2+Q)n = ”XQ(Q )”L (Bn-1) >

(i) If 1<p<+oo then there exist two positive constants a and b such that
a(2+g)_3/2_(2n_3)/2p <Re(@)izr(s, 1y < b(2+g)—1*(n~1)/1{

Moreover, if 1+(n—1)/p<y<2+4(2n—3)/2p, then there exists a constant ¢ and a
sequence o ——+00 such that |Xq(or)|lLe(s, . 1y=cor -

Observe that when n=1, the Fourier transform Xj_1/2,1/2)(§)=sin(n&) /7§ van-
ishes on the 0-dimensional spheres {£k}x=1,2..... On the other hand, for n>1, the
Fourier transform ¥ does not vanish identically on any sphere. In a sense, the the-
orem says that the zeros of the Fourier transform influence the norm in L?(X,_,),
1<p<oo, but not the norm in L'(%,_1).

For simplicity of exposition we split the proof of the theorem into some lemmas.

Lemma 2.5, There exist two constants a and b such that for any positive o,

log"*(2+0)
(24 0)™

log" " (2+0)

<%, . <b
2+o" IXq(e)lzr(m, 1) <

Proof. The estimate from above has been proved in Theorem 2.1. We start
proving the estimate from below in the case n=2 and again we assume g large.
The Fourier transform of the characteristic function of the unit square is

2olocos(d), osin(é)) = sinTE;rgC)OCSO(Sg)) sinizgiii?g)) ,

Let {¢€[0, n] | sin(mocos(4))|> 5} =U;>1la5,b;]. Since

sin(mocos(¢)) = sin(mo— %7‘(‘@(}52 + )
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we have a;=+/j/0, bj=+/(j+1)/0, with 1<j<co. Hence
/zw sin(mp cos(¢)) sin(wgsin ¢)) ‘ 6> cg= /w/4
0

o cos(P) wosin(¢p

sin(ro cos(¢)) sin(rosin(9))
sin(9) @

>co? Z sm(b / | sin(mosin(¢))| do

- —a; _ log(o)
>ce?) T >c :
j;sm(bj) 0°

The proof of the case n>2 is by induction on the dimension n. Using the same

notation as in the proof of Theorem 2.1, we have Q=Q,,= [—%, %] X @Qn—1 and also
-~ sin(mt
XQn(tiy)_ t )XQn l(y)
Hence
R ™| sin(mo cos(¢)) / - ) . ne2
X, (oo daz/ —_— .. (osin sin ¢)dndo
L Raseotaor= [ PR | Ko osin(e)ml s () dn

log"*(gsin(4))
(osin(¢))™!

sin(mp cos(¢))
0

sin”~%(¢) d¢

/4
>c
o~ 1/2

Lemma 2.6. If 1<p<+oo and if |sin(rp)|>e, then there exist two constants
a and b such that

™ =V <R () Lr (s, _y) SboTHTTI/P,

Proof. Since the estimate from above has been proved in Theorem 2.1, we only
need to prove the estimate from below.

When 0<¢<1/9 we have gsin(¢)=0(1) and mpcos(¢)=mp+O(p™ '), so that,
for large g, sin(mp cos(¢))>1e. Therefore

p
ReleWines, o= [ [, |Farteessa.  (esintéyn)| sin~*(@)dnds
1/e P
> [ e R, esinten)| sin~2(a) dnds

1/e
> cePpP / sin”"%(¢)d¢p > ap P, O
0
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Lemma 2.7. If 1<p<oo then
IR (e)|Lr(m, 1) = ag /2 Cr=3/2,

Proof. When a/,/p <¢<f3/,/0 we have mocos(¢)=mo—3nt2+0(o™!), with
a<t<f. Therefore, if o and (3 are suitably chosen, then |sin(mg cos(¢))|>¢, and
sin(mo cos(¢))

B/ve
Kot Mres, o2 [ [ e e 0) San . (esin(@n)

ﬁ/f
>
= [ ok s

> csPp - w2|{p€(a/\/3,6/V/2): |sin(mosin(9))| > ¢}

where we have used the inequality, contained in Lemma 2.6,

/ Rou s (osin(@)n)Pdn > closin(¢) P~ P = col=/2~/2,
En 2

p

sin"~2(¢) dn do

2 |Ran_1 (osin ¢)n)l ~(=2/2 gy dgp

which holds whenever |sin(mgsin(¢))|>¢ and a/\/0 <¢<B3/ /2. Since
{p € (a/\/2,B//0):|sin(rosin(¢))| >e}| >co/?

the desired estimate follows. O
Lemma 2.8. If 1<p<+4co and if p is a positive integer, o=k, then
ak—3/2—(2n—3)/2p < ”5(\@(]{‘,')”1/?(2 ) < bk—3/2—(2n—3)/2p‘

Proof. We only need to prove the estimate from above. By Theorem 2.1, with
n—1 in place of n, we have

IR s, = [
n2

4

sin(wk COS(¢)) sin™ "% (¢) dn d¢

— o XQn (ksin(@)n)

7k cos(¢)
p—(n—2) sin(mkcos(¢)) | . _
<ck™P 2 /0 —_—kcos(qﬁ) sin™?(¢) do

7/4
< ck~w—(n=2) / | sin(27k sin(¢/2))|P~P dp
0

k=172
< ck—2p—(n=2) (/
0

<ck=3P2mr¥82 0

/4
kPP cl<;5+/k_1/2 ¢P dd))

We end this section by briefly considering domains more general than polyhe-
dra, namely domains B whose boundaries OB have finite Minkowski measure.



264 Luca Brandolini, Leonardo Colzani and Giancarlo Travaglini

Theorem 2.9. Let B be a domain in R™ and assume that, for every e>0,
{zeR":d(z,0B) <e}| < ce.

Then

1/p 24 )~ (*+1)/2 1<p<2
(————1 |>?B(f)|pd£> g{c( tom T 1=esd,
e <€l <20} Jio<iel<20} c(2+0)"1"(=D/P 2 <p< oo,

For the class of domains with boundaries of finite Minkowski measure these esti-
mates are sharp.

As we said, the case p=2 of this theorem is a consequence of Jackson’s approxi-
mation theorem, however here we like to present a short direct proof.

Lemma 2.10. Let ¢ be a function in L*(R™) and assume that

1/2
([ totesm-swpdr)  <dnr
Then

</{l£\29} 96)I” d£> - <c(2+0)7 V2

Proof. Tt is enough to show that for every nonnegative integer k,

/ GO de < 2.
{2k <|E|L2k+1}

By Plancherel’s formula

[ totati)-ola)do= [ lemen-1Plic)? .

The lemma now follows by splitting the set {2% <|¢|<2*+1} into a finite number
of pieces where |e2™¢" —1|>¢, for suitable h’s with |h|~27%. O

Proof of Theorem 2.9. Since
/n IxB(z+h)—x5(@)]* de=|((B~h)\B)U(B\(B-h))|
<|{zxeR™:d(z,0B) < h}|,

the case p=2 of the theorem follows from the above lemma. Assuming this case, the
other cases follow easily. Indeed when p=-oc it suffices to bound the decay of X g
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with the L' modulus of continuity of xp as in the proof of Theorem 2.1. The case
2<p<+oo follows by interpolation between 2 and +o0o. When p<2 the estimate
follows since the L? norm is not greater than the L? norm.

We already know by Theorem 2.3 that when 2<p<+o0 the above estimates
are sharp for simplices. When 1<p<2 the estimates are sharp for domains with
smooth boundaries with strictly positive curvature. See [9] and [7]. See also [20]
for mean square estimates without curvature assumptions, or {13] and [11] for two-
dimensional results proved under mild regularity assumptions. The sharpness of
the estimates when 1<p<2 can also be checked directly when B is the unit ball in
R™, since in this case

XB(&) =612 Jnja(2m|e]) ~ g~ HD/2 cos(2m(¢] - gm(n+1)). O

3. Integer points in polyhedra

Theorem 3.1. Let xp be the characteristic function of a compact polyhedron
m R™, n>2, and let

D(Q707t): Z XgG*lP—t(m)_inply

meznr

with 0>0, 6€S0(n), teT™. Then
(@) Do, -, )lrre(somxTn) <c log" " (2+0),
(i) I1D(os - lLrsom)xTny <c log™ (2+0),
(iit) Do, MrrsomxT) <c(240)n~DA-P) 1 <pLto0.

We split the proof of the theorem into several lemmas.

Lemma 3.2. Let X and Y be finite measure spaces and let L1*°(X xY) be
the weak space of measurable functions on X XY with

1 lz2 ey = SR A{(2,4) € XXV [F (2, )| > A < +o0.
>

Let also LY>°(X, L2(Y)) be the mized norm space of measurable functions on X XY
with
||F||L1,00(X’L2(Y)) :iu[()) /\I{:L‘ cX: ||F(:L', . )||L2(Y) > )\}| < 40o0.
>
Then LY(X, L3(Y)) is contained into L (X xY) and

| F Nl Lo (x x vy S €l Fl| Lroo (x,22(vY)-
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Proof. Let FeL'>°(X,L*(Y)). Since the statement is rearrangement invari-
ant, we can assume that X=Y=(0,1) equipped with the Lebesgue measure and

also (fol |F(x,y)|? dy)l/zﬁl"l. Then

H@ y):0<z<1, 0<y <1, |F(z,y)|> A}
<A Mz, a Tt <<, 0<y <1, |F(z,y)| > A}
1
SA"H—/ Hy:0<y <1, |F(z,y)| > A} dz
A

—1

9_1+/:1 (A—z/ol |F(x, y)]zdy) dx

1
g)\‘1+/\‘2/ x 2dz<2)7l. O
A

-1

Lemma 3.3. Let {f.} be a sequence of functions in L1*°(X). Then
1/2
[(Z1P)
m

Proof. Note that the inequality HZm |fml||L1,oo(X)§sz | fmllLyo(x) may
fail, since L1 is not normable, but the lemma holds since (3", |fm|?)'/? can be
much smaller than >, |fn|. Recall that for every a>0 and p>0,

SCZ||fm||LLoo(X)~
) m

Lveo(X

g1 170,00 (x) = sup MNPz € X :]g(z)|* > A}

= sup A?|{z € X : [g(@)] > A} = 9118200 -
A>0

Also, if 0<q<1 one has the g-triangular inequality
o
m

see e.g. [17, Lemma 1.8]. Hence

()

q

< CZ ||gm||%q,oo(x)a
L4:>0(X) m

1/2

= HZ |fm,2
L= (X) m
<SPl ey =€ Mmooy O

L1/2v°°(X)
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Lemma 3.4. The following identity holds in the L?-sense,

Z Xgé)—lP—t(m):g" Z SC\P(ng) p2mimt.

meZ” mezn
Proof.
/ ( Z Xgelp—t(m)>€_2ﬂ'ik~t dt = Z / Xge_lp(m+t)e—2wik-t dt
T mczn mezZn Tn

:/ X99_1P(t)e_2”k‘t dt=0"xp(efk). O
Rn

Lemma 3.5. ||D(g,-,- M 100 (s0(ny,L2(Tmy) <€ log"_1(2—|—g).

Proof. First observe that, by the previous lemma and Parseval’s equality,

</Tn 2 dt) - =0" (Z |>?p(99m)|2) 1/2.

m#0
Let us split the series in 0<|m|<p"~! and |m|>¢""!. By Lemma 3.3 and
Theorem 2.1(i),

> |>zp(gem>|2)1/2

0<|m|<en—t

> Xeo-1p—t(m)—¢"|P|

meznr

L1:20(SO(n))

<cg" Z 1XP(00m)|| L1, (s0(n))
0<|m|<en—1
n—2
2
<co" Z log"™*(2+]om|)

<eclog" ' (2+p).
& Jom))" @+0)

0<|m|SQn71
Also, by Theorem 2.1(iii) with p=2,

gn( 3 |>2p<gem>|2)1/2

|m|>gn—1 L1:%(S0O(n))
1/2
gm( > m@em)l?)
|m|>pn—1 L2(80(n))
1/2
(¥ IRe(ebm)l 500

[m{>en—1

1/2
§CQ"< Z |Qm|_"_1> <e 0O

|m|>gn—1
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Lemma 3.6. Let LP(SO(n), L2(T")) be the mized norm space of measurable
functions on SO(n) xT™ with

p/2 1/p
1 Ell e (sO(m),L2(Tm)) = </ [/ |F(6,1))? dt} de) < 400.
$O(n) LJTm

c log"(2+p) ifp=1,
¢(240)DU-1/P) jf 1 < p< +oo.

Then

Do, lzeso(m),L2(Tm) < {

Proof. Let 1<p<2. Arguing as in the previous lemma, by Theorem 2.1(iii), we
have

) p/2 1/p
HD(Qa'a')||LP(SO(n),L2(T")) =p" (/so( )[Z |XP(09m)| ] d9>

m7#0

o[ [ ] )

m7~0
1/p
SCQH<Z |Qm|1—n—P> ch(n—l)(lwl/p).
m#0

When p=-+o00 we have

ID(o, ", )l (s0m),z2(Tmy) < D0, -, )|l e (s0(myxTny < c0™ .

The estimate for 2<p<+4oo can be obtained by interpolation between 2
and +oco. Finally, the estimate when p=1 can be obtained by splitting the se-
ries (30,40 [Xp(00m)[*)!/2 in 0<|m|<e"™! and |m|>¢""!, as in the proof of
Lemma 3.5. O

Proof of Theorem 3.1. The estimate in (i) follows from Lemmas 3.2 and 3.5.
If 1<p<2 we have

ID(0; -, )lesom)xTy SID(0) -5 )l e (80(n),L2(T™)

therefore, when 1<p<2, the estimates in (ii) and (iii) follow from Lemma 3.6.
The case p=-+o0 follows from the inequality

|D(0,0,t)| <|{z €eR™:d(z, (00 ' P—t)) < 1\/n}|.
The case 2<p<+o follows by interpolation between 2 and +oo. O

The estimate (iii) in Theorem 3.1 is sharp. We suspect that also (i) is best poss-
ible since the log™ " (o) result matches with related results in [5], [6], [15] and [16].
The following theorem summarizes what we know on this subject.
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Theorem 3.7. Let S be a simplex in R™ with n>2. Then
(i) IIP(e, -, )llLteso(myxTny =€ log" " %(2+0),

(i) ID(e,", )L som)xTn) =c log"  (2+0),

(111) ||D(Qa Tt )||LP(SO(n)><T")Zc(2+g)(n_1)(lA1/p)7 1<P§+00~

Proof. Observe that for every k#0 |

”D(Qa Tyt )llLP(SO(n)XTn) = Qn </ / Z )/C\P(Qem)CQﬁim.t
SO(n) n M0
1/p
> " < / 1% (00k) P d6> ,
SO(n)

Then (ii) and (iii) are immediate consequences of the corresponding estimates (ii)
and (iii) in Theorem 2.3. The case (i) follows from (ii) via an interpolation argument
similar to the one used in the proof of (i) in Theorem 2.3. 0O

P 1/p
dt dG)

For the discrepancies associated to domains more general than polyhedra we
have the following result, which is a companion of Theorem 2.9.

Theorem 3.8. Assume that the domain B satisfies, for every >0,
HzeR":d(z,0B) <e}| <ce.

Then the discrepancy associated to B satisfies

1 20 1/p c 2_|_ (77/—1)/27 IS <2’
(—/ / / ID(r,0,1)|? dtdech) 5{ (2+0) p=
0J, Jsom) Jon c(240)~ VA=) 2 <p < foo.

For the class of domains with boundaries of finite Minkowski measure these esti-
mates are sharp.

Proof. This result is contained in [3]. However the proof is similar to the one
of Theorem 3.1. One only has to use the estimate for the decay of the Fourier
transform provided by Theorem 2.9, O

We end this section with the following remarks.
For n=2 Tarnopolska-Weiss [19], improving a previous result of Randol [14],
showed that, for every £>0, the discrepancy associated to a polygon satisfies

/ D(0,0, )| d6 < c. log?** (2+0)
S0(2)
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with ¢, independent of ¢. This result has been stated for any dimension, but, for
n>2, the proof contains a minor mistake that, when corrected, gives the bound
log™**(2+0). Combining our estimates for the average decay of Xp with the argu-
ments in [19] one can prove

(/ Do, 0.0 dg) 1/p<{ ¢ log™(2+p) when p=1,
SO(n) 2,9, =\ e240)*DU-1/P)  when 1< p< +oo.

Observe that these estimates give a different proof of the statements (ii) and
(iii) in Theorem 3.1.

Our second remark is of a somewhat different nature. We have seen that in
the case p=2 the discrepancies are essentially the same for a large class of domains.
On the other hand when 1<p<2 the discrepancy associated to polyhedra is much
smaller than the one associated to domains with smooth boundary with strictly
positive curvature. The situation reverses when 2<p<+oo, the discrepancy of
domains with smooth boundary with strictly positive curvature is much smaller than
the one of polyhedra. It is therefore natural to ask for the existence of intermediate
discrepancies between polyhedra and convex domains with smooth boundary of
strictly positive curvature. The answer is that when p#2 the situation may be
chaotic. Indeed, if £>0 and gy — +00, then for most convex sets A the associated
discrepancy

Q?et Z Xp6—1A— t )_Qn|A|

mezn

satisfies

<log*™™ (pg) for infinitely many k’s,
[ | ptew0.\dtas # o) forinfinitely many
SO(n) JTn >0 for infinitely many k’s.

This result follows from the estimates for the discrepancies associated to polyhe-
dra and to domains with smooth boundary with strictly positive curvature, through
a category argument of Gruber in [4].

4. Irregularities of distributions

In this section we briefly revisit some results of Montgomery [11] and Beck [1]
on the irregularities of distributions of finite sets of points in the torus. We start
observing that the results of the previous section still hold true rescaling the problem
in the following way. Instead of fixing the lattice Z™ and dilating the polyhedron,
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one can fix the polyhedron and shrink the lattice. This is a particular case of the
following.

Assume that B is a domain contained in the torus T™ with diameter smaller
than 1 and let {zj}j”il be a distribution of M points in T". Generalizing the
definitions we have been using throughout this paper, we now define the discrepancy
as

D(e,06,1) Zxag 1p—¢(2;)—Me"|B],

where now £<1 and the rotation § and the translation ¢ are in T™. This means
to dilate, rotate and translate in R™ and then take the quotient with respect to
the lattice Z™. Indeed, assuming that the diameter of B is smaller than 1, the
projection R —T" is injective on ¢~ 1B —t.

If the points {z; }Jj‘il are chosen at random, then the mean square value of the
discrepancy is proportional to v/M . Indeed, since the discrepancy has the Fourier
expansion

E 0, t Z Zezmz, 6”’5(\3(50771)627”7”’2
m#0 j=1

a repeated application of Parseval’s formula yields

(//[/Olfso(n)/ ID(E,H,t)IthdOds} dzl...dzM>1/z

_\/_<Z//So(n) |s">zB(aem)|2d9da)1/2.

m#£0

On the other hand we have implicitly seen in the previous sections that the
discrepancy of points evenly distributed on a lattice is smaller, since it is of the
order of M("=1/2"  The following result shows that this is a lower bound for the
discrepancy of M points.

Theorem 4.1. Assume that B is a domain satlisfying
alh| <[((B—R)\B)U(B\(B—h))| <blh|

for sufficiently small |h|<1. Then there exist constants 0<g<1 and c¢>0 such that

for every distribution of points {z; }] 1>

1 1/2
( / / / |D(e, 0, )| dt do de) > cM(=1/2n,
q So(n) n

The proof of this theorem needs a refined version of Lemma 2.10.
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Lemma 4.2. Let ¢ be a function in L2(R™) and assume that for some positive
constants a, b and every he R™ with |h| <1,

alh < [ Jola+h)=6(a) dz <blAl
R»
Then there exist positive constants a, 3, v, 6, such that, for every o>1,

%< je)2de <P
e _/{wélﬁlsée} IO < Y

Proof. Lemma 2.10 directly implies the estimate f{'m<|£l<59} |6(€)|2 de<B/ 0.
This lemma also implies the estimate || (1¢1<0} |€1216(£)|2 dé <cyo. Then we have

n

< dr?[hf? / EP1(6)]2 de+4 / B de+4 / 6(6) de
{I¢]<ve} {rvo<|¢|<b0} {l&|>60}

alhl < [ lo(arh)=ota)do= [ |1 de

<clyolhfP+671071) 44 / ()2 de.

{ve<|é|<b0}

Hence, if |h|=p7!,  is suitably small and § suitably large,

~ a C _ _ (87
/ 3O de > L h— S (a6 > S O
{vo<|€|<60} 4 4 e

Proof of Theorem 4.1. When n<Me™|B|<1—n one obviously has |D(e, 8,t)|>
n. Hence, if R=wM~/" for a suitable w,

L R
—/ / / |D(e, 8,t)|? dt df de > ¢ > 0.
R Jor Jsom) JTn

Following [1], the proof will consist in blowing up this trivial estimate. As in
the proof of Lemma 3.4 we have

ZXEO 15_¢(2;) —Me"|B| = Zzezmza "R p(efm)e2mim .

m#0 j=1



Average decay of Fourier transforms and integer points in polyhedra 273

Hence, by Lemma 4.2, if 0< R<r<1,

1// / ID(e, 8, 4)|? dt b de
T Jgr JSO(n) n

M ) 21 r
=SS L[ e gateoml asde
T Jgr JSO(n)

m=£0l j=1
Mo 2, . \n
<Y (L) Rale)de
m=£0!j=1 {grim|<|¢]<rim|}
M 2
20 Z Ze2vrizj~m (1+r|m|)—n—1
m#Q j=1
: T\ 1+le| mH 2n = 27n'z~m2 —n—1
=R () ) (7 ] oo

~(1)"_11/R/ / ID(e, 0, 1)[2 dt df de
R R J4r Jsom) JTn o '

The desired estimate follows taking R=wM~Y/" and r=1. O
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