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Global moduli for contacts 

Enrique Arrondo(1), Ignacio Sols(1) and Robert  Speiser(2) 

Suppose we have two smooth subvarieties, S and T, of a smooth algebraic 
variety X.  Following [S1], we say that  S and T have a contact at a point p of X if 
S and T meet at p but not transversally. Two smooth plane curves therefore have 
a contact at p if they are tangent there; their local Taylor expansions agree through 
degree one. Higher-order contacts are defined by requiring agreement through given 
higher degrees, but  the order of a contact does not depend on the choice of local 
coordinates. More generally, for higher-dimensional embedded varieties, we can 
replace local Taylor expansions by appropriate derivatives of the Gauss map. Two 
surfaces in p3,  for example, have a contact of order two at p if, in addition to 
a tangency at p, they have the same second fundamental  form there. In local 
coordinates, the last condition means that  the Hessians of the two surfaces will 
coincide. 

This paper  is about  what two embedded var ie t ies- -smooth  or not, whatever 
their dimensions--share when they make contact of a given but arbitrarily high 
order. In our view, they share data, represented by points of a suitable data scheme 

canonically associated to the ambient space X.  A main goal of this paper  is to 
construct such da ta  schemes and launch the s tudy of their geometry, especially 
their intersection theory. When the intersecting varieties S and T are smooth at p, 
their r th  order da ta  at p can be given locally by suitable multilinear forms, which 
represent the higher derivatives of their Gauss maps; on the other hand, if p is 
singular on S or T, new objects, on the boundary of these forms, appear.  For 
each given order r > l  we obtain a global moduli space, denoted D~X,  proper over 

X, which parametrizes all the da ta  for all possible r t h  order contacts between k- 
dimensional embedded smooth subvarieties of X,  together with their limits, in a 
natural  sense, at singularities. 

(1) Research by the first two authors was supported by CICYT grants PB90-0643 and PB93- 
0440-C03-01. 

(2) Research at MSRI, fall 1992, partly supported by NSF grant DMS 9022140. 
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Griffiths and Harris [GH] have used local fundamental forms to draw striking 
conclusions about embeddings in projective space. Our theory, completely global 
and intrinsic, runs somewhat parallel to theirs, in that  our data  give canonical 
descriptions of all the derivatives of the Gauss map, in particular its first derivative, 
which localizes to their second fundamental form. 

When X c P  n, it is easy, for example, to write down the intersection calculus 
of the data  space, denoted D~X. While this paper emphasizes laying groundwork, 
we will illustrate our approach with several basic applications. For a first illus- 
tration, we consider curves in p3. Here we recover the classical results about the 
number of second-order contacts between a fixed curve and the members of a two- 
parameter family of surfaces obtained by Schubert [Sch], recently verified by Rossell6 
([R1], JR2]). In Rossell6's approach, Schubert's results follow from the intersection 
calculus on Hilb3P 3, but apply only to curves without flexes. Our methods give 
a new generalization of Schubert's conclusions to curves with flexes, in just a few 
lines, as corollaries of the richer intersection calculus on a simple blowup of the data 
scheme D2p  3. Turning next to surfaces in p 3  we immediately obtain formulas, for 
example, for the classes of the flat and parabolic loci on a general surface. 

To explain our constructions, fix a smooth ambient variety X; the theory ac- 
tually works for any scheme X which is smooth over a given base scheme S. Fix 
any k with l < k < n ;  we will construct data for embedded k-folds in X.  Denote by I 
the Grassmannian Gk(TX) of k-planes in the tangent bundle of X, and denote by 
p the projection I--~X. In the special case X = P  ~, we know that  I is canonically 
isomorphic to the incidence correspondence of points and k-planes in pn .  We re- 
gard I as the space of first-order data on X; it parametrizes all possible pairs (x, II) 
consisting of a point and a tangent k-plane at tha t  point. 

We obtain a space D2X of second-order data, fibered over I,  by differentiating 
the motion of the pair (x, H). To be precise, we take D2X to be the collection of all 
k-parameter linear first order-deformations A of first-order data (x, H), such that,  
under the motion defined by A, the point x traces the germ of a k-fold tangent 
to H. 

 r/H 
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In the illustration, F indicates a smooth k-fold which represents the germ given 
by A. Denote by dp: TI--+TX the derivative of p, and view A as a k-plane in TI. 
Then the condition on A means that  we have d p ( A ) c H .  Inclusion here, rather  than  
equality, permits  ramification; this provides the boundary  which completes the da ta  
space. To construct spaces of higher-order data, we begin with the fundamental  
observation that  I plays two essentially different roles here: it parametrizes first- 
order da ta  (x, H); it is also the space of k-planes in the tangent bundle, hence a 
target  for derivatives. To accomplish the construction, we will need to separate 
these roles, and play them on a larger stage. 

Quite generally, consider a commutat ive triangle of smooth schemes of the form 

(1) 

X a > Gk(TY) 

Y 

where b denotes a smooth morphism. We shall now construct a derived triangle 

(2) 
DX Da> Gk(TX) 

l~ 
X 

of the same form. To do so, denote by B the blowup of Gk(TX) along the 
Schubert variety Z consisting of k-planes which meet the kernel of db nontriv- 
ially. The rational map  Gk(TX)--~X • induced by b gives a morphism 
B---+XxyGk(TY). On the other hand we obtain a section X--->XxyGk(TY) via 

the assignment x~-+(x, a(x)). Then we define D X  to be the fiber product of B and 
X over X•  with the obvious maps to X and to Gk(TX). We call D X  
the derived scheme. We shall see in a moment  tha t  the map Db is smooth, so we 
can iterate. 

Coming back to our original ambient space X,  the triangle 

(3) 
I 1 > i  

l ' /  
X 

gives D2X as the derived scheme. Iterating, we obtain the higher-order da ta  
schemes, denoted D~X. 
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To see that  the map  Db in diagram (2) is smooth, as well as to work out the 
intersection calculus of a da ta  scheme, it helps to think more analytically about the 
derived scheme. To motivate the key point, consider a real C ~ manifold M, write p 

for the projection TM--*M and write dp for its derivative. A second-order ordinary 
differential equation on M is defined [D4, 18.3.2, p. 18] to be a smooth vector field a 
on TM, such that  we have dp(a(v))=v for all vETM. Clearly not every vector field 
on T M  can have this property! If  we view a as a section of T(TX)--~TX, then those 
a which do give second-order differential equations fill out a nontrivial subbundle 
of the second tangent bundle T(TX),  defined by the condition dpoo~:lTM. This 
idea inspires a useful alternative construction of the scheme D X  of (2). 

Returning to algebraic geometry, a triangle (1) as above can be viewed as giving 
a distribution of k-planes on Y,  parametrized by X. Write E for the pullback to 
X of the universal k-subbundle in b * T Y = X •  and form the fiber square of 
bundles on X given by E and the derivative Ob: 

(4) 

~ TX 

E ~ > b*TY 

Then $" consists precisely of those tangent vectors on X which map into the k- 
planes on Y which are given by the distribution. For a general triangle (1), we show 
(Proposition 2.1) that  there is a canonical X-isomorphism DX-~ Gk ($-). Since 9 r is 
a bundle, it follows tha t  Db, the structure map  of Gk($-), is smooth. In addition, 
the fiber square defining ~ gives a simple description (2.2) of the functor of points 
of the derived scheme, and, since ker(db)=Tx/y, the intersection calculus for DX, 
relative to X,  is also clear. 

We now describe the second fundamental  form, and indicate how the higher 
derivatives of the Gauss map enter. In diagram (4), for any triangle (1), the set of 
k-planes II in ~" which do not map  isomorphicMly under Ob represents the pullback 
to DX of the exceptional divisor on B. We denote this divisor on DX by C, 
and call it the cuspidal divisor. Equivalently, for points of C, we have a strict 
inclusion d p ( A ) c H  above. The noncuspidal subscheme of D X  is defined to be the 
complement D X \ C ,  denoted DXnr We then show (Proposition 7.1) that  DXn~ 
is a principal homogeneous space for the bundle Hom(E, Tx/y).  Hence, given a 
section a of Db: DXn~--+X, we have an isomorphism 

DXnr TM Horn(E, Tx/v  ), 

where a gives the zero-section on the right. In triangle (3), we have TGk(TX)x= 
Hom(~,  A), where A denotes the universal quotient on Gk(TX). Then, from any 
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given section 

we obtain isomorphisms 

a: D~X = Gk(TX) , D Xnc, 

(5) DkXn c 2  ="~ Hom(E, Hom (E, A)) ="' Hom(E|  E, A). 

When we constrain first-order data on X to move along a given smooth k-fold 
S in X, the universal subbundle E restricts to the tangent bundle TS, while A 
pulls back to the normal bundle. Therefore the isomorphisms (5) will give the 
second fundamental form and hence the Hessian, universally. To study second- 
order contacts of not necessarily smooth k-folds in X,  it is convenient technically to 
pass to the closure, denoted 2 SkX, of the subscheme of D~X which corresponds to 
the symmetric forms in (5), due to the symmetry of the second derivative.(3) From 
each higher derived triangle, in a similar way, we obtain a universal multilinear form, 
corresponding to a higher derivative of the Gauss map, together with a boundary 
divisor consisting of singular limit data. Here again, when we restrict to k-fold 
subschemes, we obtain symmetric forms.(4) 

For X = P  n, simple motions of linear subspaces give natural sections a; these 
define the data  points for the usual flat or inflectional points on projective varieties. 
Further, for any X over the complex numbers, Proposition 9.2 asserts that  a C a 
connection on T X  gives a natural C a section 1 2 a: DkX--~DkXnc , for any k, induced 
by parallel transport.  In the special case X = P ~  with the standard connection 
induced by the Fubini-Study metric, which is C a ,  we obtain the previous section 
a, which we already know is algebraic. 

Classically, spaces for first-order data  appeared naturally in the study of con- 
tact problems; for a survey, including modern results, see [$1]. One way to define 
higher-order data  is to generalize the construction of the tangent line as a limit of 
secants. This approach leads naturally to the study of configuration spaces. For 
example, to count second-order contacts, that  is, osculations, of plane curves, Schu- 
bert [Sch] considered triangles equipped with conics through their vertices, degen- 
erating along suitable curves. Passing to the limit, Schubert obtained second-order 
data. More recently, in 1954, Semple [Sel] following Schubert's lead, constructed 
a parameter variety for triangles in p 2  each equipped with a 2-parameter family 
of conics through its vertices. This triangle variety naturally contains a smooth 

(3) Using exterior differential systems, Speiser [$2] generalizes the construction of symmetric 
data  to arbi t rary triangles, through a fully global t rea tment  which eliminates the passage to the 
closure. 

(4) Based on [$2] Speiser and Laksov [LS] generalize further, and obtain explicit equations 
for S~X in D~X as special cases of their general approach. 
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subvariety of second-order data; going further, Joel Roberts and the third author 
of this article gave its intersection calculus in full, and verified Schubert's enumer- 
ation of triple contacts [RS1]-[RS3]. Given the fundamental use of linear systems 
through the points of a configuration, it is very natural to consider Hilbert schemes 
in this context. For comparisons between the Semple's triangle variety and Hilb3P 2, 
see [$1]. More generally, Ghttsche's thesis [Gh] independently employs a version of 
our Grassmannian construction to study more general zero-dimensional subschemes. 
The study of configuration spaces for their own sake continues, for example, in Ful- 
ton and MacPherson's recent work [FM]. 

Another 1954 paper by Semple, [Se2], inspired in part by Gherardelli [Gh], takes 
a different point of departure, which inspired, in turn, our own work: to define r th  
order data (for r > l )  by directly differentiating the motion of data  of order r - 1 .  
Related papers by Longo [L] in and Du Val [DuV] soon followed, mainly about 
curvilinear data  in pn .  After more than 30 years, Semple's ideas were taken up, this 
time in the language of schemes, first by Collino [C], who constructed data varieties 
of all orders for curves in p2, and then by Colley and Kennedy, who applied Collino's 
construction in a penetrating study [CK1], [CK2] of curve contacts in the plane. 
The resulting variety of second-order data, for example, is canonically isomorphic 
to that  of [Sell and [RS1]-[RS3], and the varieties of higher-order data, obtained 
by iteration, inspired the construction of our data  schemes. Semple, however, had 
gone significantly beyond these later papers in two respects: first, he considered 
curvilinear data in projective space, as Schubert did at the end of [Sch]; second, he 
gave the challenge to construct appropriate parameter spaces for higher-dimensional 
data. 

Our work, which takes up Semple's challenge, begins by generalizing Collino's 
construction. We follow a design conditioned by the isomorphism (5) and its ana- 
logues for higher-order data, which demand a thoroughly functorial technique. In 
some respects, our data spaces parallel, but in greater generality, the spaces of 
jets of submanifolds constructed in the r setting, which have been helpful in the 
study of differential equations, as described, for example, in [G, Chapter 5]. Over 
Spec(C), the symmetric data spaces S~X do parametrize the algebraic jets, but 
they also give, in contrast, the singular boundary, which compactifies the jet space 
in a very natural way. 

Our exposition interweaves the abstract theory with its applications. After 
preliminaries on projections and blowups, we define derived triangles in w and 
give their basic properties. We introduce the cuspidal divisors and describe sections 

of DXnc in w then iterate in w to construct the data schemes D~X. In w we 
describe noncuspidal data in local coordinates, and discuss the related concept of 
fiat data in pn. As a first example, we write down the intersection calculus for 
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second-order curvilinear data  in p3,  and extend Schubert 's  results, in w Then in 
w we introduce the second fundamental  form and its higher-order analogues. As an 

application, we compute the intersection ring of the second-order data  scheme for 
surfaces in p3  in w together with its subscheme of symmetric  data. This implies, 
for example, that  the curve of parabolic points, on a general surface of degree d>  1 
in p3,  has degree 4d (d -2 ) .  Finally, in w working over C we introduce a C ~ 
connection on X,  and obtain C ~ sections a of D~X, for all k, via moving frames. 

We would like to thank Dan Laksov, Eduard Casas and Sebastian Xambd- 
Descamps for the organizational work which brought the three of us together, first 
at the Mittag-Lettter Insti tute and then at Sitges. We are also grateful to Giorgio 
Ferrarese for telling us about the papers of Gherardelli, Longo and Du Val, to 
Susan Colley and Gary  Kennedy for sharing their results so generously, to Joe 
Harris for some very helpful conversations about  [GH], and to Clint McCrory for 
his extremely valuable comments on an earlier version of this paper. Finally, we 
would like to thank Edoardo Ballico and the other members  of the fall 1992 seminar 
on da ta  spaces at MSRI for their interest and encouragement. 

Notation. We shall tacitly assume tha t  all schemes are separated and of finite 
type over the given base. In general, our notation follows IF]. In particular, we 
shall write Horn(E, F )  for the bundle of homomorphisms from a vector bundle E 
to a vector bundle F.  Also, given a morphism b: X---~Y, we distinguish carefully 
between Ob: TX--*b*TY, a morphism of bundles on X,  and db: TX--~TY, which 
maps a bundle over X to a bundle over Y. 

1. Project ions  of  Grassmannians 

Throughout  this section we shall work over a fixed base scheme X. For any 
bundle F,  we shall write Gk(F) for the Grassmannian of k-planes in F,  and, when 
confusion seems unlikely, we shall denote by p the structure map Gk(F)--~X, re- 
gardless of F .  Write r for the rank of F; we shall tacitly assume tha t  r>k, so the 
Grassmannian will be nonempty. Then the relative dimension of Gk (F) over X is 

n dim(p) = dim(Gk (F)/X) = k(r-  k). 

We begin with a surjection 

D ~ E ,  

of vector bundles on X,  and we denote by K its kernel. We shall suppose that  E 
has positive rank, so that  DCK. The surjection ~ defines a rational map, denoted 
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~, from Gk(D) to Gk(E) ,  whose domain of definition is the complement, denoted 
U, of the closed subset 

Z = {k-planes which meet K nontrivially} 

of Gk(D). More explicitly, write 8 for the universal k-subbundle of the pullback 
DGk(D), and denote by A the composite induced map  

k k k 

A s )ADGk(D) )AEGk(D) �9 

Here A k 8 is a line bundle on Gk(D), and the ar row/~k ,~_~Ak DGk(D), an injec- 

tion, induces the Pliicker embedding Gk(D)=P(A k 8 ) ~ P ( h  k Dak(D)). Because 
A expresses the rational map  0 in Pliicker coordinates, hence vanishes exactly on 
the points of Z, we shall give Z a scheme structure as the locus of zeros of A. The 
morphism 

U=Gk(D)\Z ~>Gk(E) 

will be cMled the projection induced by ~, with center Z. 
To obtain a morphism which, in effect, extends ~r, denote by B the blowup of 

Gk (D) along Z. Locally, the ideal defining Z can be generated by the k • k minors 
of any matr ix  representing ~. It  follows directly from the construction that  the 
embedding of U in Gk (D) induces an embedding of B in Gk (D) • x Gk (E), whose 
image is the closure of the graph of 7r. The second projection of Gk (D)Xx Gk (E) 
defines a morphism T: B ~ Gk (E), and as soon as we identify the complement of the 
exceptional divisor of B with U, it is clear that  ~- extends rr. 

Now fix a subbundle 
b 

E '  ~E, 

of rank k. Because E has rank k, we know that  Gk(E) identifies canonically with X.  
Denote by P the fiber product scheme defined by the diagram 

P ~B 

x = a k ( < )  > a k ( E ) .  

Here the horizontal arrows are embeddings, because a, induced by the given inclu- 
sion ~: E--~E, is a section of the structure map Gk(E)--*X. To describe P more 
explicitly, consider the fiber product  bundle ~ defined by the diagram 

> D  

E ~>E 



Global moduli for contacts 

of bundles on X.  Under the identification of X with Gk(E),  the left vertical arrow 
~ '  induces the structure map Gk (~)--+X, while ~ induces the section a in the square 
above. Both these maps are morphisms, while ~, of course, induces ~r, which is only 

a rational map. 

P r o p o s i t i o n  1.1. There is a canonical isomorphism of X-schemes 

P ~ > Gk(~ ) .  

Proof. The X-scheme P embeds in B by definition, hence in Gk(D) XxGk(E)  
because B does. The inclusion Gk (5 c)--~ Gk (D) and the composite map  

embed Gk(J =) in Gk(D)xxGk(E)  as well. Over the dense open subscheme U, it 
is clear from the construction that  the images of both  embeddings coincide as sets. 
Moreover, on U, both  images restrict to the same scheme, the graph of ~r. Now B, as 
we observed above, is the scheme closure of this graph, so B is a subscheme of Gk (.T-). 
To check tha t  the resulting inclusion B~--* Gk (~)  is an isomorphism, we need only 
show that  it is 6tale. By [GD, 17.8.2], we may check this on the fibers over scheme 
points xCX.  But, at any x, the potentially thicker fiber Gk(Jc)x=Gk(JC| is 
reduced, so both fibers agree. This proves the proposition. 

Write r for rank(gO). Then we have 

r = k + d i m ( ~ ) ,  

where dim(~) is the relative dimension, r a n k ( E ) - r a n k ( F ) .  
For any k and n, we write Gk(P n) for the Grassmannian of projective k-planes 

in pn .  

C o r o l l a r y  1.2. The scheme P is a locally trivial Gk_ l (Pr-1)-bundle over X .  
In particular, P is smooth over X ,  of relative dimension k dim(qD). 

Proof. Clearly Gk(~-) is a locally trivial G k _ l ( p ~ - l ) - b u n d l e  over X,  so the 
corollary follows immediately from the proposition. 

2. D e r i v e d  t r i a n g l e s  

We shall work, from now on, over a fixed base scheme S, and we shall fix a 
positive integer k. When there is little danger of confusion, we shall write p for the 
structure map of any Grassmannian.  
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We now introduce the main construction of this paper. To each commutat ive 
triangle of smooth, equidimensional S-schemes 

(1) 

Z a ~ G k ( T y )  

Y 

with a smooth map b, we shall associate a derived triangle 

(2) 

D X  V ,  G k ( T X )  

X 

as follows. Write S for the universal k-subbundle of p*TY,  pull the natural  inclusion 
S c p * T Y  back to X via a, and set E = a * S .  By the commutat iv i ty  of (1), we have 
an inclusion E C b * T Y ,  which exhibits E as a subbundle of b*TY. Denote by Ob 

the derivative of b, and write B for the blowup of G k ( T X )  along the center of the 
projection 

G k ( T X )  ~ Gk(b*TY)  = X • y G k ( T Y )  

induced by Ob. This projection induces a morphism f :  B--~ X x y Gk (TY) .  We define 
the scheme D X  and maps Db and a '  by the fiber product diagram 

o .! 
D X  �9 B 

1 l" 
X = G k ( N )  ~" > X x y G k ( T Y ) ,  

where the bo t tom map ~r is induced by the inclusion E c b * T Y .  Then we define 
Da: D X - - * G k ( T X )  to be the composite of a '  and the structure map B--*Gk(TX) .  

As in w we write C for the pullback to D X  of the exceptional divisor on B. 
Because C parametrizes k-planes which contain nonzero tangent vectors which map 
to zero on Y, we call C the cuspidal divisor of D X .  

For a more explicit description of D X ,  write ~- for the fiber product  bundle 
defined by the diagram 

.T ~ T X  

E ? ~ b*TY 
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of vector bundles on X.  We shall call 9 c the Semple bundle associated to the triangle 
(1), and denote by r its rank. We have 

r = k+dim(b) ,  

where dim(b) denotes the relative dimension of X over Y. 
In other words, the triangle (1) determines a distribution of k-planes in the 

tangent bundle of Y, and the bundle 9 c consists exactly of those tangent vectors on 

T X  which Ob carries into k-planes of the distribution. 

Proposit ion 2.1. Under the assumptions above, we have a canonical isomor- 
phism of X-schemes 

D X  ~ ,Gk(~) .  

Proof. This follows immediately from Proposition 1.1. 

C o r o l l a r y  2.2. The scheme D X is a locally trivial G k_ l ( Pr-1) -bundle over 
X.  In particular, D X  is smooth and equidimensional over S, and Db is a smooth 
S-morphism, of relative dimension k dim(b). 

Proof. This follows from Corollary 1.2. 

By the last assertion of Proposit ion 2.1, the derived triangle (2) satisfies the 
same hypotheses as the original triangle (1), and hence gives rise to its own derived 
triangle. Therefore we can repeat  the derivation process as often as we like. 

The functor of points 

To describe the points of DX,  define a contravariant functor 7) from X-schemes 
to sets by the assignment 

79(T ~ X)  = {k-subbundles S of (TX)T lOb(S) C tT(ET)},  

where the subscripts, as usual, indicate pullbacks to T via f .  

Proposit ion 2.3. The X-scheme D X  represents the functor 7). In particular, 
there is a k-subbundle LtCTXDx such that, for any T-point S C T X T  of DX,  over 
f: T - * X ,  we have S=f*U. 

Proof. Start  with a T-point f :  T ~ X .  By Proposition 2.1, a T-point  of D X  
over f is a T-point of Gk(J c) over f ,  tha t  is, a k-subbundle SCFT. Because ~ is the 
inclusion of a subbundle, it follows, by base change, that  ~T CTXT is a subbundle. 
Therefore, by the fiber square defining 9 c, every S as above is a subbundle of TXT, 
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carried by Ob into the image of F'T. Conversely, it is clear that  any element S of 

:D(T I~X) appears in this way, which proves the first assertion. For the second, 
we take b / t o  be the universal k-subbundle of beDX=$'Gk(~), and the proposition 
follows. 

Given a geometric point x of X, with image y=b(x)EY, denote by H the 
k-plane in the tangent space TyY assigned by triangle (1). By Proposition 2.3, 
each point of DX, over xEX,  consists of a k-plane H / in TxX, subject to the 
condition that  the derivative of b: X--+Y carries H t into H. Recall that  the kernel 
of Ob: TX-+b*TY is canonically isomorphic to the relative tangent bundle Tx/y. 
Hence the projection H ' -+H is injective, hence an isomorphism, precisely when 
H'NTx/y=O, and this happens for a general H'. 

Direct images 

Now suppose we have two triangles and a map between them, that  is, a com- 
mutative diagram of the following form. 

(3) 

X 

Gk(TY) 

Y 

X'  

Gk(TY') 

/ 
Here we follow the previous notation for the maps in our triangles, indicating parts of 
the right-hand triangle with primes, and continue under our previous assumptions, 
too. In particular, the two vertical arrows, denoted b and b', represent smooth 
maps. We shall refer to the three rectangles in the diagram as the top, the bottom 
and the back, in the obvious sense. A map of triangles will be called an embedding 
if all three horizontal arrows are embeddings over S. 

P r o p o s i t i o n  2.4. An embedding of triangles induces an embedding 

(4) 

DX 

C (TX) 

/ 
X 

> DX' 

> X I 
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of derived triangles. 

Proof. The bot tom arrow X - ~ X  ~ comes from the top of diagram (3). We 
obtain the middle arrow Gk (TX)--*Ga (TX') by differentiating the embedding X--* 
X ~ to obtain an embedding T X - ~ T X  ~, and then taking Grassmannians. Finally, 
we construct the top arrow D X - ~ D X  ~, using the functors of points, as follows. 
A T-point of DX,  by Corollary 2.2, is a map f :  T-*X ,  together with a subbundle 
S C TXT which maps into ET C b*TYT. (Here the subbundle ZT C b*TYT determines 
the T-point fa:T--*Gk(TY) uniquely, by the way.) Note that  (TX ' I x )T=TX~ ,  
because f maps into X c X q  Hence, given a subbundle S C T X T  as above, it follows 
that  the composite inclusion 

S C TXT C TX' IX T : TX~ 

gives a subbund]e, too, because X is regularly embedded in the smooth X'. Now, 
by definition, ET is the pullback to T of the universal k-subbund]e Scp*TY 
on Gk(TY). But consider also the universal subbundle S'C (p')*TY on Gk(TY'), 
and write f '  for the induced T-point T---+X'. Commutativity of the top square of 
diagram (3) gives 

(f')* (a')* (p')*TY' : (f')*(b')* TY '  : f*b* (TY'  Iv) : TYT, 

while commutativity of the bot tom square of diagram (3) guarantees that  the re- 
striction S'IGk(Ty) is S. Denote by Z' the universal subbundle on Gk(TY~). Then, 
pulling back to T, we obtain the equality 

(5) E T = E ~ .  

It follows at once that  our subbundle S C T X ~  satisfies the compatibility condition 
for a T-point of DXq In other words, the passage from S C T X T  to S c T X ~  defines 
a morphism of functors DX--*DX t, hence a morphism of schemes, so we have a 
diagram of the form (4). Because the morphism we have just defined is clearly 
injective on T-points, it is an embedding. Finally, a direct inspection shows that  
(4) commutes, and the proposition follows. 

For a given embedding i of triangles, denote by Di the embedding of derived 
triangles provided by the construction in Proposition 2.4. We call the image of Di 
the direct image triangle given by i. 

C o r o l l a r y  2.5. (Functoriality) Given a composition 

X i ) X l J ~ X" 

of embeddings as in Proposition 2.4, we have 

D(joi) = DjoDi. 

Proof. This is clear from the construction. 
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Base change 

Denote by O a triangle of S-schemes of the form (1). Given a flat map  T-*S,  
we can raise the base to T. Because taking Grassmannians commutes with base 

change, we obtain a new triangle, denoted OT, of the following form. 

X T  ~ ~ Gk(TYT) 

Yr 

Applying the derived triangle construction to OT, w e  obtain a derived triangle, 
denoted D(OT). On the other hand, we shall denote by (DO)T the triangle of 
T-schemes obtained by base change from the derived triangle DO of S-schemes. 

P r o p o s i t i o n  2.6. (Base change) For a fiat map T--*S as above, the derived 
triangle construction commutes with base change to T, that is, we have an isomor- 
phism of triangles 

(DO)T , D(OT), 

which is functorial for S-maps T'-~T.  

Proof. The construction of the derived triangle via the Semple bundle com- 
mutes with fiat base change and is functorial in T; we need flatness only to ensure 
that  the inclusions of subbundles remain inclusions after the base is raised. 

3. Cusps and sections 

Here we describe some of the geometry of a derived scheme DX, to prepare for 

later applications. 

The universal b u n d l e  

By construction, DX=Gk(Jr); as in Proposition 2.3 we shall write b / fo r  the 

universal k-subbundle of the pullback ~DX of the Semple bundle to DX. Repeating 
the derived triangle construction, we obtain D(DX),  the next derived scheme, as 

follows. First, write S '  for the universal k-subbundle of TXGk (TX), and set 

~'= (Da)*S', 
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a k-subbundle of (Db)*TX. Second, define 9 ~' to be the fiber product  in the diagram 

~ '  ) T ( D X )  

1 1 ~ 
E" > (Db)*TX 

of bundles on DX.  Then we have D ( D X ) = G k ( 7 ) .  

P r o p o s i t i o n  3.1. We have 
/ 4 =  E '  

as subbundles of (Db)*TX. 

Proof. The inclusion D X = G k ( Y ) c G k ( T X )  corresponds, by the functor of 
points, to the composite inclusion LtCYDx CTXDx .  Hence b/ is  the pullback of the 
universal subbundle S '  on Gk(TX),  as we needed to show. 

The  cuspidal  subschemes  

In the triangle (1) of w under our standing assumptions, denote by A the 
pullback to X of the universal quotient on Gk(TY),  so we have a short exact 
sequence 

0 ---* E )b*TY > A---~O. 

Because the kernel of Ob: TX---~b*TY is the relative tangent bundle Tx /y ,  it follows 
tha t  the fiber square which defines the Semple bundle 9 v extends to give the following 
commutat ive diagram with exact rows and columns. 

(1) 0 

0 0 

T x / r  - - T x / r  

> .T ~ T X  

" E ~ " b*TY 

0 0 

~ A  > 0  

) A  ~ 0  
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Write C for the cuspidal divisor of DX. The image of Gk (Tx/y) in D X  = Gk (J:) 
parametrizes the k-planes in 9 c which Ob maps to zero in b*TY, so we have an 
inclusion Gk (Tx/y)C C. In the special case k =  1, it is clear that  Gk (Tx/y)=C; on 

the other hand, for k > l  we have a proper inclusion. 

We define the noncuspidal subscheme of DX to be D X \ C ,  denoted DXn~. It  
is an X-scheme via the restriction of Db. Next, we construct a chain of subschemes 

between Gk(Tx/y) and C. Write a for the composite map  

~ > ~ D X  > ~ D X  

of bundles of rank k on DX, where the second arrow comes from the left-hand 
column of diagram (1). Then, for i = 1 , . . .  , k, we define Ci to be the i th degeneracy 

locus 

Ci = {x E DX I rank(a(x) )  _< i}, 

by definition [F, p. 243] the zero scheme of A i+1 a. Clearly the Ci define a decreasing 

sequence of subschemes of DX, with Ck=DX, Ck-I=C, and Co=Gk(Tx/y), as a 
glance at the defining ideals will show. 

For the next statement,  write 12 for the universal quotient of .T'DX, so we have 

the short exact sequence 

(2) 0 ~ l.~ ~ "~DX ~ ]) ' 0 

of bundles on DX. 

P r o p o s i t i o n  3.2. The map a:I~---+EDX is an isomorphism precisely on the 
open set DXnc. Further, the exact sequence (2) splits over DXnc, to give an iso- 
morphism 

V[DXnc ~' (Tx/v)DXoc. 

Proof. The first assertion is clear. For the second, restrict (2) to DXnc and 

then use this assertion: we obtain an embedding ~DXnc---~'~DXnc which splits the 
projection 9r--*E over DXnc. The other summand is at the same t ime ]]lDXnc and 

(Tx/Y)DXnc by diagram (1), and this completes the proof. 

Set n=dim(DX) and set m = n - ( k - i )  2, the expected dimension of Ci. Then 

denote by Di  the corresponding degeneracy class D~(a)EAm(C~), and by C~ its 
image in Am(X). By the Whom-Porteous formula [F, p. 254], we have 

(3) Ci = A(k_~ i) c(bl- EDX) NDX, 
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where A(P)(c) denotes the determinant  of the p x p  matr ix  (Cq+Z-~)l<_~,~<_p. In 

particular, for i = k - 1  we obtain 

k k 51((~x(C)):C1(~4)--e1(~):C1(A~'~)--Cl(A~'] ). 
Denote by ODX (1) the Pliicker class on D X = G k  (-~); then el (A k u)=ODx ( -1 ) .  

Similarly, denote by Ox(1)  the dual of A k E. Then the last relation gives 

(4) ODX(1) = O D x ( - C ) |  

in Pic (DX) .  For a simpler proof of (4), we can apply the s tandard formula for the 
exceptional class [RS1, Lemma 4.5, p. 1250] to the blowup P in the first construction 

of w and then restrict to D X .  

Sect ions  

By Proposition 2.3, sections a of the structure map  Db: D X - - * X  correspond 
canonically to k-subbundles $ C 5  v over X.  For a given subbundle S, corresponding 
to a section a, denote by a the composite map S~-+gv--*E. Then a maps into DXn~ 
exactly when a is bijective, so we obtain a natural  1-1 correspondence 

(5) {sections a of DXnc --+ X }  ~ ~ {sections s of 5 ~--* E}. 

In particular, any section ~ with image in DXnc corresponds uniquely to a splitting 
YZ=s(E) |  where the embedding of T x / y  in f is canonical, via diagram (1) 
above, and we recover a from the splitting as the induced map  

X = Gk(E) Gk(1) Gk(.~) = D X .  

Return now to the general case. In our original triangle, with vertical map 
b: X - * Y ,  let Z denote a locally closed subscheme of Y. By a section of b supported 
on Z we mean a map  ~: Z - + X  such tha t  ba is the the inclusion of Z into Y. 

P r o p o s i t i o n  3.3. For a subscheme Z c Y  in the situation above, each section 
of b supported on Z induces, by differentiation, a map Da: Z--~DXnc, such that 

we have 

DboDa = a. 
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Proof. We will build a diagram of the following form 

(6) l b ~ G k ( T Z )  

Z 

D X  

ak(TX) 

/ 
~ X  

in stages. Here the left triangle of (6) is obtained by restricting the original triangle 

(7) 

X ~ ~" Gk(TY)  

Y 

to the image subscheme a (Z) ,  and the right triangle is the derived triangle as usual. 
We define ~ to be the map induced by the derivative of a. 

To construct ~), we claim tha t  the composite 7a  factors through DXnc. To 
do so, pick z c Z  and write x = a ( z ) E X ,  so b(x)=z. Set w=~/a(x)EGk(TX).  Our 
claim follows as soon as we can show that  w is in the image of the embedding 

Da: DX=Gk(U) - -*Gk(TX) ,  and tha t  w lies in DXn~. To see this, write II  for the 
k-plane in TxX  given by w. We need to show that  0b( I I )=Ex ,  as k-planes in TY .  
Now Ez = a ( x )  by definition, so the chain rule gives 

0b(II) = db(da(a(x) ) ) = d(boa)(a(x) ) = a(x), 

because a is a section of b. This proves our claim that  ~a factors through DXnc, 
and constructs the map p, such tha t  we have Daop=~/a. But % by construction, is 
compatible with a,  hence so is p. More precisely, the last compatibil i ty gives 

Dbop = ab, 

which expresses the commutativity of the back square of (6). To prove the propo- 

sition, set Da=pa: Z--*DXnc. Then 

Dbo Da = Dbo poa = aba = a, 

as was to be shown. 
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Set D ~  and, for each integer r > l ,  define D~X to be D(D~-IX), repeat-  
ing the derived triangle construction. Hence D~X fits into a derived triangle which 
we shall write as follows. 

D~X D~ % Gk(TD~-IX) 

D r - i x  

For any integer r ~ 0 ,  denote by b~: D~X--~Y the composite projection boDb ..... D~b. 
We define the nonsingular part D~Xn~ to be the complement, on D~X~c, of the 
union of the inverse images of the cuspidal divisors of D X  through D~-IX. In 
particular, D~Xn~ is a dense open subscheme of D~X, and we have D1Xn~=DXnc. 

C o r o l l a r y  3.4. For each r>_l, a section a: Y--~X induces a section ~rr: Y---~ 
D~X~s of the projection b~. 

Proof. We construct ar  by induction on r. When r=O, we take ao=a. When 
r=l,  we can apply Proposition 3.3, with Z = Y ,  to the map b in (7). This gives a l  

as the composite of Da: Z--~DXn~ with a0. For r >  1, we may assume that  a~ - i  has 
been constructed already. To construct a~, let Z=a~--2(Y) in D~-2X. Then a~- i  
induces a section of Dr-lb: DrX--~Dr-2x with support  on Z, so Proposit ion 3.3 

gives an induced map  a~: Z--~DTX. We define a~ to be the composite a~oa~- l .  The 
compatibili ty condition of Proposition 3.3 shows immediately tha t  a~ is a section 
of b~. This completes the proof. 

4. D a t a  

Fix a smooth connected S-scheme X,  of dimension d, and choose an integer k 
between 0 and d. We define a sequence of schemes and maps 

. . .  ~ )  D r k §  bk r , r - l ~ r  b~ D~X b~ (1) l J  k , A  - - " ~ 1 3  k , A  k ~ . . . ) ~ X 

as follows. Set D~X=Gk(TX),  with b~ the structure map Gk(TX)--~X. We define 
b2. n 2  ___~ r ) l  xr k" "-'k ~ .k~ to be the vertical arrow in the derived triangle associated to the 

triangle 

Ck(TX) ~ ~ Ck(TX) 

(2) 1 ~ ~  

x 
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For r>2 ,  following the same process as at the end of the last section but with a 
r r--1 more compact notation, we define b~: DkX--+D k X by induction on r, beginning 

with the last triangle. More precisely, suppose that  we have already constructed 
Dr-1. l-}r--1 r - -2  k "~k --+Dk , as part  of the fol]owing triangle. 

at--1 
r--1 D k X k , Gk(TD~k-2) 

r- -2  D k X 

Then the derived triangle provides both ~ ~ ~-1 bk: D k X - + D  k and the next step in the 
induction. In addition, the construction defines a natural D ~ - l X - m a p  

D ; X  a~> G k ( T D ~ _ I X  ) 

at every stage. We call D~kX the scheme of k-dimensional data of order r on X. 

P r o p o s i t i o n  4.1. Each map brk is smooth, of relative dimension 

dim(b~) = kr(d - k). 

In particular, we have 

dim(DE) = { 
d + r ( d - 1 )  i l k = l ;  

d + k ( d - k  if k > 1. 

Proof. Both assertions follow directly from Corollary 2.2. 

When k = l  we shall adopt a simpler notation, and write Xr for the data  
scheme D[ X.  

Example 4.2. Consider p n = D ~ p n .  In [Se2], Semple investigates explicitly the 
first nontrivial data  schemes, the varieties P2 2 and P~ of second- and third-order 
curvilinear data in the plane. The investigation of data on p2 continues in [CK1], 
[CK2]. By Proposition 4.1, we have 

(3) dim(P~) = 2+r .  

Second-order contacts of curves p3 have been studied recently by Rossell6 [R1], [R2], 
but in a different spirit, based on Hilbert schemes. In the next section, advancing 
Semple's program, we shall examine p3 in detail, to obtain stronger results. We 
have 

(4) dim(P~) = 3+2r ,  

again by Proposition 4.1. 
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Example  4.3. Now take k=2,  and consider the data  scheme D22P n, which 
parametrizes the second-order information about moving planes in Pn.  We shall be 
especially interested in the case n=3 ,  whose study was begun by Semple in [Se2]. 
By Proposition 4.1, we have 

(5) dim(D~P 3) = 1 +2 ~+1 . 

In particular, the 9-fold D~P 3 projects onto the 5-fold D I p 3 = G 2 ( T p 3 ) ,  which is a 
copy of the incidence correspondence of points and planes. We shall see later that  
the fiber 2 3 of D2Pnc over a point p of the incidence correspondence can be identified 
with the 4-dimensional space of all bilinear forms on the plane in T P  3 determined 
byp .  

Functoriality and base change 

Returning to the general theory, we suppose given an embedding 

i 
X ~ ~Y  

of smooth S-schemes. Then i induces an embedding di: T X - - + T Y .  

P r o p o s i t i o n  4.4. The embedding i: X - - ~ Y  induces a commuta t ive  ladder o f  

the f o r m  

~- D ~ X  b~ ~ r -1  ~ X D k X ~ ... ~ D ~ X  blk 

l l I 1 
. D ~ Y  b; ~ ~-1 ~ y D k Y ~ . . .  ~ D ~ Y  b~ 

where all the vertical maps  are embeddings. 

Proof. This follows directly from Proposition 2.4 by induction on r, beginning 
with the map of triangles (2) given by i and di. 

We denote by i ,  the ladder of embeddings given by Proposition 4.4. 

C o r o l l a r y  4.5. The commuta t ive  ladder i ,  is func tor ia l  in the embedding i 

and commutes  with any f la t  base change T---~S. 

Proof. This follows from Proposition 2.4 and Corollary 2.5. 
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Lifts  

Suppose k--dim(X) and that i : X - ~ Y  is an embedding. Then one checks 
immediately that  all the maps b~ reduce to isomorphisms, giving compatible S- 
embeddings 

X ~" , DkY," 

for all r. We shall call ir and its image i,.(X) the r th  lift of i and X, respectively. 
When k=d im(X) ,  we shall denote the r th  lift of X by X~. This direct global con- 
struction generalizes various curvilinear lifting constructions in [Se2], [RS1], [RS2], 
[RSa], [CK1] and [CK2], all defined first locally and then pieced together. The r th  
lift of X carries the r th  order information given by the embedding i. In particular, 
the first lift is the Gauss map 

X ~ Gk (TY). 

Each lift is functorial in the embedding i, and is compatible with any flat base 
change T--* S. 

F a m i l i e s  

We now consider families of subvarieties. Let X' denote the total space of a 
family of subvarieties of a variety Y, parametrized by an S-scheme T, which we shall 
assume is flat over S. More precisely, 2d is a T-scheme, and we have a T-inclusion 

X c Y x T ,  

where Y • T is a T-scheme via the second projection. We assume that  2d is smooth 
over T, and write Xt for the fiber of X at closed point tCT. By our assumptions, 
each Xt is a smooth variety. Write TX' for the relative tangent bundle TX/T. 
Working over T instead of S, beginning with the triangle 

G k ( T X )  ~ , G k ( T X )  

2( 

of T-schemes, we obtain data schemes D~W, and embeddings 

D~(X)" ~D~(Y• 
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P r o p o s i t i o n  4.6. For tET, the derived schemes D~(Xt) form an algebraic 
family of subschemes of the derived scheme D~Y, with total space D~(X). 

Proof. By invariance under the flat base change T-*S, we have D~(Y • 
(D~kY) •  and by invarianee under the base change {t}--*T, we have (D;X)t= 
D~(Xt). The proposition now follows by functorality of direct images. 

C u s p i d a l  s u b s c h e m e s  

For X as above, denote by C r the cuspidal divisor of D~k X, and by C~" the 
cuspidal subschemes of w (This generalizes the "divisors at infinity" of [CK1] 
and [CK2].) It is clear by the construction that  these subschemes are functorial for 
direct images, compatible with flat base change, and therefore move naturally in 
families. More precisely, for a family {Xt}t~T of subschemes of Y as above, with 
total space 

X c Y x T ,  

denote by C~ the cuspidal subseheme of X/T,  and write (Cf)t  for the cuspidal 
subseheme of D~Xt. Then the family {(C~)t}teT is algebraic, with total  space C~/T. 
The corresponding cycle classes, denoted 

C~ e Am(C~), 

where m is the dimension over T, enjoy similar compatibilities. 

F l a t  d a t a  o n  p n  

To consider data schemes over the base space X : P  n, fix an integer k with 0< 
k<n. Our goal is to construct a canonical, global section of the projection Dkp2 ~__, 
D1p~ k , assigning to each first-order datum a second-order datum corresponding to 
a flat or inflectional k-fold in pn .  Our construction depends on special features 
of pn.  

The first-order data  of dimension k on P~ are parametrized by the first-order 
data  space DIpn=Gk(TP~), the Crassmann bundle of k-planes in the tangent 
bundle TP n. We have a canonical pn-isomorphism from D~P ~ to the incidence 
correspondence 

I=  {(p,H) e pnxGk(P n) ] p e g }  

of points and k-planes in P~. Indeed, at a given point p E P  n, any k-plane H C P  '~ 
through p determines the k-plane TpIICTpP n. Conversely, any k-plane in TpP n is 
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clearly represented by a unique k-plane H. To obtain an isomorphism of schemes 
over p n  we only need to note that  the correspondence just defined works equally 
well for the point functors. We therefore obtain a natural  projection 

Dipn ~Gk(pn),  

clearly a smooth map. Further, comparing the definitions, it is easy to see that  the 
relative tangent bundle T~=TD~p,~/ck(p~ ) is the universal k-subbundle Ecp*TP n, 
up to a twist. Indeed, for each k-plane H c P  n, we have 7~-l(H)-~{(x, H ) E I I x E H } ,  
and the relative tangent vectors over II are, by definition, tangent to ~ - l ( H ) ,  and 

hence give E. 
Write 9 ~ for the Semple bundle which defines the second-order data scheme 

D ~ P  ~ as Gk(~) .  The inclusion of T~ in TD~P n induces an inclusion E = T ~ - + ~ ,  

and this, in turn, induces a section 

(6) 1 ~ Gk (~-) 2 DkP = G k ( E )  s = D k p  , 

o f  the structure map 2 2 n ~ n bk: DkP -~DkP . We define the set of fiat data in D2p n to 

be the image of the section s. 

Heuristically, we can represent a second-order datum by a k-parameter first- 

order motion A of a point (x, II) of I, as described in the introduction. Then 

A represents a flat datum exactly when the motion of the tangent k-plane II is 

stationary. When k=l, this happens at flexes of embedded curves. When k--2, 

this happens at planar points of embedded surfaces. 

5. C o o r d i n a t e  r e p r e s e n t a t i o n s  

Fix a smooth ambient space Y; our goal here will be to provide local coordinates 
on the data  schemes D~Y which will allow us to give natural  descriptions of the 
lifts of smooth k-folds in Y. In this way we will later recover the classical Gauss 
map and second fundamental  form as local coordinate representations of global data  
objects. We begin at the triangle level, and later specialize to data  schemes. 

C o o r d i n a t e s  in  Gk(TY) 
Fix a triangle 

X a > G k ( T Y )  

Y 
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as before, but this t ime (as will be the case for data  schemes) assume that  the map  
a is an embedding. Fix a smooth k-fold W c Y ;  we shall assume also (as will be the 
case for lifts to data  schemes) tha t  the Gauss map "y: W-+Gk(TY),  defined by the 
assignment w H T ~ W ,  factors through X.  In other words, we have an embedding 
i: W--+X such that  aoi=~/ and boi is the inclusion W~-+Y. 

Fix a base point w0 E W; we begin by choosing a system of local parameters  

tl , ... , tk, Ul , . . .  , U l  

in (.gy,~, o such that  we can define W in Y, near w0, by an equation of the form 

u = f ( t ) .  

Here we write t - - ( t l , . . .  , tk) and u=(u, , . . .  ,uz), where f ( t)  is a power series in 
the ti, and k+l=dim(Y).  In characteristic zero, any smooth W admits  such a 
representation; in characteristic p > 0  we shall restrict at tention to those W which 
do. 

To define local coordinates in Gk(TY), we turn first to TY.  Passing to a local 
trivialization in the usual way, a point of T Y  near the fiber over w0 has the form 

(1) ( t , u ; t ,~ ) ,  

where t = ( t l  ,... , tk) and f = ( f i l  , . . . ,  fiz) give coordinates in the fiber, and we use a 
semicolon to distinguish the fiber from the base. The local parameters  t l  ,.-. , tk, 
~1,. . .  ,fit, by definition, trivialize T Y  in a Zariski neighborhood, denoted U, of 
the point w0 in Y. Write P (resp. Q) for the subbundle of T Y  with coordinates 
tl  ,... ,tk (resp. ul ,... ,~t), so tha t  we have a splitting TY=P@Q,  where P (resp. 
Q) has rank k (resp. 1). In particular, the k-plane in T~oY with equation f i=0 is 
the geometric fiber P~0" 

Over U, the Y scheme Horny(P,  Q) embeds in Gk(TY) as a s tandard open 
neighborhood of the k-plane P~o. In this embedding, each homomorphism P--*Q 
maps to its graph, a k-plane in TY; in particular, the family of k-planes in T Y  given 
by P corresponds to the zero-map. In our coordinates, each element of Horny(P,  Q) 
can be represented in the form 

(2) ~ = a~.  

Here a denotes an l•  matr ix  [ai,j]=[ai,y(t)] of regular functions of t. Because 

c~ determines its k-plane uniquely as a function of t, we can therefore write local 
coordinates on Gk (TY) in the form 

(a) (t, u; 



26 Enrique Arrondo, Ignacio Sols and Robert Speiser 

with a as in (2). In these coordinates, we can describe the image i(W) near w quite 

simply, by means of the local parametr izat ion 

t, ) ( t , f ( t ) ; D f ( t ) ) ,  

where Df(t) denotes the derivative of f at t=O, here represented by the Jacobian 
matrix. In other words, the fiber coordinate a is given by the I x k matr ix  [Oui/Otj]. 

T h e  lift  Di 

Denote by DT: W-*Gk(TX) the Gauss map of the lifted embedding i: W-*X. 
Thus D~/(w) is the k-plane in Ti(w)X tangent to the image i(W) at the point i(w), 
for all w E W. 

P r o p o s i t i o n  5.1. The map D7 factors through DXcGk(TX). 

Proof. The inclusion Wc-+Y and the embeddings i and % the latter viewed as 
a map Gk (TW) = W--, Gk (TY), define an embedding of triangles, of the following 
form. 

W > X  

, ~ G k ( T W )  ~ G k ( T Y )  1 3' 

W , Y  

Hence the direct image construction gives an embedding W=DW---~DX. To obtain 
D% and complete the proof, we compose with the inclusion of DX in Gk(TX). 

Denote by Di the embedding W----~DX given by Proposition 5.1. 
derived triangle 

DX Da ) Gk(TX) 

X 

For the 

where Da is again an embedding, we now have the embedding i: W--+X and a 
lifted embedding Di: W--+DX. These enjoy compatibilities analogous to those of 
the previous situation, namely DaoDi=D7 and DboDi=i. Hence we can iterate. 
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C o o r d i n a t e s  for  T X  a n d  .~" 

To write Di in coordinates, we first write the map D'y in coordinates, and 
then describe the factorization through D X  in terms of these coordinates. We have 
assumed that  the map a embeds X in Gk(TY), so, working as before, points of T X  
can be written in the form 

(4) (t, u, ~; {, ~, (~). 

Here the coordinates t, u, c~ are understood to be constrained to X, and again the 
semicolon distinguished the new fiber coordinates, {, fi, ~. The key observation is 
that  the Semple bundle , ~ c T X  is defined, even in the larger space Gk(TY), by 
equation (2) above. Indeed,the map Ob is given by the assignment 

and (2) defines the k-plane in b*TY assigned by a: X--*Gk(TY) to the point (t, u, (~) 
of X, that  is, (2) defines E on U. 

It follows that  t, ~ give local coordinates for the fibers of 5 v. 

C o o r d i n a t e s  in D X  = Gk (jz) 

We follow the same procedure as we did for writing coordinates in X. This time, 
to describe k-planes in ~ as graphs of suitable linear maps, we begin by choosing 
suitable coordinates to obtain a local trivialization of .T. Denote by II a k-plane in 
TX,  over (t, u, a ) e X ,  which is general in the sense that  the projection (t, ~, (~)~-+{ 
maps H onto the k-dimensional space of all {. If also I Ic$- ,  the projection $'--*E 
then carries H isomorphically onto the fiber of E at (t, u, a) ,  which happens exactly 
when H represents a point of DXnc. Such a II can be given as the graph of a linear 
function of t, of the form 

(5) {~--~ L({) = (fi, (~), 

where ~ and (~ are linear in t, with coefficients regular in t. On the one hand, for the 
k-plane given by (5) to lie in 9 v, the linear function ~=fi( t )  must be given by (2). 
On the other hand, &=(~({) can be written explicitly as 

where 13 denotes a kl • k matrix, most naturally indexed in the form 
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for i = 1 , . . .  ,l and r / , ( = l , . . .  ,k. Here, as the index i runs from 1 to l, we obtain/3 
as a vertical stack of k x k matrices, each of the form/3i=  [/3~,(n,r 

With this notation, each point of our neighborhood on D X  = Gk ( .T)~  Gk (TX) 
is given, over (t, u, a )EX,  by a linear map 

Here [F~] denotes the ( l+kl)x k matrix obtained by placing a over/3, and we take 
a matr ix  product on the right. The first l rows give ~, while the remaining kl rows 
give (i, repectively, as functions of t. Combining our observations and onfitting 
redundant terlns, our coordinates on D X  take the very simple form 

(6) (t,u,a,/3), 

where a (resp. /3) is an Ix  k (resp. kl x k) matrix with entries regular in t. 
Finally, it is easy to check that  the lift Di is given parametrically, in these 

coordinates, by the assignlnent 

(7) t, , (t,u, Df ,  D2f), 

where D2f  denotes the second derivative of f ,  represented by the usual matrix 

] r0- l 
In particular, (3 is symmetric in r! and ~. 

Lifts  t o  d a t a  s c h e m e s  

We now specialize to data  schemes. Consider the situation of w for a given 
smooth k-dimensioual subschenm X c Y. To write down the r th  lift iT: X--+ D~ Y in 
local coordinates, we represent X as the graph of an equation u=f( t )  for suitable 
local parameters  on Y, and then iterate the construction of coordinates given above 
through the tower of data  schemes. Coordinates on D~kY take the form 

(8) t ,  , ( t , u , u '  . . . . .  u (T I ) ,  

where each U (q) is a matr ix  representation of a suitable q-linear map. To be precise, 
denote by A the k-dimensional vector space with coordinates {//}, and write B for 
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the/-dimensional  vector space with coordinates {4j}. Then u (r) represents a linear 
map A-+Hom(A | B), that  is, an element of Hom(A | B). 

It follows that  the r th  lift it(X) of the embedded k-fold X is given parametri- 

cally by the assignment 

(9) t, ~ ( t , f ( t ) , D f ( t ) , . . .  ,Drf(t)), 

so il is the Gauss map X--+D~Y, hence i2 is its first derivative, and so on. In 
particular, all the forms D q which appear here are symmetric. In this way, in the 
special case r =2 ,  we recover the local second fundamental form II of [GH] as the 
derivative of the classical Gauss map when Y = P %  Fhrther, (9) shows that  any 
point of D~Xnc can be given by a suitable regular function u=f(t), and we can 
even take f(t) to be a polynomial of degree _<r. This explains why we call such 

data noncuspidal. 

Coordinates for cuspidal data 

To obtain cuspidal data explicitly as limits of noncuspidal data, we must look 
directly at the k-planes in TX which define them. The coordinates we obtained for 
lifts above will serve this purpose well. 

Example 5.2. (A space curve with an ordinary cusp.) Consider the singular 
rational curve W in y = p 3  parametrized, in the affine coordinates t, Ul, u2, by the 

assignment 
A, ~w(A)=(A ~,A 3,A~). 

This curve has as its only singularity an ordinary cusp at the origin, which we take 
as the base point w0 in the discussion above. The tangent line to W at w(A), for 
a given A, can be given by the equations Ul=3At, u2--2A2t. In particular, when 
A-+0, we obtain the t-axis as the cuspidal tangent. The lift of W to the first-order 
data space P 3 = p T p 3  is therefore given in local coordinates by 

-3A 2A2). A' ) (t, ul,U2;OZl,(~2)~- (A2,A3,A4; 2 ' 

The derivative of this assignment is represented by the vector 

(10) It, 41,42, O1,02] = [2A, 3A 2, 4A 3, 3,4A]. 

Now the relation (2), in this case 

[4,, 42l:  [3A , 2A2 ], 
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shows that  the second and third entries of (10) are redundant. Hence the line I in ~" 
which represents our second-order datum is given in local coordinates as the span 
of the vector 

(11) It, O1, (~2] = [2A, ~, 4A]. 

Further, when A-+0, the vector (11) limits to [0, ~,3 0] . The first zero shows that  
the singular point w0 determines a cuspidal second-order datum; indeed, the first 
coordinate represents the natural projection from l to the t-line, and the latter, by 
definition, is the fiber of E at the first-order datum given by wo c W. Because A 
appears with exponent one in this coordinate, we also know that  the closure of the 
lifted curve meets the cuspidal divisor of p3 transversally at w0. In other words, 
the ordinary cusp at Wo E W counts exactly once as a cuspical datum. 

Example 5.3. (A quadric cone.) To illustrate what can happen at a surface 
singularity, we work out one second-order datum at the the vertex of a quadric cone 
in detail. Fix an origin p C P  3, take affine coordinates tl, t2,u at p, and consider 
the cone in p3, with vertex p, over the affine conic A~-+(1, A, A2). This cone can be 
defined parametrically by the assignment 

(A1, ,'~2) , ) ( t l ,  t2, u)  z (A1, A1A2, A1A22). 

Since the tangent plane at a given (A1, A2) is u=-A2t~+2A2t2, the lift to D 2 p  3 is 
via 

(A1, A2) '  ) ( t l ,  t2, u; 0~1,0~2) : (A1, AIA2, A1A2; - A  2, 2A2). 

This parametrization has as origin the first-order datum (p, H), where II denotes 
the plane u=0,  which is certainly tangent to our cone at p, its vertex. The Jacobian 
matrix of the map above is 

0 A 1 2A1)~ 2 - 2 A 2  " 

The middle column of this matrix is redundant by relation (2), so the relevant 
matrix is 

0 

0 A 1 --2A2 " 

Specializing to the origin, we obtain 

I 1 0 
0 0 0 
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Here the square matr ix formed by the first two columns represents the projection 
from the plane in f which gives our second-order datum to the space of the coordi- 
nates t which parametrizes the fiber of E over the first-order datum (p, H). Because 
the determinant of this 2 • 2 matrix is zero, we know that  the limit second-order 
datum of our cone, corresponding to (p, II), is well-defined, and lies in the cuspidal 
divisor; because the rank of the projection is precisely one, this datum lies in C=C1, 
but not in the smaller cuspidal subscheme Co. Further, the local representation of 
E as a direct summand of 9 r produced by our coordinates agrees with the natural 
global splitting given at the end of w so the vanishing of the determinant given by 
the last two columns shows that the datum at hand also lies in the parabolic locus, 
to be discussed in w below. 

6. E x a m p l e :  d a t a  for  c u r v e s  in p3  

For concreteness, we shall work throughout this section over the base scheme 
p 3 _ p 3  S=Spec(k) ,  where k is a field. Here we consider 1-dimensionM data on - ~, 

that  is, curve elements. 

First-order data  

The iteration starts with P13, the space of lines in the tangent bundle T P  3. 
Denote by G1 (p3) the classical Grassmann variety of lines in p3, and by b: G1 (p3) _~ 
p3 its structure map. By the discussion at the end of w we identify P~ with the 
incidence correspondence 

(1) I = {(p, l) e p3 x G1 (p3) ]p e l} 

of points and lines in p3. 
The projections from p3 to p3 and G I ( P  3) give two key divisor classes. De- 

note by p the divisor class on p3 given by the pullback of a hyperplane in p3. 
Concretely, p represents the condition that  a point-line pair (p, l) should have p 
on a given plane. Similarly, the Pliicker class on G I ( P  3) pulls back to a divisor 
class, denoted g, which represents the condition that  l should meet a given line. 
We have chosen our notation for these classes, by the way, to agree with Schubert's 
symbols for the corresponding conditions [Sch]. By Martinelli's computations ([M] 
or IF, Example 14.7.17, p. 277]) for example, we obtain 

(2) A ' P  3 = Z[p, g]/(p4, g3 _2pg2 +2p2g). 

where the second relation is Schubert's incidence formula. 
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Notice that  if we take I to be G2(Tp~(-2)) ,  then g becomes the tautological 
class t=cl(Oz(1)) .  Indeed, the composite inclusion 

az/p3 ( t - p )  C b* (flp~ (1)) C H ~ (p3, Op~ (1)) | OI 

is the pullback to I of the inclusion of the universal subbundle on G1 (p3) into the 
trivial bundle, so g=-c~ (~i /P3( t - -p))=t  follows immediately. 

This remark allows us to define three more divisor classes on I. Indeed, write 
a for the class on I corresponding, as above, to the condition that  the line l of a 
pair (p, l) should pass through a given point. We obtain 

(3) a = C2(~i/P3(t--p)) = g2__pg+p2. 

On the other hand, write fl for the divisor class corrresponding to the condition 
that  the pair (p, l) has the line l contained in a given plane. We find 

(4) /3 = g 2 _  a =pg_p2 .  

Finally, write G for the divisor class wich represents the condition that  the line l of 
a given pair (p, l) should coincide with a given line. Then we have 

(5)  G 1 g4 _ p2g2 = -~ -- -2p3g.  

S e c o n d - o r d e r  d a t a  

Now we determine the intersection ring of the first nontrivial derived scheme, 
the scheme p3 of second-order curvilinear data  on p3. By Proposition 2.1, we have 
P3=P(g r ) ,  where 5 t" is the fiber product of T P  3 and E=b * O p 3 ( -1 )  over b*TP 3, 
where b=b~ denotes the structure map p3__.p3. Twisting the diagram (1) of w 
so that  the bot tom row becomes the Euler sequence [F, B.5.8, p. 435], we obtain a 
commutative diagram with exact rows and columns, of the following form. 

0 0 

Tp~/p3(pq- 2p) Tp~/p3(g- 2p) 

(6) 0 
1 l 

> ~ ( g -  2p) > T P  3 ( g -  2p) 

> O T p 3  ~ > b*Tpa(g-2p)  

0 0 

> Tp~/p3 :~ 0 

> T p ~ / p 3  > 0 



Global moduli for contacts 33 

Due to the twist, the bot tom row exhibits (..~Tp3 as the universal 1-subbundle of 
Tp3(g-2p), with Tp~/p3 as the universal quotient. By definition, PTp~/p3 is the 

cuspidal divisor C on the derived scheme P23; write k for its divisor class. Here is 
our result: 

P r o p o s i t i o n  6.1. The intersection ring of p3 is 

A ' P  3 = Z[p,g,  k]/R, 

where R denotes the ideal generated by the previous relations p4 and g3 _ 2pg2 + 2p2 g, 
together with 

k 3 + (bg -  6p)k 2 + (7g 2 - 16pg + 10p 2) k. 

Proof. Twisting ~" does not change the underlying scheme of P3=P(gt ' ) ,  but  
it does change the canonical line bundle: on P(~(g)), we have O(1)=k,  either by 
formula (4) of w and [F, B.5.5, p. 434], or by the evident generalization of [H, 2.6, 
p. 371], applied to the left column of the diagram (6) above. 

The key observation here is that  the first column in the above diagram (6) 
splits. Indeed, by the construction at the end of w we have a section i: p3 _,p3 
which associates to any pair (p, l) the tangent direction defined by the motion of 
the pair (q, l), as the point q moves in 1. Because the image of i does not meet the 
cuspidal divisor C, it follows that  Tp~/p3 (g -2p )  is a direct summand of ~-(g-2p) ,  
with the complementary summand OTpa given by the section i. Denote by F the 
image of this section, and write k I for the class of F,  which represents the locus of 
flex data. We have 

k' = k 2 + (bg -  6p) k + 7g 2 - 16pg + 10p 2, 

because k' represents the zero-locus of the section 

Op~ , b~*(f(g))(k) ~ b2*Tp~/p3(-2p+g+k). 

This splitting obviously generalizes to second-order data  in any projective 
space; for curvilinear data  in p2, see [CK1]. 

The second-order data  scheme P~ suffices for enumerating second-order con- 
tacts among space curves moving in fairly general families, as long as the general 
members have no flexes. For families of curves whose general members do have 
flexes, however, all we need to do is blow up the flex locus above, in order to turn 
it into a divisor. Geometrically, the flex locus is precisely the closed subscheme of 
second-order data  for which the osculating plane is indeterminate, and the blowup 
associates to each flex datum a given choice of this plane. 

Denote by B the blowup of p3 along F.  It is easy to see, by the way, that  B 
is the second-order data  scheme corresponding to the projection i1__~p3 where I ~ 
is the point-plane incidence correspondence. We now obtain 
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P r o p o s i t i o n  6.2. The intersection ring of B is 

A 'B=Z[p ,g ,k ,e] /R ' ,  

where R ~ is the ideal generated by the relations of R, together with the extra relations 

e 2 + (6p -  5g)e+ k 2 + (hg-6p)  k+7g 2 - 16pg+ 10p 2 

and 
ke. 

Here, by abuse of notation, the residues of p, g, k represent the pullbacks to X of 
the classes in p3 denoted by the same letters, and the residue of e represents the 
exceptional divisor. 

Proof. This follows directly from [F, Proposition 6.7 and Example 8.3.9]. In 
detail, consider the natural commutative diagram 

J > B  

F i > p ~  

where _P is the exceptional divisor; our notation for the maps follows IF]. 
First we compute the intersection ring of _P=-P(N), where N denotes the nor- 

mal bundle of F in P~. Observe that the restriction of the projection bl gives an iso- 
morphism F-~I .  Since F is the zero-locus of a section of (b~)*Tp~/p~ (-2p+g+k),  
we have an exact sequence 

0 ~ 0 ~ (b~)*Tp~/p3(-2p+g+k) )ZF(--6p+hg+2k) -----*0 

on P~. Indeed, the twist on I F  is precisely the first Chern class of the middle 
bundle, because we have cl(Tp~/p3)=-2p+3g. Therefore, ]V is the restriction to 

F of (b~)*Tv~/p3 ( 4 p - 4 g - k ) ,  which, under the above isomorphism, is just 

: Tp~/p3 ( 4p -  4g). 

Hence we obtain the intersection ring 

A ' (F)  = Z[p, g, e]/(p 4, g3-  2pg+ 2p2 g, t2 +(6p-  5g)t +(lOp 2-16pg+7g2)). 
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By IF, Proposition 6.7], for each k, we have an exact sequence 

a ~ 3 (7) 0 , Ak(F)----*Ak(F)OAk(P2) ,Ak(B) , O, 

defined by the maps 

a(x) = (Cl(E)n * 

~(s Y) = j . 2 + f * y ,  

where E denotes the universal quotient bundle in ? = P ( N ) ,  so we have c l ( E ) =  
t -6p+5g.  

In codimension one, we obtain the classes p, q, k as pullbacks from P2 3, as well 
as the class e=j ,  IF]. For the multiplicative structure, we apply [F, Example 8.3.9]. 
As a sample, to compute e 2 ,  w e  have 

e 2 = j .  ( IF]) . j .  (IF]) = j .  (c1 (jOB (F)) .  [F]-[F]) = - j .  (t). 

But now, the exact sequence (7) for k=5  gives a[F]=(t -6p+5g,-k ' ) ,  hence 

j ,  (t) = j .  ( 6 p -  5g) +fk '  = 6pe+5ge+ k 2 + ( 5 g -  6p)k+7g 2 - 16pg+ 10p 2. 

Incidentally, the last relation of R follows from the two new relations. It is also 
interesting to note that  we now have e7=0. 

We shall show in a moment that  every point of B has a well-defined osculating 
plane, assigned by a morphism B--+P 3. Hence we can impose the condition that  
this plane should pass through a given point, by pulling back a suitable hyperplane 
in ~ 3  and we shall denote by # the resulting divisor class on B. More precisely, we 
shall first construct a rational map, denoted Q: p3 _...~3 which assigns the osculating 
plane on the complement of F.  We define Q as a composite 

P(Jr(3p-2g)) ~ P(Ti/p3(p-2g))=P(~i/p3(p-g))~----* P(b* (~p3 (1))) ) p3, 

which we now explain. Up to a twist, the first arrow in ~ is induced by the projec- 
tion JZ-~Ti/p3 given by the splitting of the first column of (6). Hence this arrow 
represents a rational map P32-~P(Tup3), whose domain of definition is the com- 
plement p 3 \ F ,  and which becomes a morphism when we blow up p3 along F to 
obtain B. For the identification P(Tx/p3(p-2g))=P(~i /p3(p-g))  which comes 
next, we use the fact that  the relative tangent bundle Tx/p3 has rank 2, so that  the 
perfect pairing 

2 

TI/P3 | ~ A TI/P3 
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identifies TI/p3 with a twist of the dual bundle ~I/P~, and hence, after a twist, 
gives the required identification. The inclusion which comes next is induced, after 
a twist, by the bottom row of (6). The final arrow in the composite for D, the 
projection from the point-plane incidence correspondence to ~3, is induced by the 
Euler sequence for ~p3/s. Given the global maps, the reader can now check directly, 
in local coordinates, that  D does indeed assign the osculating plane to each curve 
(or curve germ) representing a given noninflectional datum. 

Returning to the main discussion, the linear system which gives the rational 
map ~ corresponds to the tautological class in 

P(.~(g)(3p-3g)), 

namely k - ( 3 p - 3 g ) .  Since Q becomes a morphism when we blow up F,  the pullback 
to B of a hyperplane of ~3 gives the class 

(8) # = k-3p+3g-e .  

We obtain dual bases for the intersection pairing by straightforward computa- 
tion, based on the multiplicative structure of A'B. In particular, the bases 

{p, g, k, e} c A I(B) 

and 

{e#G- 3p3 g2e, k#3p 2 +3#Gp+3p3 g2e, #Gp+p3 g2e, -p3 g2e} C A 6 (B) 

are dual. Therefore, if C is a curve in p3, with class [C] in B, set 

m = f s  pn [C], 

r = fB gn [C], 

fl = fB kn[C], 

f = fB e n [c], 

By duality, we obtain 

the degree of C, 

the degree of its tangential developable surface, 

the number of cusps of C, 

the number of flexes of C. 

3 2  3 2  3 2  3 2  3 2  [C] =m(e#G-3p g e)+r(k# p +3#Gp+3p g e)+~(#Gp+p g e ) - f p  g e. 
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To each surface S in p3,  we can associate a cycle on B in the following way: 
at each smooth point of S we take, for each line contained in the tangent plane, all 
planes containing it, and, inside each of them, the second-order da tum at the point 
of the hyperplane section. The closure of the set of all these elements, as the given 
smooth point moves on S, defines a four-dimensional subvariety of B. If  now E is 
a general two-dimensional family of surfaces in p 3  write [E] for the divisor class it 
represents in B. Then set 

T:/B pGPN[~] =/B #p3g~n[~] '  

the number of times tha t  a surface passes through a given point in a given direction; 
set 

K' = ~ e#an [E], 

the number of times a given line is a flex for a surface; and set 

K = fR k~3P2 n [~], 

the number of times tha t  a given point has a cuspidal direction contained in a given 
plane. Also observe that  we have p3g2en[Z]=O, because, counting dimensions, it 
follows immediately that  no surface moving in a general two-dimensional family can 
have a flex at a given general point in a given general direction. Hence we can gen- 
eralize formula (121a) of [Sch], to find the number of second-order contacts between 
a general curve C, which we, in contrast to Schubert and Rossell6 ([R1], JR2]), allow 
to have flexes, and the members  of a general two-dimensional family N of surfaces 
with the invariants above. We obtain 

[C]N [E] = mK'+r(K+3T) +~T 

contacts. 

7. H i g h e r - o r d e r  d a t a ,  g l oba l  s e c o n d  f u n d a m e n t a l  f o r m s  

We begin with a derived triangle of the form 

DX Da> Gk(TX) 

X 
as in w 
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Structure  of  DXnc 

Recall that  DX=Gk(Jr), for the Semple bundle 5 r .  By the fiber square which 
defines ~ ,  the universal k-subbundle/2CJZDx of Proposition 2.3 fits naturally into 

a commutative square 
/2 

1~ 
~DX 

of bundles on DX,  with a as in w 

> TXDx  

~ > b*TYDx 

By Proposition 3.2, the left vertical a is 

an isomorphism precisely on the open set DXnc, the complement of the cuspidal 

divisor. 

P r o p o s i t i o n  7.1. The X-scheme DXnc is a principal homogeneous space for 
the X-group scheme Horn(E, T x / y  ). Furthermore, a section 

X a > DXnc 

of the structure map DXnc--~X determines a unique X-isomorphism 

Hom(E, T x / y )  ~~ DXnc 

such that the zero-section of Horn(E, Tx/y )  maps to a. 

Proof. To show that  DXnc is a principal homogeneous space for Horn(E, Tx/y) ,  
fix a T-point f :  T-*X .  On the one hand, a T-point of Horn(E, Tx/y)  over f is a 
homomorphism h: ~T--+(Tx/Y)T. On the other hand, by the discussion above, a 
T-point of DXnc over f is, in effect, a lift r ~T--~TXT of the inclusion ET'--* b*TYT. 
(Indeed, each lift splits JZT---~ET, hence gives a subbundle of TXT.) Because Tx /y  = 
ker(Ob)=ker(Obu), the assignment 

(h , r  ~h+r  

defines an action of the discrete group Horn(E, TX/Y)T on the set (DXnc)T. Because 
any two lifts g will differ by a unique h, the action is transitive and free. Further, 
the composition law is clearly functorial in X/T .  It follows that  our assignment 
defines a transitive, free, group-scheme action of Hom(E, Tx /y )  on DXnc, hence 
DXnr is indeed a principal homogeneous space for Hom(E, Tx/y) .  Now take for T 
the identity point of DXnr Then the universal k-subbundle/2 gives a canonical lift 

EDXnc ~ "~DXnc" 

To obtain a distinguished map s: E--+~ over X, we pull r back via a. Given s, a 
section of ~--~E, the last assertion is clear, by the correspondence (5) of w 
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T h e  s e c o n d  f u n d a m e n t a l  f o r m  

Now we place ourselves under the hypotheses of w and apply Proposition 7.1 
DkX. In this case, to triangle (2) of w which defines the second-order data  scheme 2 

E is the universal k-subbundle of TXGk(TX), and we have an exact sequence 

0 > E > T X G k ( T X )  ~ A > 0, 

where A denotes the universal quotient. 

P r o p o s i t i o n  7.2. The D~X-scheme D~X~ is a principal homogeneous space 
for the D~X-group scheme Hom(E |  Further, a section 

1 cr 2 DkX ~ D k X ~  

of the structure map D2 Xnr 1 --* DkX  determines a unique X-isomorphism 

2 Hom(EQE,  A) ~ DkXnr 

such that the zero-section of Hom(E|  A) maps to a. 

Proof. The relative tangent bundle TCk(TX)/X is Horn(E, A), so the first as- 
sertion of Proposition 7.1 tells us that  D2Xnc is a principal homogeneous space for 
Horn(E, Hom(E, A)). The target parametrizes bilinear maps E • E ~ A ,  so the first 
assertion of Proposition 7.2 follows. The second assertion of Proposition 7.2 follows 

directly from this. 

Now suppose that  we have an embedding Xc--*Y of smooth S-schemes, where 
d im(X)=k .  Here we shall write E and A for the universal bundles as above, but  

1 2 defined on Y. Suppose further that  we have a section a: DkY--*DkYnc, giving an 
isomorphism as in Proposition 7.2. Then the second lift X2 maps into D2Ync, 
by smoothness. Hence the isomorphism of Proposition 7.2 defines an embedding, 

denoted II, 

X II > H o m ( E x |  Ax) ,  

where the subscripts indicate restriction to X2-=X. 

C o r o l l a r y  7.3. Under the assumptions just above, for any x E X ,  the bilinear 
form II(x) identifies canonically with the Hessian at x. In particular, the image of 
II consists entirely of symmetric forms. 

Proof. At xEX,  the fiber Ex identifies with the tangent space TxX, while 
Ax may be regarded as the normal space at x of X in Y. It follows easily, by 
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differentiating the Gauss map, i.e. the first lift i1: X--~Gk(TY)=D~Y, that  II(x) 
defines the Hessian, because the derivative of il  gives the inclusion i2: X2--~D2y. 

We call the map II the second fundamental form on the embedded subscheme 
X, and write II~ for II(x). When X moves in a flat family of embedded subschemes 
{Xt}tcT, so does II, by Proposition 4.6. For each tcT,  we denote by IIt the second 
fundamental form on Xt. 

H i g h e r - o d e r  d a t a  

Now we apply Proposition 7.1 to the triangle which defines the general data 
scheme D~X, again under the hypotheses of w for any r>2 .  We continue with the 
exact sequence 

0 ~ ~ ~ T X D ~  X ~ A ~ O, 

on D~X=Gk(TX), which we hold fixed as we climb higher in the tower of data 
schemes. As before, we write D~Xns for the dense open subscheme obtained by 
removing from D~X the pullbacks of the cusp divisors of the data  schemes below D~. 
Here is our main result. 

T h e o r e m  7.4. The D~-l Xns-scheme D~Xns is a principal homogeneous space 
for the D~k-l X-group scheme Hom(E | A)D;-1xn s . 

Proof. We shall write ~'r for the pullback to D~X of the Semple bundle on 
D~X which constructs D~ +1. First, we have a natural isomorphism 

(Ar) ~rlD;X=s ~ ED;Xns" 

Indeed, this follows immediately from the first part  of Proposition 3.2, by induction 
on r. Next, we have a natural isomorphism 

( B r )  TD's X ID~X,~ ~ Horn( ~|  A)D,~X~.  

This time, the construction follows from the second part of Proposition 3.2, again 
by induction on r. By (A~-I) and (Br_ l )  , we have 

Hom(b/~_l, T D ; -  * X / T  D; -  2 X ) D; -  ~ Xn ~ : Hom(E, Hom(E | A ) ) D; -  * X~ ~ 

= Horn(F, | A)D~-IX~ ~ . 

Here, by Proposition 3.1, the universal bundle L/~-I plays the part of E in Propo- 
sition 7.1, and the theorem follows. 
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The multilinear forms in the structure group 

Hom(E | A)D~-lyn" 

of D~Y~ allow us to compare different nonsingular r t h  order da ta  over a given point 
r--1 ~GD k Y. For example, ~ could be shared by the lifts i r _ l ( X )  and i~_~(X') of 

two different subvarieties X and X ~ whose r th  lifts differ over ~, by a canonically 
determined r-multilinear map from E(~) to A(~). 

For second-order data, a section 1 2 a: DkX--~DkX~ c gives a canonical trivializa- 
1 tion of D~X over DkX. Such sections appear  in practice, as we have seen in w 

formula (6), for X = P  n. However, such sections do not, in general, induce trivializa- 
tions of the higher-order da ta  bundles, as we observed in w Hence, for third- and 
higher-order data, a description of individual data  points in terms of multilinear 
maps must necessarily be local. 

Example 7.5. Even the case y = p 2  makes clear tha t  a multilinear description, 
as above, of the third-order data  must,  at best, be local. Indeed, look at the curve 
given in affine coordinates by y=x2+x 4, at the point (0, 0). I t  is easy to check that  
the vanishing of the coefficient of x 3 in the local series expansion is not projectively 

invariant, even under the very simple substitution xHx+y. 

Symmetric data 

We define S~X to be the closure, in D~kX, of the set of r t h  order data  given 
by all possible smooth k-dimensional subschemes W of X.  In other words, S~X is 
the closure of the union, denoted U~, of all possible r t h  lifts it(W). 

We now give S~X a natural  scheme sutructure. As a set of geometric 
points, it follows directly from the local description of w that  U~X is stable for 

the action of Hom(SrE ,  A ) D  ~ 1X. ~ obtained by restricting the free action of the 

D~Xns-group scheme Hom(E | A)D~-Ixn ~. But, by the same token, more is true: 

Hom(SrE ,  A)D~-lX, ~ acts transitively on the fibers of U~X over D~k-IX. It  fol- 

lows that  there is a unique scheme structure on U~X such tha t  U~X agrees with 

Hom(S~E, A)D;-Ix, ~ when restricted to small enough open subsets of their com- 

D~-IX mon base space k as. We shall write S~Xns for U~X equipped with this scheme 
structure, and we shall denote by S~X its closure as a subscheme of D~k X. Because 
of its construction, we shall call S~X the space of symmetric r t h  order da ta  of 

dimension k on X,  and refer to its subscheme S~Xns as the space of nonsingular 
symmetric data. Clearly the second is an open subscheme of the first. 

The next result follows, by induction on r, directly from Theorem 7.4, the local 
description of w and the scheme structure we have just defined. 



42 Enrique Arrondo, Igna~io Sols and Robert Speiser 

T h e o r e m  7.6. For each r>l ,  we have a natural projection S~Xn~--~ 
r - -1  S k Xns, which is a principal homogeneous space for the S t - i X  k ns-group scheme 

Hom(SrE,  A ~-1 . D k Xns 

It is clear that  the symmetric data  schemes S~X enjoy the same functorial 
properties and compatibilities as do the D~X, from which they inherit their struc- 
ture. 

8. Example:  data  for surfaces in p3 

As in w we will work over the base scheme S=Spec(k) ,  where k is a field. 
Here we consider two-dimensional data  on p3, that  is, surface elements. 

First-order data  

The first-order data scheme D I p  3 ~-G2 (TP  3) identifies naturally with the usual 
point-plane incidence correspondence 

J= {(p,P) e P 3 •  3 Ipe P}, 

a smooth 5-fold. Denote by p the pullback to J of the hyperplane class in p3. Thus 
p corresponds to the condition that  a pair (p, P)  should have p on a given plane. 
Dually, we write P for the pullback to J of the hyperplane class in ~3. This class 
represents the condition that  the plane P of a pair (p, P)  should pass through a 
given point. Here the intersection ring is 

A'D~P 3 = Z[p, p]/ (p4, p3 _pp2 +p2 p_p3), 

where the second relation is, as in the previous case, a classical incidence formula. 

Second-order  data  

Here it will be convenient to work with a slightly modified version of diagram 
(1) of w Twisting the tangent bundle, we write J in the equivalent form 

J = G2 (Tp3 ( -  1)). 

This particular twist gives b*Op~ (1)=O(p).  By abuse of notation, we shall denote 
by E the universal subbundle of b*Tp3( -1 ) ,  and by A the universal quotient. Then 
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our diagram, of bundles on J,  takes the following form. 

(1) o 

0 0 

Tj/p (-p) Tj/pa(-p) 

) E ~ > b* (Tp3( -1 ) )  

l 1 
0 0 

~A  7 0  

) A  7 0  

Here, again by abuse of notation, we have written ~" for the pullback, a bundle 
of rank 4. By the construction at the end of w the first column splits, via the 
map E - ~  given by differentiating the assignment, to each pair (p, P)  of the two- 
parameter  motion of a pair (p', P) ,  where the point p' moves in a line l with p E l C P,  
and, independently, the line I turns through the plane P around the axis p. Further, 
by our choice of twist, we find A = O ( P ) ,  while for the kernels at the top we have 
Tj/pa = n o m ( E ,  A)=E |  

We know that  D 2 p  3 is a smooth 8-fold. Write 

0 ,S  +(b~)*.T--,Q ,0 

for the universal exact sequence on G2(.T'), write Cl , . . .  , C4 for the Segre classes of 
the universal sub-bundle S, and write dl, d2  for the Chern classes of the universal 
quotient bundle. As usual, we shall use the symbols p and P for the pullbacks to 
G2 (~') of the classes they denote. 

P r o p o s i t i o n  8.1. We have 

A" D22 P3 = Z[p, P, cl, c2] / R 

where the ideal R of relations is generated by the known relations pa and p3_p2p+ 
pp2 p3, together with the additional relations 

2p2 p _  2pp2 _p2 el _ _  p251 .~_ 2pc2 - 2Pc2 + c 3 - 2CLC2 
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and 

7p2p 2 -p2c21 -p2c2 -3p2c2+8pPc2  - 3p2 c2 q- 2pcl c2 - 2PCl C2-e2 c2 +c 2. 

Proof. We have the following Chern polynomials: 

c(E) = 1+ (!9- P )t + (p2 _ p p  + p2)t2, 

c ( E ( P - p ) )  = 1 + ( 3 P -  3p)t+ (3p 2 - 5pP +3p2),  

c(F) = 1 + (2p-  2P) t+  (p2 +p2)t2 + (_2p2P+2pp2)t3 .  

These yield 

c~ = dl + 2 p -  2P, 

c2 = d2 + 2pdl - 2Pdl  + 3p 2 - 8pP § 3P 2, 

c3 = 2pd2 - 2Pd2 + 3p2 d1 - S p P  dl § 3p2 d1-14p2 p +14pP 2, 

e4 z 3 p 2 d 2  - 8pPd2 +3P2d2 - 14p2pdl + 14pP2dl + 23p2p 2. 

Now, eliminating dl and d2, and using the Schubert relations IF, w we find 

C 3 ~ 2CLC2 --C 3, 

2 C2C C4 =ClC3~-C2  - 1 2, 

and the proposition follows. 

Symmetric s e c o n d - o r d e r  d a t a  

Assume that  we have, at a point p in p 3  a smooth analytic branch of a 
surface S. Choose affine coordinates tl,  t2, u at p, such that  S is given as the graph 
of a regular function u = f ( t l ,  t 2 )  such that  u=0  defines the tangent plane of S at p. 
Recall from w that  we have local coordinates 

( t l ,  t2, U, OL1, Of 2; 2~11,/~12,/~21,322) 

for D22P 3. The coordinates before the semicolon represent a point ( t l , t2 ,u) ,  to- 
gether with a plane in the tangent space at that  point, defined by the linear equa- 
tion ~ = a l t l + a 2 t 2 .  This tangent plane corresponds to the affine plane U - u =  
a l  (T1 - t l)  + a2 (T2 - t2) through p in p3 whose closure, denoted II, gives the corre- 
sponding point (p, H) of J. The coordinates after the semicolon give the plane in 
the subbundle ~" of T J  spanned by the rows of the matrix 

1 ~12 3 2 2 "  
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Here the first two columns represent the derivative t~-+t of the first coordinate t~-*t of 
our parametization of S, and, as in w we only need to consider the four coordinates 
t l ,  t2, (~1, ~2, because 9 v is defined by the equation 72=altl  +a2t2.  

Denote by p/j the Pliicker coordinate given by the 2 x 2 minor corresponding 
to the columns i + 1  and j + l  in the matrix above. Then the symmetry condition 
/312 =/321 can be written in the form 

Po2 -t-P13 = O. 

This final equation, however, makes sense globally, and defines a smooth hyper- 
plane section of the Grassmannian. To interpret the equation Po2+P13=0 more 
concretely, note that  the global splitting of ~ - = ~ ( P - p ) O E  is locally represented 
by {(tl, t2, (~1,22)}={(tl ,  t2)}G{(~l ,  a2)}. Consider now a matrix of the form 

11 t-21 211 {:~21 ] 
t12 ~-22 ~12 222 ' 

view the rows of its left 2 x 2 submatrix as vectors of ~ , ( P - p ) ,  and view the rows of 
its right 2 x 2 submatrix as vectors of E. Skipping the twist, since we are working 
locally, the vector (tl~, t2~) corresponds to the linear form (~1, ~2)~-*t1~21+t2~22. 
We now examine the corresponding element of Hom(E,E)=~(P-p ) |  
where again we can ignore the twist. As an antisymmetric tensor on 9 r ,  we have 

(~-11, ~21)e  ((~12, (~22)--(~-12, ~-22)@ (211 ,22 ! ) ;  

this represents the endomorphism of E, denoted ~, defined by the assignment of the 
matrix product 

(~, ~ 2 ) ,  > [21 ,22 ] .  [ t21a12- t -22~11  t 2 ~ 2 2 - t 2 2 2 2 ~  j " 

In particular, the matrix representing e is 

P02 P031 , 
P12 P13 J 

so the condition P02 +P13 =0  boils down to Tr(c)----0. 

Remark. In Example 5.3, the quadric cone, the sum of minors P02 q-pl3 is again 
zero at the vertex of the cone, so the corresponding cuspidal datum is symmetric 
as a limit of symmetric data. For this symmetric cuspidal datum, strange to say, 
the 2 x 2 submatrix on the right is not symmetric. 
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Now we interpret, in our new language, several classical terms for special points 
on an embedded surface such as S. A point is parabolic if the corresponding pencil 
of directions in f meets the subspace defined by the lift of E, which gives the flat 
data. In particular, even a cuspidal datum could be parabolic, since a pencil of 
directions could meet both E and E ( P - p ) ;  this is a pinch-point. A point is planar 
if the pencil of directions in 5 c is entirely contained in E. Finally, we shall say that  
a point of a surface is completely cuspidal if the pencil of directions is contained in 
E ( P - p ) .  

Denote S~P 3 the subscheme of D 2 p  3 =G2 ()c) consisting of those second-order 
data on p3 having symmetric second fundamental form. 

P r o p o s i t i o n  8.2. The intersection ring of S~P 3 is generated by the restric- 
tion of the classes p, P, cl, c2 (which we shall denote by the same symbols), modulo 
the known relations pa and pa_p2 p + p p 2 _ p 3 ,  together with the new relations 

c 2] - -  2c2 + c l p  --  Cl P - 2pP 

and 

cl a - 12p 2 p2 _ 4p2 Pcm + 4PP 2 Cl + 5p 2 c~ - 6pPc~ + 5P 2 c 2 - 4pc~ + 4Pc~. 

Proof. The Pliicker embedding of G2(5 v) gives an immersion in P(/k 2 ~-), and 
the relative hyperplane section corresponds to the class cl(S)=Cl.  Also, we have 

2 2 

(2) A ~ r =  A ( ~ ( P - p ) | 1 7 4  

The symmetry of the second fundamental form is equivalent, as we observed above, 
to the vanishing of the component O ( P - p )  of (E |  In other words, the 
locus S~P 3 is the restriction to G2~ c of the zero locus of the section 

0 ) b*~QOp(A2~)(1 ) ----+O(P-p)| ). 

In other words, S~P a is the zero-locus of a section of O(P-p+c] ) .  
Our local computations show that  the restriction of this section to any fiber 

G2(P 3) of b is a smooth linear complex, whose intersection ring is generated exactly 
by the image, under restriction, of the intersection ring of the Grassmannian. Hence 
we conclude that  the intersection ring of $22P 3 is also generated by the restriction 
of the intersection ring computed in Proposition 8.1. To complete the proof, we 
simply check that  the first relation in Proposition 8.1 is exactly 

(c1 - p +  P)(c~ - 2c2 + c l p -  cl P -  2pP), 
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which yields our first relation. The second relation follows from the second relation 
in Proposition 8.1 in a similar way, once we eliminate c2 from the latter, and the 
proposition follows. 

For explicit computations, note that  we can forget the class c2, which depends 
on Cl once we tensor with Q. 

Now we interpret some of our classes geometrically. First, the divisor of flexes 
corresponds, via the decomposition (2), to the vanishing of the coordinate in the 
component A 2 E = ( 9 ( p - P ) .  So, arguing as above, we find that  the cuspidal divisor 
has class 

(3) k = e l  + p -  P. 

In the same way, it follows that  the divisor of parabolic points has class 

(4) f = c l + 3 P - 3 p .  

Combining (3) and (4), we obtain the key relation 

(5) f +4p=k+4P.  

For a surface S in p3 of degree d, denote by e the number of points in S in a 
given plane whose tangent plane passes through a given point, and denote by k and 
f the degrees of the curves of cuspidal and parabolic points, respectively. 

P r o p o s i t i o n  8.3. For a surface S as above, we have 

f +4d = k +4e. 

Proof. We simply multiply relation (5) above by the product o fp  with the class 
of the lifting of S to $22P 3. 

C o r o l l a r y  8.4. If  S is a general (and thus smooth) surface of degree d > l  in 
p3, then the degree of the curve of parabolic points is 4d(d -2 ) .  

Proof. We just apply Proposition 8.3. Since S is smooth, we have k--0. To 
find e, we fix a point p and a plane P.  The condition of the tangent plane to pass 
through p is equivalent to the vanishing of the polar of S at p, which has degree d -  1. 
Hence we obtain e by intersecting S, of degree d, with the above polar, of degree 
d - 1 ,  and with the plane P.  We obtain e=d(d-1) ,  and hence f=4e -4d=4d(d -2 ) ,  
as was to be shown. 

For another derivation of the formula f=4e -4d=4d(d -2 ) ,  observe that  we 
can obtain the parabolic curve by intersecting S with the locus where the Hessian 
determinant vanishes. 
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P l a n a r  a n d  c o m p l e t e l y  cusp ida l  p o i n t s  

A second-order datum represents a completely cuspidal point if all the di- 
rections of the approaching point-plane pair limit to cuspidal directions. More 
precisely, this happens when S---*b*.T'=b*E(P-p)@b*E maps into the first factor. 
Hence the completely cuspidal-point locus of G2(~)  is the zero-locus of the map 
S--*b*E. Since we have 

c( b* E - S) = 1 + (Cl + p -  P )t + (c2 + pcl - PCl + p2 _ p  p + p 2 ) t  2 

+ (3pc2 - 3Pc2 - p P c l  + 2p2p  - 2pP 2)t 3 +..., 

it follows from the Porteous formula [F, Theorem 14.4, p. 254] that  the class of this 
locus is given by 

K =c~ - pcl c2 ~- Pcl  c2 -p2c2  _~_ 4pPc2 - p2  c2 

+ p2 c~ - p P c  2 + p2 c 2 _ 3p2 Pc1 + 3pP  2 cl + 3p 2 p2. 

The pinch-point locus lies in S2P 3, and in fact one can write 

K = ( c l - p + P ) ( c l c 2 - 2 p c 2 + 2 P c 2 + 2 p 2 c l - p P c l  + 2 p 2 c 1 - 4 p 2 p + 4 p P 2 ) ,  

so that  the class of pinch-points in S2P 3 is 

(6) K = ClC2 - 2pc2 +2Pc2 + 2p2cl - p P C l  + 2p2cl - 4 p 2 p + 4 p P  2. 

In the same way, the locus of planar points in G2 (J~') is the zero-locus of the 
map S-- -*b*E(P-p) ,  and since 

c( b*E( P - p ) -  S)  = 1 +  ( C l - 3 p + 3 P ) t + ( c 2 - 3 p c l + 3 P C l + 3 p 2 - 5 p P + 3 p 2 ) t  2 

+ ( -pc2  + Pc2 + 2p 2 cl - 5pPc l  + 2 P  2 cl + 2p 2 P - 2pP 2) t 3 +...  

this class is 

F = ( c l - p + P ) ( c l c 2 - 6 p c 2 + 6 P c 2 + 8 p 2 c l  - 13pPcl +8p2c l ) .  

Hence, its class in $22P 3 is given by 

(7) F = clc2 -6pc2  +6Pc2 + 8p2cl - 13pPcl  +8p2c l .  

Of course, we also have f K = F k = O .  
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Suppose now, for example, that  we have a one-parameter family of surfaces of 
degree d, and that we want to compute the number of planar points in the family. 

First of all, there is a direct way to compute this number, without the use of 
data schemes. Write p N  for the projective space parametrizing surfaces of degree 
d in p3. Let h denote the hyperplane class in p3 and write H for the hyperplane 
class in pN,  which represents the condition that  a surface in our family should pass 
through a given general point. In the product X = P  3 •  the incidence relation 
has class dh+H and a one-parameter family pulls back to aH N-I, where a counts 
the members of the family passing through a general point. Now a smooth point of 
a surface f = 0  is planar when the rank of the Hessian of f is two. This condition, 
expressed on X,  means that  the natural  symmetric map 

0 4 ) Ox((d-2)h+H) 4 

given by the Hessian matrix has rank two. Using [HT], this locus has class 10( (d-  
2 ) h + H )  3, so that  the class we want is lOaH N-1. (dh+H). ((d-2)h+H) 3, which is 
the class of 2 0 ( d - 2 ) 2 ( 2 d - 1 )  points. 

To obtain this number from the intersection ring of our variety S2P 3, we con- 
sider the relation 

F = K - 2 p f k + 2 P f k - 2 0 ( P  3-p3), 

which follows readily from the relations above. If our family is general, we have 
no completely cuspidal points, and there will only be a finite number of singular 
surfaces, precisely 4a(d-1) 3, as we can see, for example, with the same method 
as above. At each singular point there is a tangent cone, hence a one-dimensional 
family of tangent planes, and only a finite number of these can be parabolic. Hence 
only a finite number of pinch data  should appear, therefore none after we impose 
the further condition that  the singular point lies in a plane, or that  the tangent 
plane should pass through a point. This seems to indicate that  the threefold swept 
out by our family does not meet any of the classes K, pfk, Pfk .  Thus the above 
formula would give us the number - 2 0 ( b - a ) ,  where b is the number of surfaces 
tangent to a general given plane. To compute the number b, observe that  a surface 
is tangent to a plane P exactly when it intersects P in a singular curve. Hence b 
is the number of singular curves in the family obtained by intersecting our family 
of surfaces with the plane P.  As before, we obtain that  b=3a(d-1) 2, and hence 
-20(b-a)=-20a(3d2-6d§ which is negative. 

What  can we learn from this surprise? Observe first that  the difference between 
the actual number and the one just obtained is 4 0 a (d -1 )  a, which is a multiple of 
the number of singular points. At each singular point p, however, any plane through 
p is obtained as a limit of tangent planes to nearby smooth surfaces in the family, so 



50 Enrique Arrondo, Ignacio Sols and Robert Speiser 

any plane through such a p appears as a completely cuspidal datum for the family. 
It  follows that  the intersection of our family with the cycle K must be improper, 
since it has dimension two, not zero. Hence, in order to use our machinery to count 
contacts between moving surfaces, we would need to modify our parameter  space 
so tha t  the locus of completely cuspidal da ta  will properly intersect the data  given 
by our family. We conjecture that  a single blowup will suffice. 

9. Connec t ion s  

Throughout  this section, E will denote a vector bundle of rank n on a scheme 
X,  with structure map  p: E--*X. To define frames in E,  we fix an n-dimensional 
vector space V over the ground field k, and denote by G the linear group GL(V). 
The tangent bundle TE of E has two vector bundle structures: via its structure map 
q: TE--~E, and via the derivative dp: TE--*TX. We shall be concerned especially 

with the second structure. 

T h e  f r a m e  b u n d l e  

Write Vx for the pullback of V under the constant map X---~Spec(k). The 

frame bundle of E is 
R = Isom(Vx, E),  

the open subscheme of Hom(Vx,  E) whose sections are (9x-isomorphisms Vx--*E. 
In particular, the natural  projection p: R--+X is a locally trivial fibration, with 
fibers isomorphic to G. The group scheme G acts on R by composition on the 
right. Clearly we have X = R / G  as geometric quotient, and R is easily seen to be a 
principal homogeneous space over X under this action. 

We can recover E from R as the associated fiber space with fiber-type V. By 
definition, in the spirit of [D3, 16.14.7, p. 94, and 20.1.4, p. 237], which treats the 
C a case, the associated fiber space is 

R •  

where G acts on the right on R x V, via 

(r, v)-g = (rg, g - i v )  

for gEG, rER, and vEV. Following [D3, 16.14], for rCR and gEG, we shall often 
write r.v for the image of (r, v) in R• Under the identification E = R x C V ,  we 
have r.v=r(v) in E; conversely, mapping R x  V to E by the assignment (r, v)Hr(v), 
it is easy to check that  E is the quotient as claimed. 
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C o n n e c t i o n s  

From here on, we shall restrict at tention to the case k = C .  In this setting, V, 
X and G have natural  complex structures, hence, in particular, they are real C ~ 
manifolds. Similarly, the algebraic, hence complex vector bundle E and the frame 

bundle R are C ~ manifolds as well. 

Following the approach of [D3, 17.16.3.1] for smooth manifolds over R,  we 

define a connection on E to be a C ~ morphism 

C T X x x E  >TE, 

over X,  such that ,  for xEX,  kET~X and u c E ~ ,  we have 

(a) C(k ,u) ,dP  k and C(k,u), q>u, 

(b) k, ~ C(k, u) gives a C-linear map TxX ~ TuE, 

and 

(c) u~ ~ C(k, u) gives a C-linear map  E~ ~ TEk, 

where TE k denotes the fiber (dp)- l (k) .  We call C(k, u) the horizontal lift of k at u. 

For the record, we obtain the usual covariant derivative V from the connection 
C as follows. Given a global section s of E,  and a vector kETxX, write u=s(x). 
We have ds(k)eTuE, with dp(ds(k))=k. Given a connection C on E, by (1) we 
also have C(k, u)ETuE, with dp(C(k, u))=k,  so the vector d s ( k ) - C ( k ,  u)ETuE is 
vertical, that  is, tangent to the fiber Ex. Denote by ~-u the natural  isomorphism 

Tu(Ex)~E~ and set 

V k S  = "ru (ds(k)  - C(k,  u));  

this is the covariant derivative. 

Remark. This simple observation has important  consequences when E is the 
tangent bundle TX. Then a metric on E is K~i~ler exactly when the covariant de- 
rivative of the associated Riemannian connection is complex-linear [KN, discussion 
following Corollary 4.4, p. 445]. This happens exactly when the metric induces a 
connection in our sense, as the last discussion shows. This holds for the tangent 
bundle on P ~ ,  because the s tandard metric on P ~  is Ks We shall return to 

this point shortly. 
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Principal  connec t ions  

Given an algebraic principal bundle R over X with projection p: R--~X and 
structure group G, we shall write q for the structure map  TR--*R. We have a natural  

right G-action on TR; to be precise, for each g E G, the corresponding automorphism 
of T R  is given by the derivative of the automorphism rHrg  of R. In the spirit of 
[D4, 20.2.2], we define a principal connection on R to be an X - m a p  

P 
T X x x R  ~TR 

such that ,  for x c X ,  kETxX and rER~=p-l(x) ,  we have 

(a) P ( k , r ) , d P  k and P(k , r ) ,  q>r, 

(b) k~ ~ P(k, r) gives a C-linear map  TxX ~ TrR, 

and 

(c) Vg E G, we have P(k, rg) = P(k, r)g, 

where, in (c), the group G acts on TR as defined above. We call P(k, r) the horizontal 
lift of k at r. 

Given a principal G-bundle R and a finite-dimensional vector space V on which 
G acts on the right, denote by E the associated vector bundle R • c V, just  as above. 
(Here we assume tha t  the quotient R • C V exists, as it will in our applications.) For 

a fixed vEV, consider the map  R--+E given by the assignment r~-*r.v. Its  derivative 
at rER  gives a map  TrR--~Tr.vE, whose action, following [D3, 16.14.7.3, p. 95], we 
shM1 write as b ~ h - v .  Given a principal connection P: T X  • set 

C(k, u) = P(k, r)-v,  

for kETxX and uEEx, with rER and vCV such tha t  u = r . v ,  via the surjection 
RxV---~E. This is well-defined, by the same argument  as in the C a case [D4, 
20.5.1.1, p. 253], and clearly C is a connection on E.  

Conversely, using moving frames, each connection C on a vector bundle E 
is induced by a suitable principal connection P on the bundle R=Isom(Vx, E) of 
frames in E. Here the C a analogue is [D4, 20.5.2, p. 255], whose proof provides a 
template  for the case at hand. 
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G r a s s m a n n i a n  b u n d l e s  

We now return to E,  our given vector bundle of rank n on the scheme X 
over C,  to our fixed n-dimensional complex vector space V, and to the associated 
complex frame bundle R=Isom(Vx, E),  a principal bundle over X with structure 

group G=GL(V). Again we identify E with R• 
Now fix an integer k, O<_kK_n, and consider the Grassmannian bundle Gk(E). 

To obtain patching da ta  for Gk (E), we simply apply the Grassmannian functor Gk 
to the patching data  for E, so it is clear that  we have a canonical identification 
Gk(E)=RxVGk(V), where the right-hand side denotes the associated fiber space 
with fiber Gk(V). Indeed, the quotient (R• is Gk(E), and in particular 
the quotient exists, by the same reasoning which shows tha t  E is the analogous 
quotient (R x V)/G. 

Given a connection C on E, induced by a principal connection P on the frame 

bundle R, set 
G(k, a)  = P(k, r ) .w,  

where kETxX, aEGk(E)x for xEX, and where rERx and wEGk(V) are such that  
s=r.w. That  G(k, or) is well-defined follows by the same argument  as for the anal- 

ogous step in the passage from P to C. 

P r o p o s i t i o n  9.1. The assignment (k, rr)~-*G(k,a) defines a C~-map 

over X, with properties analogous to (a)-(c) for 9. 

Proof. That  G is an X - m a p  is clear; that  it enjoys the required properties 
follows immediately from the construction. 

D a t a  o n  a s c h e m e  w i t h  a c o n n e c t i o n  

Here we suppose that  the smooth S-scheme X comes equipped with a connec- 
DkX=GkTX; write p for tion, as above, on the tangent bundle TX=Tx/s. Here 1 

the structure map Gk (TX)--*X, write E for the universal k-subbundle of p*TX, and 
write 9 v for the pullback of E to T(GkTX) under Op, as in w then D2X=Gk(~). 

For a point sEGk(TX), let x=p(s). We identify the fiber Es with the k-plane in 

TxX to which it corresponds. Then a point of Ys is a tangent  vector vET~(GkTX) 
with dp(v)CE~. By Proposit ion 9.1, the connection C induces a C ~ morphism 

TXxxGkTX G T(GkTX) 
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with properties (a)-(c) as above. 
We now define a C ~ bundle map  a: E - - ~ .  For a point of E given by a vector 

k C E s c T x X  as above, we set 
a(k) = G(k, s). 

Fix sEGkTX;  then, as k varies, the induced map  on the fibers Es--*T~(GkTX) is 
linear by property (b), and it follows easily that  a is a bundle map  E--*T(GkTX). 
By property (a), the diagram 

(1) 

T(GkTX )  

E ~ ) p * T X  

commutes,  so a does map into ~-. Write Sk for the induced map D~X=GkE--* 
Gk,;=D~X.  

P r o p o s i t i o n  9.2. The map Sk is a C ~ section of the natural map 2 2 bk: DkX---* 
2 D I  x ,  and the image of sk lies in DkXnc. 

Proof. Because diagram (1) commutes,  it follows tha t  a splits the projection 
9v--*E, so the proposition follows from Proposition 3.3. 

The image in D2Xns of the section sk is called the fiat subspace; we denote it 
by F.  In the C ~ splitting 

(2) F =  EeTD~x /x  

given by a,  the first summand corresponds to F.  As in w denote by E the universal 
k-subbundle on Gk(TX); then we have an exact sequence 

0 ~ E ---* TXak (TX) ) A ~ 0, 

where A denotes the universal quotient. 

C o r o l l a r y  9.3. Given the connection C, suppose further that the section Sk is 
a morphism of schemes. Then we obtain a natural identification 

D2Xns = Hom(E| A)D~X~s 

of D~Xns-schemes. 

Proof. This follows from Proposition 7.2. 



Global moduli for contacts 55 

Under the isomorphism of Corollary 9.3, the zero-section on the right corre- 
sponds to the flat subspace F,  which is now a subscheme. 

Classically, a C ~ arc T on X is a geodesic if its tangent vector moves horizon- 
tally, relative to the connection C. In our language, we have two maps T ~ X 2 =  
D2X: the second lift i2 and the composite Sloil,  where il ,  the first lift, assigns 
the tangent direction. Then an arc T is a geodesic exactly when i2(T)=Sloi~(T) 
on the data  scheme D2X. For algebraic subvarieties, whatever the dimension, we 
have a natural  analogue: relative to C, we say that  a smooth algebraic k-fold on X 

is fiat if we have i2(T)=Sloil(T) on D~X, where il denotes the first lift T--~D~X. 
Evidently flat algebraic subvarieties will be rare, but,  under the assumptions of 
Corollary 9.3, we can always ask about  the pullback of F under i2, whose support  
consists of the fiat locus on T, relative to C. 

When X = P ~ ,  as we have remarked above, the s tandard connection is given 
by a K~hler metric, so the preceding discussion applies. The resulting section Sk 
coincides with the section we defined directly in w whose image in D2X is the 
space of flat da ta  we defined there for pn .  In particular, while the connection C in 

this case is definitely C ~ ,  the resulting section is algebraic, so Corollary 9.3 applies. 

Example 9.4. For X - - P  2, equipped with its s tandard connection, lines are flat. 
For more general curves, take k = l  and r=2. Then F gives the inflectional second- 
order data  of [RS1], [RS2], [RS3], [CK1] and [CK2]. In particular, the flexes of a 
general curve T on X are the points at which the second lift of T meets F on p2. 

Example 9.5. For X = p 3  equipped with its s tandard connection, take k--2  and 
r = 2 .  Then F parametrizes the second-order da ta  given by flat points on surfaces, 
as in w and the set of flat points of an embedded surface T is precisely the support  
of i F . 
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