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A quantitative version of Picard’s theorem

Walter Bergweiler(!)

Abstract. Let f be an entire function of order at least %, M(r)=max|,|=r |f(2)|, and n(r,a)
the number of zeros of f(z)—a in |z|<r. It is shown that limsup,_,., n(r,a)/log M(r)>1/2x for
all except possibly one a€C.

1. Introduction and results

Let f be a transcendental entire function. Picard’s theorem [6] says that there
exists at most one value a€C such that f(z)—a has only finitely many zeros. Borel’s
theorem [2] gives a quantitative version of this result by saying that
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for all aeC, with at most one exception. Here n(r, a) denotes the number of zeros
of f(2)—a in |z|<r, counted according to multiplicity, and M (r)=max,|, |f(z)|
is the maximum modulus of f. The quantity on the right side of (1) is called the
order of f and denoted by p.

The “true” quantitative version of Picard’s theorem is of course given by Nevan-
linna’s theory on the distribution of values and by Ahlfors’s theory of covering
surfaces, see [3], [5]. Here we will use the theories of Nevanlinna and Ahlfors to
prove a quantitative version of Picard’s theorem whose statement uses only “pre-
Nevanlinna” terminology.

Theorem 1. Let f be an entire function of order at least %— Then
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for all a€C, with at most one exception.

The proof will show that there exists an unbounded sequence (r;) depending
only on f such that n(r;, a)>(1/2r—o(1)) log M (r;) for all except possibly one value
of a and loglog M(r;)/logr;— g as j—oo. Thus Theorem 1 can be considered as
a strong form of Borel’s theorem for the case that o> %

We note that the character of the problem is different if p< % A classical result
of Pélya [7] and Valiron [9], [10] says that if 0<g<1, then
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for all c€C. Simple examples show that if 0<p< %, then we may have equality for
all a€C here. Thus for oggg% the constant 1/27 in (2) has to be replaced by
sin o/, and this bound is sharp. (For §<p<1 this bound is better than 1/27).

Theorem 1, however, which deals with the case 92%, is probably not sharp.
Note that for $ <p<2 the estimate (3) is better than (2). It seems likely that the
constant 1/27 on the right side of (2) can be replaced by 1/#. This would be best
possible. In fact, we have
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if f(z)=expz and a#0. If § <p<oo, p#1, and f(2)=E1,,(z), then (4) holds for all

a€C. Here E, denotes Mittag-LefHler’s function. Note that E;/, has order g. An-

other example (of order 2) is f(z)= [ exp(—t) dt, where (4) holds for a==+/7/2.

A function of infinite order satisfying (4) for all a€C is the function Ej considered

by Hayman [3, p. 81] and Pélya and Szeg6 [8, Vol. I, p. 115]. Other examples of

infinite order can be obtained from the functions constructed in [1, Theorem 3].
Theorem 1 is an immediate consequence of the following result.

Theorem 2. Let f be an entire function of order at least % Then
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if a,beC, a#b.

In a certain sense Theorem 2 is sharp, because we have equality in (5) if f(z)=
exp z and a=0. But it seems likely that the constant 1/7 on the right side of (5)
can be replaced by 2/ if the order of f is sufficiently large and, in particular, if f
has infinite order.
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2. A growth lemma for real functions

Lemma. Let ®(z) be increasing and twice differentiable for >xo and assume
that ®(x)>cx for some positive constant ¢ and arbitrarily large x. Then there exist
sequences (x;), (M;), and (€;) such that z;—o0, Mj—oc0, and £;—0 as j— oo,
&' (25)>c/8, " (x;) <29/ (z;)*/®(2;), and ®(z;+h)<®(z;)+® (z;)h+e; for |h]<
M; /¥ (z;).

Without the claim about ®”(x;), this was proved in [1, Lemma 1]. The proof
given there, however, also yields the above version. To see this, let F' and v be as in

[1, p. 168], and put D(z)=F(x)—®(x). Then D has a local minimum at v. Hence
D"(v)>0. Since D(v)=D’(v)=0, we deduce that
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and the claim made about ®”(z;) follows.

3. Proof of Theorem 2

Let ®(x)=logT(e®), where T(r) denotes the Ahlfors-Shimizu characteristic
of f. Let A(r)=rT"(r), that is,
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where r=e”.
Suppose first that f has infinite order. We choose z; according to the lemma
and define rj=expz;. As shown in [1, p. 171], we have

(8) log M(r;) < (1+o0(1))m A(r;)-
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From (6), (7), and the lemma we deduce that
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Thus
9) riA'(rj) < (1+0(1)) ’;((T;'j))
as j—oQ.

Suppose now that f has finite order p>3. We shall show that (8) and (9) hold
again for a suitable sequence (r;). Let o*(r) be a strong proximate order for T'(r),
cf. [4, §1.12], and define fy(r)=r9*(’"). Let r; be an unbounded sequence satisfying
T(r;)=v(r;). Then (r;) is also a sequence of Pélya peaks (of order g) for T'(r)
and the arguments of [1, p. 164] show that (8) holds again. Define z;=logr; and
¥(z)=log y(e®). Then ®(z)<¥(z) with equality for z=z; and thus &'(z;)=¥(z;)
and ®”(z;)<¥"(z;). It follows from the properties of strong proximate orders that
V'(z)—p and ¥”(z)—0 as z—oo. Thus &'(z;)—p and ®"(z;)<o(1) as j—oo.

Combining this with (6) and (7) we see that (9) also holds again.
Define (cf. [3, p. 144], 8, p. 348])
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Then
L(r)? <2n%rA'(r)

by Schwarz’s inequality (cf. {3, p. 144}, [8, p. 349]). Together with (9) it follows that

; w——A(rj) =o(A(r;
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Hence
(10) n(rj, a)+n(r;,b) = (1-0(1))A(r;)

by the main result of Ahlfors’s theory of covering surfaces (cf. [3, p. 148], [8, p. 349,

inequality (IT')]). Combining (8) and (10) we obtain (5).
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