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A quantitative version of Picard's theorem 

Walter Bergweiler(1) 

Abstract. Let f be an entire function of order at least 5,1 M(r)=maxizl_ r -  If(z)l, and n(r, a) 
the number of zeros of f(z)-a in Izl <_r. It is shown that lim supr~o c n(r, a)/log M(r)>_ 1/21r for 
all except possibly one aCC. 

1. I n t r o d u c t i o n  a n d  r e s u l t s  

Let f be a transcendental entire function. Picard 's  theorem [6] says tha t  there 
exists at most one value a E C  such tha t  f ( z ) - a  has only finitely many zeros. Borel 's 
theorem [2] gives a quanti tat ive version of this result by saying that  

(1) lim sup log n(r, a) = lim sup log log M(r) 
r - ~  log r r-~o~ log r 

for all a E C ,  with at most one exception. Here n(r, a) denotes the number of zeros 
of f ( z ) - a  in Izl<r, counted according to multiplicity, and M(r)=maxN=r If(z)l 
is the maximum modulus of f .  The quanti ty on the right side of (1) is called the 
order of f and denoted by Q. 

The "true" quanti tat ive version of Picard 's  theorem is of course given by Nevan- 
linna's theory on the distribution of values and by Ahlfors's theory of covering 
surfaces, see [3], [5]. Here we will use the theories of Nevanlinna and Ahlfors to 
prove a quanti tat ive version of Picard 's  theorem whose s tatement  uses only "pre- 
Nevanlinna" terminology. 

T h e o r e m  1. Let f be an entire function of order at least 1. Then 

(2) n(r, a) 1 
limsup~__,~ l o g M ( r )  -> 21r 

(1) Supported by a Heisenberg Fellowship of the Deutsche Forschungsgemeinschaft. 
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for all aEC, with at most one exception. 

The proof will show that there exists an unbounded sequence (rj) depending 
only on f such that n(rj, a) >_ (i/27r-o(i)) log M(rj) for all except possibly one value 
of a and loglogM(rj)/logrj-~Q as j--+ec. Thus Theorem 1 can be considered as 

1 a strong form of Borel's theorem for the case that 6> 3" 

We note that the character of the problem is different if L)< �89 A classical result 
of Pdlya [7] and Valiron [9], [I0] says that if 0<6<1, then 

n(r, a) sin 7cQ 
(3) lim~_~sup log M(r)  > - - 7 c  

for all aEC. Simple examples show that if 0_<4<_ 1, then we may have equality for 
i the constant 1/27r in (2) has to be replaced by all a E C here. Thus for 0_< 0-< 

sinTc~/Tc, and this bound is sharp. (For I<D<_I this bound is better than 1/27@ 
Theorem i, however, which deals with the case 6>_ 1, is probably not sharp. 

Note that for I_<L)< 5 the estimate (3) is better than (2). It seems likely that the 
constant 1/27r on the right side of (2) can be replaced by i/Tr. This would be best 
possible. In fact, we have 

n(r,a) 1 
(4) limsup~ log M(r)  - 7r 

if f ( z ) = e x p z  and a#0 .  If l_<Q<oc, 0r  and f (z )=E1/o(z) ,  then (4) holds for all 
aEC.  Here E~ denotes Mittag-Lettter's function. Note that  E1/e has order 6. An- 
other example (of order 2) is f ( z ) = f o  e x p ( - t  2) at, where (4) holds for a = ! v ~ / 2 .  
A fimction of infinite order satisfying (4) for all a E C  is the function E0 considered 
by Hayman [3, p. 81] and Pdlya and Szeg6 [8, Vol. I, p. 115]. Other examples of 
infinite order can be obtained from the functions constructed in [1, Theorem 3]. 

Theorem 1 is an immediate consequence of the following result. 

1 Then T h e o r e m  2. Let f be an entire function of order at least ~. 

(5) limsup n(r, a)+n(r, b) > 1_ 
~ . ~  log M(r)  - 7r 

if a, bEC, a#b. 

In a certain sense Theorem 2 is sharp, because we have equality ill (5) if f ( z ) =  
exp z and a=0.  But it seems likely that the constant 1/Tr on the right side of (5) 
can be replaced by 2/7c if the order of f is sufficiently large and, in particular, if f 
has infinite order. 
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2. A growth  l emma for real funct ions  

Lemma.  Let ~(x) be increasing and twice differentiable for X>Xo and assume 
that q~(x)>cx for some positive constant c and arbitrarily large x. Then there exist 
sequences (xj), (My), and (zj) such that xj--+oo, Mj--+oo, and r as j-+oo, 
(~'(Xj)>C/8, {P"(xj)<2gY(xj)2/q~(xj), and ~(xjq-h)<CP(xj)q-~'(xj)hq-gj for ]h]< 
M~Ir 

Without the claim about (b"(xj), this was proved in [1, Lemma 1]. The proof 
given there, however, also yields the above version. To see this, let F and v be as in 
[1, p. 168], and put D ( x ) : F ( x ) - ~ ( x ) .  Then D has a local minimum at v. Hence 
D"(v)>0.  Since D(v) :D' (v ) :O,  we deduce that  

�9 "(v) < F"(v)  = 2F'(v)2 - 2~'(v)2 
- F(v)  r  

and the claim made about ~"(xj )  follows. 

3. P r o o f  of  T h e o r e m  2 

Let ~(x)=logT(eX), where T(r) denotes the Ahlfors Shimizu characteristic 
of f .  Let A(r)=rT'(r), that is, 

A(r) : ~ z  If'(z)12 dxdy. 
,<~ (l+l/(z)12) 2 

Then 

(s) 

and 

�9 ' ( x ) -  A(r) 
T(r) 

(7) ~"(x) : T(r) \T(r)] 

where r=e< 
Suppose first that  f has infinite order. We choose xj according to the lemma 

and define rj=expxj .  As shown in [1, p. 171], we have 

(8) log M(rj) < (l +o(1) )TrA(rj). 
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From (6), (7), and the lemma we deduce that 

rjA'(rj) = r A(rj)2 2~'(xj)2 T(rj)-~ A(rj)2 
T(rj) < ~(xj) T(~) 

- (lo@T~rj) t-l) A(rj)2 T(rj) " 

Thus 

(9) 
�9 A(rj)  2 

rjA'(rj)<_(l+o(1)) 

as  j ---~ OO. 

Suppose now that  f has finite order Q_> �89 We shall show that (8) and (9) hold 
again for a suitable sequence (rj). Let 0*(r) be a strong proximate order for T(r), 
cf. [4, w and define ~/(r)=r o*(r). Let rj be an unbounded sequence satisfying 
T(rj)=3'(rj). Then (rj) is also a sequence of Pdlya peaks (of order 0) for T(r) 
and the arguments of [1, p. 164] show that (8) holds again. Define xj =log rj  and 
�9 (x)=log ~/(eX). Then (I)(x)_<k~(x) with equality for x=xj and thus (V(xj)=~'(xj) 
and ~" (x j)<_ ko" (xj). It follows from the properties of strong proximate orders that 
~'(x)--*O and q2"(x)--*O as x--*cc. Thus ~'(xj)--*O and O"(xj)<_o(1) as j--~ec. 
Combining this with (6) and (7) we see that (9) also holds again. 

Define (cf. [3, p. 1441, [8, p. 348]) 

L(r) = frz Jf/(z)J Jdzl 
j=r l+[ f (z)J  2 ' 

Then 
L(r) 2 < 2~2rA'(~) 

by Schwarz's inequality (cf. [3, p. 144], [8, p. 349]). Together with (9) it follows that 

L(rj) < (l+o(1))v/-27r A(rj) _ ~ = o ( A ( r y ) ) .  

Hence 

(10) n(rj,a)+n(ry,b)>_(1-o(1))A(rj) 

by the main result of Ahlfors's theory of covering surfaces (cf. [3, p. 148], [8, p. 349, 
inequality (II')]). Combining (8) and (10) we obtain (5). 
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