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Distribution of interpolation points 
Ren@ Grothmann 

A b s t r a c t .  We  show t h a t  in te rpola t ion  to a funct ion,  ana ly t ic  on a compac t  set E in t he  

complex  plane,  can  yield m a x i m a l  convergence only  if a subsequence  of t he  in te rpola t ion  po in t s  

converges to  t he  equi l ibr ium d i s t r ibu t ion  on E in t he  weak sense.  Fur the rmore ,  we will derive a 

converse t h e o r e m  for t he  case when  t he  m e a s u r e  assoc ia ted  wi th  t he  in terpola t ion  po in t s  converges  

to  a m e a s u r e  on E ,  which  m a y  be different f rom t he  equi l ibr ium measure .  

1. I n t r o d u c t i o n  

The problem we wish to investigate is the interpolation of analytic functions 
in the complex plane. Let a function 

f:E---*C 

be given on a compact set E c C  with connected complement. Assume that  f is 
analytic on an open neighborhood U of E.  Furthermore, take a sequence of sets of 
interpolation points 

(1.1) z0,n,... , z,~,n C E, n E N. 

Then we can interpolate f in zi,,~ with polynomials from II,~ (the set of algebraic 
polynomials with complex coefficients of degree not greater than n), i.e., 

pn(Zv,n)=f(Zv,n), V = 0 , . . .  ,n. 

In the case when the points z0,n,... , Zn,~ are not pairwise distinct, we use Her- 
mite interpolation. By Hermite's formula, the interpolating polynomial Pn has a 
representation 

(1.2) pn(z)= ~/~/(O(~.(i)=~n(z))~(r162 de, zeE ,  
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where "7 is a path in U\E running around every point in E exactly once (such a 
path always exists), and 

n 

(1.3)  n(z) := II(z-zn, ). 
~0 

By Cauchy's formula, the error can be written as 

1 ~w~(z) f(4)de. 
(1.4) f(z)-p~(z) = ~ w~(r (C-z) 

From these well-known facts, one can deduce that  p~ converges to f maximally in a 
sense to be described below, whenever the sequence of points satisfies the following 
distribution condition. 

We introduce the point counting measures ~-~ associated with (1.1). These 
measures are probability measures such that  

(1.5) ~({z~,~})--  c~ ,~  - = 0  ... ,n,  
n + l '  

where c,,~ is the multiplicity of z . . . .  
Furthermore, we denote by #E the equilibrium measure with respect to the 

logarithmic kernel on the boundary of E (cf. [9]), i.e., PE minimizes the logarithmic 
energy 

/ /  l~ ~z l ~  d#(z) d#(~) 

over all probability measures/~ on the boundary of E. 
To define the notion of maximally converging polynomials, we need the Green's 

function GE=G in 
~ : = C \ E  

with pole at infinity and set 

Er={ze~:G(z)<_logr}UE, r>O. 

We will assume that  the boundary OE of E is regular, i.e., G can be extended 
continuously to E such that  G--0  on E. Furthermore, the level lines of G are 
denoted Ft. Then F~ is the boundary of E~. 

Finally, if r > 1 and f is analytic in the interior of E~ but in no neighborhood 
of E~, then we call a sequence of polynomials p~ EH~ maximally convergent to f ,  if 

1/~ 1 
(1.6) l imsup IIf --P~IIE = - 

n---+c~ r 
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Here, [[. [[E denotes the supremum norm of a bounded function on E.  The right hand 
side t e rm in (1.6) is the minimal one for such functions f .  Maximal convergence 
has been studied by S. N. Bernstein and by J. L. Walsh [13]. 

I t  is well known [13], that  p~ will converge maximally to f ,  if ~-~ converges to 

/z E in the weak sense (i.e., one has 

for any g continuous in C with compact  support).  
The purpose of this paper  is to investigate the converse direction of this state- 

ment.  We assume that  each polynomial Pn interpolates f in n + l  points of E.  The 
sequence of these points is given in (1.1). We also assume, that  f is analytic in a 
neighborhood of E,  but not entire. 

It  is known that  a necessary condition for maximal convergence in the class 
of all functions, which are analytic on Er ( r > l ) ,  is the weak convergence of the 
distribution of the interpolation points to the equilibrium distribution. In fact, it 

suffices to take the class of functions of the form f , ~ ( z )= l / ( z -a )  with aq~E.~. Then 
the interpolating polynomial for fa is 

1 
= - -  

z - a  wn(a)(z-a)"  

We will prove a converse of the above mentioned result for a single function f 
(rather than  a class of functions). 

A special consequence of our result is the fact that  maximal convergence can- 
not be achieved even for a single function unless at least a subsequence of the 
interpolation points converges weakly to the equilibrium measure. 

The second aim of this paper  is to s tudy the relation between the speed of 
convergence and analyticity, even if the sequence of interpolation points is not dis- 
t r ibuted according to the equilibrium measure. To make this more precise, we 
assume that  for the measures introduced in (1.5), we have 

T n ---~ O'~ 

where cr is some unit measure on E.  Since U ~ is lower semi-continuous, it will 
a t ta in  its minimum on E.  Let 

(1.7) - log )~o = min U~(z). 
z ~ E  

Then 
E c_ {z E C \ E :  U'~(z) > - log A0}. 
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We define for all h E R  

(1.s) g~ ---- g~ := {z e C \ E :  U ~ (z) > - log A}UE. 

Then E is contained in the open interior of E~ for A > A0. 

It is well known (see [7], [10]-[12]) that,  if f is analytic inside C~ for some A>Ao 
and Ln( f )  denotes the interpolating polynomial to f in the points {Zk,n}, then 

(1.9) lira sup IIf - Ln(f)lllE/~ ~ --ft. 

The proof of this statement uses the Hermite formula (1.2). The case ( T ~ E  is due 
to Bernstein and Walsh. 

Our aim is to prove the converse of this result, i.e., we prove that  (1.9) implies 
the analyticity of f in the interior of g~. There seems to be no straightforward 
proof of this result. In the case (7=pE the standard proof uses the Bernstein-Walsh 
estimate, which states that  

(1.10) IlPnlIE~ <-- r~IIP,~IIE 

for all polynomials of degree at most n and r > 1. Such a result is no longer available 
in our case. So we have to find another way of proving that  f is analytic in a 
neighborhood of C~ o. This will suffice to show that  f is analytic in E~. Note, that 
the analyticity in a neighborhood of E follows from the classical result. But g~0 is 
larger than E, unless ~ is #E. 

A well-known special example is the case when all points Zk,n=zo. In this case 

A0 = sup Iz -zol ,  
zEE 

and it is clear from the theory of the Taylor expansion that  p~ converges inside the 
disk of radius A0 around z0. In this case, the rest of the theorem follows from the 
Bernstein-Walsh estimate by classical arguments. 

2. S t a t e m e n t  o f  resul t s  

Since we introduced the necessary terms in the last section, we can immediately 
formulate our first theorem. 
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2.1. T h e o r e m .  Let f: E--+C be a continuous function such that there exists 
a maximally convergent sequence of polynomials pnEHn with 

limsup llf -p~lllE/~= 1 
rt---+ c~o r 

for r > l  ( r < ~ )  and such that f -p ,~  has n + l  zeros 

Z o ,  n , , . .  , Z n ,  n ~ OE, 

where OE denotes the boundary of E. Then the sequence of measures ~-n associated 
to these points (according to (1.5)) has PE as a weak limit point. 

Consequently, if f is analytic in the interior of Er ( r > l )  but not in any open 
neighborhood of Er, then maximal convergence can only occur if ~-~ has PE as weak 
limit point. 

Note, that  a subsequence may well converge faster. As an example, let 

oo 

Z ",  

v = O  

set E - [ - � 8 9  1] and denote by 8 n the nth  partial sum of the power series of f 
around 0. Then 

1/n! 
J i r n  II f-sn,  llE = 0 .  

Theorem 2.1 requires that  there exist interpolation points. If E=[a,b] this 
may be guaranteed for certain sequences of best approximating polynomials. For 
instance, if p~ denotes the polynomial of best uniform approximation to a real- 
valued function f on E, 

IIf-P~HE = e~(f)  = i n f{ l l f -q~HE : qn ~ II~}, 

then it is well known that  r n - f - p  ~ has an alternation set of n + 2  points. These 
points are interlaced by interpolation points of p* to f .  Since polynomials of best 
approximation are of course maximally convergent, the theorem can be applied. A 
result of Kadec [6] gives more precise information on the location of the alternation 
points, which has been sharpened by Blatt [1]. If r is big enough even more precise 
results can be achieved [5]. 

However, we may apply Theorem 2.1 in a more general situation. 
In [9] Saff and Shekhtman investigated interpolation properties of best Lp(a)- 

approximants. In their setup, a measure a is given on [-1, 1], the support of which 



108 Ren@ G r o t h m a n n  

contains infinitely many points, and Sn, p is the best Lp(a)-approximant to a given 
function f E C [ - 1 ,  1] with respect to Hn ( l ~ p < o e ) .  

Since then 

(2.1) / I f ( x ) - S ~ , p ( X ) l  p-1 sign(f(x)-S~,p(x))qn(x) da(x) = 0 

for all q~EII~, one can see that  S~,p necessarily interpolates f in at least n + l  
points, where the error f - S~ ,p  changes its sign. Saff and Shekhtman investigated 
the denseness of these points. Their  main result says, that,  if f is not a-a.e, equal 
to a polynomial, then in any interval [a, b]c__ [-1,  1] there are infinitely many such 
interpolation points. They then boldly conjecture that  a subsequence of the se- 
quence of n th  Fekete subsets of the set of interpolation points distributes like the 
equilibrium measure. 

Using Theorem 2.1, we can prove their conjecture for analytic functions. How- 
ever, we pose a restriction on a. We will assume that  the function 

~(~, 6) := sup{~([x-~,  x +~  ]) :x e R} 

does not rapidly tend to 0 when ~--*0. Furthermore, we require that  the support E 
of a is an interval. 

2.2. C o r o l l a r y .  Let a have compact support E=[a, b]. Let l ~ p < o c  and sup- 
pose that 

l iminf w(a, 1/n2) 1/~ > O. 
n---*oo 

I f  f is analytic on E, but not entire, and Xo,n<...<xn,n are zeros of f - sn , p ,  then 
the corresponding sequence of counting measures ~'~ has PE as a weak limit point. 

If f is not assumed to be analytic on E, then the question remains open. 
However, in the above mentioned paper, Saff and Shekhtman have shown that  in 
this case the interpolation points are dense in E.  Furthermore, Blatt  has proven 
the result in the case of L2 approximation [2]. 

We wish to note, that  we are not restricted to interpolation on the boundary 
of E.  If the interpolation points are situated in all of E, we need to introduce the 
balayage of q-~ to the boundary of E.  It is defined as a measure Tn on the boundary 
of E such that  

U ~ (z) -- U rn (z), for all z �9 C \ E .  

By the following Lemma 2.3, which will be useful for us for other reasons, this 
measure is unique. For the existence of the balayage of a measure see [9]. 

The following result is classical. A simple proof is implicitly contained in a 
paper of Carleson [3] (see the proof of Lemma 3). For an older reference see the 
paper of Deny [4]. 
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2.3. L e m m a .  Let ]A 1 and #2 be two measures supported on the boundary of 
E, such that U'l(z)=US2(z) for all zErO. Then #1=#2. 

Now, we generalize Theorem 2.1 to the balayage of the distribution of interpo- 
lation points. 

2.4. T h e o r e m .  Let the sequence (Pn)neS (pnEHn) of interpolating polynomi- 
als be maximally convergent to f .  Assume that the interpolation points are in E. 
Then the sequence (Tn) has lAB as a weak limit point. 

An example of this is the simple fact that  the Taylor series of a function, which 
is analytic in a circle of radius r > l  around 0, taken in a point z0 in the unit circle 
D1 can only converge with rate 1/r in D1, if zo=0.  

Next we ask if a subsequence of ( ~ ) ,  which does not converge to #E, is excep- 
tional in some sense. To make this more precise, we need to introduce a distance 
between measures on E.  We still assume that  OE is regular with respect to f~ (see 
above). In this case, we define 

.MOE : = { #  : # is a unit measure on OE}, 

and, for r > l ,  

dr(#1,#2)---II Um-v"211r~ ,  m , ~ 2  EMOE, 

where II. NK denotes the supremum norm on a compact  set K.  If dr(#l ,  #2)=0,  then 
by the max imum principle U "1 = U  "2 on C \ E r  and thus on fL By Lemma 2.3, #1 = 
#2. Clearly, dr satisfies the other prerequisites for a metric. Moreover, convergence 
with respect to this metric is equivalent to weak convergence. For if (Pn) converges 
weakly to #E.MOE, then the potentials (U "~) converge uniformly on r r  to U ", since 
this set has a positive distance to E; i.e., 

uniformly for z E r r .  Thus dr(pro # ) 4 0 .  On the other hand, if dr(IZn, #) converges 
to 0, then any weak limit point a of (Pn) is equal to # by the same argument.  Since 
any subseqnence of (#~) has a weak limit point, (#~) converges to /z  weakly. 

Though dr can be defined for all measures on E,  it is not a distance on this 
enlarged set of measures. Clearly 

dr(m,~')--0 

if ~- is a unit measure on E and ~ is the balayage of ~- to the boundary of E.  However, 
we will define dr for all unit measures on E. 
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2.5. T h e o r e m .  If under the conditions of Theorem 2.4, for ~>0 

M e  ~- { h i  < n2  < . . . }  C N 

is the set of indices, such that 

dr(l-tE, ~nk) > g for all k E N  

with any fixed r> l,  then 

(2.2) l imsup nk+l > 1. 
k--*c~ n k  

Relation (2.2) implies that  the density of Me in N defined as 

l iminf cardinality {~ < k : ~  E Me} 
k ~  k 

is less than 1. However, there are sets with density 0 such that  (2.2) is not satisfied. 
We now proceed to state the second main result of this paper. Again, we have 

already introduced the necessary definitions. 

2.6. T h e o r e m .  Let the counting measures ~'n (see (1.5)), associated with the 
interpolation points, weakly converge to a measure cr supported on E and assume that 
we have a geometric rate of convergence, i.e., for the sequence Pn of interpolating 
polynomials to f ,  we have with some/~l>A0 

�9 1/nk ~1 
hmsupk~ Ilf-pnkllE = 

where )~o is defined as in (1.7). Additionally, assume that 

lira nk+l _ 1. 
k ---* c~ n k 

Then f is analytic in the open inte or o/ C L (see (1.S)). 

We remark once more that  the converse is a well-known result, which follows 
directly from the Hermite formula and the weak convergence. We already mentioned 
the case when a is a point measure and all interpolation takes place in that  point. 
In this case, we get a well-known result about the Taylor series. If a=/ZE, we 
obtain another well-known result due to Bernstein and Walsh. There is also a 
relatively simple proof in the case when each set of interpolation points differs from 
the previous one by just a single point. 
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3. P r o o f s  

It is clear that  Theorems 2.1 and 2.4 are corollaries to Theorem 2.5. So we will 
restrict our attention to the proof of this theorem. 

P r o o f  o f  T h e o r e m  2.5 

For abbreviation, set ~ :=#E.  Fhrthermore, we denote by Coo the compactified 
complex plane. 

We assume now that  (2.2) does not hold; i.e., 

lira nk+l = 1. 
k - - ~  n k 

By the maximum principle applied in C \ E R ,  

dR(Iz, ~nk) > dr(l~, ~nk) > e 

for l < R < r .  
We fix the maximal Q>0 such that  

limsup Hf-pnN < 1 - - .  

?17, ---+ 0 0  6 

We then choose l < R < 6 0 < Q l < 6 ,  where R<r .  Our aim is to show 

(3.1) limsup IIf -p, , l l l /~ ~ < 60. 

Next, we claim that  there is a 5>0 (depending on c) with the following property: 
If for aE.A4OE with dR(#, a )>e ,  we construct a harmonic function r on 

U := int (Eel \ER) 

such that  r extends continuously to FR and to FQ1, r for zEFe~, and 

r  z E F , ,  

where 

c~ := rain ( U U ( z ) - U ~ ( z ) ) = -  log 61-log cap E +  rain (-U~(z)) ,  
zcFQ 1 zEF~ 1 
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then 

(3.2) r < - 5 ,  zeFoo. 

Assume there is no such 5. Then there exists a weakly converging sequence (a,~) in 

.MOB such that  
1 

max r  (z) > - - .  
z6Foo Tt 

By the uniform convergence of the sequence (U a~) on FR, we get for the weak limit 
point a of (an) 

max r > 0. 
zGFo o 

Together with the boundary condition, this implies that r It follows 
that  U"(z)-Ua(z)>_ca on FR. But, since Ut~(z)-Ua(z) is a harmonic function in 
C a \ E ,  we get U"=U ~ by the minimum principle. Thus by Lemma 2.3 # = a .  This 
is a contradiction to dR(p, ff)>~, which proves the existence of our 5. 

Now it is well known, that  p~ converges maximally to f on all Es with l<_s<o, 

i.e. 
8 

lim sup IlPn-- fllE~ = --" 

This implies the following two facts. Fix 7>0.  Then we can choose N~GN 

such that,  for all zEER, 

(3.3) 1 log I f ( z ) -pn (z ) l  ~ log R - l o g  o-t-~, n >_ Nv, 
n 

and, for all zEEol, 

1 
(3.4) - log I f ( z ) -pn (z ) l  ~ log 01 - l o g  0+7,  n _> N n. 

n 

Additionally, we can use formula (1.4) for the function f (z)-pn(z)  (interpola- 
ting in the interpolation points) and choose Nv so large that,  for all zEER, n>Nv 

1 log If(z)-pn(z)l < - U ~ ( z ) -  inf (-U'~(w))+ 1 log IIf--PnllEol +7 
n - -  wCFo l  n 

< - U a ( z )  - inf (-U~(w))+lOgel-loge+ev 
-- w6Fo I 

= (u.(z)-u  (z))-ca+1ogR-1og 

where we used (3.4). 
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Next, we define the function 

hn(z) := 1 log If(z)-pn(z)l-(G(z)-log 6). 
n 

This function is subharmonic in f} and thus obeys the maximum principle in this 
region. 

Take z with G(z)=logR, n>N, 7. Then, if r  we have by (3.5) 

h~(z) < (U~(z)-U~(z))-ca+log R - l o g  6 - ( G ( z ) - l o g  6)+27 = r +27. 

If Co(z)=0, we get by (3.3) 

hn(z) < 7 <- r 

For z with G(z)=log 61, n>Nn, we have r  and thus, by (3.4), 

h,,(z) <_ 7 <- r 

Using the maximum principle, we see that,  for log R-<G(z)<log 61, 

hn(z)<_r n>_Nw 

With (3.2), for zEFQo , 
hn(~) < r < -~+27 

and thus 

1 
- log If(z)--Pn(Z)I -< log Q0-1og Q+27-5  < log 60-log 0 - 5 / 2 ,  n _> Nn, n E M~ 
n 

if we choose 7>0  small enough. By the maximum principle, the last estimate holds 

for z E Eoo. 
Using (2.2), we see that  for any c~>0 there is a constant Ks  such that  

"pnk+l--pnk"Eol < ((l+a)60) e5/29 

for k>K,~, which is equivalent to (3.1). 
By the Bernstein-Walsh inequality and (2.2), there is an s > 6  and "y<l such 

that 

llp~§ --Pn~ ll~s --~ ~" 

Thus f is analytic in Es, which is a contradiction. [] 
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P r o o f  o f  C o r o l l a r y  2.2 

We may assume [a, b ]=[-1 ,  1]. From (2.1) we know that  there are at least n + l  
zeros of f-Sn,p in E = [ - 1 ,  1]. Since these zeros serve as interpolation points, we 
only have to show that  Sn,p converges maximally to f in the supremum norm. Let 
the maximal geometric rate of uniform convergence be 1 /6<  1. 

If we denote by p* the best uniform approximation to f on E, then for each 
> 0 there exists an N n c N such that  

(3.6) ( /E 'f -- Sn'PIP da)I/P ~-- ( /E If --P * 'P da)I/P 

~_o'(E)I/PIIf --p* ,,E ~_ (~-~-~) n, 

for all n>N v. Thus Sn,p converges maximally in the Lp(a)-sense. 
Next we claim that  for q EHn 

,~l/p 
(3.7) ( /E [q[pdCr ) --> '[qHEw((7'l/n2)l/P2 

Let xEE be the point, where [ql attains its maximum. We may assume q (x )= l .  
Then by the Markov inequality, Iq'(x)l <n 2. Thus 

_. (j m-:,:--',x-.,>', o>.-) 
> a([x-n-212, x+n-212]) 1/p > w(a, 1In') 1/. 
- 2 - 2 

This proves (3.7). 
Now, we combine (3.6) and (3.7) and get 

4 

_< l ln.) l l . .  
By the assumption of the corollary, we have that  Sn,p converges to some function 
g uniformly with geometric rate 1/6. Clearly, this function is identical to f on 
E, since Sn,p converges to f in the Lp(a)-sense. This completes the proof of the 
corollary. [] 

P r o o f  o f  T h e o r e m  2.6 

It is well known, that  f is analytic in U:--int E;~l/~o , and EcU. Denote by 

A2 := sup{A : f is analytic in a neighborhood of E~}. 



(3.s) 
1 

lim sup - -  
k ----," co n k + l  
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Clearly, A2 >0, since by definition U ~ is bounded on f~\U, and thus C~ ___int E;~x/), o 
for A> 0 small enough. 

Assume A2<A1. Reasoning as in the proof of the converse result to Theo- 
rem 2.6, we construct for some fixed small ~>0 a path in 

such that the path winds around every point in E exactly once. This is possible, 
because of the following inclusions 

E C E~2 UExl/~o C int(E~2_vUExl/~0_n). 

Using the Hermite formula, we get 

limsuplf(z)-Pn(Z)lUn<- ~2' z e g ~ \ E ,  ~<A2, 
hEM 

and this limit is uniform in S~\int E~, A<A2, T>I.  ~Sarthermore, for any A1/),o> 
T > 1, we have uniformly for z E F~, 

lim sup If(z)-pn(Z)l 1In </~o__._.~Y 
h e M  )~1 

This follows from the Bernstein-Walsh inequality (1.10) in the classical way. 
Thus, uniformly on F~, l<T<)h/A0,  

ilm sup 1 log If(z) -P~ (z)] < min{-U ~ (z) - log  A2, log A0 - log  )~1 +log T}. 
nCM n 

Since l imnk+l/nk=l by assumption, we get 

log IP-~+~ (z) -Pnk (z) l "( min{ -U~  (z) - log  A2, log A0 - log  A1 +log T}. 

Now 
1 

hk(Z) := - -  
nk+l  

log [P~k+~ (z) -pn~ (z) l + U  ~ (z) +log A2 

is subharmonic in C ~ \ E .  We choose T>I  such that 

4 log r < log A1 - log  A2. 
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Let z0 be the point in F~, where U ~ is minimal. Then U~(z0 )<- log ) ,0  and, by 
(3.8), there is a constant K~ EN, such that  

hk (Zo) < U ~ (Zo) +log )~2 +log A0-1og )~1 +2  log ~- 

< log ~2 - l o g  ~1 +2  log ~- < �89 (log ~2 - l o g  ~1) =: c 

for k >_K~-. 
In a ball B around zo, we get 

hk(z )<c<O,  k>M~.  

Furthermore, by (3.8), we have 

for arbitrary c > 0. Since hk is subharmonic in C ~  \ E , ,  we can construct a harmonic 
majorant  Ce on C c ~ \ E r  with 

r  f o r z E F ~ \ B ,  

c, for z � 9  

In fact, if we set r162 we have 

r = r +~. 

Icl 

Furthermore, r  <0  in any compact subset of C \ E .  With c > 0  small enough, 
it follows that hk(z)<C1 <0 in a neighborhood V of the set 

{z �9 n\E;l/;o: U " ( z )  = - l o g  ; 2 } .  

Thus (Pn)nEM converges in V to an analytic continuation of f .  This contra- 
diction completes the proof. [] 
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